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1 Introduction

K̄ılauea is the most active of the five volcanoes that form the island of Hawai‘i.

Not only is K̄ılauea the world’s most active volcano, it is also the largest stationary

source of sulfur dioxide (SO2) pollution in the United States of America. Daily

emissions from the volcano often exceed the annual emissions of a small coal-fired

power plant. SO2 emissions from K̄ılauea produce what is known as “vog” (volcanic

smog) pollution. Vog is essentially small particulate matter (sulfuric acid and other

sulfate compounds) suspended in the air, akin to smog pollution in most cities. Vog

represents one of the truly exogenous sources of air pollution in the United States.

Based on local weather conditions (and whether or not the volcano is emitting), air

quality conditions in the state of Hawai‘i can change from dark, polluted skies to

near-pristine conditions in a matter of hours.

Our primary approach to estimating the health impact of the pollution produced

by K̄ılauea is to use high frequency data and estimate linear models with regional

fixed effects via Ordinary Least Squares (OLS). We claim that this variation in

air quality is unrelated to human activities. The two main omitted variables that

could impact our analysis are traffic congestion and avoidance behavior (e.g., people

avoiding the outdoors on “voggy” days). We see no compelling reason to believe that

the former is systematically correlated with volcanic pollution. In addition, adjusting
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for a flexible pattern in seasonality will control for much of the variation in traffic

congestion. The latter, avoidance behavior, is thornier and has bedeviled much of

the research in this area. We are unable to control for this omitted variable, so our

estimates of the effects of pollution on health care utilization should be viewed as

being inclusive of this adjustment margin. In addition, a large degree of measurement

error in our pollution variables should bias our estimates downwards. As such, one

can reasonably view our estimates as lower bounds of the true impact of vog on

emergency medical care utilization. Finally but importantly, a unique feature of our

design is that we have a source of particulate pollution that is much less related to

many other industrial pollutants than in other regions of the US. Consequently, we

provide an estimate of the health cost of particulate pollution that is more credible

than much of the extant literature.

To address the measurement error bias, we also employ an instrumental variables

(IV) estimator. Our strategy employs SO2 from South Hawai‘i where K̄ılauea is

located in conjunction with wind direction data collected at Honolulu International

Airport to instrument for particulate levels on Oahu’s south shore. The basic idea is

that when winds come from the northeast there is very little particulate pollution on

Oahu because all of the emissions from K̄ılauea are blown out to sea. On the other

hand, when emissions levels are high and when the winds come from the south,
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particulate levels on Oahu are high. In this sense, our IV strategy is similar to

Schlenker and Walker (2011) who use weather on the East Coast of the US as an IV

for pollution levels on the West Coast.

Not a lot is known about the health impacts of volcanic emissions, although a few

recent studies have focused on modern eruptions.1 In a study of Miyakejima island

in Japan, Ishigami, Kikuchi, Iwasawa, Nishiwaki, Takebayashi, Tanaka, and Omae

(2008) found a strong correlation between SO2 concentrations and self-reported pul-

monary effects (cough, sore throat, and breathlessness). K̄ılauea itself has been the

focus of a number of recent epidemiological studies. Prior to the 2008 escalation in

emissions, nearby residents self-reported increased pulmonary, eye, and nasal prob-

lems relative to residents in areas unaffected by vog (Longo, Rossignol, and Green

(2008); Longo (2009)). A strong correlation between vog and outpatient visits for

pulmonary problems and headaches was found by Longo, Yang, Green, Crosby, and

Crosby (2010). Longo (2013) uses a combination of self-reported ailments and in-

person measurements (blood pressure and blood oxygen saturation) to document

strong statistical correlations with exposure to vog. Half of the participants per-

ceived that K̄ılauea’s intensified eruption had negatively affected their health, and

1In terms of historical eruptions, Durand and Grattan (2001) use health records from 1783 to

document a correlation between pulmonary ailments and vog in Europe caused by the eruption of

Laki volcano in Iceland.
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relatively stronger magnitudes of health effects were associated with the higher expo-

sure to vog since 2008. In a non-comparative study, Camara and Lagunzad (2011)

report that patients who complain of eye irritation due to vog do have observable

ocular symptoms. Still, it remains unclear whether increased volcanic emissions are

causing health problems. In particular, selection bias and self-reporting errors make

it difficult to infer causal evidence from previous epidemiological studies on K̄ılauea.2

There is, of course, a much broader literature that attempts to estimate a causal

relationship between industrial sources of pollutants and human health. Much of

this literature has focused on the effects of SO2 and particulate matter. Within

economics, there has been an attempt to find “natural” or quasi-random sources of

pollution variation in order to eliminate many of the biases present in epidemiological

studies based on purely correlative evidence. Chay, Dobkin, and Greenstone (2003)

use variation induced by the Clean Air Act in the 1970s to test for a link between

particulate matter and adult mortality. Chay and Greenstone (2003) use the 1981-82

recession as a quasi-random source of variation in particulate matter to test for an

impact on infant mortality. Neidell (2004) uses seasonal pollution variation within

California to test for a link between air pollution and children’s asthma hospital-

2The leading scholar in this literature notes that her “cross-sectional epidemiologic design

was susceptible to selection bias, misclassification, and measured associations not causality”

(Longo 2013). In particular, the cross-sectional nature of the study may not eliminate unob-

served confounding factors. Because we exploit variation in pollution from the volcano over time

within a region, our research design does a more thorough job of eliminating these confounds.
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izations. Moretti and Neidell (2011) use boat traffic in Los Angeles; Schlenker and

Walker (2011) use airport traffic in California; Knittel, Miller, and Sanders (2011)

use road traffic; and Currie and Walker (2011) use the introduction of toll roads

as sources of quasi-exogenous pollution variation. Lleras-Muney (2010) uses forced

changes in location due to military transfers to study the impact of pollution on

children. Finally, Ghosh and Mukherji (2014) employ micro-data from India and

use regional fixed effects regressions to identify the effects of pollution on children’s

health.

The contributions of this study to the existing literature are as follows. First,

this is one of the only studies that exploits a source of pollution that is not man-made

(e.g., from cars, airplanes, factories).3 Second, we use more accurate data on the

costs of hospitalization than much of the other literature, and, particularly, we do

not rely on imputations to construct cost measures. Third, the variation in many

of the pollution measures in our data on a day-to-day basis is much greater than in

previous work. Fourth (as discussed earlier), much of the epidemiological work on

the health consequences of vog relies on a single cross-section of largely self-reported

data in which cross-sectional omitted variables are apt to be confounds, whereas

we use a regional panel that can eliminate cross-sectional confounds and objective

3An exception is Jayachandran (2009) who uses forest fires.
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health outcomes from a registry of hospitals in the state of Hawai‘i. Moreover,

because we rely on high frequency (daily) variation in pollution within a region, any

potential confound in our study would have to vary on a daily basis in lock-step

with air quality within a region; few omitted variables do this. Finally, the results

in this paper stem almost entirely from particulate matter and no other industrial

pollutant. As such, we are quite confident that we have clean estimates of the pure

effect of particulate matter. In most other studies, particulates and other pollutants

are accompanied by many other industrial pollutants, so these studies have difficulty

disentangling the effects of one pollutant from another.

We find strong effects of particulate pollution on emergency room (ER) admis-

sions for pulmonary-related reasons. In particular, we find that a one standard

deviation increase in particulate matter on a given day is associated with between 2

and 3% additional ER charges when we use our OLS estimates. Our IV estimates

imply a much larger effect, between 20 and 30%. The OLS findings are similar

to that of Ghosh and Mukherji (2014), who also find a strong association between

particulates and respiratory ailments. Like Ghosh and Mukherji (2014), we also find

strong effects among the very young. We do not find any effects of particulate pol-

lution on cardiovascular-related or fracture-related admissions, of which the latter is

our placebo.
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Interestingly, we have not uncovered any effects for SO2 We suspect that this

is the case because the concentrations of SO2 pollution are only in violation of EPA

standards near K̄ılauea in the southern and eastern part of the island of Hawai‘i. The

population density here is quite small and, while it is entirely reasonable to suspect

that SO2 does have pernicious effects on this island, we cannot detect any such effects

in these regions perhaps due to small sample sizes and lower ER utilization in these

areas.4 For the remainder of the islands, SO2 pollution is far below EPA standards

and so it is not surprising that we do not find any effects in the more populated

regions. It appears that the main effect of SO2 on health is the particulate matter

that it eventually forms.

The balance of this paper is organized as follows. In the next section, we give

some further background on the volcano and describe our data. We then describe

our methods. After that, we summarize our results. Finally, we conclude.

2 Background and Data

K̄ılauea’s current eruption period began in 1983 and occasionally disrupts life on the

island of Hawai‘i and across the state. Lava flows displaced some residents in 1990

and started to displace a small number of residents in late 2014. Prior to this, the

4These results are not reported but are available upon request.
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lava flows served mainly as a tourist attraction. The primary impact of the volcano

on human activity has been intermittent but severe deteriorations in air quality.

K̄ılauea emits water vapor, carbon dioxide, and sulfur dioxide. Sulfur dioxide or

SO2 poses a serious threat to human health and is also a common industrial pollutant.

Moreover, SO2 eventually turns into particulate matter which is also another harmful

pollutant.

There are currently two main sources of air pollution on K̄ılauea: the summit

itself and a hole in the “East Rift Zone” on the side of the volcano. Since March

12, 2008, there has been a dramatic increase in emissions from K̄ılauea: a new vent

opened inside the summit, and average emissions have increased threefold, breaking

all previous emissions records. Currently, emissions fluctuate on a daily basis be-

tween 500 and 1,500 tons of SO2 per day. As a reference point, the Environmental

Protection Agency’s safety standard for industrial pollution is 0.25 tons of SO2 per

day from a single source (Gibson 2001). Depending on volcanic activity, rainfall, and

prevailing wind conditions, there can be vast daily differences in the actual amount

of SO2 present near the summit and surrounding areas, ranging from near pristine

air quality to levels that far exceed guidelines set by the EPA.

Volcanic pollution, or vog, is composed of different gases and aerosols, and the

composition typically depends on proximity to the volcano. Near K̄ılauea’s active
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vents, vog consists mostly of SO2 gas. Over time, SO2 gas oxidizes to sulfate parti-

cles through various chemical and atmospheric processes, producing hazy conditions

(particulate pollution). Thus, farther away from the volcano (along the Kona coast

on the west side of Hawai‘i Island and on other Hawai’ian islands), vog is essentially

small particulate matter (sulfuric acid and other sulfate compounds) and no longer

contains high levels of SO2. Particulate matter is one of the most common forms of

air pollution in the United States and across the world. In summary, the volcano

has the potential to produce high levels of SO2 pollution near the volcano and high

levels of particulate pollution anywhere in the state of Hawai‘i.

We employ data from two sources. First, we obtained data on ER admissions

and charges in Hawai‘i from the Hawai‘i Health Information Corporation (HHIC).

Second, we obtained data from the Hawai‘i Department of Health (DOH) on air

quality from thirteen monitoring stations in the state.

The ER data include admissions information for all cardiovascular and pulmonary

diagnosis-related groups, as well as all admissions for fractures and dislocations of

bones other than the pelvis, femur, or back. Fractures are designed to serve as a

placebo, as they should be unaffected by air pollution. The data span the period

January 1, 2000 to December 31, 2012. These data include information on the date

and cause of admission as well as the total amount charged for patient care. In
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addition, we know the age and gender of the patient. We also have information on

a broadly defined location of residence. In particular, HHIC reports the residence

of location as an “SES community,” which is a collection of several ZIP codes. We

show the SES communities on the islands of O‘ahu, Hawai‘i, Maui, Lāna‘i, Moloka‘i

and Kaua‘i in Figure 1.

To put the data in a format suitable for regression analysis, we collapsed the

data by day, cause of admission, and SES community to obtain the total number of

admissions and total ER charges on a given day, in a given location, and for a given

cause (i.e., pulmonary, cardiovascular, or fractures). Once again, it is important

to note that the location information corresponds to the patient’s residence and not

the location of the ER to which he or she was admitted. We did this because we

believed that it would give us a more precise measure of exposure once we merged

in the pollution data.

We use measurements of the following pollutants: particulates 2.5 and 10 mi-

crometers in diameter (PM2.5 and PM10)5 and SO2. All measurements for SO2 are

in parts per billion (ppb), and particulates are measured in micrograms per cubic

meter (g/m3). For particulates, two measures were available: an hourly and a

5To be more precise, PM2.5 (PM10) is the mass per cubic meter of particles passing through the

inlet of a size selective sampler with a transmission efficiency of 50% at an aerodynamic diameter

of 2.5 (10) micrometers.
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24-hour average computed by the DOH.6 Using the hourly measures, we computed

our own 24-hour averages, which were arithmetic averages taken over 24 hourly mea-

sures. Most of the time, either the one hour or the 24-hour measure was available,

but rarely were both available on the same day. When they were, we averaged the

two. For our empirical results, we spliced the two time series of particulates (e.g.

the 24 hour averages provided by the DOH and taken from our own calculations)

together and took averages when appropriate so we could have as large of a sample

as possible for our regression analysis. The measurements of SO2 were taken on an

hourly basis; to compute summary measures for a given day, we computed means for

that day.

To merge the air quality data into the ER admissions data, we used the following

process. First, we computed the exact longitude and latitude of the monitoring

station to determine in which ZIP code the station resided. Next, we determined

the SES community in which the station’s ZIP code resided. If an SES commu-

nity contained numerous monitoring stations, then we computed means for all the

monitoring stations on a given day in a given SES community. Table 1 displays the

mapping between the monitoring stations and the SES communities. We did not

6The DOH did not simply compute an arithmetic average of hourly measurements as we did.

Unfortunately, even after corresponding with the DOH, it is still not clear to us how their 24-hour

averages were computed.
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use data from SES communities that had no monitoring stations. In total, we used

data from nine SES communities.

Unfortunately, we do not have complete time series for pollutants for all nine SES

communities. By far, we have the most comprehensive information for PM2.5 and,

to a lesser extent, SO2. We report summary statistics for the pollutants in Table 2.
7

In Figures 2 through 4, we present graphs of the time series for each of the pol-

lutants that we consider by SES community. For each pollutant, we include a hori-

zontal line corresponding to the National Ambient Air Quality Standards (NAAQS)

for that pollutant. We use 24-hour averages of 35 3 for PM2.5 and 150 3

for PM10. We used the one-hour average of 75 ppb for SO2.
8

On the whole, Figures 2 through 4 indicate periods of poor air quality in particular

regions. Looking at PM2.5 in Figure 2, we see violations of NAAQS in ’Aiea/Pearl

City, Central Honolulu, ’Ewa, Hilo/North Hawai’i, Kona, West/Central Maui, and

South Hawai’i. The noticeable spike in PM2.5 in 2007 in West/Central Maui was

caused by a large brush fire. Hilo/North Hawai’i, Kona, and South Hawai’i are

all on the island of Hawai’i, which generally appears to have poor air quality. We

do not see any violations of NAAQS for PM10, although this is not recorded on

the island of Hawai‘i. However, in Figure 4, we see that SO2 levels are very high

7For both the pollution and ER data, we trimmed the top and bottom 1% from the tails.
8For information on particulates, see http://www.epa.gov/air/criteria.html.
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in Hilo/North Hawai’i, South Hawai’i and, to a lesser extent, in Kona; there are

violations of NAAQS in the first two of these regions.9 These trends make sense

in that SO2 emissions should be highest near the volcano and then dissipate with

distance. SO2 reacts with other chemicals in the air to produce particulate pollution.

This mixes with other volcanic particulates to form vog, and this smog-like substance

can be carried farther across the Hawai’ian islands, depending on the wind direction.

For our instrumental variables results, we employ data on wind direction collected

by the National Oceanic and Atmospheric Association from their weather station

at Honolulu International Airport. These data are reported in degrees with zero

corresponding to the winds coming from due north. We summarize these data in

the histogram in Figure 5. As can be seen, the winds primarily come from the

northeast. In fact, the mean wind direction is 92.3 degrees and the median is 70

degrees. However, we do see a cluster of data between 120 and 180 which reflects

that occasionally the winds do come to Oahu from the south. When this happens,

the volcanic emissions from K̄ılauea are blown to the island of Oahu, not out to sea.

We conclude this section by reporting summary statistics from the HHIC data for

all the SES Communities for which we have air quality information in Table 3. An

9The state of Hawai’i’s only coal-fired power plant is located in the ’Ewa SES. This is a small

plant (roughly a quarter the size of the average coal plant on the mainland), and prevailing winds

blow its emissions directly offshore. The plant appears to have no effect on SO2 levels in ’Ewa.
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observation is an SES community/day. For all the SES communities we consider, we

see that, on an average day, there were 3.73 admissions for cardiovascular reasons,

4.62 admissions for pulmonary reasons, and 1.84 admissions for fractures in a given

region. Total charges for cardiovascular-related admissions are $4708.40 per day,

whereas pulmonary-related admissions cost a total of $3831.10. Finally, note that

these amounts correspond to what the provider charged, not what it received, which,

unfortunately, is not available from HHIC.

3 Methods

We employ two approaches to estimate the impact of volcanic emissions on ER

utilization. The first is to simply estimate a linear regression of clinical outcomes

onto our pollution measures while controlling for a flexible pattern of seasonality

which we estimate via OLS. The second is an IV approach in which we leverage

data on volcanic emissions and wind direction to instrument for particulate pollution.

Throughout, we adopt the notation that  is the time period and  is the region. In

addition, we let  denote the day of the week,  denote month, and  denote year

corresponding to time period .
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First, we consider the following parsimonious empirical model:

 =  ()  +  +  +  +  +  (1)

where  is either ER admissions or charges and  is a measure of air quality

for a given day in a given region.10 The next three terms are day, month, and year

dummies. The parameter, , is a region dummy. The final term is the residual.

The term  () is a lag polynomial of order , which we will use to test for dynamic

effects of pollution on health outcomes.

OLS estimation of equation (1) has the advantage that it is efficient and utilizes

all the available data (our IV approach does not as the reader will see). On the

other hand, OLS estimation of  () will be biased downwards due to a large degree

of measurement error in our pollution measurements. Our IV estimates will correct

this and any possible lingering biases from omitted variables.

Next, for our instrumental variables regression, we use SO2 emissions from K̄ılauea

as an instrument for particulate pollution on Oahu. Our proxy of SO2 emissions is

the measurement of SO2 levels from the South Hawaii monitoring stations discussed

10We use the counts of total admissions and not rates as the dependent variable for several

reasons. First, accurate population numbers are not available between census years. Second,

regional fixed effects will account for cross-sectional differences in the population. Third, year

fixed effects account for population changes over time.

17



in the previous section from the Hawai‘i DOH.11 We would argue that SO2 levels

in South Hawaii are unrelated to most causes of particulate pollution on Oahu other

than, of course, vog. In addition, we exploit the fact that most of the time trade

winds from the northeast blow the volcanic emissions out to sea and so, on days,

with trade winds, there is very little vog. However, on occasion, the winds reverse

direction and come from the south and this blows the vog towards the island of Oahu.

Accordingly, our IV approach works as follows. The first stage is

 =  + 12 + 2 + 32 ∗ +  (2)

where  is the particulate level (either PM10 or PM2.5) in any of the regions

on Oahu at time , 2 is the SO2 level at time  in South Hawai‘i,  is the

direction of the wind at Honolulu International Airport and  is a regional fixed

effect. Wind direction is measured in degrees and so takes on values between 0

and 359 with 0 corresponding to winds coming from the north. We do not include

11There is also data from the US Geological Survey but these data are very incomplete so we do

not use them in our IV regressions. For example, the measurements of  are very intermittent,

and thus, even if it were a valid instrument, IV estimates would lower the sample size substantially.

Furthermore, sampling of volcanic emissions is endogenously determined by the US Geological

Survey. During periods of elevated SO2 emissions, the USGS tries to measure emission rates more

frequently (often daily). When emissions are lower, the USGS chooses not to measure emissions

every day and will often wait for weeks before taking a new measurement. Also, the device the USGS

uses to measure emissions (a mini-UV spectrometer) only works when certain weather conditions

exist (steady winds with little to no rain).
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any seasonality controls since there are no systematic seasonal patterns in volcanic

emissions that are also correlated with ER utilization and inclusion of these would

greatly weaken the explanatory power of the instruments. In the second stage, we

then estimate

 =  d +  +  (3)

using only ER utilization data from Oahu.

There is an important caveat to our results, which is that our OLS and IV esti-

mates include any sort of adaptation that may have taken place. If, for example,

people were more likely to stay indoors on days when the air quality was poor, this

most likely would dampen the estimated effects of pollution on health outcomes. In

this sense, our estimates could be viewed as lower bounds on the effects of pollution

on ER admissions if one were to fully control for adaptation.

To compute the standard errors, we will rely on an asymptotic distribution for

large  but a fixed number of regions. For a discussion of such an estimator, we

refer the reader to Arellano (2003), p.19. The main reason for this approach is that

we have many more days in our data than regions. In addition, the large- fixed

effects estimator allows for arbitrary cross-sectional correlation in pollution since it

does not rely on cross-sectional asymptotics at all. However, large- asymptotics

require an investigation of the time series properties of the residual, and if any
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serial correlation is present, Newey-West standard errors must be used for consistent

estimation of the covariance matrix. We used ten lags for the Newey-West standard

errors, although the standard errors with only one lag were very similar, indicating

that ten lags is most likely more than adequate.12 These standard errors allow for

arbitrary correlations in residuals across the Hawaiian islands on a given day and

serial correlation in the residuals for up to ten days.

4 Volcanic Emissions and Pollution

In this section, we establish a connection between SO2 emissions as measured in

tons/day (t/d) on our air quality measures. To accomplish this, we estimate a very

simple regression of air quality on emissions:

 = 1 + 2 +  (4)

12To choose the number of lags for the Newey-West standard errors, we estimated our models

for pulmonary outcomes (which preliminary analysis revealed were the only outcomes for which

we might find significant effects) and for three different pollutants. We then took the fitted

residuals from these models and estimated AR(20) models. For particulates, we found that the

autocorrelations were significant up to ten lags. For SO2, we found significant autocorrelations for

more than ten lags. For the coming estimations, we used ten lags for the Newey-West standard

errors since preliminary work showed that there was little effect of SO2 for any of the outcomes.
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Our measure of volcanic emissions is . Data on emissions come from the US

Geological Survey (USGS). We employ daily measurements on SO2 emissions in

t/d from K̄ılauea from two locations, the summit and the Eastern Rift Zone (ERZ),

from January of 2000 to December of 2010. Note that these measurements were not

taken on a daily basis, that many days have no measurements, and that many others

have a measurement from only one of the locations. So, for these regressions, we

only include  from the summit or from the ERZ. Finally, because a second vent

opened in the summit during 2008, we estimate the model separately for the periods

2000-2007 and 2008-2010.

Tables 4 and 5 display the relationship between volcanic emissions and particulate

pollution (PM10 and PM2.5). In Table 4, there is no relationship between emissions

from the summit and PM10 during the period 2000-2007, but there is a substantial

relationship for the subsequent period, 2008-2010. Looking at emissions from the

ERZ in the last two columns of the table, we see a significant relationship between

air quality and emissions in both periods.

Turning to PM2.5 in Table 5, we still see significant effects of volcanic emissions on

air quality in all four columns. Comparing emissions from the summit in 2000-2007

and 2008-2010 in columns (1) and (2), while we do not see that the point estimate

is higher for the later period, it is more tightly estimated than the estimate for the
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period 2000-2007 with a standard error about one-tenth of the size of the standard

error in column (1). So we see a much more statistically significant relationship

between emissions and PM2.5 for 2008-2010 than for the earlier period. In the

last two columns, we estimate the relationship between emissions from the ERZ and

PM2.5; we see a statistically significant relationship in both periods, although the

point-estimate in column (4) is about double the estimate in column (3).

In Tables 6 and 7, we estimate the impact of SO2 emissions from K̄ılauea in t/d

on SO2 levels in ppb across the state. Table 6 focuses on emissions from the summit.

Since SO2 levels should be highest near the volcano, we estimate this model for just

South Hawai‘i, in addition to using SO2 levels from all available monitoring stations.

On the whole, both tables show a significant relationship between SO2 emissions

and SO2 pollution levels throughout the state. Of note is that these estimates are

substantially higher when we restrict the sample to South Hawai‘i, as expected.

As further evidence of the independent variation of SO2 and particulate pollution,

we present correlation coefficients between various pollutants in the state of Hawai‘i in

Table 8. In most parts of the United States, air pollutants are highly correlated. For

example, in Neidell (2004)’s study of California, the correlation coefficient between

PM10 and the extremely harmful pollutant carbon monoxide (CO) is 0.52. In our

sample, it is 0.0081. In the same Neidell study, the correlation between PM10 and
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NO2 is 0.7, whereas in our sample it is 0.0267. In the city of Phoenix, Arizona,

the correlation coefficient between CO and PM2.5 is 0.85 (Mar, Norris, Koenig, and

Larson 2000). In our sample, it is 0.0118. As evidence that SO2, PM2.5, and PM10

are being generated by the same source, the correlation coefficient between PM2.5

and PM10 is 0.52, and between PM2.5 and SO2 it is 0.4. So a unique feature of our

design is that we have a source of particulate pollution that is unrelated to many

other industrial pollutants (other than, of course, SO2).

5 Results

5.1 OLS Results

First, we consider the effects of pollutants on ER admissions via OLS estimation of

equation (1). Results are reported in Tables 9 through 16. For each pollutant/cause-

of-admission combination, we estimate three separate specifications: one that only

includes the contemporaneous pollution measure and two others that include one and

two lags, respectively. For reasons discussed above, we report Newey-West standard

errors for all estimations.

In Table 9, we consider the effects of particulates on pulmonary-related admis-

sions. In the first column, we see that a 1 g/m3 increase in PM10 is associated
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with 0.013 additional admissions for a day/SES community observation. In the

fourth column, we see that the effects of PM2.5 are larger, with an estimate of 0.025

additional admissions. Both estimates are significant at the 1% level. The standard

deviation of PM10 is 6.24, indicating that a 1 standard deviation increase in PM10

results in an additional ER admission every 12.32 days (which is a 2% increase in

admissions). Similarly, the standard deviation of PM2.5 is 3.30, indicating that

a 1 standard deviation increase in PM2.5 results in one additional ER admission

every 12.12 days for pulmonary-related reasons in a given region (a 2% increase in

admissions).

Turning to the effects on ER costs in the bottom panel, we see that a 1 g/m3

increase in PM10 is associated with $12.91 more charges for pulmonary causes. The

corresponding number for PM2.5 is $39.11. Respectively, a 1 standard deviation

increase in PM10 and PM2.5 results in $80.56 and $129.06 additional charges in

a given region on a given day. Looking back at Table 3, we see that the average

pulmonary-related ER charges is $3831.10 for a day/SES community, so a 1 standard

deviation increase in either PM10 or PM2.5 can increase charges by 2.10% and 3.36%,

respectively. The specifications that include lagged pollution variables indicate that

there are persistent effects, as all the -values on the tests of joint significance are

close to zero for both admissions and charges.
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In Table 10, we report the effects of SO2 on pulmonary-related admissions. We

do not see any effects of SO2 on pulmonary outcomes.

Tables 11 and 12 report the effects of pollutants on cardiovascular-related out-

comes. In Table 11, there is weak evidence of an effect of PM2.5 on costs but not

admissions. However, there are no other significant estimates in the table. Turning

to the effects of SO2 in Table 12, once again, we see none.

As a placebo test, we look at the effects of pollutants on admissions for factures in

Table 13. We consider the same three specifications for PM2.5 and PM10. We see

no evidence that ER admissions for fractures increase as a consequence of particulate

pollution.

5.2 IV Results

We now estimate the first stage of the two stage least squares model in equation (2).

The results are reported in columns 1 and 4 of Table 14. First, we see that SO2 levels

in South Hawai‘i by themselves do not predict particulate levels. However, we do see

that higher values of the wind direction variable are associated with more particulate

pollution. Essentially, this means that when winds are coming from the south (i.e.

there are no trade winds) that air quality gets worse.13 Finally, the interaction

13Note that almost 90% of our observations for wind direction are between 0 and 180 degrees

indicating that the winds are mostly coming from the northeast or the southeast but rarely from
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between the wind direction and SO2 is highly predictive of particulate pollution.

This indicates that when SO2 levels are high and the wind reverses direction then

particulate levels on Oahu are very high.

Next, we move to the estimation of the second stage regression in equation (3).

These results are reported in columns 2 and 3 for PM10 and columns 5 and 6 for

PM2.5. Comparing these results to the analogous results in Table 9, we see that they

are an order of magnitude larger. For example, the estimate of the impact of PM10

on ER admissions for pulmonary related reasons in column 2 is 0.320 whereas it was

0.013 when we used OLS and, so the estimate is about 25 times larger. Similarly, the

esimate in column 3 of Table 14 is 226.92, whereas the corresponding OLS estimate

was 12.91 which means that the IV estimate is 17 times larger. We also see much

larger results for PM2.5 when we use IV. For example, the impact on admissions in

column 5 is 0.456 whereas the OLS estimate was 0.025 indicating that IV is about 17

times larger. Looking at charges in column 6, we see an estimate of 242.76 whereas

the OLS estimate was 27.50 and so, IV is larger by a factor of 8.

To get a sense of how much larger these estimates are than OLS, a one standard

deviation increase in PM10 levels on a given day will result in a $1415.98 increase in

charges from ER admissions for pulmonary related reasons. This represents a 37%

the west. Thus, higher values indicate winds coming from the south.
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increase in expenditures on emergency room admissions. Similarly, a one standard

deviation increase in PM2.5 levels will result in a $801.11 increase in charges (21%

increase). The corresponding numbers from the OLS estimates were $80.56 and

$129.06.

Our suspicion is that the substantially larger estimates that we obtain using IV

are due to the presence of measurement error in our pollution variables. The only

plausible omitted variable that could bias OLS downwards is avoidance behavior.

However, using volcanic emissions (or a proxy of it in our case) does not correct for

this bias since avoidance behavior is a direct consequence of the vog that is produced

by K̄ılauea which clearly violates the exclusion restriction required for IV. Moreover,

even if it were a viable instrument, the discrepancy between the OLS and IV results

implies an implausible degree of avoidance. This leaves us with measurement error

as the only source of a downward bias in the OLS estimates, although it does suggest

that there is lot of measurement error in our pollution variables.

5.3 Other Results

We now consider a “kitchen sink” regression, where we regress each of our outcomes

on all of the pollution measures (e.g., PM10, PM 2.5, and SO2). The results are

reported in Table 15. Looking at pulmonary-related admissions, we see no indica-
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tion that SO2 poses any health threats, and it is only when it becomes particulate

matter that it poses risks according to our data. However, we do not see consistent

evidence that PM10 or PM2.5 is more dangerous; we see larger effects for PM2.5 for

admissions but larger effects for charges. Finally, we do not see a strong relationship

for cardiovascular outcomes or fractures.

Next, in Table 16, we investigate the effects of pollutants by the age of the person

admitted. We chose these age groupings primarily because we wanted to group sim-

ilar people together. For example, infants are very different than everybody else, so

we grouped 0-1 together; adolescents are similar, so we grouped 11-18 together; etc.

The idea is to see whether there are disproportionate effects for vulnerable popula-

tions such as the very young and the very old. Because the different bins contain

different numbers of ages, these estimates will vary, in part, for purely mechanical

reasons. So, to gain a better idea of whether the effects of pollution are higher for a

given group, we report

Effect

# of ages in bin
× 1000

to adjust for this. Higher numbers indicate larger effects.

We see that younger people are indeed disproportionately affected by particulate

pollution. The adjusted estimates are the largest for the 0-1 age bin for both PM10

and PM2.5. The next highest for both PM10 and PM2.5 is for the 2-5 bin. So, it
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appears that it is the very young who are the most vulnerable to particulate pollution.

5.4 Robustness Checks

In this section, we conduct a series of robustness checks. First, we explore the

robustness of the results in Table 9 to using alternative fixed effects. Second, we

estimate the model in equation (1) using the negative binomial model (NBM). Third,

we compute the robust and clustered standard errors of the model and compare these

to the Newey-West standard errors that we have already computed.

The alternative fixed effects that we consider are month/year interactions and so

we estimate the model

 =  +  +  +  +  (5)

We re-estimate the specifications that were estimated in Table 9 with the pulmonary

outcomes on the right hand side. The results are reported in Table 17 in the top

panel. First, we see that the main findings are robust to the inclusion of these

alternative fixed effects. Second, we see that, while the magnitudes are similar,

the point-estimates are slightly smaller. For example, the estimate of the effects of

PM2.5 on admissions in Table 17 is 0.020 whereas it was 0.025 inTable 9. Similarly,

the estimate for PM10 with the alternative fixed effects was 0.010 whereas it was
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0.011 in Table 9.

In the bottom panel of the same table, we estimate the model using the NBM.

We also use the NBM for charges to account for the prevalence of zeros in the data.

We still see that there are significant effects of PM2.5 on pulmonary outcomes, but

we no longer see any effects for PM10.

Finally, in Table 18, we report alternative standard errors. The first row of the

table is the point estimate of the effects of either PM10 and PM2.5 on pulmonary

outcomes. These are the same estimates as those in the first and fourth columns of

Table 9. In the next three rows, we report three standard errors: Newey-West (NW),

Eicker-White (EW), and robust standard errors clustered by SES community (C).

The NW standard errors rely on large  asymptotics and are robust to arbitrary

cross-sectional correlations and serial correlation up to ten lags. The EW standard

errors are the most naive. They rely on large  and  asymptotics while only

allowing for heteroskedasticity. The C standard errors rely on the number of clusters

going to infinity and allow for serial correlation within SES communities. Note that

in our data, we only had five SES communities for the estimations that included

PM10 and nine for the models that included PM2.5.

As we have already argued, the NW standard errors are the appropriate standard

errors. First, they are robust to spatial and serial correlation. Second, tests
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based on the NW covariance are more powerful as we divide by
√
 . On the other

hand, standard errors that rely on the number of clusters tending to infinity will be

needlessly large.

Looking at the table, the following findings emerge. First, as expected, the NW

standard errors are smaller than the clustered standard errors (with the exception of

final column). However, note that all of the point estimates are significantly different

from zero even when we use the clustered standard errors. Finally, while the EW

standard errors are smaller than the NW standard errors, they are remarkably close.

5.5 Comparison with the Literature

We conclude this section with a discussion of how our results compare to the existing

literature. We start by comparing our results to the literature on different pollutants

(carbon monoxide, nitrogen dioxide, etc.). We generally find similar effects in terms

of a one standard deviation increase in measured pollution on hospital admissions.

Our IV estimates are in the 20 to 30% and this matches with other quasi-experimental

studies. For example, Schlenker and Walker (2011) find 17-30% increases in hospital

counts. Neidell (2004) finds that a 1 standard deviation increase in CO increases

asthma ER admissions for children aged 1-3 by 19%. Lleras-Muney (2010) finds that

a one standard deviation increase in ozone increases respiratory hospitalizations for
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children by 8-23%. In terms of cost estimates, Moretti and Neidell (2011) estimate

that ozone pollution raises annual hospital costs for the entire Los Angeles region

(18 million people) by $44.5 million. Our corresponding estimate for the particulate

pollution attributable to vog in Hawai‘i (total population of 1.4 million people) is

$4.4 million (see the next section for the exact calculation).

In terms of studies focused primarily on particulates, most quasi-experimental

approaches have focused on long-term exposure to large changes in particulate pol-

lution. By comparing similar areas located on opposite sides of the Huai river, Chen,

Ebenstein, Greenstone, and Li (2013) find ambient concentrations of particulates are

about 55% higher in the north and life expectancies are about 5.5 years lower due to

increased cardiorespiratory mortality. A similar study examined the decision to ban

the sale of coal in Dublin, Ireland in 1990. By comparing 6 years before and 6 years

after the coal ban, (Clancy, Goodman, Sinclair, and Dockery 2002) found that black

smoke concentrations in Dublin decreased by 70%, non-trauma deaths declined by

6%, respiratory deaths by 16%, and cardiovascular deaths by 10%.

It has proven much more difficult to estimate the effect of relatively small re-

ductions in particulates on short-term outcomes such as illness and hospitalization.

Thus, there are very few studies that we are aware of that allow us to directly compare

our results. As mentioned earlier, one of the major confounding issues in identify-
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ing the short-term effect of particulates on health is that most major pollutants are

highly correlated. In fact, many studies that look at the effect of particulates along-

side other pollutants find that particulates have no effect on health outcomes. For

example, Neidell (2004) finds no effect of particulate pollution on hospitalizations for

asthma among children but other pollutants have large effects on emergency room

admissions. The correlation coefficient between PM10 and carbon monoxide in the

Neidell (2004) sample is 0.52 and the coefficient between PM10 and nitrogen dioxide

is 0.7. The corresponding numbers in our sample are 0.0118 and 0.0267. Thus, one

of the reasons we may be one of the few studies to observe both statistically and

economically significant effects of particulates is that we have an instrument that af-

fects only one pollutant. K̄ılauea volcano does not emit carbon monoxide or nitrogen

dioxide.

6 Conclusions

We have used variation in air quality induced by volcanic eruptions to test for the

impact of SO2 and particulate matter on emergency room admissions and costs in

the state of Hawai‘i. Air quality conditions in Hawai’i are typically ranked the

highest in the nation except when the largest stationary source of SO2 pollution in

the United States is erupting and winds are coming from the south. We observe a
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strong statistical correlation between volcanic emissions and air quality in Hawai‘i.

The relationship is strongest post-2008, when there has been an elevated level of

daily emissions. Relying on the assumption that air quality in Hawai‘i is randomly

determined, we find strong evidence that particulate pollution increases pulmonary-

related hospitalization.

Our IV results suggest that a one standard deviation increase in particulate

pollution leads to a 20-30% increase in expenditures on emergency room visits for

pulmonary-related outcomes. We do not find strong effects for pure SO2 pollution or

for cardiovascular outcomes. We also find no effect of volcanic pollution on fractures,

our placebo outcome. The effects of particulate pollution on pulmonary-related ad-

missions are the most concentrated among the very young (children under the age

of five).

In terms of welfare effects, we can use our estimates to calculate the total welfare

impact of the volcano on health costs in Hawai‘i. Since March 12 of 2008, in which

a new vent opened on K̄ılauea, the summit and the East Rift Zone have produced

average daily emissions of 815.47 and 1,346.81 tons of 2, respectively. Based on

the estimates in Table 5, a 1 ton increase in 2 at the summit is correlated with

a 0.00195 3 increase in PM2.5 and, at the East Rift Zone, with a 0.00128

3 increase in PM2.5 across the state. Based on the results in Table 14, a 1
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3 increase in PM2.5 raises emergency room charges by $242.76 per day. This

suggests the daily cost of summit emissions is $386.03 and the cost of ERZ emissions

is $418.37. Multiplying these numbers by 365 (days in the year) and 15 (total number

of SES communities in the state of Hawai’i) gives an annual cost of $2,113,506 for the

summit and $2,290,596 for the ERZ, or a total annual cost of PM2.5 pollution from

the volcano of $4,404,102. The equivalent number for PM10 is $3,290,740. Therefore,

the total welfare cost of the emissions event that began on March 12, 2008 (from the

standpoint of late 2015) has been $57,711,324.

A number of caveats need to be borne in mind when interpreting our welfare

calculation and our regression estimates in general. Since the USGS only measures

volcanic emissions during periods of elevated emissions, the average daily emissions

estimate is likely upward biased. However, as discussed earlier, avoidance behavior

likely implies that our regression estimates of the admissions and costs associated

with PM2.5 are biased downwards. Furthermore, we have restricted our attention

to ER admissions. Anecdotal evidence suggests that vog causes considerable health

impacts that do not necessitate a trip to the emergency room.14 A full accounting

of the different ways that volcanic pollution affects health in Hawai‘i is beyond the

scope of this analysis but our estimates certainly suggest that the full cost is quite

14“Vog - volcanic smog - kills plants, casts a haze over Hawai’i”, USA Today, May 2, 2008.
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large.
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Table 1: Mapping between Monitoring Stations and SES Communities
Monitoring Station SES Community

Honolulu Central Honolulu

Kapolei Ewa

Pearl City Pearl City - Aiea

Sand Island West Honolulu

West Beach Ewa

Kihei West and Central Maui

Hilo Hilo/North Hawai’i

Kona Kona

Mt View South Hawai’i

Ocean View South Hawai’i

Pahala South Hawai’i

Puna South Hawai’i

Niumalu East Kauai
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Table 2: Summary Statistics for Pollutant Data
PM10 PM2.5 SO2

Aiea/Pearl City
1653

(561)

437

(241)
-

Cen. Honolulu
1385

(471)

425

(232)

062

(075)

E.Kauai -
584

(294)

277

(410)

Ewa
1519

(570)

494

(299)

070

(064)

Hilo/N. Hawai’i
1160

(355)

519

(415)

287

(592)

Kona -
1598

(588)

496

(461)

S. Hawai’i -
912

(484)

1128

(1333)

W./Cen. Maui
2041

(754)

641

(519)
-

W. Honolulu -
736

(370)
-

All
1604

(624)

652

(330)

329

(696)

Notes: We report means and standard deviations in

parentheses. An observation is an SES community/day.

Particulate data are in 3 and SO2 is in ppb.
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Table 3: Summary Statistics for ER Data
Cardiovascular Pulmonary Fractures

Admissions Charges Admissions Charges Admissions Charges

Aiea/Pearl City
433

(235)

485924

(368516)

487

(282)

380829

(299258)

217

(148)

155676

(133440)

Cen. Honolulu
483

(252)

637287

(425962)

548

(288)

504771

(349999)

236

(153)

192977

(149898)

E.Kauai
197

(155)

242314

(257341)

267

(182)

185765

(174002)

100

(103)

60261

(74280)

Ewa
540

(269)

706709

(454710)

742

(329)

624851

(376764)

257

(159)

188076

(145055)

Hilo/N. Hawai’i
415

(228)

513723

(354639)

455

(249)

361437

(276043)

165

(129)

111896

(114656)

Kona
257

(184)

336235

(304858)

350

(229)

289059

(249804)

177

(136)

129673

(126127)

S. Hawai’i
250

(182)

310890

(283194)

298

(204)

241151

(227167)

116

(110)

83810

(102049)

W./Cen. Maui
314

(202)

400313

(339964)

329

(223)

250875

(224442)

173

(139)

148199

(139443)

W. Honolulu
482

(237)

623887

(400955)

718

(320)

638957

(377624)

222

(148)

176379

(142457)

All
373

(247)

470840

(389775)

462

(307)

383110

(330157)

184

(146)

138212

(134496)

Notes: We report means and standard deviations in parentheses. An observation is an

SES community/day. Charges are in 2000 US dollars.
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Table 4: Effects of Volcanic Emissions of SO2 (tons/day) on Pollution (PM10)

(1) (2) (3) (4)

SO2 (t/d)
−000531
(000474)

000234∗∗∗

(000078)

000059∗∗

(000029)

000055∗

(000028)

Source of Measurement

-Summit X X

-ERZ X X

2000-2007 X X

2008-2010 X X

Number of Obs. 1297 1391 1130 635
∗ sig at 10% level;∗∗sig at 5% level; ∗∗∗sig. at 1% level

Note: Each column corresponds to a regression of a pollutant on measures of SO2
emissions from Kı̄lauea measured in tons/day. Newey-West standard errors are in

parentheses. The two sources of measurement are the summit and the Eastern

Rift Zone (ERZ).

Table 5: Effects of Volcanic Emissions of SO2 (tons/day) on Pollution (PM2.5)

(1) (2) (3) (4)

SO2 (t/d)
001061∗

(000563)

000195∗∗∗

(000063)

000067∗

(000041)

000128∗∗∗

(000039)

Source of Measurement

-Summit X X

-ERZ X X

2000-2007 X X

2008-2010 X X

Number of Obs. 895 2636 789 1203
∗ sig at 10% level;∗∗sig at 5% level; ∗∗∗sig. at 1% level

Note: Per Table 4.
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Table 6: Effects of Volcanic Emissions of SO2 (tons/day) from the Summit on Pol-

lution (SO2)

(1) (2) (3) (4)

SO2 (t/d)
000926∗∗∗

(000248)

003122∗∗

(001235)

000254∗

(000135)

001357∗∗∗

(000234)

2000-2007 X X

2008-2010 X X

Restricted to S. Hawai’i X X

Number of Obs. 1608 187 2145 366
∗ sig at 10% level;∗∗sig at 5% level; ∗∗∗sig. at 1% level

Note: Per Table 4.

Table 7: Effects of Volcanic Emissions of SO2 (tons/day) from the ERZ on Pollution

(SO2)

(1) (2) (3) (4)

SO2 (t/d)
000060∗∗∗

(000015)

000148∗∗

(000067)

000029

(000051)

000347∗∗∗

(000128)

2000-2007 X X

2008-2010 X X

Restricted to S. Hawai’i X X

Number of Obs. 1457 180 976 162
∗ sig at 10% level;∗∗sig at 5% level; ∗∗∗sig. at 1% level

Note: Per Table 4.

Table 8: Pollution Correlation Matrix
PM2.5 PM10 SO2 CO NO2

PM2.5 1

PM10 0.5247 1

SO2 0.4047 0.0937 1

CO 0.0118 0.0081 0.0560 1

NO2 0.0798 0.0267 0.2032 -0.0346 1
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Table 9: Effects of Particulates on Pulmonary Outcomes
(1) (2) (3) (4) (5) (6)

Admissions

PM10 PM2.5


0013∗∗∗

(0004)

0009∗∗

(0005)

0009∗∗

(0005)

0025∗∗∗

(0006)

0023∗∗∗

(0007)

0024∗∗

(0007)

− 1 -
0008∗

(0004)

0005

(0005)
-

0004

(0007)

0007

(0008)

− 2 - -
0005

(0004)
- -

−0006
(0007)

 -test1 -
733

[0000]

454

[0035]
-

781

[0000]

549

[0001]

Number of Obs 13719 12755 12128 17601 14643 14207

Charges


1291∗∗∗

(388)

1061∗∗

(456)

1149∗∗

(475)

3911∗∗∗

(621)

2757∗∗∗

(804)

2750∗∗∗

(840)

− 1 -
692

(448)

425

(512)
-

999

(784)

1652∗

(909)

− 2 - -
382

(453)
- -

−1113
(813)

 -test1 -
686

[0001]

466

[0003]
-

1123

[0000]

803

[0000]

Number of Obs 13751 12783 12157 17562 14578 14145
∗ sig at 10% level;∗∗sig at 5% level; ∗∗∗sig. at 1% level

Notes: All estimations include region, day, month and year dummies. Newey-West standard errors in

parentheses.
1This is a test of joint significance of pollution variables. p-values in brackets.
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Table 10: Effects of SO2 on Pulmonary Outcomes
(1) (2) (3)

Admissions


−0000
(0003)

0003

(0004)

0004

(0004)

− 1 -
−0004
(0004)

−0001
(0004)

− 2 - -
−0006
(0004)

 -test1 -
077

[04649]

121

[03045]

Number of Obs 18759 18555 18378

Charges


−489
(344)

−329
(423)

−332
(430)

− 1 -
−276
(392)

065

(448)

− 2 - -
−524
(419)

 -test1 -
117

[03096]

121

[03028]

Number of Obs 18790 18586 18407
∗ sig at 10% level;∗∗sig at 5% level; ∗∗∗sig. at 1% level

Notes: Per Table 9.
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Table 11: Effects of Particulates on Cardiovascular Outcomes
(1) (2) (3) (4) (5) (6)

Admissions

PM10 PM2.5


−0003
(0003)

−0000
(0004)

−0000
(0004)

0003

(0004)

0001

(0006)

0000

(0006)

− 1 -
−0003
(0004)

−0002
(0004)

-
−0004
(0006)

−0005
(0007)

− 2 - -
0001

(0004)
- -

0003

(0006)

 -test1 -
059

[05527]

015

[09283]
-

025

[07823]

017

[09163]

Number of Obs 13857 12896 12271 17791 14821 14386

Charges


−210
(476)

220

(577)

169

(604)

2077∗∗∗

(750)

983

(1069)

11109

(1098)

− 1 -
−615
(567)

−403
(642)

-
625

(1021)

−111
(1221)

− 2 - -
029

(588)
- -

816

(1047)

 -test1 -
060

[05476]

014

[09319]
-

147

[02431]

110

[03589]

Number of Obs 13736 12776 12156 17622 14662 14232
∗ sig at 10% level;∗∗sig at 5% level; ∗∗∗sig. at 1% level

Notes: Per Table 9.
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Table 12: Effects of SO2 on Cardiovascular Outcomes
(1) (2) (3)

Admissions


−0001
(0002)

−0001
(0003)

−0008
(0004)

− 1 -
−0000
(0004)

−0002
(0004)

− 2 - -
0003

(0004)

 -test1 -
012

[06388]

018

[09089]

Number of Obs 18895 18691 18513

Charges


−575
(378)

−416
(526)

−576
(560)

− 1 -
−292
(552)

−828
(619)

− 2 - -
1115

(558)

 -test1 -
130

[02730]

208

[01011]

Number of Obs 18746 18544 18366
∗ sig at 10% level;∗∗sig at 5% level; ∗∗∗sig. at 1% level

Notes: Per Table 9.
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Table 13: Placebo Tests: Effects of Particulates on ER Admissions for Fractures
(1) (2) (3) (4) (5) (6)

Admissions

PM10 PM2.5


0003

(0002)

0000

(0003)

0000

(0003)

0003

(0003)

0001

(0004)

0002

(0004)

− 1 -
0003

(0003)

0005

(0003)
-

0002

(0004)

0001

(0005)

− 2 - -
−0000
(0003)

- -
0000

(0004)

 -test1 -
146

[02325]

129

[02774]
-

049

[06110]

024

[08706]

Number of Obs 13817 12857 12232 17797 14840 14405
∗ sig at 10% level;∗∗sig at 5% level; ∗∗∗sig. at 1% level

Notes: Per Table 9.
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Table 14: IV Results: The Impact of Particulate Pollution on Pulmonary Outcomes
(1) (2) (3) (4) (5) (6)

Dep. Var. PM10 Admissions Charges PM2.5 Admissions Charges

SO2
0015

(0011)
- -

−0004
(0006)

- -

Wind Direction
0008∗∗∗

(0017)
- -

0006∗∗∗

(0002)
- -

SO2∗Wind 00002∗∗

(0000)
- -

00002∗∗

(0000)
- -

PM10 -
0320∗∗∗

(0054)

22692∗∗∗

(55931)
- - -

PM2.5 - - - -
0456∗∗∗

(0081)

24276∗∗∗

(77852)

 -Test1
2401

[0000]
- -

2913

[0000]
- -

Number of Obs. 7000 6658 6666 6400 5999 5956
∗sig at 10% level;∗∗sig at 5% level;∗∗∗sig at 1% level

Notes: All estimations include region dummies. Newey-West standard errors are in parentheses.
1This is a test of joint significance of the excluded variables. p-values in brackets.
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Table 15: Kitchen Sink Regressions
Pulmonary Cardiovascular Fractures

Admissions Charges Admissions Charges Admissions Charges

SO2
0004

(0059)

−4361
(6247)

0039

(0048)

11228

(7698)

0034

(0031)

513

(3425)

PM10
0017∗

(0010)

2976∗∗∗

(1101)

−0006
(0008)

−1024
(1270)

0001

(0005)

−104
(533)

PM2.5
0045∗∗

(0021)

2385

(2561)

0007

(0017)

1288

(2789)

0010

(0011)

1812∗

(1083)

Number of Obs 4874 4846 4963 4863 4982 4976
∗ sig at 10% level;∗∗sig at 5% level; ∗∗∗sig. at 1% level

Notes: Per Table 9.
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Table 16: Effects of Particulates on Pulmonary Admissions by Age of Patient
PM10 Effect

# of ages in bin
X 1000 PM2.5 Effect

# of ages in bin
X 1000

0-1
0005∗∗∗

(0002)
25

0007∗∗∗

(0002)
35

2-5
0003∗∗

(0001)
075

0007∗∗∗

(0002)
175

6-10
0001

(0001)
02

0000

(0001)
000

11-18
0001

(0001)
013

0004∗∗

(0001)
05

19-50
0006∗∗

(0002)
019

0011∗∗∗

(0003)
034

51-65
0000

(0001)
000

0006∗∗∗

(0002)
04

66+
0002

(0001)
− 0006∗∗∗

(0002)
−

∗ sig at 10% level;∗∗sig at 5% level; ∗∗∗sig. at 1% level

Note: All estimations include region, day, month and year dummies. Newey-West standard

errors in parentheses. Each cell corresponds to an estimate from a separate regression.

53



Table 17: Robustness Checks
(1) (2) (3) (4)

Admissions Charges

Alternative Fixed Effects

PM10
0010∗∗∗

(0004)
-

9567∗∗∗

(3882)
-

PM2.5 -
0020∗∗∗

(0005)
-

31496∗∗∗

(6073)

Negative Binomial Model

PM10
0000

(0001)
-

−0001
(0001)

-

PM2.5 -
0003∗∗∗

(0001)
-

0005∗∗∗

(0001)
∗ sig at 10% level;∗∗sig at 5% level; ∗∗∗sig. at 1% level

Notes: Standard errors in parentheses. The alternative fixed effects

in the first panel are for year/month interactions, day of the week

and region. For the NBM, we include month, year, day of the week

and region fixed effects.
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Table 18: Alternative Standard Errors
(1) (2) (3) (4)

Admissions Charges

PM10 PM2.5 PM10 PM2.5

Point Estimate 0.0128 0.0249 12.915 39.111

NW Std Error 0.0038 0.0055 3.883 6.216

Robust Std Error 0.0036 0.0050 3.582 5.624

Clustered Std Error1 0.0055 0.0066 5.697 5.581

Notes: We estimated the effects of PM10 and PM2.5

on pulmonary outcomes while computing the

standard errors three different ways.
1We clustered the standard errors by SES community.
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Figure 1: SES Communities

O‘ahu Hawai‘i

Maui/Lāna‘i/Moloka‘i Kaua‘i
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Figure 2: PM2.5 by SES Community
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Figure 3: PM10 by SES Community
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Figure 4: SO2 by SES Community
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Figure 5: Histogram for Wind Direction Data
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