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1 Introduction

Theories of equality of opportunity (Dworkin (1981a), Dworkin (1981b), Ar-

neson (1989), Cohen (1989), Roemer (1993), Roemer (1998)) put individual re-

sponsibility in the forefront in the assessment of the distribution of outcomes.

Individuals’ outcomes such as their income level, education attainment or health

status, are determined by two kinds of factors. On the one hand, there are cir-

cumstances, factors that are beyond individuals’ responsibility. On the other hand,

there are efforts, factors for which individuals are responsible. Inequalities that are

due to circumstances are deemed ethically unacceptable while those arising from

efforts are not considered offensive. Hence, the outcome inequalities associated

with these two factors should be treated differently. Economists developed social

criteria and ways to measure inequality of opportunity based on the dichotomy

between circumstances and efforts. Recent overviews of this literature are Ferreira

and Peragine (2015), Roemer and Trannoy (2015) and Ramos and Van de gaer

(2015).

The number of studies measuring inequality of opportunity has been increasing

rapidly over the last few years (see again the overviews mentioned above). Still,

many theorists feel uneasy with the tools used, as they rely on statistical procedures

which obscure how the resulting measure of inequality of opportunity responds to

changes in the data. It is the purpose of the present paper to investigate this issue.

More in particular, we follow closely Fleurbaey and Peragine (2013), and formu-

late two desirable properties that a measure of inequality of opportunity should

have. The idea that inequalities that are due to unequal circumstances are of-

fensive is reflected in the compensation principle: reducing inequalities between

individuals that have the same efforts (such that the resulting inequalities are due

to circumstances) should decrease inequality of opportunity. The idea that in-

equalities that are due to differences in efforts are not offensive is reflected in the

2



utilitarian reward principle: reducing inequalities between individuals that have

the same circumstances (such that the resulting inequalities are due to efforts)

should not affect inequality of opportunity.

In empirical work, the measurement of inequality of opportunity usually relies

on constructed counterfactuals. In the direct measurement approach, one measures

the inequality in a counterfactual distribution that contains only inequalities that

are due to circumstances. In the indirect approach, one measures the difference

between actual inequality and the inequality in a counterfactual that contains only

inequalities that are due to efforts.

The counterfactuals can either be constructed non-parametrically or paramet-

rically. The non-parametric methodology has been developed by Checchi and

Peragine (2010) and was applied to university access by Brunori et al. (2012). It

constructs counterfactuals as group averages. In the direct approach each individ-

ual is assigned the average outcome obtained by those having the same circum-

stances as he, in the indirect approach he is assigned the average outcome obtained

by those having the same efforts as he. The parametric methodology specifies and

estimates a functional form between the outcome under study, on the one hand,

and circumstances, effort and a random term, on the other hand. These estimates

are then used to construct the counterfactuals. For instance, following Fleurbaey

and Schokkaert (2009), one can estimate an equation between the outcome, cir-

cumstances, and a random term, set the random term equal to zero, and use the

resulting “predicted” outcome (a function of individuals’ circumstances only), as a

counterfactual in the direct approach. Alternatively, as suggested by Bourguignon

et al. (2007), one can set circumstances equal to a reference value (which is the

same for all individuals), and plug in the estimated residual to obtain a counterfac-

tual that only reflects differences in outcome that are due to differences in efforts.

This counterfactual can be used in the indirect approach.

The functional form used in parametric empirical analyses usually depends on
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the nature of the dependent variable and on the specification that one is used to in

the literature. When interested in inequality of opportunity for income, a loglinear

specification is almost universally used (see, e.g. Bourguignon et al. (2007), Fer-

reira and Gignoux (2011), Hassine (2012), Marrero and Rodŕıguez (2012), Singh

(2012), Niehues and Peichl (2014). When the outcome of interest is binary or

categorical, nonlinear probability models are commonly used. Foguel and Veloso

(2014) and Trannoy et al. (2010), for instance, use a logit model to study in-

equality of access to education, and self-assessed health status, respectively, while

Rosa Dias (2009) employs an ordered probit to examine self-assessed health sta-

tus. For inequality in PISA scores, Ferreira and Gignoux (2014) use a simple linear

specification.

We show that the non-parametric methods introduced by Checchi and Per-

agine (2010) satisfy one of the two basic properties. For parametric methods, we

argue that, when using a parametric approach to construct the counterfactuals,

the statistical procedure and functional form chosen are crucial to determine the

properties of the resulting measure of inequality of opportunity. We show that they

determine whether the measure of inequality of opportunity satisfies the compen-

sation or the utilitarian reward principle and use our results to reflect upon the

state of the art.

The structure of the paper is as follows. Section 2 introduces the notation

and the way counterfactuals are constructed in the empirical literature. Section 3

formulates the theoretical basic principles, compensation and utilitarian reward.

Section 4 presents the results when the counterfactual is constructed on the basis

of a linear least squares estimate (Section 4.1), a loglinear least squares estimate

(Section 4.2) and a non-parametric estimate (Section 4.3). Section 4.4 develops a

framework with binary outcomes. The conclusion is contained in Section 5.
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2 Measuring inequality of opportunity using coun-

terfactuals

Let N = {1, . . . , n}, be the set of individuals. In theoretical work, N is the

population; in empirical work N is typically a sample of individuals drawn from

a population. The purpose of our work is to see how empirical approaches per-

form when used in the theorists’ set-up. Therefore, it is best to think about N

as the population. Up to section 4.4 we assume that the outcome we observe for

individual i is such that Pigou-Dalton transfers of this outcome can be meaning-

fully defined. We call this outcome individual i’s income, yi ∈ R++. Following

the literature on equality of opportunity, we want to compensate her for some of

these characteristics, while we want to hold her accountable for other characteris-

tics. The former are brought together in the vector of circumstances ci ∈ RdC , the

latter in the vector of efforts ei ∈ RdR . Define

Y =


y1
...

yn

 , C =


c′1
...

c′n

 , E =


e′1
...

e′n

 .

Throughout we will assume that C and E are given and that the researcher is fully

informed about the values of Y,C and E. This is not an innocuous assumption.

The consequences of unobserved circumstances and efforts is discussed elsewhere,

see, e.g., Roemer and Trannoy (2015) or Ramos and Van de gaer (2015), and is

not the focus of the present paper, where we analyze a set-up that is as close as

possible to that used in theoretical work. A dataset d is a triplet (Y,C,E). The

set of all possible data sets is

D =
{

(Y,C,E) : Y ∈ Rn, C ∈ Rn×dC , E ∈ Rn×dE
}
.
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A measure of inequality of opportunity is a function M : d ∈ D 7→ Rn such that

M(d) > M(d′) means that inequality of opportunity in d is higher than in d′.

Let the function I(·) : Z ∈ Rn
++ → R+ be a measure of inequality, i.e., a function

satisfying two properties. First, it satisfies the Pigou-Dalton transfer principle,

meaning that, for all Y, Ỹ ∈ Rn
++ that are such that there exists δ ∈ R++ and

i, j ∈ N : ỹi = yi − δ ≥ ỹj = yj + δ, and for all k /∈ {i, j} : ỹk = yk, I(Ỹ ) < I(Y ).

Second, it satisfies anonymity, meaning that, for all Y, Ỹ ∈ Rn
++ that are such

that the vector Ỹ can be obtained from the vector Y by permuting its incomes,

I(Ỹ ) = I(Y ).

The two most popular ways to measure inequality of opportunity that rely on

counterfactual income distributions are the direct and the indirect approach.

Direct measures determine the amount of inequality of opportunity as the in-

equality in a counterfactual income distribution Y c in which all inequalities due

to differences in effort have been eliminated, such that the remaining inequality is

solely due to differences in circumstances:

MD(d) = I (Y c(d)) . (1)

Indirect measures determine the amount of inequality of opportunity by compar-

ing the inequality in the actual distribution of income, Y , to the inequality in

a counterfactual income distribution where there is no inequality of opportunity

Y EO. This results in the measure

M I(d) = I (Y )− I
(
Y EO(d)

)
. (2)

To compute either of these measures a counterfactual distribution of income has

to be constructed using the information in the dataset d. This can be done either
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with a parametric or a non-parametric approach. Three types of specifications have

been used to construct counterfactual distributions parametrically. Individual i ’s

income, yi, is assumed to depend on her circumstances ci and her efforts, ei, such

that

yi = g (ci, ei) where g : RdC × RdR → R++.

As the functional form g is unknown, the parametric approach imposes a functional

form to estimate the equation, yielding the function

ĝ (ci, ei, ui) where ĝ : RdC × RdR × R→ R++. (3)

The effect of specification errors go into the estimated random term, ûi, which is

defined implicitly by the equation yi = ĝ (ci, ei, ûi). Its estimate is determined by

the chosen functional form ĝ and the dataset d. Some counterfactuals treat it as

a circumstance, others as an effort (see below). Other counterfactuals are based

on estimates of incomes as a function of, alternatively circumstances and random

variation, or efforts and random variation:

ĝC
(
ci, u

C
i

)
where ĝC : RdC × R→ R++, (4)

ĝE
(
ei, u

E
i

)
where ĝE : RdR × R→ R++. (5)

In the first (second) equation, the effect of omitted efforts (circumstances) are

taken over by circumstances (efforts) to the extent that these two are correlated.

The rest of their effect as well as specification errors go into the estimated random

variation, ûCi (ûEi ), which is defined implicitly by the equation yi = ĝC
(
ci, û

C
i

)
(yi = ĝE

(
ei, û

E
i

)
).

The following parametric counterfactuals have been proposed for the direct
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approach:

yc1i = ĝC (ci, 0) , (6)

yc2i = ĝE
(
e, ûEi

)
, (7)

yc3i = ĝ (ci, e, 0) , (8)

yc4i = ĝ (ci, e, ûi) . (9)

In (7) - (9), e is a vector of reference values for efforts. Use of counterfactual (6)

implies that one measures the inequality that is due to circumstances, including

the indirect correlation between circumstances and efforts. Counterfactual (7)

measures all inequalities that are due to circumstances and random terms ui that

are not correlated with effort. In (6) and (8), differences in ui are treated as efforts

(i.e. inequalities due to differences in ui are legitimate), while in (7) and (9) they

are treated as circumstances. 1 Counterfactual, yc1 has become the most popular;

it was used, e.g., by Rosa Dias (2009), Ferreira and Gignoux (2011), Ferreira and

Gignoux (2014), Brunori et al. (2012), Marrero and Rodŕıguez (2012), Foguel and

Veloso (2014) and Niehues and Peichl (2014). Fleurbaey and Schokkaert (2009)

suggest to use yc3 and yc4. Pistolesi (2009) used yc4. We are unaware of any

application of yc2.

Non-parametric procedures rely on averaging. LetNi· = {k ∈ N such that ck = ci}.

The non-parametric counterfactual for the direct approach becomes

yc5i =
1

|Ni·|
∑
k∈Ni·

yk, (10)

which is the average income of all those having the same circumstances as indi-

vidual i. It was proposed in Van de gaer (1993) and developed in Checchi and

1As in actual applications it is unclear whether the ui should be treated as a circumstance
or effort, Fleurbaey and Schokkaert (2009) suggest to compute inequality of opportunity in both
cases. This holds, of course also when using an indirect measure of inequality of opportunity.

8



Peragine (2010).

For the indirect measurement approach the following parametric counterfactu-

als have been proposed:

yEO1
i = ĝE (ei, 0) , (11)

yEO2
i = ĝC

(
c, ûCi

)
, (12)

yEO3
i = ĝ (c, ei, 0) , (13)

yEO4
i = ĝ (c, ei, ûi) . (14)

In (12) - (14), c is a vector of reference values for circumstances. The inequality in

counterfactual (11) measures the inequality that is due to the direct effect of efforts

as well as the part that is due to the correlation between efforts and circumstances.

The inequality in counterfactual (12) reflects all inequalities that are due to efforts

and random terms ui that are not correlated with circumstances. In (11) and

(13), differences in ui are treated as circumstances, while in (12) and (14) they

are treated as efforts. Counterfactual, yEO1 was used in Trannoy et al. (2010),

yEO2 was used in Bourguignon et al. (2007), Singh (2012) and Hassine (2012).

Fleurbaey and Schokkaert (2009) suggested yEO3 and yEO4. Brunori et al. (2012)

applied yEO3 and yEO4. The latter was also applied by Bourguignon et al. (2007)

and Pistolesi (2009).

Also in the indirect approach a non-parametric counterfactual can be con-

structed. Let N·i = {k ∈ N such that ek = ei}. The non-parametric counterfac-

tual for the indirect approach becomes

yEO5
i =

1

|N·i|
∑
k∈N·i

yk, (15)

which is the average income of all those having the same effort as individual i.

Checchi and Peragine (2010) proposed this counterfactual.
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3 A measurement perspective

Both the theorists and empirists use the information in the dataset d to con-

struct a measure of inequality of opportunity. The empirists use the dataset d in

order to obtain a good estimate of relationship (3), (4) or (5), construct the coun-

terfactuals and compute the direct or indirect measure of inequality of opportunity,

respectively (1) or (2).

The theorists take a measurement theory perspective. It requires that the

measure of inequality of opportunity responds to changes in the dataset in a way

compatible to the intuitions prescribed by equality of opportunity principles. Let

the set of all datasets compatible with Y , C and E be

∆ =

{
(X,C,E) : X ∈ Rn

++ and
n∑
i=1

xi =
n∑
i=1

yi

}
.

The domain ∆ ⊂ D. It keeps not only the set of individuals fixed, but also their

characteristics C and E, as well as the total income. It allows us to state how

the measure of inequality of opportunity should respond to income redistributions

between individuals. Several axioms embodying desirable properties involving cer-

tain types of Pigou-Dalton transfers have been proposed in the literature (see, e.g.,

Fleurbaey and Peragine (2013)).

The first axiom, Compensation, requires that, when 2 individuals i and j have

the same efforts, and i has a higher level of income than j, then, transferring an

amount of money δ from i to j without resulting in i having a lower income than

j, decreases inequality of opportunity, as their income difference, which is entirely

due to circumstances, diminishes. 2

COM (Compensation): For all d = (Y,C,E) and d̃ = (Ỹ , C, E) ∈ ∆ that are such

2Fleurbaey and Peragine (2013) labelled this axiom “Ex-Post Compensation”.
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that there exist δ ∈ R++ and i, j ∈ N : ei = ej and ỹi = yi − δ ≥ ỹj = yj + δ, and

for all k /∈ {i, j} : ỹk = yk, we have M(d̃) < M(d).

The idea that people are responsible for their efforts can be expressed by a

second axiom, Utilitarian Reward, which also makes a statement about the effect of

a particular kind of Pigou-Dalton transfer on inequality of opportunity. It requires

that, when individuals i and j have the same circumstances and i has a higher

income than j, then, as the difference in incomes is due to efforts, transferring an

amount of money δ from i to j without resulting in i having a lower income than

j, should not affect inequality of opportunity. 3

UR (Utilitarian Reward): For all d = (Y,C,E) and d̃ = (Ỹ , C, E) ∈ ∆ that are

such that there exists δ ∈ R++ and i, j ∈ N : ci = cj and ỹi = yi− δ ≥ ỹj = yj + δ,

and for all k /∈ {i, j} : ỹk = yk, we have M(d̃) = M(d).

We know from the literature on fair compensation that it is very difficult to

reconcile compensation and reward principles (see, e.g., Bossert (1995), Fleurbaey

(1995), Fleurbaey (2008) or Fleurbaey and Maniquet (2011)). The same is true

here: COM and UR are incompatible. To see this, consider four individuals:

N = {1, 2, 3, 4}, c1 = c2, c3 = c4, e1 = e3, e2 = e4, incomes y1, y2, y3 and y4 and the

set of all datasets ∆0 compatible with Y,C and E specified above. Take a dataset

d0 ∈ ∆0 such that y1 < y4 < y3 < y2. In what follows we consider Pigou-Dalton

transfers of a fixed size δ ≤ (y3 − y4)/2 such that the transfer always satisfies the

conditions in the axioms we are using. First, do a Pigou-Dalton transfer from

individual 2 to 1, resulting in dataset d′. By UR, inequality of opportunity has

not changed. Next, do a Pigou-Dalton transfer from individual 3 to 4, resulting in

dataset d′′. By UR, inequality of opportunity has to be the same in datasets d0,

d′ and d′′. Now, start again from dataset d0, and do a Pigou-Dalton transfer from

3This principle has also been called “Utilitarianism for Equal Circumstances” by Fleurbaey
(2008). He provides a critical discussion of this reward principle and compares it with alternative
principles.
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individual 3 to 1, resulting in dataset d′′′. Next, do an additional Pigou-Dalton

transfer from individual 2 to 4, and we are back in dataset d′′. By COM, inequality

of opportunity in dataset d0 is larger than in d′′′, where it is larger than in economy

d′′, which contradicts our previous finding.

Hence we know that there does not exist any measure of inequality of opportu-

nity that satisfies both COM and UR. The purpose of this paper is to see whether,

or under which conditions, the procedures that are most frequently used in the

empirical literature to measure inequality of opportunity based on counterfactuals

satisfy one of these two basic properties.

It turns out that the properties of the direct and indirect measures of inequality

of opportunity depend on the functional form and the statistical procedure chosen

to estimate the equation used to compute the counterfactual. In Sections 4.1 and

4.2 we assume that the predicted values are generated by an ordinary least squares

regression and in section 4.3 we investigate the non-parametric alternatives. In

Section 4.4 we reformulate the framework to deal with binary responses and discuss

nonlinear probability models.

4 Results

4.1 Linear least squares

Define average income µY = 1
n

∑n
j=1 yj, the average value of circumstance

k, µCk = 1
n

∑n
j=1 cjk and µC the dC dimensional vector containing µCk as k-th

element for all k ∈
{

1, . . . , dC
}

. The average value for effort q, µEq = 1
n

∑n
j=1 ejq,

and µE is the dE dimensional vector containing the µEq as q-th element for all

q ∈
{

1, . . . , dE
}

. Let ι be the n− dimensional vector of ones, XC = C − ι(µC)′,
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XE = E − ι(µE)′, XCE =
[
XC XE

]
, Y D = Y − ιµY ,

UA =


uA1
...

uAn

 and V A =


vA1
...

vAn

 , where A ∈ {C,E,CE} .

The equations that have to be estimated to construct the counterfactuals are, in

deviational form,

Y D = XAβA + UA. (16)

The corresponding least squares estimator of the coefficient vectors βA are

bA =
(
(XA)′XA

)−1
(XA)′Y D for A ∈ {C,E,CE} . (17)

Performing a Pigou-Dalton transfer from observation i to j will change the least

squares estimates of the coefficient vector (see Lemma A2 in the Appendix A1),

and thus the constructed counterfactuals (see Lemma A3 in Appendix A1) and,

thereby, the values of the direct and indirect measures of inequality of opportu-

nity. We want to verify whether the way these measures respond to Pigou-Dalton

transfers is in accordance with the prescriptions in the Axioms COM and UR. We

find that some measures obey one of the Axioms, others do not and still others do

so under some assumptions. In particular the following assumptions turn out to

be helpful.

C1M: Circumstances are one-dimensional and the transfer goes from someone with

better circumstances to someone with worse circumstances: dC = 1 and ci1 > cj1.

Eµ: Reference efforts are equal to average efforts: e = µE.

Cµ: Reference circumstances are equal to average circumstances: c = µC .

COR0: Circumstances and efforts are not correlated.

13



One-dimensionality of circumstances is a very strong assumption to make.

However, observe that in the literature on intergenerational mobility, one often

draws lessons about inequality of opportunity (see O’Neill et al. (2000) and, for

a recent example Chetty et al. (2014)), which requires a one-dimensional view of

circumstances. In addition, C1M requires monotonicity: the transfer goes from an

individual with better circumstances and higher income to someone with worse cir-

cumstances and lower income. The determination of the value for reference efforts

or circumstances is a tedious issue in the literature. 4 In much of the empiri-

cal literature, reference values are simply set to their sample means, without much

justification, see, e.g., Bourguignon et al. (2007), Pistolesi (2009), Ferreira and Gig-

noux (2011) or Singh (2012). There has been some debate about the implications

of the correlation between efforts and circumstances. Roemer (1993) and Roemer

(1998) argued that normatively relevant effort has to be measured such that it is,

by construction, not correlated with circumstances since it is very hard to hold

people responsible for efforts if they are correlated with circumstances, which are,

by definition, not under individual control. Others, e.g., Rawls (1971), Dworkin

(1981a), Dworkin (1981b), Van Parijs (1995) and Fleurbaey (2008) have argued

that people should be responsible for their tastes, even if these are correlated with

their circumstances.

The following Proposition lists the properties of the measures of inequality of

opportunity.

PROPOSITION 1: Using the linear specification (16) and least squares as the

estimation method, the following Table gives sufficient conditions for the measures

of inequality of opportunity to satisfy COM or UR.

4There are not many theoretical results about the consequences of the choice of reference
values –for an exception see Luttens and Van de gaer (2007). To solve the arbitrariness of
the choice of reference value Ramos and Van de gaer (2015) propose an averaging procedure.
Garćıa-Gómez et al. (2013) propose to minimize the extent to which the theoretical principles
are violated.
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Table 1: Conditions for the measures to satisfy COM and UR

Measure COM UR
Panel A: Direct measures
(a) yc1l = ĝC (ci, 0) C1M +
(b) yc2l = ĝE

(
e, ûEi

)
+ -

(c) yc3l = ĝ (ci, e, 0) Eµ and C1M Eµ and COR0
COR0 and C1M

(d) yc4l = ĝ (ci, e, ûi) COR0 -
Panel B: Indirect measures
(e) yEO1

l = ĝE (ei, 0) + -
(f) yEO2

l = ĝC
(
c, ûCi

)
Cµ and C1M +

(g) yEO3
l = ĝ (c, ei, 0) Cµ and COR0 -

(h) yEO4
l = ĝ (c, ei, ûi) Cµ and C1M COR0

Notes: A “+” means that the measure always satisfies the Ax-
iom in the column; a “-” means that the measure does not satisfy
the Axiom under any of the Assumptions considered.

Table 1 makes clear that, if one wants a measure to satisfy COM, one can

use measure (b) or (e); if one wants a measure to satisfy UR, one can use (a) or

(f). Absence of correlation between efforts and circumstances helps to establish

properties of the inequality measures in case a counterfactual is used that relies on

bCE. The use of average values as reference values by itself does not help to guar-

antee that an inequality of opportunity measure has desirable properties, but in

conjunction with other assumptions the properties of the measure can sometimes

be established. One-dimensionality of circumstances and monotonicity helps of-

ten to guarantee that measures satisfy COM. We verified that one-dimensionality

of efforts does not help measures to satisfy UR. On the contrary, it ensures that

inequality in the counterfactual is affected (for direct measures) and is affected

differently from inequality in the actual distribution of income (for indirect mea-

sures). If one only has information on circumstances, such that only counterfac-

tuals based on bC can be constructed, measures that satisfy UR are available, but

no measure that satisfies COM is available. The opposite occurs in case one only

has information on efforts. Finally, there are only three measures of inequality of
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opportunity in Table 1 that are not dominated by any other, in the sense that

there does not exist another measure that requires weaker assumptions to satisfy

the axioms. These are measures (a), (b) and (e).

4.2 Loglinear least squares

The equations that have to be estimated to construct the counterfactuals are

now

log(Y )− ιµlog(Y ) = XAαA + V A, (18)

where µlog(Y ) = 1
n

∑n
i=1 log(yi) and the corresponding least squares estimator of

αA is

aA =
(
(XA)′XA

)−1
(XA)′

[
log(Y )− ιµlog(Y )

]
for A ∈ {C,E,CE} . (19)

These estimates can be used to determine the counterfactuals (6)-(14) under the

assumption of loglinearity and the use of least squares (see Lemma A4 in Appendix

A2 for a proof). Again, Pigou-Dalton transfers influence the estimated coefficients

(Lemma A5 in Appendix A2) and counterfactuals (Lemma A6 in Appendix A2).

We can verify whether the way the inequality of opportunity measures respond

to Pigou-Dalton transfers is in accordance with the prescriptions in the Axioms

COM and UR. The result is stated in Proposition 2.

PROPOSITION 2: Using the loglinear specification (18) and least squares as

the estimation method, none of the measures of inequality of opportunity satisfies

COM nor UR.

We have seen that, when measuring inequality of opportunity for income, a log-

linear specification is standard (see the references in the Introduction). Proposition

2 suggests that, with a loglinear specification, none of the resulting measures sat-
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isfies any of the basic principles that a measure of inequality of opportunity should

have. This is bad news for what has become standard practice. However, if one

were to claim that the relevant outcome is not income, but the log of income (for

instance because it might be assumed that individual utilities can be measured

that way) and a measure of inequality in the distribution of the log of (counterfac-

tual) incomes is used in (1) or (2), then the transfers in the axioms should apply

to transfers in log income, which means that we are in the framework of Section

4.2, and the results from Proposition 1 apply. 5

More precisely, consider the factor proportional transfer principle, in which,

with δ > 0 the income of the rich individual is divided by a factor 1 + δ , while

the income of the poor individual is multiplied by 1 + δ, without resulting in a

post transfer income for the rich individual that is lower than the post transfer

income of the poor individual. 6 Replacing the standard Pigou-Dalton transfer

in the COM and UR axioms by such factor proportional transfers, it becomes

clear that use of the loglinear specification (18) and a measure of inequality in

the distribution of the log of (counterfactual) incomes in (1) or (2) means that

the results from Table 1 apply to these factor proportional transfer versions of the

COM and UR axioms. Observe that it is crucial that the inequality measure is

defined on the distribution of the log of incomes. This is, as far as we are aware

of, never done in the literature. The mean log deviation is commonly used, but

it is not suited, as it is the average value of the log of mean income divided by

income. The standard deviation of the log of incomes, or any standard inequality

measure defined on the distribution of the log of incomes are alternatives that are

more coherent with the basic intuitions of inequality of opportunity measurement.

5Actually, the empirical literature finds estimates close to one of the constant elasticity of
marginal utility (see e.g. Layard et al. (2008), Gandelman and Hernández-Murillo (2013)), which
could give empirical support to a loglinear specification as the best approximation to modeling
individual utility as a function of income.

6This principle is different from the proportional transfer principles considered in Fleurbaey
and Michel (2001). We discuss this in Appendix C.
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When measuring inequality of opportunity for income, a loglinear specification

is almost universally used, and usually one uses the direct measure with counter-

factual (6). The loglinear specification is motivated by its empirical fit; the use of

a specification involving only circumstances is motivated by the absence of data on

efforts. The results in this paper provide an additional and important motivation

for this approach: if, in the axioms, the transfers are defined as factor propor-

tional transfers, then none of the other approaches in the literature satisfies the

COM and UR principle under weaker assumptions. Moreover, it dominates the

only other approach that only needs information on incomes and circumstances

(the indirect measure with counterfactual (12)), which requires in addition to one-

dimensionality of circumstances, that reference circumstances are put equal to

their empirical averages in order to satisfy COM.

That the standard procedure is not dominated by any other, and that it always

satisfies UR (with factor proportional transfers) are strong arguments in favor of

the standard practice. Without information on efforts, it is the best one can do,

but if circumstances are not one-dimensional it does not satisfy COM. Hence, it

gives priority to the UR principle above the COM principle. Our results show that

there exist measures that satisfy factor propotional transfer versions of the COM

axiom, such as the direct measure with counterfactual (7) or the indirect measure

with counterfactual (11), but they require information on efforts.

4.3 Non-parametric approaches

The properties of the non-parametric procedures to construct counterfactuals

are easy to derive. It is clear that the counterfactual defined in (10) is unchanged

if a Pigou-Dalton transfer occurs between two individuals having the same circum-

stances. Hence it immediately follows that when this counterfactual is used in the

direct approach (1), the resulting measure of inequality of opportunity satisfies UR

always and hence cannot satisfy COM. The counterfactual defined in (15) is un-
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changed if a Pigou-Dalton transfer occurs between two individuals having the same

efforts. Hence, as the inequality in the actual income distribution has decreased, it

immediately follows that when this counterfactual is used in the indirect approach

(2), the resulting measure of inequality of opportunity satisfies COM always and

hence cannot satisfy UR. We summarize the results in the following Proposition.

PROPOSITION 3: The non-parametric counterfactual (10) in the direct ap-

proach always satisfies UR and never satisfies COM. The non-parametric coun-

terfactual (15) in the indirect approach always satisfies COM and never satisfies

UR.

4.4 Binary outcomes

In this section we analyze binary response models. Observations are now

brought together in the n-dimensional vector Y b which contains, as i− the ele-

ment, the binary outcome ybi ∈ {0, 1} of individual i. A dataset db is a triplet(
Y b, C, E

)
. The set of all possible data sets is

Db =
{

(Y b, C, E) : Y b ∈ {0, 1}n , C ∈ Rn×dC , E ∈ Rn×dE
}
.

A measure of inequality of opportunity is a function M b : db ∈ Db → R+ such that

M b(db) > M b(d′b) means that inequality of opportunity is higher in db than in d′b.

Again we will formulate desirable properties, taking the set of individuals, their

characteristics and the total (binary) outcome as given. That is, we work with the

domain

∆b =

{
(Xb, C, E) : Xb ∈ {0, 1}n and

n∑
i=1

xbi =
n∑
i=1

ybi

}
,

where ∆b ⊂ Db. Due to the binary nature of the outcomes, the concept of a Pigou-

Dalton transfer no longer makes sense such that the COM and UR axioms have

to be redefined. We propose definitions that rely on switching binary outcomes of

19



two individuals with the same circumstances. Binary compensation requires that,

if, as a result, after the switch all individuals that have the same efforts as the

individuals whose outcomes were switched obtain the same binary outcome, then

the switch decreased inequality of opportunity.

BCOM (Binary Compensation): For all db = (Y b, C, E) and d̃b = (Ỹ b, C, E) ∈ ∆b

that are such that there exist i, j ∈ N with ci = cj and ybi 6= ybj , and ỹbi = ybj and

ỹbj = ybi , while for all k /∈ {i, j} : ỹbk = ybk, for all l : el = ei, ỹ
b
l = ỹbi , and for all

m : em = ej, ỹ
b
m = ỹbj , we have M b(d̃b) < M b(db).

Binary utilitarian reward requires that a switch of binary outcomes between

individuals having the same circumstances has no effect on inequality of opportu-

nity.

BUR (Binary Utilitarian Reward): For all db = (Y b, C, E) and d̃b = (Ỹ b, C, E) ∈

∆b that are such that there exist i, j ∈ N with ci = cj and ỹbi = ybj and ỹbj = ybi ,

while for all k /∈ {i, j} : ỹbk = ybk, we have M b(d̃b) = M b(db).

From the two definitions, it is obvious that both principles are incompatible:

the switch described in BCOM is a valid switch in BUR, but contrary to what

BUR prescribes, it decreases inequality of opportunity instead of not affecting it.

To measure inequality of opportunity with binary outcomes, one usually re-

lies on parametric estimates. The parameter estimates of a nonlinear probability

model are then used to construct counterfactual distributions of probabilities. Di-

rect measures of inequality of opportunity are based on counterfactuals similar to

(6)-(9), indirect measures of inequality of opportunity are based on counterfactuals

similar to (11)-(14). There exist many different specifications of nonlinear proba-

bility models, such as the probit and the logit model. Due to the highly nonlinear

nature of these models, expressions that compute the consequences of switches in

binary outcomes between individuals with the same circumstances on the counter-
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factuals are intractable. By focussing on a simple case we can nevertheless prove

the following Proposition (see Appendix A.4).

PROPOSITION 4: Using any non-linear probability model, irrespective of the

inequality measure chosen, (a) a direct measure based on counterfactual (6) or

an indirect measure based on counterfactuals (12), (13) or (14) cannot satisfy

BCOM, (b) a direct measure based on the counterfactuals (7), (8) or (9) or an

indirect measure based on counterfactal (11) cannot satisfy BUR, (c) a direct

measure based on counterfactual (6) always satisfies BUR.

Once the choice between a direct and an indirect measure has been made, and

the counterfactual has been specified, the Proposition tells us which of the two

basic axioms BCOM or BUR the resulting measure of inequality of opportunity

cannot satisfy. Moreover, the direct measure based on counterfactual (6) always

satisfies BUR, as the switch in outcomes between two individual with the same cir-

cumstances does not change the dataset used in the estimation as only information

on binary outcomes and circumstances are used.

It is of course also possible to use for binary outcomes the non-parametric

counterfactuals (10) and (15) in the direct and indirect measurement approach,

respectively. The results for these approaches are given in the following proposi-

tion.

PROPOSITION 5: The non-parametric counterfactual (10) in the direct ap-

proach always satisfies BUR and never satisfies BCOM. The non-parametric coun-

terfactual (15) in the indirect approach always satisfies BCOM and never satisfies

BUR.
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5 Conclusion

The theoretical literature on inequality of opportunity formulates some basic

properties that measures of inequality of opportunity should have. The principle of

compensation pleads for a reduction of inequality between individuals that have the

same efforts. Utilitarian reward says that a transfer between individuals having the

same circumstances should not affect inequality of opportunity. These principles

can be easily formulated into requirements on measures of inequality of opportunity

that can be computed on the basis of datasets.

The empirical literature tries to quantify the amount of inequality of opportu-

nity. It has evolved in ways disconnected from these principles. This is especially

so in the dominant part of the literature, which measures inequality of opportu-

nity by means of counterfactuals, estimated through statistical procedures that are

common to model the outcome of interest, such as income, education or health.

As a result, the theoretical properties of the measures are obscured, and many

theorists feel uneasy with the empirical work.

Bridging the gap between the theoretical and the empirical literature was one

of the main goals of this paper. We have shown that some counterfactuals based

on estimates from a linear least square specification yield measures that satisfy

some of the desirable properties. This set of counterfactuals can be extended if

additional assumptions, which have been previously used or discussed in the litera-

ture, are imposed. Contrary to this, no single measure of inequality of opportunity

satisfies the desirable properties when counterfactuals are based on estimates from

a loglinear specification. This is worrying, as this specification is used a lot when

one is interested in inequality of opportunity for income. However, provided one

assumes logarithmic utility, and transfers are defined in terms of utility, and a mea-

sure of inequality of the distribution of log of incomes is used, the previous results

are restored. This is, provided a right inequality measure is used, an additional
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motivation for what has become the standard approach in the measurement of

inequality of opportunity for income, which measures the inequality in a counter-

factual distribution, constructed on the basis of a loglinear least squares regression

of incomes on circumstances only. In terms of incomes, this approach always sat-

isfies the factor proportional transfer version of the utilitarian reward principle,

and provided circumstances are one-dimensional and monotonic, it also satisfies

the factor proportional transfer version of compensation. It is not dominated by

any of the other approaches we considered. When a binary response model is used

to construct the counterfactuals, we have shown that the choice of measure (di-

rect / indirect) and of the counterfactual imply which of the two properties one is

giving up for sure. Finally, irrespective of whether outcomes are real numbers or

binary, when non-parametric averaging procedures are used to construct counter-

factuals in the direct approach, the resulting measure of inequality of opportunity

always satisfies utilitarian reward. Doing the same for the counterfactual in the

indirect approach results in a measure of inequality of opportunity that satisfies

compensation.

If one believes that the theoretical properties of measures of inequality of op-

portunity are important, the choice of the functional form and the statistical proce-

dure used to estimate the counterfactual, and the choice of the inequality measure

should not be based exclusively on its convenience, goodness of fit or what one is

used to in a particular context. One should also be aware that the properties of

the resulting measure of inequality of opportunity are affected by these choices.

Our paper is a first analysis of the issues involved, and it has several shortcom-

ings. First, the only reward principle we considered was utilitarian reward. Liberal

reward is the most prominent reward principle in the axiomatic literature on fair al-

locations (see, e.g., Bossert (1995) and Fleurbaey (1995)), and fair social orderings

(see, e.g. Fleurbaey and Maniquet (2005), Fleurbaey and Maniquet (2008) and

Fleurbaey and Maniquet (2011)). It states that government taxes and transfers
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should respect differences in incomes that are due to differences in responsibility.

Hence, to incorporate the idea of liberal reward, one also needs information on

net transfers. It is well known that also natural reward is incompatible with com-

pensation (see Bossert (1995) and Fleurbaey (1995)). The axiomatic literature

proceeded to formulate weakened versions of compensation and liberal reward and

formulated redistribution mechanisms that satisfy these weakened versions (see,

e.g. Bossert and Fleurbaey (1996)). Devooght (2008) and Almas et al. (2011)

propose to use the income resulting from these redistribution mechanism to define

a norm income distribution and to measure inequality of opportunity by aggregat-

ing the deviations of individual’s actual incomes from their norm incomes. The

computation of the norm incomes relies on counterfactuals that are estimated us-

ing similar methods as the ones described here. Hence similar issues to the ones

analyzed here also arise for that approach. Second, we only considered the most

commonly used econometric models found in the literature. Researchers are using

more and more advanced techniques to construct counterfactuals. Which, if any,

of the basic properties the resulting measures of inequality of opportunity have is

an important topic for future work.
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A Proofs

A.1 Notation

Define, for all individuals l ∈ N the following vectors:

xCl =
[
cl,1 − µC1 . . . cl,dC − µCdC

]′
,

xEl =
[
el,1 − µE1 . . . el,dE − µEdE

]′
,

xCCl =
[
cl,1 − c1 . . . cl,dC − cdC

]′
,

xEEl =
[
el,1 − e1 . . . el,dE − edE

]′
.

Hence, xCl (xCCl ) is the dC dimensional vector of the deviation of circumstances of

individual l from their mean (reference) values, and xEl (xEEl ) is the dE dimensional

vector of the deviation of his efforts from their mean (reference) values. Next,

define the dC + dE dimensional vectors

xCEl =
[
cl,1 − µC1 . . . cl,dC − µCdC el,1 − µE1 . . . el,dE − µEdE

]′
,

xCEl =
[
cl,1 − µC1 . . . cl,dC − µCdC e1 − µE1 . . . edE − µEdE

]′
,

xCEl =
[
c1 − µC1 . . . cdC − µCdC el,1 − µE1 . . . el,dE − µEdE

]′
,

x0El =
[
0 . . . 0 el,1 − e1 . . . el,dE − edE

]′
,

xC0
l =

[
cl,1 − c1 . . . cl,dC − cdC 0 . . . 0

]′
,

and the n dimensional vectors

Ei = [0 . . . 0 1 0 . . . 0]′ ,

Ẽi = [0 . . . 0 1/yi 0 . . . 0]′ ,

ι = [1 . . . 1]′ ,
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such that Ei has zeros everywhere, except for its i− element which equals 1, Ẽi

has zeros everywhere, except for its i− element which equals 1/yi and all elements

in ι are equal to 1.

A.2 Proof of Proposition 1

Lemma A1. Under the assumption of linearity and using the least squares esti-

mator, the counterfactuals (6)-(14) become

yc1l = µY + (xCl )′bC , (A.1)

yc2l = µY + yDl − (xEEl )′bE, (A.2)

yc3l = µY + (xCEl )′bCE, (A.3)

yc4l = µY + yDl − (x0El )′bCE, (A.4)

yEO1
l = µY + (xEl )′bE, (A.5)

yEO2
l = µY + yDl − (xCCl )′bC , (A.6)

yEO3
l = µY + (xCEl )′bCE, (A.7)

yEO4
l = µY + yDl − (xC0

l )′bCE. (A.8)

Proof of Lemma A1. Equations (A.1),(A.3), (A.5) and (A.7) are straightforward.

The others are only slightly more complicated. We prove (A.2); the proof of the

others is analogous. From (7), with the linear specification, and, for all individuals

l ∈ N , xEµEl = [e1 − µE1 . . . edE − µEdE ]′, we have

yc2l = µY + (xEµE)′bE + ûRl
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= µY + (xEµE)′bE + yDl − (xEl )′bE

= µY + yDl −
(

(xEl )′ − (xEµE)′
)
bE

= µY + yDl − (xEEl )′bE,

which is expression (A.2).

After having performed a Pigou Dalton transfer δ from observation i to j, we

obtain a new estimate of the coefficients in the regression equation, denoted by b̃A.

The following Lemma relates the new estimated coefficient vector to bA.

Lemma A2. The coefficient estimate after a Pigou-Dalton transfer δ from obser-

vation i to j results in a new estimate

b̃A = bA + δ
(
(XA)′XA

)−1
(XA)′ (Ej − Ei) ,

Proof of Lemma A2. Define Ỹ = Y + δ(Ej − Ei), which is the vector Y after a

Pigou-Dalton transfer of an amount δ from observation j to i. After the transfer

we estimate the equation in deviational form

Ỹ D = Ỹ − ιµY = XAβ̃A + ŨA. (A.9)

For the least squares estimate b̃A =
(
(XA)′XA

)−1
(XA)′Ỹ D we obtain

(
(XA)′XA

)−1
(XA)′Y D + δ

(
(XA)′XA

)−1
(XA)′ (Ej − Ei) ,

from which the expression in the Lemma follows immediately.

Using this Lemma, defining ΣA = 1
n
(XA)′XA, the covariance matrix of the

variables in XA, and adding a tilde to denote the counterfactuals after the transfer,

it is easy to obtain the following expressions for the effect of the Pigou-Dalton

transfers on the counterfactuals.
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Lemma A3. The change in the estimated counterfactuals of a Pigou-Dalton

transfer δ from observation i to j is

ỹc1l − yc1l =
δ

n
(xCl )′Σ−1C (xCj − xCi ), (A.10)

ỹc2l − yc2l = ỹDl − yDl −
δ

n
(xEEl )′Σ−1E (xEj − xEi ), (A.11)

ỹc3l − yc3l =
δ

n
(xCEl )′Σ−1CE(xCEj − xCEi ), (A.12)

ỹc4l − yc4l = ỹDl − yDl −
δ

n
(x0El )′Σ−1CE(xCEj − xCEi ), (A.13)

ỹEO1
l − yEO1

l =
δ

n
(xEl )′Σ−1E (xEj − xEi ), (A.14)

ỹEO2
l − yEO2

l = ỹDl − yDl −
δ

n
(xCCl )′Σ−1C (xCj − xCi ), (A.15)

ỹEO3
l − yEO3

l =
δ

n
(xCEl )′Σ−1CE(xCEj − xCEi ), (A.16)

ỹEO4
l − yEO4

l = ỹDl − yDl −
δ

n
(xC0

l )′Σ−1CE(xCEj − xCEi ). (A.17)

Proof of Proposition 1. Due to the similarity of the proofs, we first prove parts (a)

and (e), followed by parts (b) and (f), (c) and (g), and, finally, parts (d) and (h)

of the Proposition.

Consider part (a) of the Proposition and Equation (A.10).

Observe that, as
∑n

l=1 x
C
l = 0,

∑n
l=1 ỹ

c1
l =

∑n
l=1 y

c1
l , such that the mean of the

counterfactual has not changed, and there is no need to normalize the counterfac-

tual distribution to study the effects of a Pigou-Dalton transfer.

Take xCj = xCi . From (A.10), ỹc1l = yc1l , such that the counterfactual has not

changed. Hence, UR is satisfied. Take xEj = xEi . Under C1M, dC = 1 and let

ci1 > cj1. From Lemma B1 (see Appendix B), we immediately have that the
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counterfactual for those observations for which cl1 > (<)µC1 decrease (increase).

Hence, I(Y c1) decreases and the measure satisfies COM. When dC > 1, and main-

taining all other assumptions, it is not possible to generalize the statement in the

Proposition about COM; see Lemma B2 (in Appendix B).

Consider part (e) of the Proposition, and Equation (A.14).

Observe that, as
∑n

l=1 x
E
l = 0,

∑n
l=1 ỹ

EO1
l =

∑n
l=1 y

EO1
l , such that the mean

of the counterfactual has not changed, and there is no need to normalize the

counterfactual distribution to study the effects of a Pigou-Dalton transfer.

Take xEj = xEi . From (A.14), ỹEO1
l = yEO1

l , such that the counterfactual has

not changed. However, the Pigou-Dalton transfer decreases the inequality in the

income vector Y , such that I(Y ) decreases, and thus I(Y ) − I
(
Y EO1

)
decreases.

Hence COM is satisfied. Take xCj = xCi . In case dE = 1 and ei1 > ej1, from Lemma

B1, we have that the counterfactual for those observations for which el1 > (<)µE1

decrease (increase). Hence the transfer decreases inequality in Y EO1. However,

it also decreases the inequality in Y in a different manner, and thus the effect

on I(Y ) − I
(
Y EO1

)
is ambiguous, such that UR is not even satisfied with one-

dimensional effort.

Consider part (b) of the Proposition and Equation (A.11). We have∑n
l=1 ỹ

c2
l

n
=

∑n
l=1 y

c2
l

n
− δ

n
(µE − e)′Σ−1E (xEj − xEi ). (A.18)

Take xEj = xEi . From (A.18), the mean of the counterfactual has not changed. We

then see from (A.11) that ỹc2l − yc2l = ỹDl − yDl , such that the inequality in the

counterfactual declines and the measure satisfies COM. Take xCj = xCi . If e = µE,

from (A.18), the mean of the counterfactual has not changed, and no normalization

of the counterfactual is necessary to analyze the consequences of the Pigou-Dalton

transfer. With this reference value, with one dimensional efforts, and assuming
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that ei1 > ej1, from Lemma B1, the change in the counterfactual is larger (smaller)

than the change in the actual income distribution for those with el1 > (<)µE1, and

inequality of opportunity changes. Hence the measure does not even satisfy UR

under Eµ with one dimensional efforts.

Consider part (f) of the Proposition and Equation (A.15). We have∑n
l=1 ỹ

EO2
l

n
=

∑n
l=1 y

EO2
l

n
− δ

n
(µC − c)′Σ−1C (xCj − xCi ). (A.19)

Take xCj = xCi . From (A.19), the mean of the counterfactual has not changed.

We then see, from (A.15) that ỹEO2
l − yEO2

l = ỹDl − yDl , such that the inequality

in the counterfactual declines by the same amount as the inequality in the actual

income distribution and the measure satisfies UR. Take xEj = xEi . If c = µC , from

(A.19), the mean of the counterfactual has not changed, and no normalization of

the counterfactual is necessary to analyze the consequences of the Pigou-Dalton

transfer. With this reference value, with one dimensional circumstances and as-

suming that ci1 > cj1 (i.e. under C1M), from Lemma B1, and Equation (A.15),

we have that the change in the counterfactual is larger (smaller) than the change

in the actual distribution for those with cl1 > (<)µC1, such the indirect measure

of inequality of opportunity decreases and the measure satisfies COM. As shown

in Lemma B2, it is not possible to generalize this result to a situation with more

than one circumstance. If c 6= µC , it follows from (A.19) that the mean of the

counterfactual has changed. Under C1M, ci1 > cj1, such that, if c1 < (>)µC1, the

mean increases (decreases), and this can counter the effect on inequality of oppor-

tunity that arises from the fact that, assuming that ci1 > cj1, from Lemma B1 and

Equation (A.15), we have that the change in the counterfactual is larger (smaller)

than the change in the actual distribution for those with cl1 > (<)c1. A similar

issue occurs in the following cases if the mean of the counterfactual changes; for

that reason, we focus on cases where the mean remains constant.
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The counterfactuals in (c), (d),(g) and (h) of the Proposition rely on estimates

of bCE, such that ΣCE, the estimated covariance matrix of circumstances and

efforts plays a role. Define the following matrix

Σ−1CE =

 ACC ACE

AEC AEE

 .
In case circumstances and efforts are not correlated, their covariance is zero, and

ΣCE is block diagonal. The inverse of a block-diagonal matrix is also block di-

agonal, such that, if efforts and circumstances are not correlated, ACE = (AEC)′

contains only zeros.

Consider part (c) of the Proposition and Equation (A.12). Observe,∑n
l=1 ỹ

c3
l

n
=

∑n
l=1 y

c3
l

n
+
δ

n
(e− µE)′

[
AEC(xCj − xCi ) + AEE(xEj − xEi )

]
. (A.20)

Take e = µE. The mean of the counterfactual has not changed. First, with

xCj = xCi , from (A.12),

ỹc3l = yc3l +
δ

n
(xCl )′ACE

[
xEj − xEi

]
.

If, in addition, ACE = 0, we get ỹc3l = yc3l : the transfer has no effect on the

counterfactual Y c3. Hence, in this case, the measure satisfies UR. Second, with

xEj = xEi , from (A.12),

ỹc3l = yc3l +
δ

n
(xCl )′ACC

[
xCj − xCi

]
, (A.21)

If in addition dC = 1 and ci1 > cj1, by Lemma B1, the counterfactual for those ob-

servations for which cl1 > (<)µC1 decrease (increase), such that I(Y c3) decreases

and the measure satisfies COM. When dC > 1, and maintaining all other assump-
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tions, it does not satisfy COM -see also Lemma B2.

Take e 6= µE, AEC = 0 and xEj = xEi . From (A.20), the mean of the counter-

factual has not changed, and, from (A.12), we obtain again (A.21), and the same

conclusion follows: under C1M the measure satisfies COM.

Consider part (g) of the Proposition and Equation (A.16). Observe,∑n
l=1 ỹ

EO3
l

n
=

∑n
l=1 y

EO3
l

n
+
δ

n
(c−µC)′

[
ACC(xCj − xCi ) + ACE(xEj − xEi )

]
. (A.22)

Take c = µC . The mean of the counterfactual has not changed. First, with

xEj = xEi , from (A.16),

ỹEO3
l = yEO3

l +
δ

n
(xEl )′AEC

[
xCj − xCi

]
.

If, in addition, AEC = 0, we get ỹEO3
l = yEO3

l : the transfer has no effect on the

counterfactual. However, I(Y ) falls, hence I(Y ) − I(Y EO4) decreases, and the

measure satisfies COM. Second, with xCj = xCi , from (A.16),

ỹEO3
l = yEO3

l +
δ

n
(xEl )′AEE

[
xEj − xEi

]
. (A.23)

If, in addition dE = 1 and ei1 > ej1, from Lemma B1, we have that the predicted

values for those observations for which el1 > (<)µE1 decrease (increase). Hence

the transfer decreases inequality in Y EO3. However, since the inequality in Y

decreases in a different way, the effect on I(Y ) − I(Y EO3) cannot be determined

and the measure does not even satisfy UR in the one-dimensional case.

Take c 6= µC , ACE = 0 and xCj = xCi . From (A.22), the mean of the counter-

factual has not changed, and, from (A.12), we obtain again (A.23), and the same

conclusion follows: the measure does not satisfy UR even in the one-dimensional

case.
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Consider part (d) of the Proposition and Equation (A.13). Observe,∑n
l=1 ỹ

c4
l

n
=

∑n
l=1 y

c4
l

n
− δ

n
(µE − e)′

[
AEC(xCj − xCi ) + AEE(xEj − xEi )

]
. (A.24)

Take e = µE. The mean of the counterfactual has not changed. First, with

xCj = xCi , from (A.13),

ỹc4l − yc4l = ỹDl − yDl −
δ

n
(xEl )′AEE(xEj − xEi ).

With this reference value, with one dimensional efforts, and assuming that ei1 >

ej1, from Lemma B1, the change in the counterfactual is larger (smaller) than

the change in the actual income distribution for those with el1 > (<)µE1, and

inequality of opportunity changes. Hence the measure does not satisfy UR. Second,

with xEj = xEi , from (A.13),

ỹc4l − yc4l = ỹDl − yDl −
δ

n
(xEl )′AEC(xCj − xCi ). (A.25)

If, in addition, AEC = 0, ỹc4l − yc4l = ỹDl − yDl , such that inequality in the counter-

factual decreased and the measure satisfies COM.

Take e 6= µE, AEC = 0 and xEj = xEi . From (A.24), the mean of the counterfactual

has not changed, and, from (A.13), we obtain ỹc4l − yc4l = ỹDl − yDl , meaning that

inequality decreased. Hence the measure satisfies COM.

Consider part (h) of the Proposition and Equation (A.17). Observe∑n
l=1 ỹ

EO4
l

n
=

∑n
l=1 y

EO4
l

n
− δ

n
(µC − c)′

[
ACC(xCj − xCi ) + ACE(xEj − xEi )

]
. (A.26)

Take c = µC . The mean of the counterfactual has not changed. First, with
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xEj = xEi , from (A.17),

ỹEO4
l − yEO4

l = ỹDl − yDl −
δ

n
(xCl )′ACC(xCj − xCi ).

If in addition dC = 1 and ci1 > cj1, by Lemma B1, the change in the counterfactual

for those observations for which cl1 > (<)µC1 is larger (smaller) than the change

in the actual income distribution. Hence inequality in the counterfactual increases

more than the inequality in the actual income distribution and the measure satisfies

COM. When dC > 1, and maintaining all other assumptions, it does not satisfy

COM -see also Lemma B2. Second, with xCj = xCi , from (A.17),

ỹEO4
l − yEO4

l = ỹDl − yDl −
δ

n
(xCl )′ACE(xEj − xEi ).

If, in addition, ACE = 0, from (A.17), ỹEO4
l − yEO4

l = ỹDl − yDl , and the measure

of inequality of opportunity has not changed. Hence the measure satisfies UR.

Take c 6= µC , ACE = 0 and xCj = xCi . From (A.26), the mean of the counterfactual

has not changed, and, from (A.13), we obtain again ỹEO4
l −yEO4

l = ỹDl −yDl . Hence

the measure satisfies UR.

A.3 Proof of Proposition 2

Lemma A4. Under the assumption of loglinearity and using the least squares

estimator, the counterfactuals (6)-(14) are defined by

log(yc1l ) = µlog(Y ) + (xCl )′αC , (A.27)

log(yc2l ) = log(yl)− (xEEl )′αE, (A.28)

log(yc3l ) = µlog(Y ) + (xCEl )′αCE, (A.29)

log(yc4l ) = log(yl)− (x0El )′αCE, (A.30)
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log(yEO1
l ) = µlog(Y ) + (xEl )′αE, (A.31)

log(yEO2
l ) = log(yl)− (xCCl )′αC , (A.32)

log(yEO3
l ) = µlog(Y ) + (xCEl )′αCE, (A.33)

log(yEO4
l ) = log(yl)− (xC0

l )′αCE. (A.34)

Consider the effect of a Pigou-Dalton transfer from observation i to j. The

following Lemma relates the new estimated coefficient vector ãA to aA.

Lemma A5. The coefficient estimate after a Pigou-Dalton transfer δ from obser-

vation i to j results in a new estimate

ãA = aA + δ
(
(XA)′XA

)−1
(XA)′

(
Ẽj − Ẽi

)
.

Proof of Lemma A5. Taking a first order approximation of the incomes after the

Pigou-Dalton transfer around the incomes before the transfer, we can define

log(Ỹ ) = log(Y ) + δ(Ẽj − Ẽi),

which is the vector log of incomes after a Pigou-Dalton transfer of an amount δ

from observation j to i. After the transfer we estimate the equation in deviational

form

log(Ỹ )− ιµlog(Ỹ ) = XAα̃A + Ṽ A. (A.35)

Hence, the least squares estimate α̃A =
(
(XA)′XA

)−1
(XA)′

[
log(Ỹ )− ιµlog(Ỹ )

]
.

Observe that, using the same first order approximation as before,

µlog(Ỹ ) = µlog(Y ) +
δ

n

[
1

yj
− 1

yi

]
,
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such that we have

ãA =
(
(XA)′XA

)−1
(XA)′

[
log(Y ) + δ(Ẽj − Ẽi)− ι

[
µlog(Y ) +

δ

n
(

1

yj
− 1

yi
)

]]
= aA + δ

(
(XA)′XA

)−1
(XA)′

[
Ẽj − Ẽi +

1

n
ι(

1

yj
− 1

yi
)

]
.

Now, observe that (XA)′ι = 0, a vector of zeros, such that the last term drops out

and the expression in the Lemma follows immediately.

Using Lemma A.5, it is straightforward to prove Lemma A.6.

Lemma A6. The change in the estimated counterfactuals of a Pigou-Dalton

transfer δ from observation i to j is

log(ỹc1l )− log(yc1l ) =
δ

n
(

1

yj
− 1

yi
) +

δ

n
(xCl )′Σ−1C (

xCj
yj
− xCi

yi
), (A.36)

log(ỹc2l )− log(yc2l ) = log(ỹl)− log(yl)−
δ

n
(xEEl )′Σ−1E (

xEj
yj
− xEi

yi
), (A.37)

log(ỹc3l )− log(yc3l ) =
δ

n
(

1

yj
− 1

yi
) +

δ

n
(xCEl )′Σ−1CE(

xCEj
yj
− xCEi

yi
), (A.38)

log(ỹc4l )− log(yc4l ) = log(ỹl)− log(yl)−
δ

n
(x0El )′Σ−1CE(

xCEj
yj
− xCEi

yi
), (A.39)

log(ỹEO1
l )− log(yEO1

l ) =
δ

n
(

1

yj
− 1

yi
) +

δ

n
(xEl )′Σ−1E (

xEj
yj
− xEi

yi
), (A.40)

log(ỹEO2
l )− log(yEO2

l ) = log(ỹl)− log(yl)−
δ

n
(xCCl )′Σ−1C (

xCj
yj
− xCi

yi
), (A.41)

log(ỹEO3
l )− log(yEO3

l ) =
δ

n
(

1

yj
− 1

yi
) +

δ

n
(xCEl )′Σ−1CE(

xCEj
yj
− xCEi

yi
), (A.42)

log(ỹEO4
l )− log(yEO4

l ) = log(ỹl)− log(yl)−
δ

n
(xC0

l )′Σ−1CE(
xCEj
yj
− xCEi

yi
). (A.43)

Proof of Proposition 2. The left hand side in the equations of Lemma A6 give the
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percentage change in the estimated counterfactual.

First, observe that, in (A.36), (A.38), (A.40) and (A.42), the first term is the

same for all observations, and so has no effect on the inequality of the counterfac-

tual, provided a relative measure of inequality is used. The problem to sign the

effect of the transfer on the inequality measure is that the second term will be

different for different observations, and will never disappear (not even when the

transfer is between individuals having the same circumstances and/ or efforts -

except, when, in addition they have the same income level, but in that case there

is no Pigou-Dalton transfer). Hence, these measures satisfy neither COM nor UR.

Second, observe that in (A.37), (A.39) (A.41) and (A.43), the first term,

log(ỹl) − log(yl), is zero for all observations, except for i and j. Again, how-

ever, the problem is that the other term never vanishes, making it impossible to

assess the effect of the transfer on the inequality in the counterfactual income

distributions. Hence we obtain Proposition 2.

A.4 Proof of Proposition 4

The proof is based on a simple special case. Consider N = {1, 2, 3, 4}, with

c1 = c2 = c, c3 = c4 = c∗, e1 = e3 = e and e2 = e4 = e∗. Consider the initial and

alternative distribution of binary outcomes, given in Panel (a) of Table 2. All the

probabilities necessary for the construction of the counterfactual can be readily

obtained and are the same irrespective of which nonlinear probability model one

specifies. They are listed in Panel (b), and the counterfactual probability distri-

butions for counterfactuals (6)-(14) are given in Table 5. The derivation of these

counterfactual probability distributions is straightforward for the counterfactuals

(6), (8), (11) and (13) as they do not depend on the estimated random variation.

Moreover, in the example, the estimated random variation is zero for counterfac-

tuals that rely on the empirical specification that includes both circumstances and

efforts, such that also the counterfactuals (9) and (14) become obvious. Counter-
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facuals (7) and (12) are constructed in Tables 3 and 4, respectively.

Table 2: Binary Compensation and Utilitarian Reward

Panel (a) Distribution of binary outcomes
Initial situation Alternative

e e∗ e e∗

c 1 0 1 0
c∗ 0 1 1 0
Panel (b) Corresponding probabilities

Initial situation Alternative
P (y = 1|c, e) 1 1
P (y = 1|c, e∗) 0 0
P (y = 1|c∗, e) 0 1
P (y = 1|c∗, e∗) 1 0
P (y = 1|c) 1/2 1/2
P (y = 1|c∗) 1/2 1/2
P (y = 1|e) 1/2 1
P (y = 1|e∗) 1/2 0

Table 3: Counterfactual (7)

i ybi ĝE(ei, 0) ûEi ĝE(e, ûEi ) ĝE(e∗, ûEi )
Panel (a) Initial situation
1 1 1/2 1/2 1 1
2 0 1/2 -1/2 0 0
3 0 1/2 -1/2 0 0
4 1 1/2 1/2 1 1
Panel (b) Alternative situation
1 1 1 0 1 0
2 0 0 0 1 0
3 1 1 0 1 0
4 0 0 0 1 0
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Table 4: Counterfactual (12)

i ybi ĝC(ci, 0) ûCi ĝC(c, ûCi ) ĝC(c∗, ûCi )
Panel (a) Initial situation
1 1 1/2 1/2 1 1
2 0 1/2 -1/2 0 0
3 0 1/2 -1/2 0 0
4 1 1/2 1/2 1 1
Panel (b) Alternative situation
1 1 1/2 1/2 1 1
2 0 1/2 -1/2 0 0
3 1 1/2 1/2 1 1
4 0 1/2 -1/2 0 0

Define the binary relations “�”, “∼” and “≺” to mean “is less unequal than”,

“is as unequal as” and “is more unequal than” based on an inequality measure

(which by definition, see Section 3 satisfies the Pigou-Dalton principle of trans-

fers and anonymity), respectively. The third column in the Table 5 orders the

counterfactual probability distributions using these binary relations.

Table 5: Ordering counterfactual distributions

Initial situation Alternative
(6) (1/2,1/2,1/2,1/2) ∼ (1/2,1/2,1/2,1/2)

(7, e) (1,0,0,1) ≺ (1,1,1,1)
(7, e∗) (1,0,0,1) ≺ (0,0,0,0)
(8,9, e) (1,1,0,0) ≺ (1,1,1,1)
(8,9, e∗) (0,0,1,1) ≺ (0,0,0,0)

(11) (1/2,1/2,1/2,1/2) � (1,0,1,0)
(12, c) (1,0,0,1) ∼ (1,0,1,0)
(12, c∗) (1,0,0,1) ∼ (1,0,1,0)

(13,14, c) (1,0,1,0) ∼ (1,0,1,0)
(13,14, c∗) (0,1,0,1) ∼ (1,0,1,0)

Both direct and indirect measures can only satisfy BUR if the initial situation

and the alternative have the same level of inequality. Direct measures can only

satisfy BCOM if the initial situation is more unequal than the alternative. Indirect
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measures can only satisfy BCOM if the initial situation is less unequal than the

alternative.

A.5 Proof of Proposition 5

From the definition of (10), it is clear that switching binary outcomes among

individuals having the same circumstances does not affect the counterfactual, such

that the indirect measue of inequality does not change and BUR is satisfied.

From the definition of (15), it follows that the switch of binary outcomes

between individual i and j in BCOM changes the counterfactual for all those

that are either in N·i or N·j. Without loss of generality, suppose that after

the switch all those in N·i have 0, and all those in N·j have 1. Then, for all

l ∈ N·i, we have that ỹE05
l = 0 and yE05

l = 1
|N·i| , and for all m ∈ N·j, we

have that ỹE05
m = 1 and yE05

m = 1 − 1
|N·j | . Observe that Y E05 can always be

obtained from Ỹ E05 after a finite sequence of transfers from those with better

outcomes (those in N·j) to those with worse outcomes (those in N·i), such that

I(Ỹ EO5) > I(Y EO5) and, as Ỹ is a permutation of Y , such that I(Ỹ ) = I(Y ), we

have that I(Y )− I(Ỹ EO5) < I(Y )− I(Y EO5). Hence the BCOM switch decreases

inequality of opportunity.
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B Interpretation of Σ−1
A

Let ΣA, with typical element sij, be the empirical covariance matrix between K

variables. The inverse of the covariance matrix, Σ−1A , known as the concentration

or precision matrix, can be interpreted as follows (see Kwan (2014)).

Consider the following regressions

XA
1 = XA

2 η12 +XA
3 η13 + . . .+XA

Kη1K + ε1

XA
2 = XA

1 η21 +XA
3 η23 + . . .+XA

Kη2K + ε2
...

XA
K = XA

1 ηK1 +XA
2 ηK2 + . . .+XA

K−1ηK(K−1) + εK ,

where the εk are random noise. The OLS estimation of these equations yields

the estimated values for the coefficients, η̂kl; R
2
1, . . . , R

2
K are the coefficients of

determination of the equations. It can then be shown that Z = Σ−1A equals
1/ [s11(1−R2

1)] −η̂12/ [s11(1−R2
1)] . . . −η̂1K/ [s11(1−R2

1)]

−η̂21/ [s22(1−R2
2)] 1/ [s22(1−R2

2)] . . . −η̂2K/ [s22(1−R2
2)]

...
...

. . .
...

−η̂K1/ [sKK(1−R2
K)] −η̂K2/ [sKK(1−R2

K)] . . . 1/ [sKK(1−R2
K)]

 ,

or, alternatively, the elements in Z can be found as

zii = 1/
[
sii(1−R2

i )
]

zij = −
√
zii
√
zjjρij,[V−{Xi,Xj}] for j 6= i,

where ρij,[V−{Xi,Xj}] is the partial correlation coefficient between Xi and Xj, given

all K conditioning variables (except Xi and Xj).
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In the formulas of the propositions terms like the following play a crucial role:

(xAl )′Σ−1A (xAj − xAi ) with A ∈ {C,E} .

One can wonder whether it is possible to determine the sign of this expression in

general.

Lemma B1. In case K = 1, if xAi1 ≥ xAj1, then

(a) for all l that are such that xAl1 ≥ 0, we have that (xAl )′Σ−1A (xAj − xAi ) ≤ 0;

(b) for all l that are such that xAl1 ≤ 0, we have that (xAl )′Σ−1A (xAj − xAi ) ≥ 0.

Proof of Lemma B1. Follows immediately from the fact that, with K = 1,

(xAl )′Σ−1A (xAj − xAi ) =
1

(σX1)2
(xAl1)(x

A
j1 − xAi1),

where (σX1)
2 is the variance of X1.

Lemma B2. In case K ≥ 1, and (i) all elements of Σ−1A are non-negative, (ii) all

elements in the vector xAi are at least as large as the corresponding element in the

vector xAj , then,

(a) for all l that are such that all elements in xAl are positive, we have that

(xAl )′Σ−1A (xAj − xAi ) ≤ 0;

(b) for all l that are such that all elements in xAl are negative, we have that

(xAl )′Σ−1A (xAj − xAi ) ≥ 0.

Proof of Lemma B2. Remember that Z = Σ−1A , such that

(xAl )′Σ−1A (xAj − xAi ) = ΣK
p=1Σ

K
t=1x

A
lpzpt(x

A
jt − xAit).

Under the condition (i) all zpt ≥ 0, and under condition (ii), xAjt − xAit ≤ 0, such

that under the antecedent of (a) the expression becomes non-positive; under the

antecedent of (b) the expression becomes non-negative.
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It is worth noting that the condition (i) of Lemma B2 requires that the partial

correlations between the K variables have to be non-positive. This is a very strong

assumption to make. The most plausible assumption is probably that for A = C

(A = E) circumstances (efforts) are positively correlated, which would make the

off-diagonal elements in Z negative, and the sign of the expressions indeterminate.
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C Alternative proportional transfer principles

Let yi be individual i’s income before the transfer, yj individual j’s income

before the transfer, ỹi individual i’s income after the transfer, and ỹj individual

j’s income after the transfer. Throughout we require

yi > ỹi ≥ ỹj > yj,

such that the transfer goes from individual i to individual j, and also after the

transfer i has at least as much income as j. Different proportional transfer princi-

ples impose different conditions on the transfers.

The Factor Proportional Transfer Principle (this paper) requires that, with

A > 1,

ỹi =
yi
A

and ỹj = yj · A. (C.1)

The Proportional Transfer Principle (Fleurbaey and Michel (2001, p.4)) re-

quires that, with δ > 0,

ỹi = yi(1− δ) and ỹj = yj(1 + δ). (C.2)

The Proportional Ex-Post Transfer Principle (Fleurbaey and Michel (2001,

p.4)) requires that, with δ > 0,

ỹi =
yi

1 + δ
and ỹj =

yj
1− δ

. (C.3)

Assuming that the transfer described in the principle is desirable (because it de-

creases inequality), the following Proposition formulates the logical relationship

between the three transfer principles.
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.

Proposition C. The Proportional Transfer Principle is stronger than the Factor

Proportional Transfer Principle, which is stronger than the Proportional Ex-Post

Transfer Principle.

Proof of Proposition C.

(a) Comparison of (C.2) and (C.1). Consider the case where the transfer implies

the same transfer in favor of the poor individual, i.e. A = (1 + δ). In that case,

the income after transfer for the rich person under (C.1) is higher than the income

of the rich person under (C.2), as

1− δ2 = (1− δ)(1 + δ) < 1⇐⇒ yi
A

=
yi

1 + δ
> yi(1− δ).

Hence, all transfers that are acceptable under (C.2) are also acceptable under

(C.1), but the reverse does not hold true.

(b) Comparison of (C.1) and (C.3). Consider the case where the transfer implies

the same transfer in favor of the poor individual, i.e. A′ = 1/(1− δ). In that case,

the income after transfer for the rich person under (C.3) is higher than the income

of the rich person under (C.1), as

1− δ2 = (1− δ)(1 + δ) < 1⇐⇒ yi
1 + δ

> (1− δ)yi =
yi
A′
.

Hence, all transfers that are acceptable under (C.1) are also acceptable under

(C.3), but the reverse does not hold true.
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Garćıa-Gómez, P., E. Schokkaert, and T. Van Ourti (2013). Reference value sen-

sitivity of measures of unfair health inequality. Research on Economic Inequal-

ity 21, 1–36.

Hassine, N. B. (2012). Inequality of opportunity in Egypt. World Bank Economic

Review 26, 265–295.

Layard, R., G. Mayraz, and S. Nickell (2008). The marginal utility of income.

Journal of Public Ecomics 92, 1846–1857.

Luttens, R. I. and D. Van de gaer (2007). Lorenz dominance and non-welfaristic

redistribution. Social Choice and Welfare 28, 281–302.
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