IZA DP No. 9054

What Factors Affect Doctors' Hours Decisions:
Comparing Structural Discrete Choice and Reduced-Form Approaches

Guyonne Kalb Daniel Kuehnle
Anthony Scott
Terence Chai Cheng
Sung-Hee Jeon

May 2015

What Factors Affect Doctors' Hours Decisions: Comparing Structural Discrete Choice and Reduced-Form Approaches

Guyonne Kalb
Melbourne Institute, University of Melbourne and IZA

Terence Chai Cheng
University of Adelaide

Sung-Hee Jeon
Statistics Canada

Daniel Kuehnle
FAU University of Erlangen-Nuremberg

Anthony Scott
Melbourne Institute, University of Melbourne

Discussion Paper No. 9054
May 2015
IZA
P.O. Box 7240
53072 Bonn
Germany
Phone: +49-228-3894-0
Fax: +49-228-3894-180
E-mail: iza@iza.org

Any opinions expressed here are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but the institute itself takes no institutional policy positions. The IZA research network is committed to the IZA Guiding Principles of Research Integrity.

The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center and a place of communication between science, politics and business. IZA is an independent nonprofit organization supported by Deutsche Post Foundation. The center is associated with the University of Bonn and offers a stimulating research environment through its international network, workshops and conferences, data service, project support, research visits and doctoral program. IZA engages in (i) original and internationally competitive research in all fields of labor economics, (ii) development of policy concepts, and (iii) dissemination of research results and concepts to the interested public.

IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author.

ABSTRACT
 What Factors Affect Doctors' Hours Decisions: Comparing Structural Discrete Choice and Reduced-Form Approaches

Few papers examine the pecuniary and non-pecuniary determinants of doctors' labour supply despite substantial predicted shortages in many OECD countries. We contribute to the literature by applying both a structural discrete choice and a reduced-form approach. Using detailed survey data for Australian physicians, we examine how these different modelling approaches affect estimated wage elasticities at the intensive margin. We show that all modelling approaches predict small negative wage elasticities for male and female General Practitioners (GPs) and specialists. Our detailed subgroup analysis does not reveal particularly strong responses to wage increases by any specific group. We show that the translog and Box-Cox utility functions outperform the quadratic utility function. Exploiting the advantages of the structural discrete choice model, we examine short-term effects at the intensive margin by calculating labour supply changes in response to 5 and 10% wage increases. The results show that such wage increases substantially reduce the full-time equivalent supply of male GPs, and to a lesser extent of male specialists and female GPs, but not of female specialists.

JEL Classification: I11, J22, J44, J21
Keywords: labour supply, discrete choice model, wage elasticity, health workforce, MABEL

Corresponding author:
Guyonne Kalb
Melbourne Institute of Applied Economic and Social Research
University of Melbourne
Faculty of Business and Economics Building
111 Barry Street
Victoria 3010
Australia
E-mail: g.kalb@unimelb.edu.au

[^0]
1 Introduction

A number of developed countries, including the US, UK, Canada, New Zealand, and Australia, have been concerned about the supply of medical services for several years (World Health Organisation, 2013). The WHO estimates global shortages of about 12.9 million health workers, i.e., medical doctors, midwives, nurses, by 2035. Hence, a critical task for health care policy is to ensure the long-term supply of medical services for an ageing population that exhibits an increasing demand for medical care. To prevent shortages of health workers, policy responses have focused on training more health workers rather than using incentives to increase hours worked and productivity (McPake, Scott, and Ijeoma, 2014).

We examine the labour supply of Australian doctors for whom average working hours have fallen by 11.6% from 48.0 to 42.5 hours per week between 1997 and 2009, and have increased slightly since 2010 to 42.8 hours in 2013. A number of factors contribute to the observed changes in working hours. First, the share of female doctors has increased substantially as women account for only 24% of doctors aged 55 and over, compared with 52.5% of the new generation of doctors aged 35 and under. These changes in gender composition affect labour supply, since female doctors work 38.8 hours per week on average compared to 45.4 hours for males. Second, at the same time men have also reduced their working hours, and relatively more so than women over time so that the gender differential in working hours has decreased, further reducing labour supply. ${ }^{1}$ Third, the proportion of older doctors has increased over the past ten years which resulted in a significant drop in average working hours as older doctors tend to work fewer hours. Fourth, Markwell and Wainer (2009) and Shrestha and Joyce (2011) document the changing work/life balance expectations amongst doctors. For instance, both younger and older doctors, male and female, have reduced their working hours compared to a decade ago, amplifying the reductions in hours worked. In addition, studies of retirement intentions suggest that one third of General Practitioners (GPs) plan to retire before age 65 (Brett et al., 2009).

Despite a vast general labour supply literature (see e.g., Blundell and MaCurdy, 1999; Blun-

[^1]dell, MaCurdy, and Meghir, 2007) and despite the concern over shortages of doctors in many developed countries, the labour supply of doctors has received surprisingly little attention as evidence exists only for two (very different) countries, the US and Norway. However, given the decline in working hours, designing effective workforce policies requires a better understanding of the determinants of doctors' labour supply, and the potential differences in determinants between male and female doctors and between doctor types. The few studies that examine doctors' labour supply mostly apply a reduced-form approach derived from the theory of utility maximisation that uses a linear specification of the logarithm of hours worked as the dependent variable and includes the logarithm of the wage rate as one of the explanatory variables (Sloan, 1974; Rizzo and Blumenthal, 1994; Showalter and Thurston, 1997; Thornton, 1998; Ikenwilo and Scott, 2007). ${ }^{2}$ However, this popular specification linearises the equation in log wages at the observed labour supply point and imposes a constant wage elasticity for all doctors and ignores potential heterogeneities. Imposing a constant wage elasticity is particularly problematic because wage elasticities should decline at higher hours of work due to an increased marginal utility of leisure relative to utility of income.

We address these concerns and contribute to the literature on doctors' labour supply in four ways. First, we estimate a structural discrete choice labour supply model, which directly estimates an underlying utility function. This type of model has gained increasing popularity in the general labour economics literature. A few studies, e.g., Cheng, Kalb, and Scott (2013), Andreassen, Di Tommaso, and Strøm (2013), and Sæther (2005), apply a structural labour supply model but mainly examine choices between different types of jobs (e.g., public versus private). The discrete choice approach offers a number of advantages compared to the continuous approach, including the flexibility of the functional form describing the relationship between individuals' characteristics and labour supply, the relative ease of incorporating complex nonlinear tax and transfer systems, the broader range of utility functions that can be used, and no need to impose quasi-concavity conditions before estimation. Moreover, the labour supply literature has shown that a discrete representation of continuous labour supply is adequate, and sometimes

[^2]even preferred, since workers often have a limited number of working hours to choose from. ${ }^{3}$ The discretisation of working hours may be particularly appropriate for GPs who are likely to face institutional constraints that affect their labour supply (Sæther, 2005).

Second, we explore heterogeneous responses by providing a detailed analysis for different subgroups of doctors. Whereas previous studies have relied on small samples and estimated models for male and female doctors combined, or models for male doctors only, our larger sample allows for separate models by gender and doctor type. Understanding the determinants of female doctors' labour supply is important for workforce policy given an increasing proportion of female doctors and gender-specific determinants of labour supply. Third, we explore the sensitivity of the models' implications to the utility function specification and to using a different number of discrete labour supply choices in the modelling. Finally, the structural discrete choice approach allows the simulation of policy changes, e.g. to the financial remuneration of (specific) doctors, taking into account the non-linearity of the tax schedule. We simulate labour supply responses at the intensive margin in response to wage increases of 5 and 10%, and compare these responses across the different utility function specifications.

Using data from a unique Australian study of doctors, "Medicine in Australia: Balancing Employment and Life" (MABEL), we estimate structural and reduced-form models and compare the estimated wage elasticity from both types of models for doctors with different characteristics. We estimate models separately for male and female GPs, and for male and female specialists. We find negative wage elasticities for the four doctor types and show that the wage elasticities are very similar on average in the two approaches. Contrary to the reduced-form approach, the structural discrete choice approach reveals heterogeneous responses to financial incentives. The results from the structural models are robust to different definitions of nonlabour and other household income, different utility specifications, different specifications of the discrete sets of working hours and including random variation in preferences.

More generally, we show that for this high income and long working hours population, the quadratic utility function, which is often used in general population labour supply modelling

[^3](see e.g., Keane and Moffitt, 1998; Van Soest, Das, and Gong, 2002), does not fulfil coherency conditions in a large proportion of cases. Instead, a translog utility function (see e.g., Van Soest, 1995) or a Box-Cox utility function (see e.g., Sæther, 2005; Andreassen et al., 2013) fulfil these conditions in the majority of cases and are thus consistent with economic theory. Despite these differences, the implied marginal effects of doctors' characteristics on labour supply and wage elasticities are very similar across the different utility specifications. A policy simulation increasing wages by 5 and 10% shows that the labour supply reduction is largest for male GPs, followed by male specialists and female GPs. The impact on female specialists' labour supply is negligible.

The paper proceeds as follows. Section 2 presents a brief literature review on physicians' labour supply and summarises the reported wage elasticities. Section 3 outlines the two types of labour supply models and the associated estimation approaches. In section 4 we describe the data and discuss some descriptive statistics. Section 5 presents the results, followed by a policy simulation in section 6 . The paper concludes with a discussion of the implications in section 7.

2 Literature review

In this section we briefly review the main studies and their estimated wage elasticities, which differ as the studies use different data sources and examine specific doctor types. The earliest studies on the determinants of doctors' labour supply, e.g. Feldstein (1970), Fuchs and Kramer (1972), Brown and Lapan (1972), run OLS regressions of the quantity of services provided by a GP on different control variables and a fee measure. Using different data sources from the US, these studies generally find small negative fee elasticities that are measured imprecisely due to the small sample sizes. Sloan (1974) estimates the wage elasticities on weekly hours worked (and weeks worked per year) using US census data from 1960 and 1970. He finds small positive wage elasticities (<0.1) on average as well as evidence in favour of a backward-bending labour supply curve for a minority of doctors at the top of the income distribution.

More recently, although using data which are now nearly 30 years old, Rizzo and Blumenthal (1994) model labour supply and the wage rate jointly based on a sample of young selfemployed physicians from the 1987 Practice Patterns of Young Physicians Survey. They instru-
ment the wage rate using professional experience. The study estimates the model for men and women combined, and finds a positive wage elasticity of 0.23 which they decompose into an income (-0.26) and a substitution effect (0.49). Showalter and Thurston (1997) study the effect of changes in state marginal tax rates on labour supply using data from the 1983-1985 Physicians' Practice Costs and Income Survey (PPCIS). Focusing on physicians, the study finds significant positive wage elasticities for self-employed physicians (0.33), but small (0.10) and insignificant wage elasticities for doctors on wages or salaries. Thornton (1998) also uses the PPCIS and estimates wage elasticities for male, self-employed, solo-practice physicians. He finds very small positive wage elasticities of around 0.06 and concludes that reductions in medical fees are unlikely to decrease the supply of medical services. He also finds very little evidence for a backward-bending labour supply curve.

For Norway, Baltagi et al. (2005) use administrative data from 1993 to 1997 for male hospital physicians and apply different estimators to their labour supply model. The data covers a period where some doctors received a 15% wage increase while others did not receive this wage increase. This variation over time facilitates estimating the wage elasticity. Estimating the labour supply model by GMM, they find significant positive wage elasticities of around 0.3.

The studies discussed all use a reduced-form approach, which imposes some strong assumptions including a constant wage elasticity although Showalter and Thurston (1997), for example, allows the wage elasticity to depend on age. Only a small number of studies use a structural discrete-choice approach that allows a more flexible modelling of labour supply. Using administrative data for Norwegian residents in 1995 and 1997, Sæther (2005) estimates a structural discrete choice labour supply model for doctors aged 28-66, both employed and self-employed. He finds wage elasticities for hospital physicians ranging broadly from 0.1 to 0.2 . He also shows that although private sector wage increases lead to stronger changes in hours worked in the relevant sector than public sector wage increases, the wage elasticity for overall hours is slightly smaller at 0.08 than the wage elasticity of 0.10 for overall hours associated with a public sector wage increase.

Most recently, Andreassen et al. (2013) use Norwegian administrative data from 1996-2000 to estimate a labour supply model that allows doctors to choose between 10 different job pack-
ages which derive from a combination of attributes: part- or full-time work, hospital or primary care, public or private sector, with 'working in other sectors' and 'not working' representing the 9th and 10th package. The study focuses on all employed married physicians and finds an average wage elasticity of 0.04 . The paper demonstrates the flexibility of the discrete choice approach by presenting estimated wage elasticities, and sectoral employment changes, that result from simulated changes to the taxation schedule.

3 Methods

In this section we briefly describe the two approaches used in this paper: a discrete choice labour supply model in Section 3.1 and a reduced-form linear regression model in Section 3.2.

3.1 A structural labour supply model

Our central analyses use a structural model of individual labour supply, based on a utility function, to obtain estimates of preference parameters and elasticities with respect to income and wages. We treat labour supply as a discrete choice problem rather than a continuous choice, similar to the approach by Van Soest (1995).

As in standard labour supply models, we assume that doctors choose a combination of hours worked and household net income (assumed to be equal to household consumption) that maximises their utility. We follow Löffler, Peichl, and Siegloch (2014) and compare three different utility functions: the quadratic, translog, and Box-Cox. The quadratic specification (e.g. Keane and Moffitt, 1998) is straightforward to implement and quite flexible as leisure and consumption of each doctor can be either substitutes or complements. The quadratic model can thus represent complex interactions without imposing too many restrictions a priori. ${ }^{4}$ Furthermore, unlike many other utility functions, the quadratic utility function can take working hours rather than leisure as its arguments and therefore does not require choosing an arbitrary value for the total endowment of time. These advantages make the quadratic utility function a good choice, although it is not automatically quasi-concave. We can, however, easily check this property

[^4]post-estimation: if utility U is increasing in income at the observed income and leisure time, and the matrix of second order derivatives of income with respect to leisure along the indifference surface is positive at the observed income and leisure time, then U is quasi-concave at that point (Varian, 1992, pp.96-97).

Alternatively, we estimate labour supply using the translog utility function (e.g. Van Soest, 1995), which attenuates the impact of high income and high hours worked by first taking the logarithm before applying a quadratic function. The translog function has the same advantages as the quadratic utility function except that it cannot be directly expressed in working hours but needs to be in terms of leisure. To compute leisure time we choose 80 as the total endowment of time per week, i.e., the amount of time available per week which is not needed for sleep and other personal care. Finally, given that a few other discrete labour supply studies of medical doctors use the Box-Cox utility function (e.g. Sæther, 2005), we estimate labour supply based on this function to ensure that the results are not driven by the choice of utility function. We choose 168 hours per week as the total endowment of time to allow for comparison with Sæther (2005) who also chooses this total amount of time available. ${ }^{5}$

We assume that each doctor i can choose between j alternatives from a limited set of m combinations of income and working hours, $\left\{\left(y_{i j}, h_{i j}\right) ; j=1,2, \ldots, m\right\}$, where $y_{i j}$ is the household's net income associated with the doctor's working hours $h_{i j}$. We specify the three utility functions as follows.

The quadratic utility function:

$$
\begin{equation*}
U_{i j}=\beta_{1} y_{i j}+\beta_{2} y_{i j}^{2}+\beta_{3} h_{i j}+\beta_{4} h_{i j}^{2}+\beta_{5} h_{i j} y_{i j}+\epsilon_{i j} \tag{1}
\end{equation*}
$$

The translog utility function:
$U_{i j}=\beta_{1} \ln y_{i j}+\beta_{2}\left(\ln y_{i j}\right)^{2}+\beta_{3} \ln \left(80-h_{i j}\right)+\beta_{4}\left(\ln \left(80-h_{i j}\right)\right)^{2}+\beta_{5} \ln \left(80-h_{i j}\right) \ln y_{i j}+\epsilon_{i j}$

[^5]The Box-Cox utility function:

$$
\begin{equation*}
U_{i j}=\beta_{1} \frac{y_{i j}^{\beta_{2}}-1}{\beta_{2}}+\beta_{3} \frac{\left(\left(168-h_{i j}\right) / 168\right)^{\beta_{4}}-1}{\beta_{4}}+\beta_{5} \frac{y_{i j}^{\beta_{2}}-1}{\beta_{2}} \frac{\left(\left(168-h_{i j}\right) / 168\right)^{\beta_{4}}-1}{\beta_{4}}+\epsilon_{i j} \tag{3}
\end{equation*}
$$

In all three specifications, we assume that the random error $\epsilon_{i j}$ follows a type I Extreme Value distribution and estimate the parameters of the resulting multinomial logit model by maximum likelihood (see Maddala, 1983). Furthermore, we always allow the vector of preference parameters β_{1} and β_{3} to differ by family status and some individual characteristics, e.g., the number of children, the doctor's age, and health status.

The discrete choice approach has the major advantage that we can easily calculate the level of utility for each possible combination of working hours and net income. Given the above models and assuming that individuals choose the alternative that leads to the highest utility, the probability that individual i chooses alternative j (from the m alternatives) is:

$$
\begin{equation*}
\operatorname{Pr}\left(U_{i j}>U_{i k}, k \neq j\right)=\frac{\exp \left(U_{i j}\right)}{\sum_{k=1}^{m} \exp \left(U_{i k}\right)} \tag{4}
\end{equation*}
$$

This provides us with an estimated distribution over the possible labour supply points for each doctor. ${ }^{6}$ To estimate these probabilities we need to determine the utility level and thus the household net income associated with each choice j. To generate household net income, we first compute gross hourly wages either directly from observed information (on income and hours worked) or by imputing gross wages using wage regressions. Using gross hourly wages, we calculate gross labour income associated with each choice of working hours. We then add nonlabour income and the spouse's gross income to generate gross household income. Finally, we apply the Australian tax and transfer system, which accounts for the household's tax liabilities and eligibility for family payments, to generate the amount of net household income associated with each level of working hours. ${ }^{7}$

Ideally, we would like to jointly model the labour supply of both spouses for couple fami-

[^6]lies. Unfortunately, the data available does not provide information on partners' working hours. Hence, a limitation of our study is to treat the partner's labour supply and non-labour income as exogenous. ${ }^{8}$ We have this limiting assumption in common with most of the literature on doctors' labour supply who face the same data issue (e.g. Sæther, 2005; Andreassen, Di Tommaso, and Strøm, 2013). A recent exception is Wang and Sweetman (2013), who use Canadian Census data (from 1991 to 2006) to investigate the labour supply of physicians and their spouses jointly. However, they do not estimate wage elasticities. Given that we are only interested in the doctor's labour supply in response to financial incentives and the doctor's characteristics, we only vary policy parameters that affect the doctors and have less need to understand their partners' labour supply choices which remain exogenous in our modelling.

For our analysis, we choose discrete labour supply points that cover the observed labour supply as well as possible. Hence, our main model offers ten different choices of working hours: $16,20,30,40,45,50,55,60,65$ or 70 hours per week. ${ }^{9}$ We also examine the sensitivity of results to choosing a smaller and larger number of labour supply points: five (allowing 20, $40,50,60$ or 70 hours per week) and thirteen (allowing $8,16,20,25,30,35,40,45,50,55,60$, 65 or 70 hours per week).

3.2 A reduced-form labour supply model

Starting from the same economic framework of utility maximisation (see Stern, 1986), and a few simplifying assumptions and approximations (such as linearising wages at the observed labour supply point, instead of taking into account the full complexity of the tax and transfer system), we can derive a reduced-form static labour supply model as in equation 5:

$$
\begin{equation*}
\ln \left(H_{i}\right)=\alpha_{1} \ln \left(W_{i}\right)+\alpha_{2} \ln \left(Y_{i}\right)+\mathbf{X}^{\prime} \beta+\epsilon_{i} \tag{5}
\end{equation*}
$$

where the natural logarithm of hours worked $\left(H_{i}\right)$ is regressed on (the log of) the gross wage rate $\left(W_{i}\right)$, gross other non-labour income $\left(Y_{i}\right)$, and a range of individual characteristics \mathbf{X}, e.g.,

[^7]the age of the doctor, number of children, age of the children. The parameter α_{1} yields the uncompensated substitution elasticity (Blundell and MaCurdy, 1999, p.1599).

Although the first generation of labour supply models used this reduced-form approach frequently (Killingsworth, 1984), it imposes a number of restrictive assumptions that the structural discrete choice model does not require. First, the model assumes a constant wage elasticity as estimated by the coefficient α_{1}. The linear specification is fairly restrictive as the wage elasticity may vary over the hours distribution or depend on non-labour income or other demographic characteristics. Second, the reduced-form model also assumes quasi-homothetic preferences (through the linear income term) which have typically been rejected by empirical studies on consumer behaviour (Blundell and MaCurdy, 1999). Third, the reduced-form specification cannot easily take into account the non-linearity of the income tax and transfer system when translating gross income into net income. Instead, gross wage is included as a linear term without allowing for non-linearity of the wage after applying the rules of the tax and transfer system. In effect, the equation is linearised in the wage at the observed labour supply point.

Despite these shortcomings, the model nevertheless provides an interesting benchmark against which to compare the average wage elasticity derived from the structural model. In addition, it allows for a comparison to the literature using the reduced-form approach.

4 Data and summary statistics

4.1 MABEL survey

This paper uses a unique longitudinal survey of doctors, MABEL, which is a panel survey of workforce participation, labour supply and its determinants among Australian doctors. The survey covers many topics related to labour supply, e.g. job satisfaction and attitudes to work, characteristics of the work setting, workload, income, geographic location, demographic characteristics, and family circumstances. Joyce et al. (2010) provide a detailed discussion of the study design and show that the cohort is nationally representative with respect to age, gender, geographic location and hours worked. We use data from the first wave of the MABEL survey, conducted in 2008, on qualified GPs and specialists working in clinical practice. This means
that we can only examine labour supply responses at the intensive margin and not analyse the decision to work in clinical practice. ${ }^{10,11}$

4.2 Construction of income variables

To construct the key argument in the utility function, net income at each labour supply point, we first need to compute total gross income at different values of hours worked. Therefore we need information on i) the gross hourly wage earned in medical practice and ii) gross other household income. The MABEL survey collects information on gross or net income reported per fortnight or annually, and separately asks for income from the medical practice and for total household income. ${ }^{12}$ If doctors provide weekly or fortnightly income figures, we assume that this income was the same over all weeks/fortnights worked to impute an annual income value. We divide annual medical income by annual hours worked in the medical practice to compute the gross hourly wage earned in medical practice. We compute gross other household income by subtracting the income from medical practice from total household income. Other household income thus includes the doctors' income from other sources (e.g. income from other business interests, dividends, interest) and, for cohabiting doctors, the partner's labour and non-labour income, or a mix of these sources. Unfortunately, we cannot distinguish between these easily, due to a lack of information about the partner's income.

Using the relevant tax and family support rules from 2008, we compute net income from gross income. Because of individual taxation, we ideally need information about the partner's earnings which the survey does not provide. We are therefore required to make a few assumptions about the split of other household income. First, if the partner is working (either full- or

[^8]part-time), we allocate all other income entirely to the doctor's partner. Second, if the partner is not working, then we split the other household income equally between both spouses. We argue that in this case it is reasonable to assume that couples will split other income to maximise tax benefits (e.g., to use the tax-free income threshold).

To address measurement error and the potential endogeneity of wages, we also use predicted wages from four separate wage regressions, i.e., separately by doctor type and gender. We follow a similar specification to Cheng et al. (2012) and use additional exclusion restrictions, such as median local house prices, that we argue belong in the wage equation but not in the model for hours. ${ }^{13}$ Based on the parameter estimates from the wage equation, we predict hourly wage rates that we use to calculate gross earnings from medical practice associated with each level of working hours. We compute other income in the same way as for the observed wage approach.

To address the sensitivity of results with respect to measurement error in the partner's income or other household income, we also apply alternative approaches to construct these two measures of income both when using observed wages and imputed wages. First, the survey asks doctors about the proportion of income they earned through medical practice and through other sources. We use this to impute the division of other household income between the doctor's other income and the income of the doctor's partner. ${ }^{14}$

The second alternative approach additionally uses observations for which we only observe net income. We can use the taxation and family income support rules to compute the corresponding gross income. We assign other net household income to the doctor and his/her partner (if present) in the same way as described under the first approach for gross income. We only use the imputed gross income if the observed gross income is not available. This allows us to include an additional 282 doctors.

The third alternative approach combines the previous two approaches. First, we impute gross incomes from the net figures. We then apply the given proportions of other net income and net medical practice income from the doctor's total income to imputed gross total income.

[^9]In the results section, we only present results using the base case approach with observed and predicted wages. The estimated wage elasticities from the alternative approaches 1 to 3 are very similar to those from the base case approach. ${ }^{15}$ This indicates that the results are robust to the different approaches taken to compute the doctor's medical earnings and household income, and the different assumptions made regarding the division between the partner's earnings and other household income.

4.3 Summary statistics

We present descriptive statistics for our estimation sample on average hours worked by gender, doctor type, and age in Figure 1, together with the proportions of women in each age group. The figure shows patterns consistent with the recent national patterns discussed in Section 1.

First, the proportion of women decreases over the age cohorts and is largest amongst the younger cohorts, reaching between 62 and 65% amongst GPs aged less than 40 . Second, men and women differ markedly in their labour supply over the life-cycle. For instance, women in their prime child-rearing ages (30-49) work the lowest average hours. Conversely, women aged 50-59 work the longest hours amongst women, which is likely to be due to children having grown up by this stage. The figure shows clearly that men and women aged over 60 reduce their labour supply with men reducing their hours worked more sharply than women.

Figure 2 presents kernel density estimates for the distribution of observed working hours by gender and doctor type. The figure clearly reveals two findings: first, women work fewer hours than men with the female distribution being located to the left of the male distribution. For GPs and specialists, women represent the majority of the part-time doctors (e.g. less than 40 hours). Second, specialists are more likely to work long hours than GPs. Furthermore, despite potential institutional constraints for working hours, the observed distribution of hours worked suggests that both part-time and full-time hours ranges are reasonably well covered. Thus, a broad range of working hours is on offer to doctors, facilitating the supply of preferred hours without facing major demand side constraints. ${ }^{16}$

[^10]Table 1 contains the summary statistics for all variables used in the analysis and reveals several differences in socio-economic characteristics between the four groups of doctors. As expected, specialists earn more per hour than GPs, and in both groups women earn less per hour than men. Female doctors are about 6 years younger and therefore more likely to have young children than male doctors. Female doctors are more likely to be single, but if they have a partner, their partner is more likely to be employed than for male doctors.

5 Results

5.1 Performance of alternative utility function specifications

We begin our analysis with a comparison of the goodness of fit measures for the three different utility functions. Whereas other studies usually find that the estimated utility function is quasiconcave for $95-100 \%$ of all observations (e.g. Van Soest (1995) for the general population in the Netherlands, or Hanel, Kalb, and Scott (2014) for the population of nurses in Australia), the quadratic utility function violates the quasi-concavity conditions in the majority of cases for our sample of highly-paid doctors working long hours. Table 2 shows that the utility function is quasi-concave for only 17% of female GPs, 57% of female specialists, 15% of male GPs, and 23% of male specialists. The other two utility functions perform much better in this regard. When using the translog specification, the quasi-concavity conditions are fulfilled for 91% of female GPs, 98% of female specialists, 95% of male GPs, and 99% of male specialists. The results for the Box-Cox utility are quite similar at 100, 97, 89 and 99% respectively, but we were not able to estimate a Box-Cox model with the interaction term between income and hours worked included for female GPs. ${ }^{17}$ Given that the quadratic specifications fail the quasi-

[^11]concavity conditions, we need to decide between the translog and Box-Cox functions which perform quite similarly with regard to the other goodness-of-fit measures. However, given the difficulties in getting the Box-Cox models to converge, we use the translog utility function as the benchmark specification in this paper. ${ }^{18}$

5.2 Estimated marginal effects on labour supply

This section discusses the results from the structural labour supply model with 10 discrete hours points based on the translog utility function. ${ }^{19}$ We present simulated marginal effects and their 95% confidence intervals in Table 3 since the coefficients of the model are not easily interpretable. ${ }^{20,21}$

Table 3 reveals interesting similarities and differences between the four doctor groups. As expected, young children reduce working hours for all groups; this reduction is largest for female GPs, and then female specialists. Somewhat unusually, compared to the general male population, we also observe a reduction of working hours by male GPs with young children, but not for male specialists. Female specialists no longer significantly reduce their labour supply once their youngest child is 10 or older.

For women, the effect of the total number of children, although insignificant, compounds the negative effect of the youngest child, while for men the effect of family size is positive and significant, thus making the combined effect of the child variables ambiguous. Male specialists with children work on average slightly longer hours than male specialists without children. For

[^12]male GPs, the combined effect of the variables related to children remains negative if they have only one child and the child is younger than 10 years. For male GPs with two children or more, or with older children only, the combined effect is always positive indicating that this type of GP tends to work longer hours than a GP without children. Our results are consistent with the findings by Wang and Sweetman (2013) who, using Canadian census data, find that children do not influence male physicians' labour supply much unless a doctor has at least three children which leads to an increase in working hours. For female physicians, the presence of children reduces working hours substantially, especially when the children are of pre-school age.

Reflecting the observed decline in working hours across the age distribution, increasing age by one year decreases labour supply for all doctor types, except for female specialists, and is slightly stronger for male specialists than other doctors. We attribute this finding partly to the age distribution within the four populations, as male doctors are on average 6 years older than female doctors (and the negative effect of age becomes stronger as doctors age). Health status appears somewhat important for GPs but not for specialists. Having good health instead of very good or excellent health increases the expected hours of work, especially for female GPs (note that we cannot exclude the possibility of reverse causation). None of the marginal effects of poor/fair health are significant. It should be noted that very few doctors fall into this category.

The marginal effects of having a partner reveal some interesting patterns. If the partner is not employed, female doctors tend to work more hours than single female doctors, while it makes no difference to male partnered doctors compared to single male doctors. Men generally seem non-responsive to their partner's working status. If the partner is in full-time employment, female specialists and GPs work slightly fewer hours compared to single women.

Finally, self-employed doctors and GPs working in remote areas of Australia work more hours than other doctors.

5.3 Wage elasticity

In this section we simulate labour supply responses to a 1% increase in individual wages. Using the estimated parameters for a range of different specifications, we simulate individual doctors' wage elasticities which reflect each doctor's expected responsiveness to financial incentives.

Table 4 reports average elasticities for each of the specifications. ${ }^{22}$ A number of important points stand out.

First, we observe negative average wage elasticities for male and female doctors, GPs and specialists, indicating that the estimated working hours of many Australian doctors correspond to the backward bending parts of their labour supply curves. ${ }^{23}$ The elasticities are modest in size and range in value between -0.06 and -0.23 . The negative wage elasticities are mostly significant for both men and women, except for the estimates using imputed wages for female specialists. ${ }^{24}$

Second, Panel A shows that the negative wage elasticities are not driven by the choice of the number of discrete labour supply points allowed in the specification of the discrete choice model. Five, ten or thirteen mid-points yield very similar results, except perhaps for female doctors (especially the GPs) for whom ten points yield different results compared to five points. The model with 5 mid-points appears to introduce substantial measurement error for female GPs (and to a lesser extent for female specialists) by not covering the observed distribution of labour supply well enough.

Third, the estimated negative wage elasticities are quite robust on average against using observed or imputed wages. The point estimates are never significantly different from each other, although some of the estimates using imputed wages are not significantly different from zero due to the loss of precision. ${ }^{25}$

Fourth, Panel B shows that the implied wage elasticities are very similar when using the quadratic utility function or the full Box-Cox utility function (with interaction terms between income and hours) as compared to using the translog function. This similarity is surprising

[^13]given the poor performance of the quadratic utility function in terms of meeting the quasiconcavity conditions at the observed labour supply points, whereas for both the translog and Box-Cox utility function quasi-concavity conditions are mostly met. The largest difference is again observed for female GPs. The reduced Box-Cox specification, which omits the interaction between income and hours, converges for all groups but produces substantially smaller, but still negative, wage elasticities.

Fifth, the table shows that structural and reduced-form approaches (Panel C) produce strikingly similar wage elasticities on average for each of the four subgroups, except for female GPs. ${ }^{26}$ The specifications using 10 or 13 mid-points appear to be slightly closer to the reducedform coefficients than the specification with 5 mid-points. The similarity indicates that the constant wage elasticity estimated in the reduced-form approach is consistent with the average elasticity in the structural discrete choice approach. However, the advantage of using a structural approach becomes clear when we present the variation in estimated wage elasticities of individual doctors graphically as in Figure 3.

Figure 3 uses our preferred specification based on imputed wages, the translog utility function and 10 discrete labour supply points. The figure clearly shows the heterogeneous distribution of wage elasticities across different doctors. While the probability mass is mostly to the left of zero, reflecting negative wage elasticities on average, a small proportion of doctors are estimated to have positive wage elasticities.

The figure shows that wage increases are expected to lead to heterogeneous responses which cannot be incorporated in the reduced-form model, but can be reflected through the structural model. In addition to determining how a 1% increase in wages affects total labour supply which is important for policy considerations, we want to reveal the heterogeneous effects for sub-populations which health authorities could potentially target specifically. Therefore, Figure 4 presents the estimated wage elasticities for a number of selected subgroups. Overall, female GPs are predicted to have the most variation in wage elasticities.

[^14]Generally, the groupings in the figure do not clearly identify particular groups that would respond more strongly to wage increases than other groups. The subgroup analysis shows that the labour supply of specialists (and particularly male specialists) does not respond much to wage increases. The only subgroups that stand out slightly are male and female GPs with a pre-school child, and female specialists with a pre-school child for whom the average elasticity is close to zero (but still negative) and who are more likely to have a positive wage elasticity. As expected, male and female GPs working longer hours have on average slightly larger negative wage elasticities than doctors working fewer hours. Female specialists who have a non-employed partner are the only group to respond on average positively, although insignificantly, to a 1% increase in wages.

6 Policy simulations

Finally, we use the structural model to simulate doctors' labour supply responses to different increases in the wage rate: $1 \%, 5 \%$, and 10%. Unlike the reduced-form model, the structural model is capable of taking the non-linearity of the tax schedule into account when calculating the labour supply responses. We calculate the labour supply responses as the percentage change in hours per week and in terms of the absolute change in full-time equivalent (FTE) doctors. FTE is a meaningful measure of supply because it takes into account differences in hours worked among doctors. We calculate the FTE measure by multiplying the number of medical practitioners in the population by the average change in weekly hours worked, and dividing the result by the number of hours in a standard full-time working week. ${ }^{27,28}$

The simulation results are shown in Table 5 for all three utility specifications. We first examine the results presented in panel A which displays the relative labour supply responses. Overall, the models predicts negative and significant labour supply changes for men, but not for women. The predictions are quite robust across the three utility specifications, apart from

[^15]female GPs for whom results are quite sensitive to the utility function used.
Moreover, the 5 and 10% wage increases lead to fairly linear relative changes using the translog and Box-Cox utility specifications, but less so when using the quadratic specification. For instance, the translog specification predicts that increasing male GPs' wages by 1,5 , and 10% reduces working hours by $0.158,0.748$, and 1.407%, respectively. According to the same specification, increasing wages by 10% would reduce weekly working hours by about 0.69% for female specialists, and by about 0.75% for male specialists. A notable exception from the linear response patterns are female GPs when using the quadratic utility function, where the wage responses follow a U-shaped pattern.

Panel B presents the absolute change in terms of FTE for the current population of doctors. Consistent with the modest relative wage responses by female doctors, the model predicts that wage increases in the order of 5% or 10% reduce the supply of female doctors by a modest amount. A 5\% wage increase is associated with a reduction of 22-89 FTE female GPs, and a reduction of about 18-25 FTE female specialists. Given the total population of female doctors in 2008, the 5% wage increases are predicted to reduce the total number of FTE female GPs by about $0.2-1 \%$, and for female specialists by about $0.3-0.4 \%$. For male GPs, a 5\% (10\%) increase in wages is predicted to reduce their labour supply by about 130-148 (241-287) FTE doctors, reducing the total number of FTE male GPs by about $0.9-1 \%$ (1.6-1.9\%). Finally, 5 and 10% wage increases would decrease the labour supply by male specialists by about 72-86 and 142-176 FTE doctors, respectively. These changes correspond to a reduction in the total number of FTE male specialists by $0.4-0.5 \%$ and $0.9-1.1 \%$, respectively. That male GPs and specialists respond more strongly than female GPs and specialists is consistent with the theory of a backward bending labour supply curve and the summary statistics presented in section 4 which showed that male doctors earn higher incomes and work longer hours than female doctors. The policy simulations therefore provide evidence that wage increases in the order of $5-10 \%$ may reduce labour supply in the short-run, but more so for male than female doctors.

7 Conclusion

Although the World Health Organisation (2013) predicts that most OECD countries will face a substantial shortage of physicians in the next years, little research exists about doctors' labour supply. We analyse the pecuniary and non-pecuniary determinants of doctors' labour supply and examine the policy implications arising from different modelling approaches for labour supply. Our study exploits the advantages of the structural discrete choice approach and compares the results to those obtained with a reduced-form approach, frequently used in the literature on physicians' labour supply.

Using a unique data set on Australian physicians, "Medicine in Australia: Balancing Employment and Life" (MABEL), we make three main contributions to the literature on doctors' labour supply. First, we show that all modelling approaches used in this paper predict negative wage elasticities for male and female GPs and specialists. The results are not very sensitive to the choice of utility function or the number of labour supply points. Given doctors' high income levels and long working hours, it is not surprising that increasing the return to hours worked has no positive effect on their labour supply. Many doctors are working so many hours that the cost of giving up another hour of leisure is very high while the benefit from additional income is limited. As a result, wage elasticities are negative on average, although a number of individual doctors would still have a positive labour supply response. While the estimated wage elasticities are very similar on average in the structural versus reduced-form approach, the reduced-form approach assumes a constant wage elasticity across individuals thereby hiding a substantial amount of variation across individuals.

In our second contribution we make use of the rich data which allow us to perform a detailed subgroup analysis that no other study on doctors' labour supply has done before. Although such differences may be potentially important to enable policy makers to target financial incentives on particular groups, our subgroup analysis does not reveal particularly strong responses to wage increases by any specific group. Nevertheless, we contribute the first detailed study by estimating separate models for male and female GPs and specialists.

Finally, we use the structural model to predict relative and absolute labour supply changes
in response to different wage increases. Unlike the reduced-form approach, the structural model allows ex ante policy simulations that explicitly take into account the non-linear taxation schedule or financial subsidies. Our policy simulations show that male doctors respond more strongly to wage increases in the order of $5-10 \%$ than female doctors. A 5\% increase in wages is predicted to reduce the total labour supply by male GPs by about 130-148 full-time equivalent (FTE) doctors (corresponding to a reduction in total male GP labour supply by about 1%), and by about 72-86 FTE doctors for male specialists. That male GPs and specialists respond more strongly than female GPs and specialists is consistent with the theory of a backward bending labour supply curve and the observation that male doctors earn higher incomes and work longer hours than female doctors. Our results imply that wage increases aimed at increasing the supply of medical doctors at the intensive margin are likely to reduce labour supply in the short-run, especially by male doctors.

In our policy simulation we focus on the effects at the intensive margin as the survey design does not allow us to examine the extensive margin. In the long run, increased wage rates may draw in additional doctors, but given the long qualification period of doctors it is likely to take several years before any effect would be observed. Moreover, relatively few qualified doctors currently do not work in the medical workforce. The most notable exceptions are probably female doctors on maternity leave and recently retired doctors. These groups might respond to some extent to increased wage rates, but again the net effect is ambiguous. Higher wages may allow doctors to finance a comfortable retirement more quickly or it may incentivise doctors to stay in the workforce longer because the opportunity cost of not working as a doctor are high. This needs to be determined empirically in future research. Given that MABEL collects data from doctors working in clinical practice, MABEL is not particularly suitable for studying doctors moving in and out of clinical practice. However, we can provide some descriptive statistics on the relevant group that is at risk of retirement. 28.9% of all doctors in our sample are aged 55 and over. Of these, 25% signal high or moderate dissatisfaction with either hours of work or financial remuneration. Furthermore, 38.7% respond they are very likely to leave medical practice within the next five years, and another 20% respond they are likely to leave within five years. These numbers are substantial and warrant further future investigation.

References

AIHW (2014). Medical workforce 2012. Technical report, Australian Institute of Health and Welfare, Canberra.

AIHW (2015). Medical practitioner workforce. http://www.aihw.gov.au/ workforce/medical. Australian Institute of Health and Welfare [Online; retrieved 18/03/2015].

Andreassen, L., M. L. Di Tommaso, and S. Strøm (2013). Do medical doctors respond to economic incentives? Journal of Health Economics 32(2), 392 - 409.

Baltagi, B. H., E. Bratberg, and T. H. Holmås (2005). A panel data study of physicians' labor supply: The case of norway. Health Economics 14(10), 1035-1045.

Blundell, R. and T. MaCurdy (1999). Labor supply: A review of alternative approaches. Handbook of labor economics 3, 1559-1695.

Blundell, R., T. MaCurdy, and C. Meghir (2007). Labor supply models: unobserved heterogeneity, nonparticipation and dynamics. Handbook of Econometrics 6, 4667-4775.

Brett, T. D., D. E. Arnold-Reed, D. A. Hince, I. K. Wood, and R. G. Moorhead (2009). Retirement intentions of general practitioners aged 45-65 years. Medical Journal of Australia 191(2), 75-77.

Brown, D. M. and H. E. Lapan (1972). The rising price of physicians' services: a comment. The Review of Economics and Statistics 54(1), 101-105.

Cheng, T. C., G. Kalb, and A. Scott (2013). Public, private or both? Analysing factors influencing the labour supply of medical specialists. Technical Report 13, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.

Cheng, T. C., A. Scott, S.-H. Jeon, G. Kalb, J. Humphreys, and C. Joyce (2012). What factors influence the earnings of general practitioners and medical specialists? Evidence from the Medicine in Australia: Balancing Employment and Life Survey. Health Economics 21(11), 1300-1317.

Feldstein, M. S. (1970). The rising price of physician's services. The Review of Economics and Statistics 52(2), 121-133.

Fortin, B., N. Jacquemet, and B. Shearer (2010). Labour supply, work effort and contract choice: Theory and evidence on physicians. IZA Discussion Paper Series 5188.

Fuchs, V. R. and M. J. Kramer (1972). Determinants Of Expenditures For Physicians' Services In The United States 1948-68. Washington: United States Department of Health, Education, and Welfare.

Hanel, B., G. Kalb, and A. Scott (2014). Nurses' labour supply elasticity: The importance of accounting for extensive margins. Journal of Health Economics 33, 94-112.

Ikenwilo, D. and A. Scott (2007). The effects of pay and job satisfaction on the labour supply of hospital consultants. Health Economics 16(12), 1303-1318.

Joyce, C. M., A. Scott, S.-H. Jeon, J. Humphreys, G. Kalb, J. Witt, and A. Leahy (2010). The "Medicine in Australia: Balancing Employment and Life (MABEL)" longitudinal surveyProtocol and baseline data for a prospective cohort study of Australian doctors' workforce participation. BMC health services research 10(1), 1-10.

Keane, M. and R. Moffitt (1998). A structural model of multiple welfare program participation and labor supply. International Economic Review, 553-589.

Killingsworth, M. R. (1984). Labor supply. Cambridge university press.
Kuehnle, D., A. Scott, T. Cheng, S. Jeon, P. Sivey, and A. Leahy (2010). Mabel user manual: Wave 1 release. Melbourne Institute of Applied Economics and Social Research: Melbourne.

Löffler, M., A. Peichl, and S. Siegloch (2014). Structural labor supply models and wage exogeneity. IZA Discussion Paper Series 8281.

Maddala, G. S. (1983). Limited-dependent and qualitative variables in econometrics. Number 3. Cambridge University Press.

Markwell, A. L. and Z. Wainer (2009). The health and wellbeing of junior doctors: insights from a national survey. Medical journal of Australia 191(8), 441.

McPake, B., A. Scott, and E. Ijeoma (2014). Analyzing markets for health workers: Insights from labor and health economics. Technical report, World Bank, Washington DC.

Ribeiro, E. P. (2001). Asymmetric labor supply. Empirical Economics 26(1), 183-197.
Rizzo, J. A. and D. Blumenthal (1994). Physician labor supply: Do income effects matter? Journal of Health Economics 13(4), 433-453.

Sæther, E. M. (2005). Physicians' labour supply: The wage impact on hours and practice combinations. Labour 19(4), 673-703.

Showalter, M. H. and N. K. Thurston (1997). Taxes and labor supply of high-income physicians. Journal of Public Economics 66(1), 73-97.

Shrestha, D. and C. M. Joyce (2011). Aspects of work-life balance of australian general practitioners: Determinants and possible consequences. Australian Journal of Primary Health 17(1), 40-47.

Sloan, F. A. (1974). Phycisian supply behavior in the short run. Industrial \& Labor Reletions Review 28, 549.

Stern, N. (1986). On the specification of labour supply functions. In R. Blundell and I. Walker (Eds.), Unemployment, Search and Labour Supply, pp. 143-189. Cambridge: Cambridge University Press.

Thornton, J. (1998). The labour supply behaviour of self-employed solo practice physicians. Applied Economics 30(1), 85-94.

Tummers, M. P. and I. Woittiez (1991). A simultaneous wage and labor supply model with hours restrictions. Journal of Human Resources, 393-423.

Van Soest, A. (1995). Structural models of family labor supply: a discrete choice approach. Journal of Human Resources, 63-88.

Van Soest, A., M. Das, and X. Gong (2002). A structural labour supply model with flexible preferences. Journal of Econometrics 107(1), 345-374.

Van Soest, A., I. Woittiez, and A. Kapteyn (1990). Labor supply, income taxes, and hours restrictions in the netherlands. Journal of Human Resources, 517-558.

Varian, H. R. (1992). Microeconomic analysis, Volume 2. Norton New York.
Wang, C. and A. Sweetman (2013). Gender, family status and physician labour supply. Social Science \& Medicine 94, 17-25.

World Health Organisation (2013). A universal truth: No health without a workforce. Technical report, Geneva.

Figure 1: Percentage of female doctors in the medical workforce and average weekly hours worked by age group and doctor type

Note: The left axis displays the weekly hours, the right axis shows the proportion of women in each age group.

Figure 2: Kernel density distribution of hours worked

Figure 3: Distribution of wage elasticities across individual doctors (imputed wages, 10 midpoints, translog utility function)

Figure 4: Estimated wage elasticities for subgroups, by doctor type and gender (imputed wages, 10 mid-points, translog utility function)

Table 1: Summary statistics by gender and doctor type

	Female				Male			
	GPs		Specialists		GPs		Specialists	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Weekly net income in \$	1755.4	(830.4)	2843.1	(1625.6)	2668.4	(1179.1)	4178.5	(2261)
Weekly hours	32.5	(13)	36.8	(13.4)	45.1	(12.7)	47.1	(11.8)
Hourly wage in \$	76.6	(32.4)	122.5	(69.4)	91.2	(41.4)	146.8	(81.4)
Age/10	4.6	(0.9)	4.6	(0.8)	5.2	(1)	5.1	(1)
No children/youngest child over 15	0.283	(0.5)	0.299	(0.5)	0.346	(0.5)	0.320	(0.5)
Number of dependent children (under 25)	1.6	(1.3)	1.493	(1.2)	1.509	(1.4)	1.629	(1.4)
Youngest child 0-4	0.174	(0.4)	0.252	(0.4)	0.117	(0.3)	0.167	(0.4)
Youngest child 5-9	0.154	(0.4)	0.160	(0.4)	0.113	(0.3)	0.146	(0.4)
Youngest child 10-15	0.206	(0.4)	0.161	(0.4)	0.169	(0.4)	0.176	(0.4)
No partner	0.133	(0.3)	0.178	(0.4)	0.072	(0.3)	0.051	(0.2)
Partner	0.867	(0.3)	0.822	(0.4)	0.928	(0.3)	0.949	(0.2)
Partner works	0.769	(0.4)	0.730	(0.4)	0.624	(0.5)	0.647	(0.5)
Partner works full-time	0.657	(0.5)	0.576	(0.5)	0.226	(0.4)	0.205	(0.4)
Partner works part-time	0.112	(0.3)	0.153	(0.4)	0.398	(0.5)	0.442	(0.5)
Partner does not work	0.097	(0.3)	0.092	(0.3)	0.304	(0.5)	0.302	(0.5)
Self-employed	0.296	(0.5)	0.273	(0.4)	0.570	(0.5)	0.468	(0.5)
Employed	0.704	(0.5)	0.727	(0.4)	0.430	(0.5)	0.532	(0.5)
Very good health	0.735	(0.4)	0.744	(0.4)	0.671	(0.4)	0.724	(0.4)
Good health	0.191	(0.3)	0.187	(0.3)	0.214	(0.4)	0.203	(0.4)
Fair/poor health	0.074	(0.2)	0.069	(0.2)	0.115	(0.3)	0.073	(0.2)
City	0.705	(0.5)	0.882	(0.3)	0.636	(0.5)	0.824	(0.4)
Outer city	0.180	(0.4)	0.090	(0.3)	0.226	(0.4)	0.140	(0.3)
Remote	0.115	(0.3)	0.029	(0.2)	0.138	(0.3)	0.036	(0.2)
NSW	0.259	(0.4)	0.282	(0.4)	0.262	(0.4)	0.299	(0.4)
ACT	0.026	(0.2)	0.013	(0.1)	0.013	(0.1)	0.017	(0.1)
NT	0.007	(0.1)	0.007	(0.1)	0.011	(0.1)	0.007	(0.1)
QLD	0.205	(0.4)	0.169	(0.4)	0.192	(0.4)	0.169	(0.4)
SA	0.071	(0.3)	0.113	(0.3)	0.100	(0.3)	0.084	(0.3)
TAS	0.043	(0.2)	0.029	(0.2)	0.035	(0.2)	0.027	(0.2)
VIC	0.283	(0.5)	0.319	(0.5)	0.279	(0.4)	0.317	(0.5)
WA	0.106	(0.3)	0.069	(0.3)	0.107	(0.3)	0.081	(0.3)

Table 2: Comparison of goodness of fit for different utility functions.

Women	GPs			Specialist		
	Quadratic	Translog	Box-Cox ${ }^{\text {a }}$	Quadratic	Translog	Box-Cox
\% quasi-concave	17	91	100	57	98	97
\% where U increases with y	28	97	100	80	100	98
\% where indifference curve convex	36	94	100	72	98	98
Average predicted probability at observed LS point	21.6\%	21.5\%	20.3\%	17.6\%	18.0\%	17.9\%
$\%$ correctly predicted	33.3\%	30.6\%	29.8\%	27.8\%	29.5\%	28.6\%
Average predicted hours	33.3	33.3	33.3	37.2	37.2	37.2
Average observed hours	32.5	32.5	32.5	36.8	36.8	36.8
parameters	33	33	18	33	33	33
loglikelihood value	-1838	-1856	-1894	-1457	-1444	-1447
Akaike Information Criterion (AIC)	3742	3777	3824	2979	2954	2960
Bayesian Information Criterion (BIC)	3982	4017	3955	3209	3183	3189
Number of observations		1067			769	
Men	GPs			Specialists		
	Quadratic	Translog	Box-Cox	Quadratic	Translog	Box-Cox
\% quasi-concave	15	95	89	23	99	99
\% where U increases with y	31	97	93	23	100	99
\% where indifference curve convex	37	98	94	23	99	100
Average predicted probability at observed LS point	16.3\%	16.5\%	16.5\%	15.6\%	15.7\%	15.7\%
\% correctly predicted	24.6\%	25.5\%	25.7\%	21.8\%	20.4\%	20.5\%
Average predicted hours	45.4	45.4	45.4	47.3	47.2	47.2
Average observed hours	45.1	45.1	45.1	47.1	47.1	47.1
parameters	33	33	33	33	33	33
loglikelihood value	-2199	-2195	-2193	-3772	-3768	-3762
AIC	4463	4456	4452	7609	7601	7590
BIC	4705	4698	4694	7869	7860	7849
Number of observations		1128			1908	

Notes: Shaded cells indicate the best performing model on the criterion described in the first column of that row. ${ }^{a}$ Model estimated without interaction terms between income and hours worked for this group.

Table 3: Marginal effects on hours worked for labour supply model with 10 discrete points, translog utility function, imputed wages

Panel A: Women	GPs		Specialists	
	Point est.	95\% CIs	Point est.	95\% CIs
Age of youngest child (ref. group: no dependent children)				
0-4	-11.52	[-13.70, -8.73]	-10.82	[-13.23, -8.15]
5-9	-8.33	[-10.49, -5.54]	-4.87	[-8.00, -0.57]
10-15	-3.96	[-6.11, -1.80]	-0.20	[-3.26, 3.69]
Number of children	-0.66	[-1.32, 0.02]	-0.78	[-1.76,0.12]
Age	-0.16	[-0.25, -0.07]	0.00	[-0.13, 0.15]
Health status (ref. group: very good)				
good health	3.27	[1.59, 5.08]	0.19	[-1.82, 2.46]
poor/fair health	1.73	[-0.73, 4.72]	1.16	[-2.11, 5.05]
Partnership status (ref. group: single)				
Full-time work	-3.80	[-5.91, -1.53]	-4.39	[-6.73, -1.93]
Part-time work	-1.33	[-3.93, 1.68]	-2.44	[-5.31, 0.78]
Not employed	4.01	[1.00, 7.18]	3.97	[0.91, 6.96]
Self-employed	9.19	[7.22, 12.01]	4.88	[2.82, 7.15]
Location (ref. group: urban)				
Inner regional	1.47	[-0.24, 3.34]	1.20	[-1.64, 4.10]
Remote	6.73	[4.64, 9.20]	1.61	[-3.75, 7.28]
Panel B: Men	GPs		Specialists	
	Point est.	95\% CIs	Point est.	95\% CIs
Age of youngest child (ref. group: no dependent children)				
0-4	-4.45	[-7.25, -1.76]	-1.53	[-3.94, 0.64]
5-9	-2.19	[-4.71, 0.06]	-0.78	[-2.72, 1.14]
10-15	-1.95	[-4.32, 0.23]	-0.31	[-2.24, 1.32]
Number of children	1.39	[0.78, 2.00]	0.93	[0.43,1.42]
Age	-0.17	[-0.25, -0.09]	-0.23	[-0.30, -0.17]
Health status (ref. group: very good)				
good health	2.19	[0.64, 3.71]	-0.13	[-1.32, 1.02]
poor/fair health	0.48	[-1.63, 2.55]	0.50	[-1.45, 2.39]
Partnership status (ref. group: single)				
Full-time work	0.29	[-2.68, 3.17]	-0.96	[-2.94, 1.02]
Part-time work	-1.31	[-4.43, 1.57]	-1.41	[-3.41, 0.61]
Not employed	-0.16	[-3.00, 2.84]	-0.32	[-2.41, 1.63]
Self-employed	7.60	[6.40, 9.15]	3.56	[2.48, 4.72]
Location (ref. group: urban)				
Inner regional	1.53	[-0.14, 3.05]	-0.30	[-1.75, 1.07]
Remote	4.20	[2.25, 6.17]	-0.05	[-2.34, 2.07]

Table 4: Comparison of simulated wage elasticities

[^16]Table 5: Policy simulation: changes in working hours due to different wage increases (10 mid-points, imputed wages).

	Women				Men			
	GPs		Specialists		GPs		Specialists	
	Point est.	95\% CIs						
Panel A: Predicted relative changes (\%) in hours worked in response to simulated wage increases								
1% wage increase								
Quadratic	-0.123	[-0.300, 0.053]	-0.073	[-0.172,0.018]	-0.176	[-0.294,-0.060]	-0.093	[-0.137,-0.050]
Translog	-0.231	[-0.461,-0.051]	-0.070	[-0.173, 0.023]	-0.158	[-0.277,-0.052]	-0.077	[-0.120,-.0370]
Box Cox	-0.018 ${ }^{\text {a }}$	[-0.146, 0.141$]$	-0.088	[-0.236,0.005]	-0.185	[-0.304,-0.012]	-0.077	[-0.119, -0.004]
5\% wage increase								
Quadratic	-0.370	[-1.280, 0.572]	-0.276	[-0.770,0.180]	-0.787	[-1.404,-0.193]	-0.470	[-0.694,-0.251]
Translog	-1.076	[-2.150,-0.221]	-0.357	[-0.857,0.101]	-0.748	[-1.334,-0.230]	-0.383	[-0.597,-0.187]
Box Cox	-0.082^{a}	[-0.708,0.703]	-0.442	[-1.150,0.012]	-0.893	[-1.469,-0.049]	-0.380	[-0.589,-0.022]
10\% wage increase								
Quadratic	-0.181	[-2.163, 1.870]	-0.325	[-1.357,0.658]	-1.340	[-2.747,-0.049]	-0.958	[-1.427,-0.505]
Translog	-1.988	[-3.994,-0.351]	-0.692	[-1.664,0.197]	-1.407	[-2.536,-0.415]	-0.757	[-1.182,-0.371]
Box Cox	-0.155^{a}	[-1.373,1.385]	-0.866	[-2.219,0.024]	-1.725	[-2.822,-0.088]	-0.745	[-1.151,-0.046]

Panel B: Predicted absolute changes (in FTE workers) in response to simulated wage increases								
1\% wage increase								
Quadratic	-8.07	[-22.36,5.53]	-4.66	[-10.38,0.60]	-31.07	[-49.93,-12.20]	-16.85	[-25.07,-9.04]
Translog	-19.14	[-37.81,-5.53]	-4.21	[-9.93,0.90]	-27.74	[-46.23,-9.99]	-14.38	[-22.60,-6.99]
Box Cox	$-1.61{ }^{a}$	[-11.07, 10.61]	-5.01	[-11.68,0.11]	-30.73	[-48.52,-2.37]	-14.63	[-22.77,-1.03]
5\% wage increase								
Quadratic	-22.13	[-93.14,49.57]	-18.51	[-46.50,7.07]	-139.79	[-239.28,-42.16]	-86.30	[-126.99,-44.80]
Translog	-89.68	[-173.83,-23.98]	-21.22	[-48.60,3.76]	-130.55	[-221.90,-45.49]	-72.74	[-113.02,-36.17]
Box Cox	-6.92^{a}	[-54.18,52.57]	-25.14	[-57.01, 0.09$]$	-148.48	[-234.76,-10.13]	-72.66	[-112.40,-5.71]
10\% wage increase								
Quadratic	-2.31	[-157.93, 160.92]	-24.38	[-82.01,29.64]	-241.50	[-453.04,-29.96]	-175.90	[-260.15,-88.36]
Translog	-165.53	[-321.62,-43.11]	-40.93	[-93.90,7.98]	-246.30	[-428.26,-83.58]	-143.84	[-221.52,-72.33]
Box Cox	$-13.14{ }^{\text {a }}$	[-104.90,103.75]	-49.16	[-110.49,-0.21]	-287.10	[-452.59,-17.79]	-142.40	[-219.54,-11.63]

[^17]Appendix A - Auxiliary Tables

Table A.1: OLS of \ln (wage)

	Women		Men	
	GPs	Specialists	GPs	Specialists
Australian medical school	$-0.096 * * *$	-0.111**	0.010	0.005
	(0.036)	(0.047)	(0.037)	(0.028)
Number of postgraduate qualifications	-0.026	-0.030	0.071	-0.017
	(0.042)	(0.098)	(0.047)	(0.066)
Temporary visa holder	0.037	-0.057	-0.084	-0.122
	(0.107)	(0.213)	(0.091)	(0.131)
Actual work experience				
15-19 years	-0.025	0.073	0.173***	0.091**
	(0.039)	(0.047)	(0.058)	(0.040)
20-24 years	0.005	0.046	0.062	$0.125^{* * *}$
	(0.036)	(0.049)	(0.050)	(0.039)
25-29 years	-0.032	-0.046	0.143***	0.093**
	(0.039)	(0.052)	(0.048)	(0.039)
30-34 years	-0.055	-0.006	$0.087 *$	0.083**
	(0.049)	(0.063)	(0.049)	(0.041)
35-39 years	-0.030	0.043	0.043	0.052
	(0.071)	(0.106)	(0.057)	(0.043)
40-45 years	0.164	0.004	0.103	0.051
	(0.111)	(0.158)	(0.069)	(0.049)
45 or more years	-0.108	-0.147	0.097	-0.178***
	(0.286)	(0.263)	(0.078)	(0.059)
State dummies				
VIC	-0.041	0.028	0.068*	-0.032
	(0.034)	(0.043)	(0.038)	(0.026)
QLD	0.044	0.177***	0.090**	0.146***
	(0.038)	(0.054)	(0.043)	(0.032)
SA	-0.012	0.065	0.038	-0.012
	(0.054)	(0.060)	(0.053)	(0.041)
WA	0.022	0.063	0.146***	0.057
	(0.047)	(0.071)	(0.052)	(0.041)
NT	0.017	0.382	0.007	-0.081
	(0.160)	(0.239)	(0.143)	(0.140)
TAS	-0.033	0.004	-0.020	-0.155**
	(0.069)	(0.118)	(0.081)	(0.070)
ACT	0.042	0.071	0.043	-0.031
	(0.080)	(0.147)	(0.123)	(0.081)
Inner regional area	-0.016	-0.051	0.070*	0.067*
	(0.038)	(0.072)	(0.040)	(0.035)
Remote area	0.051		0.104**	
	(0.045)	(0.118)	(0.049)	(0.064)
Self-employed	$0.163 * * *$	0.139***	0.067**	0.190***
	(0.029)	(0.041)	(0.031)	(0.024)
Practice size				
2-3 doctors	-0.024		0.147***	
	(0.069)		(0.053)	
4-5 doctors	0.020		0.180***	
	(0.068)		(0.053)	

...table A.l continued

	Women		Men	
	GPs	Specialists	GPs	Specialists
6-9 doctors	-0.006		0.237***	
	(0.068)		(0.050)	
10 or more doctors	0.069		0.340***	
	(0.072)		(0.058)	
PG Certificate or Diploma	0.040	0.004	-0.098	0.002
	(0.058)	(0.125)	(0.065)	(0.083)
Masters or PhD	-0.029	-0.001	-0.128	-0.003
	(0.069)	(0.116)	(0.084)	(0.083)
Fellowship of Colleges	0.076***	0.047	0.023	0.051
	(0.028)	(0.101)	(0.030)	(0.056)
Other qualifications	0.111	-0.025	-0.105	0.039
	(0.086)	(0.135)	(0.088)	(0.091)
\% of time in clinical work	0.003***	0.003***	0.001	0.004***
	(0.001)	(0.001)	(0.001)	(0.000)
Local median house price	0.000**	0.000	0.000*	0.000***
	(0.000)	(0.000)	(0.000)	(0.000)
Main speciality				
Cardiology		0.342		-0.095
		(0.470)		(0.107)
Gastroenterology		0.577		-0.079
		(0.462)		(0.097)
General medicine		0.464		-0.286***
		(0.458)		(0.096)
Intensive care - internal medicine		0.789		
		(0.502)		
Paediatric medicine		0.259		$-0.372^{* * *}$
		(0.451)		(0.087)
Thoracic medicine		0.013		-0.233**
		(0.467)		(0.101)
Other internal medicine		0.410		-0.244***
		(0.450)		(0.079)
Pathology		0.687		-0.004
		(0.453)		(0.090)
General surgery		0.402		-0.000
		(0.464)		(0.087)
Orthopaedic surgery		0.952*		0.236***
		(0.517)		(0.091)
Other surgery		0.427		0.156*
		(0.456)		(0.087)
Anaesthesia		0.740*		0.084
		(0.449)		(0.078)
Diagnostic radiology		0.761*		0.273***
		(0.455)		(0.087)
Obstetrics and gynaecology		0.757*		0.079
		(0.452)		(0.087)
Psychiatry		0.411		-0.239***
		(0.450)		(0.080)
Number of observations	1067	769	1128	1908

Table A.2: Reduced-form results: OLS of \ln (hours)

	Women		Men	
	GPs	Specialists	GPs	Specialists
Ln (hourly wage)	$\begin{gathered} -0.056 \\ (0.132) \end{gathered}$	$\begin{gathered} -0.070 \\ (0.059) \end{gathered}$	$\begin{array}{r} -0.202 * * * \\ (0.070) \end{array}$	$\begin{array}{r} -0.088 * * * \\ (0.030) \end{array}$
Age of youngest child (ref. group: no child or child over 15)				
0-4	$\begin{array}{r} -0.444^{* * *} \\ (0.043) \end{array}$	$\begin{array}{r} -0.337 * * * \\ (0.052) \end{array}$	$\begin{array}{r} -0.121 * * * \\ (0.035) \end{array}$	$\begin{gathered} -0.029 \\ (0.020) \end{gathered}$
5-9	$\begin{array}{r} -0.317 * * * \\ (0.041) \end{array}$	$\begin{array}{r} -0.192 * * * \\ (0.056) \end{array}$	$\begin{array}{r} -0.085 * * * \\ (0.028) \end{array}$	$\begin{gathered} -0.034^{*} \\ (0.018) \end{gathered}$
10-15	$\begin{array}{r} -0.152 * * * \\ (0.037) \end{array}$	$\begin{gathered} -0.020 \\ (0.048) \end{gathered}$	$\begin{array}{r} -0.070 * * * \\ (0.024) \end{array}$	$\begin{aligned} & -0.023 \\ & (0.018) \end{aligned}$
Number of children	$\begin{gathered} -0.023^{*} \\ (0.012) \end{gathered}$	$\begin{gathered} -0.028^{*} \\ (0.017) \end{gathered}$	$\begin{array}{r} 0.025 * * * \\ (0.009) \end{array}$	$\begin{array}{r} 0.019 * * * \\ (0.006) \end{array}$
Age	$\begin{array}{r} 0.016 \\ (0.012) \end{array}$	$\begin{array}{r} 0.062 * * * \\ (0.017) \end{array}$	$\begin{array}{r} 0.056 * * * \\ (0.010) \end{array}$	$\begin{array}{r} 0.083 * * * \\ (0.011) \end{array}$
Age squared	$\begin{gathered} -0.023 * \\ (0.013) \end{gathered}$	$\begin{array}{r} -0.067 * * * \\ (0.017) \end{array}$	$\begin{array}{r} -0.063 * * * \\ (0.010) \end{array}$	$\begin{array}{r} -0.087 * * * \\ (0.011) \end{array}$
Health status (reference group: very good)				
Good health	$\begin{array}{r} 0.100 * * * \\ (0.029) \end{array}$	$\begin{gathered} -0.018 \\ (0.039) \end{gathered}$	$\begin{array}{r} 0.051 * * \\ (0.022) \end{array}$	$\begin{gathered} -0.007 \\ (0.017) \end{gathered}$
poor/fair health	$\begin{array}{r} 0.058 \\ (0.051) \end{array}$	$\begin{gathered} -0.009 \\ (0.071) \end{gathered}$	$\begin{array}{r} 0.001 \\ (0.033) \end{array}$	$\begin{aligned} & -0.022 \\ & (0.030) \end{aligned}$
Partner's employment (reference group: single)				
not employed	$\begin{array}{r} 0.124 * * * \\ (0.048) \end{array}$	$\begin{array}{r} 0.119 * * \\ (0.047) \end{array}$	$\begin{aligned} & 0.091^{*} \\ & (0.053) \end{aligned}$	$\begin{gathered} -0.013 \\ (0.029) \end{gathered}$
works full-time	$\begin{gathered} -0.020 \\ (0.040) \end{gathered}$	$\begin{gathered} -0.089 * \\ (0.049) \end{gathered}$	$\begin{array}{r} 0.171 * * * \\ (0.053) \end{array}$	$\begin{aligned} & 0.054^{*} \\ & (0.031) \end{aligned}$
works part-time	$\begin{array}{r} 0.061 \\ (0.050) \end{array}$	$\begin{gathered} -0.028 \\ (0.060) \end{gathered}$	$\begin{gathered} 0.132 * * \\ (0.053) \end{gathered}$	$\begin{array}{r} 0.031 \\ (0.031) \end{array}$
Self-employed	$\begin{array}{r} 0.251 * * * \\ (0.035) \end{array}$	$\begin{array}{r} 0.133 * * * \\ (0.033) \end{array}$	$\begin{array}{r} 0.202 * * * \\ (0.021) \end{array}$	$\begin{array}{r} 0.081 * * * \\ (0.018) \end{array}$
Location (reference group: urban)				
Inner regional	$\begin{array}{r} 0.055 \\ (0.034) \end{array}$	$\begin{array}{r} 0.054 \\ (0.049) \end{array}$	$\begin{array}{r} 0.030 \\ (0.021) \end{array}$	$\begin{gathered} -0.009 \\ (0.020) \end{gathered}$
Remote	$\begin{array}{r} 0.219 * * * \\ (0.035) \end{array}$	$\begin{array}{r} 0.050 \\ (0.059) \end{array}$	$\begin{array}{r} 0.094 * * * \\ (0.026) \end{array}$	$\begin{aligned} & -0.022 \\ & (0.041) \end{aligned}$
Other income	$\begin{array}{r} -0.008^{* * *} \\ (0.003) \end{array}$	$\begin{gathered} -0.001 \\ (0.003) \end{gathered}$	$\begin{array}{r} -0.008 * * * \\ (0.002) \end{array}$	$\begin{array}{r} -0.007 * * * \\ (0.002) \end{array}$
Constant	$\begin{array}{r} 3.513 * * * \\ (0.628) \end{array}$	$\begin{array}{r} 2.633 * * * \\ (0.487) \end{array}$	$\begin{array}{r} 3.303 * * * \\ (0.362) \end{array}$	$\begin{array}{r} 2.373 * * * \\ (0.293) \end{array}$
Number of observations	1067	769	1128	1908
Adj. R-squared	0.2885	0.1794	0.2887	0.2368

Table A.3: Coefficients from multinomial logit model with 10 points, translog utility function, imputed wages

	Women				Men			
	GPs		Specialists		GPs		Specialists	
	coef	S.E.	coef	S.E.	coef	S.E.	coef	S.E.
Weekly net income	-54.725**	(26.177)	-14.561	(17.954)	-46.763**	(22.576)	18.077	(12.251)
Weekly net income ${ }^{2}$	2.210*	(1.174)	0.349	(0.717)	1.692	(1.172)	-0.789	(0.572)
Weekly net income interacted with								
Weekly hours	8.325***	(2.266)	2.349*	(1.259)	5.283***	(1.485)	0.814	(0.684)
Age of youngest child (reference group: no child)								
0-4	$-5.320 * * *$	(0.971)	$-2.768^{* *}$	(1.258)	0.321	(1.433)	-0.393	(1.208)
5-9	-3.936***	(0.902)	-3.487***	(1.141)	1.154	(1.436)	0.605	(1.159)
10-15	-1.190	(0.834)	-2.249**	(1.067)	-0.308	(1.108)	0.774	(1.044)
Age	-0.198	(2.926)	4.476	(4.107)	3.552	(2.294)	2.380	(2.498)
Age squared	-0.037	(0.311)	-0.514	(0.424)	-0.472**	(0.210)	-0.371*	(0.223)
Number of children	-0.257	(0.256)	0.899**	(0.375)	0.334	(0.341)	0.693**	(0.296)
Partner's employment (reference group: single)								
not employed	0.028	(1.416)	1.141	(1.522)	1.808	(1.229)	-3.558**	(1.513)
works part-time	-2.482**	(1.189)	-1.870	(1.170)	0.813	(1.179)	-3.584**	(1.501)
works full-time	-2.339**	(1.042)	-3.102***	(0.993)	0.778	(1.215)	-3.436**	(1.559)
Self-employed	0.467	(0.735)	0.680	(0.733)	1.244	(0.768)	0.673	(0.600)
Location (reference group: urban)								
Outer city	0.147	(0.681)	1.293	(1.068)	-0.311	(0.759)	-0.405	(0.722)
Remote	1.486*	(0.834)	1.013	(1.941)	-0.299	(0.945)	2.233	(1.580)
Health (reference group: very good)								
good health	1.209*	(0.682)	-0.428	(0.739)	-0.666	(0.729)	-0.281	(0.620)
fair/poor health	-0.054	(0.978)	-2.396**	(1.013)	-1.451*	(0.865)	-1.842**	(0.824)
Weekly hours	-80.061***	(22.099)	-26.945*	(15.218)	-44.786***	(14.334)	2.171	(7.814)
Weekly hours ${ }^{2}$	4.116***	(0.753)	2.583***	(0.593)	1.537***	(0.567)	1.234***	(0.345)
Weekly working hours interacted with								
Age of youngest child (reference group: no child)								
0-4	-1.675	(1.029)	0.759	(1.364)	1.591	(0.986)	0.176	(0.669)
5-9	-1.298	(0.891)	-1.818*	(1.070)	1.425*	(0.846)	0.587	(0.619)
10-15	0.165	(0.818)	-1.773**	(0.892)	0.353	(0.616)	0.548	(0.545)
Age	-2.019	(2.899)	-0.980	(3.766)	-0.711	(1.868)	-3.832**	(1.751)
Age squared	0.216	(0.309)	0.079	(0.388)	0.021	(0.175)	0.327**	(0.163)
Number of children	-0.025	(0.239)	1.089***	(0.363)	-0.190	(0.188)	0.145	(0.158)
Partner's employment (reference group: single)								
not employed	-1.300	(1.116)	-0.409	(1.071)	1.189	(0.821)	-1.957**	(0.893)
works part-time	-1.912*	(1.036)	-0.886	(0.966)	0.885	(0.781)	-1.674*	(0.883)
works full-time	-0.962	(0.912)	-1.485*	(0.777)	0.408	(0.793)	-1.708*	(0.910)
Self-employed	$-2.328 * * *$	(0.708)	-0.736	(0.623)	-1.407***	(0.519)	-0.586	(0.364)
Location (reference group: urban)								
Outer city	-0.374	(0.655)	0.811	(0.942)	-0.642	(0.462)	-0.165	(0.426)
Remote	-0.783	(0.717)	0.437	(1.521)	-1.341**	(0.566)	1.366	(0.961)
Health (reference group: very good)								
good health	0.055	(0.620)	-0.447	(0.647)	-1.039**	(0.449)	-0.134	(0.374)
fair/poor health	-0.628	(0.874)	$-2.340^{* * *}$	(0.767)	-1.084**	(0.551)	-1.230**	(0.489)
Number of observations	1067		769		1128		1908	

Note: for ease of reporting, weekly net income has been divided by 1000, and weekly hours and age have been divided by 10.
Significance is indicated with $*$ for 10% level, $* *$ for 5% level and $* * *$ for 1% level.

Table A.4: Marginal effects on hours worked for labour supply model with 10 discrete points, quadratic utility function, imputed wages

Panel A: Women	GPs		Specialists	
	Point est.	95\% CIs	Point est.	95\% CIs
Age of youngest child (ref. group: no dependent children)				
0-4	-12.15	[-14.1, -10.1]	-11.24	[-13.93, -8.37]
5-9	-9.20	[-11.14, -7.11]	-6.49	[-9.61, -3.43]
10-15	-4.59	[-6.73, -2.73]	-1.60	[-4.48, 1.16]
Number of children	-1.37	[-2.48, -0.03]	-0.96	[-2.77, 1.02]
Age	-0.14	[-0.23, -0.06]	-0.03	[-0.15, 0.1]
Health status (ref. group: very good)				
good health	3.12	[1.57, 4.83]	0.41	[-1.68, 2.53]
poor/fair health	2.31	[-0.15, 4.63]	1.90	[-1.74, 5.1]
Partnership status (ref. group: single)				
Full-time work	-1.82	[-3.93, 0.24]	-3.20	[-5.63, -0.72]
Part-time work	0.37	[-2.14, 2.94]	-1.30	[-4.28, 1.67]
Not employed	1.82	[-1.24, 4.82]	4.05	[0.81, 7.11]
Self-employed	7.55	[5.58, 9.51]	5.35	[2.81, 7.48]
Location (ref. group: urban)				
Inner regional	2.64	[0.94, 4.48]	1.84	[-1.11, 4.73]
Remote	7.26	[5.27, 9.26]	1.22	[-3.56, 5.76]
Panel B: Men	GPs		Specialists	
	Point est.	95\% CIs	Point est.	95\% CIs
Age of youngest child (ref. group: no dependent children)				
0-4	-4.17	[-6.87, -1.47]	-1.70	[-3.6, 0.31]
5-9	-3.10	[-5.62, -0.65]	-1.48	[-3.3, 0.31]
10-15	-2.53	[-4.59, -0.47]	-0.59	[-2.3, 1.05]
Number of children	2.48	[1.19, 3.63]	1.82	[0.92, 2.73]
Age	-0.18	[-0.27, -0.1]	-0.25	[-0.31, -0.17]
Health status (ref. group: very good)				
good health	2.14	[0.61, 3.68]	-0.10	[-1.26, 1.03]
poor/fair health	0.83	[-1.24, 2.79]	0.18	[-1.64, 1.88]
Partnership status (ref. group: single)				
Full-time work	2.39	[-0.23, 5.24]	0.11	[-2.11, 2.47]
Part-time work	0.68	[-2.06, 3.38]	-0.43	[-2.75, 1.79]
Not employed	0.41	[-2.34, 2.97]	-0.57	[-2.8, 1.94]
Self-employed	7.55	[6.1, 8.91]	3.54	[2.37, 4.7]
Location (ref. group: urban)				
Inner regional	1.91	[0.33, 3.43]	-0.50	[-1.99, 0.81]
Remote	4.15	[2.25, 6.02]	-0.20	[-2.78, 2.24]

Table A.5: Marginal effects on hours worked for reduced-form model, imputed wages

Panel A: Women	GPs		Specialists	
	Point est.	95\% CIs	Point est.	95\% CIs
Age of youngest child (ref. group: no dependent children)				
0-4	-13.57	[-16.15, -11]	-11.64	[-15.19, -8.09]
5-9	-9.69	[-12.15, -7.23]	-6.65	[-10.44, -2.86]
10-15	-4.66	[-6.89, -2.42]	-0.68	[-3.91, 2.54]
Number of children	-0.70	[-1.41, 0.02]	-0.97	[-2.1, 0.17]
Age	-0.16	[-0.25, -0.07]	0.01	[-0.14, 0.16]
Health status (ref. group: very good)				
good health	3.05	[1.32, 4.79]	-0.63	[-3.3, 2.04]
poor/fair health	1.76	[-1.27, 4.79]	-0.32	[-5.16, 4.52]
Partnership status (ref. group: single)				
Full-time work	-0.60	[-3.02, 1.83]	-3.07	[-6.39, 0.25]
Part-time work	1.85	[-1.16, 4.87]	-0.98	[-5.01, 3.05]
Not employed	3.79	[0.92, 6.67]	4.13	[0.92, 7.34]
Self-employed	7.66	[5.56, 9.76]	4.60	[2.35, 6.84]
Location (ref. group: urban)				
Inner regional	1.68	[-0.34, 3.7]	1.88	[-1.46, 5.21]
Remote	6.69	[4.56, 8.83]	1.72	[-2.28, 5.73]
Panel B: Men	GPs		Specialists	
	Point est.	95\% CIs	Point est.	95\% CIs
Age of youngest child (ref. group: no dependent children)				
0-4	-5.27	[-8.27, -2.26]	-1.30	[-3.06, 0.45]
5-9	-3.72	[-6.14, -1.31]	-1.55	[-3.19, 0.08]
10-15	-3.06	[-5.13, -0.98]	-1.04	[-2.69, 0.6]
Number of children	1.07	[0.34, 1.81]	0.89	[0.35, 1.43]
Age	-0.35	[-0.44, -0.25]	-0.27	[-0.33, -0.2]
Health status (ref. group: very good)				
good health	2.24	[0.33, 4.14]	-0.31	[-1.83, 1.21]
poor/fair health	0.03	[-2.8, 2.85]	-1.03	[-3.72, 1.66]
Partnership status (ref. group: single)				
Full-time work	7.47	[2.99, 11.95]	2.49	[-0.33, 5.3]
Part-time work	5.74	[1.25, 10.23]	1.40	[-1.39, 4.19]
Not employed	3.94	[-0.57, 8.46]	-0.59	[-3.16, 1.97]
Self-employed	8.80	[7.02, 10.59]	3.69	[2.1, 5.29]
Location (ref. group: urban)				
Inner regional	1.32	[-0.51, 3.14]	-0.39	[-2.17, 1.39]
Remote	4.11	[1.86, 6.35]	-0.99	[-4.67, 2.69]

Appendix B-Extra Tables with sensitivity check results
Table B.1: Comparison of simulated wage elasticities, translog benchmark specification (10 mid-points)

	Women				Men			
	GPs		Specialists		GPs		Specialists	
	Point est.	95\% CIs						
Panel A: Alternative wage specifications								
Imputed wages ${ }^{a}$	-0.231	[-0.461, -0.051]	-0.070	[-0.173, 0.023]	-0.158	[-0.277, -0.052]	-0.077	[-0.120, -0.037]
Number of observations		1067		769		1128		1908
Observed wages	-0.103	[-0.155, -0.058]	-0.077	[-0.125, -0.034]	-0.081	[-0.114, -0.052]	-0.107	[-0.129, -0.089]
Number of observations		1067		769		1128		1908
Alternative wage definition 1	-0.079	[-0.139, -0.027]	-0.079	[-0.140, -0.026]	-0.079	[-0.122, -0.045]	-0.113	[-0.144, -0.09]
Number of observations		803		559		782		1215
Alternative wage definition 2	-0.105	[-0.158, -0.060]	-0.092	[-0.14, -0.049]	-0.086	[-0.118, -0.059]	-0.109	[-0.13, -0.091]
Number of observations		1107		790		1149		1929
Alternative wage definition 3	-0.045	[-0.09, -0.004]	-0.084	[-0.127, -0.045]	-0.081	[-0.108, -0.056]	-0.096	[-0.116, -0.080]
Number of observations		1145		821		1173		1963
Panel B: accounting for wage prediction error								
using 100 wage draws		[d.n.c.]	-0.083	[-0.178, 0.017]	-0.173	[-0.246, -0.083]	-0.085	[-0.127, -0.042]
Number of observations		1067		769		1128		1908
Panel C: excluding those who are not at their preferred hours of work								
excl. mismatches	-0.058	[-0.337, 0.226]	0.109	[-0.064, 0.278]	-0.228	[-0.469, -0.034]	-0.017	[-0.093, 0.057]
Number of observations		584		350		444		739

Table B.2: Marginal effects on hours worked for translog benchmark model, observed wages

Panel A: Women	GPs		Specialists	
	Point est.	95\% CIs	Point est.	95\% CIs
Age of youngest child (ref. group: no dependent children)				
0-4	-10.84	[-13.08, -7.95]	-10.21	[-12.67, -7.23]
5-9	-8.02	[-10.26, -5.36]	-4.37	[-7.52, -0.16]
10-15	-3.49	[-5.58, -1.31]	0.24	[-2.81, 4.1]
Number of children	-0.56	[-1.17, 0.04]	-0.86	[-1.81, 0.05]
Age	-0.14	[-0.23, -0.04]	0.02	[-0.11, 0.17]
Health status (ref. group: very good)				
good health	2.84	[1.06, 4.58]	-0.12	[-2.16, 2.07]
poor/fair health	1.25	[-1.28, 3.93]	0.82	[-2.46, 4.63]
Partnership status (ref. group: single)				
Full-time work	-4.32	[-6.42, -2.16]	-4.60	[-6.95, -2.16]
Part-time work	-1.23	[-3.98, 1.79]	-2.18	[-5.06, 1.03]
Not employed	3.89	[0.91, 7.09]	4.15	[1.04, 7.17]
Self-employed	7.86	[6.38, 9.86]	4.74	[2.85, 6.72]
Location (ref. group: urban)				
Inner regional	1.78	[0.07, 3.65]	1.16	[-1.63, 4.01]
Remote	6.58	[4.55, 8.85]	1.52	[-3.68, 7.1]
Men	GPs		Specialists	
	Point est.	95\% CIs	Point est.	95\% CIs
Age of youngest child (ref. group: no dependent children)				
0-4	-3.77	[-6.6, -1.22]	-1.34	[-3.56, 0.67]
5-9	-1.87	[-4.54, 0.49]	-0.99	[-2.86, 0.88]
10-15	-1.77	[-3.97, 0.41]	-0.28	[-2.09, 1.27]
Number of children	1.47	[0.83, 2.13]	1.06	[0.57, 1.51]
Age	-0.16	[-0.24, -0.07]	-0.23	[-0.3, -0.17]
Health status (ref. group: very good)				
good health	1.61	[-0.08, 3.3]	-0.20	[-1.36, 0.91]
poor/fair health	-0.09	[-2.24, 1.92]	-0.19	[-2.12, 1.59]
Partnership status (ref. group: single)				
Full-time work	0.56	[-2.44, 3.47]	-1.26	[-3.23, 0.73]
Part-time work	-1.35	[-4.15, 1.6]	-1.66	[-3.62, 0.36]
Not employed	0.21	[-2.75, 3.3]	-0.33	[-2.4, 1.62]
Self-employed	7.37	[6.12, 8.8]	4.09	[3.19, 5.08]
Location (ref. group: urban)				
Inner regional	1.34	[-0.34, 2.99]	-0.31	[-1.75, 1.04]
Remote	3.91	[1.93, 5.85]	0.17	[-2.02, 2.2]

$\overline{\text { Note: Significance is indicated with } * \text { for } 10 \% \text { level, }{ }^{* *} \text { for } 5 \% \text { level and }{ }^{* * *} \text { for } 1 \%}$ level.

[^0]: * We are grateful for helpful comments and suggestions received by Richard Blundell, Jongsay Yong and participants at the 2014 European Association of Labour Economics meeting, the 2014 IZA European Summer School in Labor Economics, the Brown Bag Series at the Melbourne Institute, and the doctoral workshop at the University of Erlangen-Nuremberg. This work was supported by a National Health and Medical Research Council Health Services Research Grant (2007-2011) and a National Health and Medical Research Council Centre of Research Excellence in Medical Workforce Dynamics Grant (2012-2016) with additional support from the Department of Health (in 2008) and Health Workforce Australia (in 2013). The views in this paper are those of the authors alone. We thank the doctors who gave their valuable time to participate in the Medicine in Australia: Balancing Employment and Life (MABEL) survey, and the other members of the MABEL team for data cleaning and comments on drafts of this paper. The study was approved by the University of Melbourne Faculty of Economics and Commerce Human Ethics Advisory Group (Ref. 0709559) and the Monash University Standing Committee on Ethics in Research Involving Humans (Ref. CF07/11022007000291).

[^1]: ${ }^{1}$ All figures were obtained from the Australian Institute of Health and Welfare (AIHW, 2014, 2015).

[^2]: ${ }^{2}$ Baltagi, Bratberg, and Holmås (2005) also use a reduced form but they have applied a panel approach on the repeated observations of hospital physicians in Norway.

[^3]: ${ }^{3}$ For instance, Van Soest, Woittiez, and Kapteyn (1990) and Tummers and Woittiez (1991) show that a discrete specification of labour supply can improve the representation of actual labour supply compared with a continuous specification.

[^4]: ${ }^{4}$ Van Soest et al. (2002) show that utility functions including fifth-order polynomials yield almost identical wage elasticities compared with models using lower-order polynomials, thus indicating that a second-order polynomial, or quadratic, function performs adequately.

[^5]: ${ }^{5}$ However, our Box-Cox utility specification, although similar to that specified in Sæther (2005), includes an interaction term between income and hours worked that is absent in Sæther. In our case, this additional interaction term matters substantially for the implied wage elasticities.

[^6]: ${ }^{6}$ Using this distribution, expected labour supply can easily be computed at the individual and population level before and after wage changes, providing the basis for computing wage elasticities.
 ${ }^{7}$ We include individual income tax payments and income tax rebates, as well as the Medicare Levy and Government payments to families with children.

[^7]: ${ }^{8}$ The lack of information on a partner's income may be less of an issue for men than for women. This seems confirmed in our results which show that the partner's employment status affects labour supply by women but not men.
 ${ }^{9}$ The corresponding hours intervals are: [0-18); [18-25); [25-35); [35-42.5); [42.5-47.5); [47.5-52.5); [52.557.5); [57.5-62.5); [62.5-67.5); [67.5-80).

[^8]: ${ }^{10}$ However, given the high investment in human capital required in terms of time and money to become a doctor, relatively few qualified doctors do not work in their profession. The AIHW (2012) reports that about 7% of all registered medical practitioners do not work in the medical workforce. Note that this figure includes non-GPs and specialists, for whom the non-participation rate may be higher than for GPs and specialists. Furthermore, women may take time off to raise children, and older doctors may decide to retire earlier rather than later, but these groups are relatively small and specific. These issues would need to be studied in a separate paper so factors relevant to these decisions can be fully taken into account.
 ${ }^{11}$ Although labour supply as measured by hours of work is important, effort and services provided per unit of time are alternative ways to increase the medical services supplied by doctors. As shown by Fortin, Jacquemet, and Shearer (2010) these can be important as well, but insufficient data are available on these outputs. Therefore, we ignore these two alternative pathways to increase services provided and focus on hours of work.
 ${ }^{12}$ Although the response rate for the financial variables is lower than for some of the other questions (Kuehnle et al., 2010), the large majority of GPs and specialists (85.3\%) provide either gross or net income for one of the specified time periods.

[^9]: ${ }^{13}$ Coefficients are reported in Table A. 1 in the Appendix.
 ${ }^{14}$ This approach reduces the estimation sample compared to the first approach since the information on the proportions is missing for about 25% of doctors.

[^10]: ${ }^{15}$ Results based on observed wages (circumventing the need to estimate three additional sets of wage equations) are available in Table B. 1 (rows 2 to 4).
 ${ }^{16}$ Individuals who are most likely to face demand side factors that lead to sub-optimal working hours are those

[^11]: for whom observed hours are not equal to preferred hours. This may potentially lead to bias in the estimation of the model's parameters due to measurement error. Therefore, we estimate an alternative version of the model, excluding all observations who are not working at their preferred hours, following Ribeiro (2001) who uses information from the sample (whether workers were looking for another job) to exclude individuals from the analysis. This provides an indication of the bias of the estimated elasticities due to sub-optimal labour supply reported in the data. Unfortunately, the question in MABEL is not ideal since it is not asked conditional on income changing with a change in hours worked, but the results provide some indication to the sensitivity of our elasticity to leaving out doctors who state they would like to change hours worked. After dropping these individuals from the analysis, the estimation results remain of the same order of magnitude, although they become mostly insignificant due to the much smaller sample size. These results are available in Table B.1.
 ${ }^{17}$ Compared to the quadratic and translog specifications, convergence of the model was much more difficult to achieve for the Box-Cox specification for all doctor types.

[^12]: ${ }^{18}$ Since the Box-Cox model for female GPs did not converge, we report results from the Box-Cox model without interaction terms between income and hours worked for this group. However, results for the other groups (to be presented in Table 4, panel B) show that excluding the interaction reduces the size of the predicted wage elasticity.
 ${ }^{19}$ Coefficients from the multinomial logit model with 10 discrete hours points are presented in Appendix Table A. 3
 ${ }^{20}$ The confidence intervals are computed using a parametric bootstrap approach. We draw 1000 alternative sets of coefficients from the estimated multivariate normal distribution of coefficients, using the estimated coefficient means vector and associated variance-covariance matrix. Each set of coefficients drawn is used to compute the effect of a one-unit change on predicted hours worked for each exogenous characteristic in turn. These 1000 effects are then ordered by magnitude, from low to high. The lower bound of the 95% interval is positioned at the $25^{\text {th }}$ lowest value and the upper bound is located at the $975^{t h}$ value.
 ${ }^{21}$ Using observed wages instead of imputed wages in estimating the discrete choice model, the marginal effects for the individual characteristics only change slightly, and similarly using the quadratic instead of translog utility function changes the marginal effects only slightly. See Appendix Table A. 4 for the results using the quadratic utility function. The results based on observed wages are available in Table B.2. Estimating a reduced-form specification using the same individual and household characteristics as in the structural specification, Appendix Table A. 5 shows that the marginal effects for the individual characteristics are very similar to those obtained from the structural model.

[^13]: ${ }^{22}$ A similar approach as described in footnote 20 is used. However, instead of increasing each exogenous characteristic by one unit, we increase wages by 1% and again perform a parametric bootstrap to calculate the confidence intervals of the estimated coefficients using the percentile method.
 ${ }^{23}$ The results for specialists are also similar to the overall wage elasticities reported by Cheng et al. (2013) using a model distinguishing hours worked in the public and private sector.
 ${ }^{24}$ As a robustness check, we allow for random preference parameters by adding error terms to the linear income and working hours parameters in equations 1 and 2, similar to the approach by Van Soest (1995). The results are very similar and show that allowing for random preferences does not change the estimated wage elasticities.
 ${ }^{25}$ Similar to Van Soest (1995), we also estimate the model taking into account errors in wage rate predictions by drawing 100 wages for each individual, taking into account the standard deviation of the wage regressions. Table B. 1 shows that the estimated wage elasticities for three of the doctor groups are robust to allowing for wage rate prediction errors. However, the model does again not converge for the fourth group of female GPs.

[^14]: ${ }^{26}$ Given the large proportion of female GPs working part-time hours, there is likely to be more variation in wage elasticities between female GPs than within the other groups. As a result, the assumption of a constant wage elasticity across all female GPs (implied by the reduced-form approach) may be a more restrictive assumption for this group.

[^15]: ${ }^{27}$ Although the Australian Bureau of Statistics defines full-time work as working at least 35 hours per week, this figure may be less appropriate for doctors who tend to work more hours (42.6 hours per week on average). For this reason, we use 40 hours for a standard full-time week that is consistent with the measure used by the National Healthcare Agreement reporting.
 ${ }^{28}$ According to the AIHW (2014), there were 9,222 female and 14,793 male GPs in 2008, and 6,019 female and 16,439 male specialists in Australia in 2008.

[^16]: Notes: ${ }^{a}$: The reduced Box-Cox function does not include an interaction term between income and hours worked.
 ${ }^{b}$: The full Box-Cox function includes an interaction term between income and hours worked as in equation (3).
 ${ }^{c}$: We obtain the imputed wages from the wage regressions presented in Table A.l.
 ${ }^{d}$: In the IV regressions we control for the same variables as in Table A.2, and instrument for the wage using the equation presented in Table A.1. d.n.c. $=$ model did not converge .

[^17]: Note: ${ }^{a}$ For female GPs, a Box Cox model without an income and labour supply interaction term is used for the simulation.

