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1 Introduction

The effect of market entry and exit on productivity and growth performance has received increasing

interest by policy makers in recent years. For example, the Cecchini report (1996) and other more

recent ongoing studies for the European commission try to get at the effect of product market

reforms in the aftermath of the Single Market Programme. Empirical evidence on the effect of

market exit on innovation and growth is scarce and detects no clear relationship between innovation

and exit cost across OECD countries (see, e.g., Bassanini and Ernst (2002)). Exit is relatively

more expensive in countries with strict employment protection legislation (EPL) since collective

dismissal costs are an important component of EPL (see, e.g., OECD (1999)). Cross-country

empirical studies and anecdotal evidence by Bassanini and Ernst (2001), Casper and Glimstedt

(2001), Estevez-Abe et al. (2001) and OECD (2001) suggest that EPL strengthens incentives for

firm-specific and cumulative innovations whereas low turnover costs favor innovations that involve

creative destruction.

Theory tells us that in the standard Schumpeterian model of creative destruction, flexibility

and low turnover cost in the labor market and a monopoly structure in the product market are

always good for growth (see, e.g., Saint-Paul (1996), p. 173). In the model of creative destruction,

technology change is characterized by leapfrogging. In models of step-by-step innovations instead

(see the seminal paper of Aghion et al. (2001)), product market competition can spur innovations.

We show that also the results on turnover cost change: exit cost can spur innovation in a model with

step-by-step innovation. The different results are consistent with the suggestive empirical evidence

mentioned above since step-by-step innovations have a more cumulative nature: two firms engage

in an infinitely repeated duopoly game in which they perform R&D and then set prices in Bertrand

competition. Step-by-step innovations mean that a technology laggard first has to catch up with

the technology leader before he can take the lead in the next step. From a technical point of view,

the important difference of models with step-by-step innovations is that innovation incentives do

not depend on the absolute asset value of the firm as in Schumpeterian models with leapfrogging
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but on the increase of the asset value as firms proceed on the technology frontier. Thus, innovation

incentives can increase although the absolute asset value of the firm falls. This is why in contrast

to the standard Schumpeterian monopoly model, competition or collective dismissal cost can foster

growth although the firms’ absolute asset value falls. The relevance of step-by-step innovations

is supported by empirical evidence that product market competition can be positively related to

productivity growth (see Nickell (1999) and Bassanini and Ernst (2002)) where the relationship

might become negative for high levels of competition (see Aghion et al. (2002)).

Building on a model with step-by-step innovations we show in this paper that dismissal costs

spur innovation if product markets are not too competitive: technologically more advanced firms

endogenously exit with smaller probability so that there is a dynamic incentive to innovate in order

to decrease the expected value of the dismissal cost. But dismissal costs decrease the absolute

asset value of the firm and can induce exit of whole industries, especially if the absolute value is

already low because of intense competition. These opposite effects and their dependence on the

policy mix of collective dismissal cost and product market regulation explain why empirical studies

have difficulties to detect a robust negative effect of EPL on innovation. In particular, the model

can explain why some studies find a positive effect of EPL on innovation for certain industries.

Collective dismissal costs clearly have an adverse effect on innovations if markets are perfect and

complete. In our modeling framework this is not the case because of product market imperfections:

each industry is characterized by a duopoly. This is in the spirit of some related papers on firing

cost and growth. Levine and Tyson (1990) argue that higher job security increases employee

participation and thus productivity where employers do not offer job security on their own initiative

because of adverse selection. Offering more security compared to other firms would result in low-

effort job applicants (see Levine (1991)). More formally, Fella (2000) shows in a model with

search frictions that severance payments increase the firm’s willingness to invest in worker’s general

training: separation is less likely to occur in which case the firm looses all of its investment since the

human capital is embodied in the worker. In Fella’s model large severance payments or consensual

layoff agreements induce firms to bargain efficiently over the joint payoff from separation. Another
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explanation is put forward by Saint-Paul (2002). In his model production of goods is relatively less

risky at late stages of the product cycle. Saint-Paul shows that firing costs decrease R&D activity

for new goods, the “primary” innovation, whereas they increase R&D for imitation of mature goods,

the “secondary” innovation. However, all these explanations are at odds with empirical evidence

that product market competition tends to be positively related to innovation or productivity growth.

More variability of product demand and resulting layoffs decrease employee participation according

to Levine and Tyson (1990) so that an increase in product market competition lowers productivity.

In the model of Fella (2000) the joint surplus of the match decreases if product markets are more

competitive. As turnover rises in the labor market, firms’ investment in general training falls.

Finally, in the model of Saint-Paul (2002) higher turnover in the labor market resulting from

product market competition or higher production risk decreases R&D for “primary” innovation in

favor of R&D for “secondary” innovation. Our modeling framework instead is consistent with both

pieces of empirical evidence, the possible positive correlation between product market competition

or exit costs and innovation.

The rest of the paper is structured as follows. In Section 2 we present the model. In Section 3

we derive the main result that collective dismissal costs spur innovation if product markets are not

too competitive. We conclude in Section 4.

2 A model

The economy has a continuum of production sectors and a continuum of consumers.1

Consumers Households with infinite horizon have the preferences

U(C(t), l(t)) =

Z ∞

0
e−rt

·Z 1

0
lnCi(t)di− l(t)

¸
dt,

where Ci denotes consumption of goods produced by industry i, r is the market interest rate

which equals the discount rate and l denotes the labor supplied by each household. The preferences

1Production and innovation are modelled as in Aghion et al. (2001).
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imply infinitely elastic labor supply.2 Furthermore, log-utility implies that a fixed amount of

expenditure is spent on each good.3 The household’s maximization problem is characterized by the

current-value Hamiltonian

H =

Z 1

0
lnCi(t)di− l(t) + ζ(t)

µ
wl(t)−

Z 1

0
Pi(t)Ci(t)di

¶
where w denotes the wage, Pi is the price of consumption goods Ci and ζ is the multiplier of the

budget constraint. Note that agents do not have access to capital markets. Allowing agents to

borrow or save would substantially complicate the model since turnover due to firm exit exposes

agents to uncertainty. Given that agents have log-utility, precautionary saving motives would

arise. From a technical point of view, the assumption is done for tractability because otherwise the

problem would have a state variable, liquid assets, which in general would not allow us to derive

the analytic results below. The first-order conditions with respect to Ci(t) and l(t) are

1

Ci(t)
= ζ(t)Pi(t)

and

w =
1

ζ(t)
.

Substituting out ζ(t) and integrating over i, we get

w =

Z 1

0
Pi(t)Ci(t)di = 1 (1)

where the last equality follows because we normalize expenditure for the goods of each industry to

one. Note that the representative agent supplies one unit of labor if all industries produce.

The goods produced by the two firms in each industry are assumed to be imperfectly substi-

tutable in the utility function. The composite consumption good of each industry is characterized
2As pointed out by Aghion et al. (1997) inelastic labor supply will lower the effects of, e.g., product market

competition on innovations because wages rise as employment does which lowers the rents obtained by innovating.
3Note that strictly speaking we need to define consumer utility as ln(Ci+c), c> 0, for marginal utility to be

well defined if the whole industry i stops producing (see below). Alternatively, we could restrict the support of the

industry shocks to prevent this from happening.
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by

Ci = gi(ca, cb) = (c
αi
a + cαib )

1
αi ,

where consumption goods of the two firms are ca and cb, respectively. Although αi is really a

taste parameter, it relates to standard measures of competition. E.g., a higher αi implies a higher

elasticity of demand and less market power. Note that in the limit case of α = 1 the goods of the

two firms are perfect substitutes. We assume for simplicity that competition is the same across

industries, i.e., α = αi ∈ (0; 1). Then the problem structure is symmetric for all industries so that

we drop the industry index i in the rest of the paper.

The problem’s structure allows two-stage budgeting so that consumption for each of the two

goods in every industry is determined by the following maximization problem:

max
cj

g(ca, cb)

s.t.

paca + pbcb = 1 .

This implies that

ca =
p

1
α−1
a

p
α

α−1
a + p

α
α−1
b

(2)

and

cb =
p

1
α−1
b

p
α

α−1
a + p

α
α−1
b

, (3)

where pa denotes the price of the good produced by firm a.

Producers There are barriers to entry since the market of each industry is characterized by a

duopoly. As in Aghion et al. (2001), two firms engage in an infinitely repeated duopoly game in

which they perform R&D and then set prices in Bertrand competition. Rents occur although the

production function is assumed to have constant returns. Consequently, unit costs do not depend

on the quantities produced. This assumption is important because with fixed costs the most cost-

efficient way to produce would be achieved with one firm only. Collective dismissal costs would
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have an unambiguously negative effect on innovations in such a model since such costs decrease

monopoly rents. Instead, this is not necessarily the case in the duopoly model as we will see below.

Markets clear so that

cj = xj ,

where xj is the amount of output produced by each firm j = a, b. The elasticity of demand (defined

as a positive number) corresponding to the demand functions (2) and (3) derived above is

ηj =
1− αλj
1− α

. (4)

The revenue, λj ≡ pjxj , can be written as

λj =
p

α
α−1
j

p
α

α−1
a + p

α
α−1
b

, (5)

where λa + λb = 1 given our normalization of industry expenditure.

We assume that each firm can adjust its labor force without cost unless it exits the industry.

These costs are best interpreted as collective dismissal or other exit costs. In particular, firms can

adjust their labor force marginally without cost as they become relatively more or less efficient

with respect to their competitor. Adjustment costs such as firing costs for marginal labor force

adjustment would not allow us to derive analytic results in general because the revenue function

would need to be conditioned on the state variable l. In future research we plan to analyze the role

of marginal adjustment cost numerically.

We assume that the production function has constant returns

xj =
¡
ρj
¢−1

lj (6)

where equation (1) implies that the cost of every production unit in firm j is ρj . Given these

assumptions and equation (4), the revenue-maximizing price of firm j is

pj =
ηj

ηj − 1
ρj =

1− αλj
α (1− λj)

ρj . (7)
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Finally, profits are determined by

πj =
λj
ηj
=

λj(1− α)

1− αλj
, (8)

where we use equation (4) for the second equality.

As shown by Aghion et al. (2001), equations (5), (7) and (8) can solved for unique equilibrium

prices, revenues and profits which depend on the relative cost

zj ≡
ρj
ρ−j

. (9)

For given α, the equilibrium profit of firm j negatively depends on the relative cost zi since the

demand for the industry good is unit-elastic. The absolute cost level does not matter for profits.

Moreover,

lim
zj→0

πj(zj) = 1 , (10)

i.e., a firm’s profit equals total revenue if the competitor is not competitive at all. In this case

the firm sells the intermediate good at a finite but very high price and extracts all revenues at

infinitesimal cost. Moreover, note that revenues and profit flows do not depend on the relative

technology z if the goods of the two firms are not substitutable at all, i.e., for α = 0

πj(α = 0) =
1

2
. (11)

Process innovations Each sector is assumed to be a duopoly also in innovations. The effort for

innovations is assumed to depend on the current state of technology which implies that we search

for symmetric stationary equilibria in Markov strategies. We derive results for the case of very large

innovations in order to convey the main message as simple as possible. The results can be gener-

alized, however. As shown by Aghion et al. (2001) small innovations decrease the appropriability

effect present in Schumpeterian models. Because of the appropriability effect, policies that decrease

absolute rents are bad for growth in the classic Schumpeterian model of creative destruction.

If a firm innovates, its input requirement for production falls by the factor γ−1, γ > 1. Hence,

the relative cost of the technological leader being one step ahead is z = γ−1. In the case of very
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large innovations the technology leader does not innovate (this is indeed optimal if γ →∞ because

z = γ−1 and equation (10) imply that profits cannot be increased further by innovation). Hence,

a technology leader is at most one step ahead on the technology frontier. The relative position of

each firm can be summarized by the subscripts k = {1, 0,−1} which denote the technology leader,
neck-and-neck firms and the technology laggard, respectively. Step-by-step innovations mean that

a technology laggard first has to catch up before he can become a technology leader. Employing βq2

2

units of labor, β > 0, a firm moves one step forward on the technology frontier with the endogenous

Poisson hazard rate qk. Because of very large innovations the technology leader does not exert any

research effort, i.e., q1 = 0. The technological follower catches up with the leader at rate q−1. If this

happens, firms are neck-and-neck and exert research effort q0 which is then also the endogenous

Poisson hazard rate for each firm to become a technology leader.

Profit shocks and collective dismissal cost We assume that every industry is exposed to an

i.i.d. exogenous profit shock ε which hits each industry with Poisson probability φ.4 This shock

can be interpreted as an unexpected change of an industry’s business conditions such as costs of

law suits resulting from unforeseen consequences of new inventions or government subsidies for

certain industries.5 We let this shock be uniformly distributed in the interval [ε; ε] normalizing

the expected value to E(ε) = 0 and denoting the cumulative distribution function with G(ε). The

support of the distribution is such that firms close down their business should they be exposed

to an adverse enough shock. The explicit condition will be mentioned below. Moreover, we allow

for exogenous churning with Poisson hazard ξ. Exogenous churning secures that firms exit and

reenter in equilibrium. Once a firm stops operations, it can restart production in the subsequent

4This assumption makes the model’s solution substantially easier because the difference of the asset value of firms

within an industry is not stochastic.
5Government subsidies are financed lump-sum without adding further distortions. Alternatively, one could assume

firm-specific taste shocks which are such that profits increase by the same amount, independent of the position on

the technology frontier.
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periods if business conditions are more favorable, i.e., if a larger ε is realized.6 In the case of

exogenous churning, firms immediately reenter (or the firm is replaced by an identical firm). This

set-up allows us to preserve the duopoly structure of the industries and simplifies the analysis

considerably. Letting the industry market structure be endogenous is a challenging task for future

research.

Dismissal costs are not neutral for firms since they cannot pass on the cost to the workers.

If the realization of ε is smaller than the critical value εk, all workers are fired and firms incur

wasteful collective dismissal costs of size δ. The critical value εk depends on the firms’ position on

the technology frontier. Denoting the asset value of the firm with V , firms fire if

Vk(ε) ≤ −δ (12)

where the subscript k ∈ {1, 0,−1} denotes the relative position on the technology frontier. Since
V1 > V0 > V−1 and Vk depends positively on ε, it follows that ε1 < ε0 < ε−1 < 0 (explicit

expressions for Vk and εk are given below). Technologically more advanced firms close down if

relatively more adverse shocks occur. Hence, the probability of exit decreases as firms advance on

the technology frontier: G(ε ≤ ε1) < G(ε ≤ ε0) < G(ε ≤ ε−1).

Note that the same number of workers is employed over time: the continuum of industries

implies that the law of large numbers holds. The same mass of firms exits and reenters at every

point in time. Labor saving innovations do not affect labor demand because innovations are passed

on to prices and product demand is unit elastic. Unemployment can arise if whole sectors shut down.

The level of unemployment depends on the mass of industries exiting and reentering. However,

given that we do not allow for changes in market structure, it is clear that our model is not really

useful to analyze employment effects of product market regulation or collective dismissal costs.

Thus, we concentrate on the effect on innovation in the analysis below.

6Since we look at the case of very large innovations so that the technology leader never innovates, we can neglect

changes of the relative technology position while one firm is out of business. Firms that are out of business do not

innovate by definition (they would not be considered out-of-business otherwise).
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Asset value of the firm The asset value of the firm Vk in the three states satisfies the following

equations for small time intervals which we will explain below in some detail:

rV1 (ε) = π1 + ε+ q−1(V0 (ε)− V1 (ε)) (13)

+φ

ÃZ ε

ε−1
V1 (y) dG(y) +

Z ε−1

ε1

Vm (y) dG(y) +G(ε ≤ ε1)(−δ)− V1 (ε)

!
+ ξ(−V1(ε)),

rV0 (ε) = π0 + ε+ q0(V1 (ε)− V0 (ε)) +

rival0sR&D
↓
q0 (V−1 (ε)− V0 (ε))− β(q0)

2

2
(14)

+φ

µZ ε

ε0

V0 (y) dG(y) +G(ε ≤ ε0)(−δ)− V0 (ε)

¶
+ ξ(−V0(ε))

and

rV−1 (ε) = π−1 + ε+ q−1(V0 (ε)− V−1 (ε))− β(q−1)2

2
(15)

+φ

ÃZ ε

ε−1
V−1 (y) dG(y) +G(ε ≤ ε−1)(−δ)− V−1 (ε)

!
+ ξ(−V−1(ε)) .

E.g., in equation (15) the asset value of a technology laggard contains profit flows π−1 and

the change of the firm’s asset value moving one step ahead on the technology frontier, V0 − V−1,

which happens with probability q−1. There is a flow cost of
β(q−1)2

2 for the labor used for process

innovation. Furthermore, the firm’s asset value changes with Poisson probability φ because of profit

shocks. With probability G(ε ≤ ε−1) the firm exits and incurs the collective dismissal cost −δ.
Finally, with Poisson probability ξ natural attrition dissolves the match between workers and the

firm without cost so that the asset value of the firm falls to 0.7

The intuition for equation (14) is analogous. Note in equation (13) that the technology leader

has no incentive to innovate because we assume very large innovations.8 Moreover, the leader can
7Note that exogenous churning does not affect the asset value of the competitor. This is because we have assumed

above that exogenous churning leaves the duopoly structure unchanged (firms reenter immediately or are replaced

by identical firms). This assumption simplifies the algebra but is not crucial for the results.
8 If innovations are small instead, dismissal costs imply an additional incentive to innovate also for the technology

leader.
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become monopolist for a small time interval (we use the subscript m for this case). This event

occurs, i.e., if ε1 ≤ ε ≤ ε−1 and the probability of this event is G(ε1 ≤ ε ≤ ε−1). In this case

the industry shock is such that the technology leader continues to produce whereas the technology

laggard decides to stop production and innovation. The profits of the monopolist are given by

πm = lim
γ→∞π1 = 1 .

The monopolist is able to extract all consumer expenditure (which we normalized to 1). The asset

value of the monopolist leader is

rVm(ε) = πm+ε+φ

ÃZ ε

ε−1
V1(ε)dG(ε) +

Z ε−1

ε1

Vm(ε)dG(ε) +G(ε ≤ ε1)(−δ)− Vm (ε)

!
+ξ(−Vm(ε)) .

(16)

Note that compared with equation (13), the monopolist technology leader is better off

because he does not face the immediate risk of becoming a neck-and-neck firm given that his

competitor is out of business and does not engage in process innovation.

Exit thresholds As mentioned above, industries are characterized by a duopoly. We assume

that the entry cost C(α) is such that the technology laggard is just indifferent ex ante whether to

enter the market or not:

V−1(0) = C(α) . (17)

The entry cost has to fall as product markets become more competitive so that the technology

laggard remains indifferent although his profit flows fall. Note that ε affects the whole industry so

that

∆k ≡ Vk (ε)− Vk−1(ε)

does not depend on ε. Using equations (12) and (17) we find:

Result 1: The exit thresholds are

ε−1 = −(r + φ+ ξ)(C + δ), (18)
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ε0 = −(r + φ+ ξ)(C + δ +∆0) , (19)

and

ε1 = −(r + φ+ ξ)(C + δ +∆0 +∆m) , (20)

where ∆m ≡ Vm − V0.

Proof: see the Appendix.

Equation (20) follows because the technology leader only exits when the laggard is already out

of business. Intuitively, the exit thresholds negatively depend on the collective dismissal and entry

cost. Since ∆0 > 0 and ∆m > 0, equations (18)~(20) imply that

0 > ε−1 > ε0 > ε1.

Technologically more advanced firms exit if shocks are relatively more adverse.

Innovation effort As mentioned above, innovations are very large so that the technology leader

will not exert any innovation effort:

q1 = 0. (21)

Differentiating equations (14)~(15) with respect to q0 and q−1, respectively, we find that

q0 =
∆1
β

(22)

and

q−1 =
∆0
β
. (23)

Innovation efforts positively depend on the increase of the asset value as firms improve their

relative position on the technology frontier. We now have all the ingredients to analyze the effects

of collective dismissal costs on innovation.
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3 Collective dismissal costs and innovation

The model can be solved explicitly applying the method of undetermined coefficients but the

solution is too messy to add to the intuition. Instead, using equations (13)~(16), we find that

Result 2: The model can be characterized in terms of ∆k by the two equations

F1(∆0,∆1, δ) ≡ ∆
2
1

2β
+

r + φ
ε− (r + φ+ ξ)(C + δ +∆0)− ∆2

0
β

2ε
+ ξ

∆1 (24)

− (π1 − π0)− 1
2
φ

³
r + φ+ ξ + ∆0

β

´2
2ε

∆21 = 0

and

F0(∆0,∆1, δ) ≡ ∆20
2β

+

µ
r + φ

ε− (r + φ+ ξ)(C + δ +∆0)

2ε
+ ξ

¶
∆0 (25)

−(π0 − π−1)− ∆
2
1

2β
+
∆0∆1
β
− 1
2
φ
(r + φ+ ξ)2

2ε
∆20 = 0 .

Proof: see the Appendix.

Subtracting equation (25) from (24) we can show that analogous to Aghion et al. (2001):

Result 3: Innovation efforts are strongest if firms are neck-and-neck, i.e.,

∆1 > ∆0 . (26)

Proof: see the Appendix.

Because of equations (22) and (23), ∆1 > ∆0 implies that innovation efforts are strongest if

firms are neck-and-neck.

The system of equations

F ≡

 F1

F0

 = 0
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implicitly determines ∆1 and ∆0 as a function of δ. Note that, as in Aghion et al. (2001), ∆1 and

∆0 (and thus also the innovation efforts q1 and q0) depend positively on relative profits π1 − π0

and π0− π−1. Stochastic shocks and collective dismissal costs add dynamic incentives to innovate.

To illustrate this we show the following.

Result 4: Collective dismissal costs result in additional incentives to innovate for the technology

laggard because Z ε−1

ε0

V0(y)dG(y) +
ε−1 − ε0
2ε

δ =
1

2

(r + φ+ ξ)2

2ε
∆20 > 0 , (27)

and for the neck-and-neck firm because

Z ε0

ε1

Vm(y)dG(y) +
ε0 − ε1
2ε

δ =
1

2

³
r + φ+ ξ + ∆0

β

´2
2ε

∆21 > 0. (28)

Proof: see the Appendix.

Expressions (27) and (28) are very similar. The additional term ∆0/β in the numerator of (28)

results because the technology leader can become monopolists in case of which he does not face

competition. More importantly, both expressions show that technologically more advanced firms

do not fire in the interval [εk+1; εk] so that innovation has the additional benefit to decrease the

expected firing cost by
εk − εk+1

2ε
δ ,

where we use the assumption of a uniform distribution. The additional benefit more than compen-

sates the lower asset value due to the adverse shocks since in the interval [εk+1; εk], Vk+1 ≥ −δ.
Note that the additional benefit of innovation does not directly depend on δ because Vk is linear in

ε. Thus, as long as firms remain in business, it is irrelevant that higher collective dismissal costs

lower the absolute value of Vk. All that matters is the difference between the exit thresholds. Col-

lective dismissal costs matter directly, however: such costs lower the effective discount rate which,

for example, for neck-and-neck firms is defined as

r + φG(ε ≤ ε0) + ξ = r + φ

µ
ε− (r + φ+ ξ)(C + δ +∆0)

2ε

¶
+ ξ,
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where we use equation (19) and the assumption of a uniform distribution. The technology leader’s

effective discount rate is even smaller because he can become monopolist if the laggard stops

production and in this case there is no risk of catching-up. A smaller effective discount rate increases

the incentives to innovate because firms expect to benefit relatively longer from the successful

innovation.

Before we implicitly differentiate the system of equations F to derive the effect of exit costs on

innovation, we derive the growth rate implied by the innovation efforts in each industry.

Result 5: The economy grows at rate

g =
2G(ε ≥ ε0)q0G(ε ≥ ε−1)q−1
2G(ε ≥ ε0)q0 +G(ε ≥ ε−1)q−1

ln γ

=
2∆0∆1 (ε+ (r + φ+ ξ)(C + δ +∆0))

2β∆1
ε+(r+φ+ξ)(C+δ+∆0)
ε+(r+φ+ξ)(C+δ) +∆0

ln γ . (29)

Proof: see the Appendix.

Moreover, one can show that
∂g

∂∆k
> 0 .

Growth is higher if firms engage in more process innovations (see equations (22) and (23)).

We now can state the main result of this paper.

Result 6: Collective dismissal cost can increase process innovations qk and thus growth g if ε is

large enough and α > 0 .

Proof: see the Appendix.¥

The intuition is that stochastic profit shocks make technologically more advanced firms relatively

better off because they stop production with a smaller probability (as shown in Result 4). As we

have seen above, technologically more advanced firms have smaller expected firing costs. The size of

this effect does not directly depend on δ in our model (see equation (27)). However, in equilibrium

the size of the effect increases in δ as long as ∂∆k/∂δ > 0. Moreover, the effective discount rate is

smaller for technologically advanced firms. The size of this effect increases in δ.
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The sufficient condition for Result 6 has an intuitive interpretation: ε needs to be large enough,

i.e., a sufficient amount of uncertainty is necessary. More uncertainty increases the probability mass

of shocks for which firms need to close down and thus increase the expected exit cost. Technologi-

cally more advanced firms are only better off, however, if there is at least some competition, α > 0.

If α = 0, profit flows and thus also the exit thresholds εk are the same so that all firms exit with

the same probability (see equation (11)). Moreover, V−1(δ, α) is a negative function of both δ and

α. Thus, one the one hand, if the rents in the market are small due to intense competition and/or

high exit costs, the technology laggards can be driven out of business and only one firm remains

producing. In this case, there will be no innovations. On the other hand, ∆1 and ∆0 can increase in

α so that exit thresholds differ relatively more and the positive effect of collective dismissal costs on

innovation becomes more pronounced. Thus, exit costs can spur innovation and some competition

amplifies this effect but rents need not be too small and/or exit costs not too high. The policy mix

of exit costs and product market competition, captured by the parameters (δ, α) in our model, is

an important determinant of the effects of exit costs on innovation.

Dismissal costs can spur growth for two reasons. First innovation efforts increase and second

the fraction of firms that potentially innovate increases because stopping production is relatively

more costly. However, the effect of exit costs on growth should not be taken at face value since we

abstract from the effect of exit costs on firm entry by assuming a stable duopoly structure.

4 Conclusion and Further Research

Our model shows that collective dismissal costs can spur innovation if product market competition

is not too intense: technologically more advanced firms endogenously exit with smaller probability

so that there is a dynamic incentive to innovate in order to decrease the expected value of the

dismissal cost. This mechanism can explain why empirical studies find a positive relationship

between EPL and innovation for some industries whereas the effect is negative for others. The

model does not allow, however, to draw conclusions about growth in general. The model is partial

17



in an important respect because we do not fully analyze entry and exit decisions of firms so that

the results apply to incumbent firms. It would be interesting to extend the model in future research

to allow for endogenous changes in the industry structure. Furthermore, a disaggregate empirical

analysis of process innovation, exploiting variation across sectors, countries and time with respect

to competition and employment protection, could shed further light on the mechanisms at work.
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Appendix

Proof of Result 1:

Equations (13)~(16) can be solved by applying the method of undetermined coefficients. We guess the

solution

Vk(ε) = bkπk + ckε+ dk .

Plugging this guess into equations (13)~(16), we get a system of 12 equations in 12 unknowns. Although

the general solution is messy, the coefficients ck are determined by the following subset of equations:

(r + φ+ ξ + q−1) c−1ε = ε+ q−1c0ε

(r + φ+ ξ + q−1) c1ε = ε+ q−1c0εr + q0 +

rival0sR&D
↓
q0 + φ+ ξ

 c0ε = ε+ q0c1ε+

rival0sR&D
↓
q0 c−1ε

(r + φ+ ξ)cmε = ε .

The solution is

ck = c = (r + φ+ ξ)−1.

Given that the solution takes the form of the guess mentioned above,

Vk(εk)− Vk(0) = (r + φ+ ξ)−1εk . (30)

At the same time equations (12) and (17) imply that

V−1(ε−1)− V−1(0) = − (C + δ) .

Thus,

ε−1 = −(r + φ+ ξ) (C + δ) .

Given that the shock ε hits the whole industry,

V0(0)− V−1(0) = ∆0 (31)
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does not depend on ε. Using equation (30) and adding and subtracting V−1(0) we get

V0(ε0)− V0(0) + V−1(0)− V−1(0) = (r + φ+ ξ)−1ε0 .

Using equations (12), (17) and (31), this implies that

ε0 = −(r + φ+ ξ) (C + δ +∆0) .

The derivation of ε1 is analogous.¥

Proof of Result 2:

Subtracting equation (14) from (13), (14) from (16) and (15) from (14), using the assumption of the

uniform distribution and rearranging, we find thatµ
r + q0 + q−1 + φ(1− ε− ε−1

2ε
) + ξ

¶
∆1 = π1 − π0 + q0∆0 +

β(q0)
2

2
(32)

+φ

µ
ε−1 − ε0
2ε

∆m +

Z ε0

ε1

Vm(y)dG(y) +
ε0 − ε1
2ε

δ

¶
,

µ
r + φ(1− ε−1 − ε0

2ε
) + ξ

¶
∆m = πm − π0 + q0 (∆0 −∆1) + β(q0)

2

2
(33)

+φ

µ
ε− ε−1
2ε

∆1 +

Z ε0

ε1

Vm(y)dG(y) +
ε0 − ε1
2ε

δ

¶
,

and µ
r + q−1 + q0 + φ(1− ε− ε0

2ε
) + ξ

¶
∆0 = π0 − π−1 + q0∆1 − β(q0)

2

2
+

β(q−1)2

2
(34)

+φ

µZ ε−1

ε0

V0(y)dG(y) +
ε−1 − ε0
2ε

δ

¶
.

Subtracting equation (33) from (32) and using that πm − π1 ≈ 0 for the case of very large innovations,

∆m =
r + φ+ ξ + q−1

r + φ+ ξ
∆1 . (35)

Moreover, we can express the integrals in terms of ∆k exploiting that V (ε) is linear in ε and the density

is constant for the uniform distribution. In graphical terms, the integral can be calculated by subtracting a
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triangle from a rectangle. Using equations (12), (18)~(23), (30) and (35) we find thatZ ε0

ε1

Vm(y)dG(y) =
(ε0 − ε1)

2ε

·
Vm(ε1)− 1

2
(Vm(ε1)− Vm(ε0))

¸
= −

r + φ+ ξ + ∆0
β

2ε
∆1

µ
δ − 1

2

µ
r + φ+ ξ +

∆0
β

¶
∆1

¶
. (36)

Similarly, Z ε−1

ε0

V0(y)dG(y) =
(ε−1 − ε0)

2ε

·
V0(ε0)− 1

2
(V0(ε0)− V0(ε−1))

¸
= −r + φ+ ξ

2ε
∆0

µ
δ − 1

2
(r + φ+ ξ)∆0

¶
. (37)

Substituting equations (35)~(37) and (18)~(23) into equations (32) and (34) and rearranging, we get equa-

tions (24) and (25).¥

Proof of Result 3:

Subtracting equation (25) from (24) yields

∆21 −∆20
2β

+

µ
r + φ

µ
ε− (r + φ+ ξ)(C + δ +∆0)

2ε

¶
+ ξ

¶
(∆1 −∆0) (38)

+
∆1 (∆1 −∆0)

2β
− 1
2
φ
(r + φ+ ξ)2

2ε

¡
∆21 −∆20

¢
= φ

∆20
2βε
∆1 +

1

2

φ

2ε

µ
∆0
β

¶2
∆21 + π1 + π−1 − 2π0 .

The right-hand side of equation (38) is positive because

∆k > 0

and

π1 + π−1 > 2π0 ,

where the last inequality is shown in Proposition 1, Aghion et al. (2001).

The left-hand-side of equation (38) is a positive function of ∆1 −∆0 if

ε >
1

2
φβ (r + φ+ ξ)2 . (39)
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Hence,

∆1 −∆0 > 0.

Condition (39) is satisfied as long as ∆k depends positively on πk+1 − πk in case of which the model’s

solution is of interest (see equations (24) and (25)).¥

Proof of Result 4:

Equation (37) in the proof of Result 2 implies thatZ ε−1

ε0

V0(y)dG(y) = −r + φ+ ξ

2ε
∆0

µ
δ − 1

2
(r + φ+ ξ)∆0

¶
.

Moreover, Result 1 implies that

ε−1 − ε0
2ε

δ =
(r + φ+ ξ)∆0

2ε
δ .

Hence, Z ε−1

ε0

V0(y)dG(y) +
ε−1 − ε0
2ε

δ =
1

2

(r + φ+ ξ)2

2ε
∆20 .

Expression (28) is derived analogously.¥

Proof of Result 5:

We use the same notation as in Aghion et al. (2001) and adapt their argument to our model. First note

that in steady state as many firms have to exit a state on the relative technology frontier as enter the same

very state. Let µh be the fraction of firms in state h ∈ {ι, n}, where ι denotes the state in which there is
a technology laggard and leader and n denotes the state in which both firms are neck-and-neck. In each of

these states firms can stop production. Only the firms in business do innovate. This implies that in steady

state

2µnG(ε ≥ ε0)q0 = µιG(ε ≥ ε−1)q−1 .

In state n both neck-and-neck firms engage in process innovation if they do not exit and they are successful

with probability q0. In state ι only the technology laggard potentially innovates with probability q−1 if he

does not exit. Given that µn + µι = 1, the equation simplifies to

2µnG(ε ≥ ε0)q0 = (1− µn)G(ε ≥ ε−1)q−1 . (40)
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Aggregate output Y is defined as

lnY =

Z 1

0
lnXidi ,

where Xi is the industry output defined as

Xi ≡ (xαii,j + xαii,−j)
1
αi .

The economy grows at rate

g =
d

dt
lnY .

Since lnXi is exposed to independent and identically distributed shocks, the growth rate equals

g = lim
∆t→∞

∆ lnXi

∆t
.

This growth rate is determined by the asymptotic frequency of firms that advance the industry’s frontier

technology. Every time this happens the value of lnXi increases by ln γ. In the case of very large innovations

only the firms which are neck-and-neck advance the industry’s frontier technology. The asymptotic fraction

of firms in this state is µn and the probability that the technology frontier is advanced is 2q0 so that

g = 2µnG(ε ≥ ε0)q0 ln γ =
2G(ε ≥ ε0)q0G(ε ≥ ε−1)q−1
2G(ε ≥ ε0)q0 +G(ε ≥ ε−1)q−1

ln γ

where the last equality uses equation (40).¥

Proof of Result 6:

We derive ∂∆0
∂δ and ∂∆1

∂δ by implicit differentiation of the system of equations (24) and (25): ∂∆1
∂δ

∂∆0
∂δ

 = −

 ∂F1
∂∆1

∂F1
∂∆0

∂F0
∂∆1

∂F0
∂∆0


−1  ∂F1

∂δ

∂F0
∂δ


= − 1

∂F1
∂∆1

∂F0
∂∆0
− ∂F0

∂∆1

∂F1
∂∆0

 ∂F0
∂∆0

− ∂F1
∂∆0

− ∂F0
∂∆1

∂F1
∂∆1


 ∂F1

∂δ

∂F0
∂δ


=

1
∂F1
∂∆1

∂F0
∂∆0
− ∂F0

∂∆1

∂F1
∂∆0

 ∂F1
∂∆0

∂F0
∂δ − ∂F0

∂∆0

∂F1
∂δ

∂F0
∂∆1

∂F1
∂δ − ∂F1

∂∆1

∂F0
∂δ

 .
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A sufficient condition for ∂∆i
∂δ > 0, i = 0, 1, is that

∂Fi
∂δ

< 0,
∂Fi
∂∆i

> 0,
∂Fj
∂∆i

< 0

and

∂Fi
∂∆i

>

¯̄̄̄
∂Fj
∂∆i

¯̄̄̄
.

where j 6= i, j = 0,1. It remains to calculate the derivatives ∂Fi
∂∆j

and ∂Fi
∂δ and the explicit conditions for

the model’s parameters.

The derivatives are found to be:

1.

∂F1
∂∆1

=
∆1
β
+

r + φ
ε− (r + φ+ ξ)(C + δ +∆0)− ∆2

0
β

2ε
+ ξ


−φ
³
r + φ+ ξ + ∆0

β

´2
2ε

∆1 > 0 ,

if

ε > φβ

³
r + φ+ ξ + ∆0

β

´2
2

≡ ε+ .

The inequality is implicit in ε since ∆0(ε). Note that the effective discount rate of the technology leader

r + φ
ε− (r + φ+ ξ)(C + δ +∆0)− ∆2

0
β

2ε
+ ξ > 0 .

The sufficient condition secures that the first term of the derivative is larger than the last term.

2.

∂F1
∂∆0

= −∆1φ(r + φ+ ξ)

ε

µ
1

2
+

∆0
β (r + φ+ ξ)

¶
− φ∆21

r + φ+ ξ + ∆0
β

2βε
< 0 .

3.

∂F1
∂δ

= −φ(r + φ+ ξ)

2ε
∆1 < 0 .

4.

∂F0
∂∆1

=
∆0 −∆1

β
< 0

because of Result 3 (∆1 > ∆0).
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Note that ¯̄̄̄
∂F0
∂∆1

¯̄̄̄
<

∂F1
∂∆1

if

ε >
φ

2

(r + φ+ ξ) (C + δ +∆0) +
∆2
0
β

r + φ
2 + ξ − ∆1−∆0

β

≡ ε‡

given the conditions mentioned above. The inequality is implicit in ε since ∆k(ε). The inequality ensures

that the second term in brackets of the derivative ∂F1/∂∆1 is larger than |∂F0/∂∆1|.
5.

∂F0
∂∆0

=
∆0
β
+

µ
r + φ

µ
ε− (r + φ+ ξ)(C + δ +∆0)

2ε

¶
+ ξ

¶
−φ(r + φ+ ξ)

2ε
∆0+

∆1
β
−φ(r + φ+ ξ)2

2ε
∆0 > 0

if

ε > φβ
(r + φ+ ξ)2 + r + φ+ ξ

4
≡ ε† .

Note that∆1 > ∆0. Given that the effective discount rate is positive (the second term of the derivative),

the sufficient condition secures that the first and fourth term are larger than the third and fifth. Moreover,¯̄̄̄
∂F1
∂∆0

¯̄̄̄
<

∂F0
∂∆0

if

ε >
φ(r + φ+ ξ)

³
1
2 +

∆0
β(r+φ+ξ)

´
∆1 + φ∆21

r+φ+ξ+
∆0
β

2β + φ (r+φ+ξ)(C+δ)2 + φ(r + φ+ ξ)
³
1 + r+φ+ξ

2

´
∆0

∆0
β + ∆1

β + r + ξ + φ
2

≡ ε∗.

The inequality is implicit in ε since ∆k(ε).

6.

∂F0
∂δ

= −φ(r + φ+ ξ)

2ε
∆0 < 0 .

Thus we have seen that

∂∆i

∂δ
> 0

if

ε > max
n
ε+, ε†, ε‡, ε∗

o
.
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Note that this condition is sufficient but not necessary.

We now proceed to show how collective dismissal costs affect growth. Define

eqk ≡ G(ε ≥ εk)qk

so that equation (29) can be rewritten as

g =
2eq0eq−1
2eq0 + eq−1 ln γ .

Note that

∂g

∂eqk > 0 .

Furthermore,

∂eqk
∂δ

> 0

if

∂∆k

∂δ
> 0

because equations (18)~(23) imply that

∂qk
∂δ

> 0 and
∂εk
∂δ

< 0 .

Hence,

∂g

∂δ
=

0X
k=−1

∂g

∂eqk ∂eqk∂δ
> 0 .

¥
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