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ABSTRACT

Traits, Imitation, and Evolutionary Dynamics”

In this article, a modelling framework for the information transmission between agents in an
evolutionary game setting is proposed. Agents observe traits which reflect past and present
behaviour and success of other agents. If agents imitate more successful agents based on
these traits, the resulting dynamics are a multivariate stochastic process. An example for
such a process is simulated. The results resemble the replicator dynamics to a remarkable
degree. If traits moderately depend on the past, this accelerates convergence of the
dynamics towards a stable state. If the dependence is strong, the stable state is not reached.
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1 Introduction

In the context of evolutionary game theory, it is often assumed that agents
in a population interact in randomly drawn pairs and afterwards revise their
strategy using the gained information (see for example Fudenberg and Maskin
1990). A particular form of revision is imitation. Imitation is usually driven
by the intention to increase one’s success. Hoping that present and future
performance are positively related, an agent might be interested in learning
from another agent who is currently more successful. Supposing that the two
agents meet, the learning process can be structured in the following way:

e The agent compares her success with that of the other agent to deter-
mine to what degree she should change her behaviour.

e The agent then attempts to assess the behaviour of her role model in
order to copy it.

Both elements of the learning process require knowledge. First, the agent
must know her and the other player’s “success”. Second, she must know
her and the other player’s “behaviour”. Typically, success is taken to be
the utility obtained in the the immediately preceding interaction while be-
haviour is taken to be the strategy used in that interaction (see Weibull
1995, pages 155ff or Schlag 1998). Schlag (1998) proves that adopting the
strategy with a probability proportional to the difference in utility is the op-
timal learning rule when there is no additional information available. Schlag
(1998) also points out that a population following this rule evolves according
to a pay-off monotone dynamic. Weibull (1995, p. 158) notes that in the
neighbourhood of a stationary state, this dynamic resembles the replicator
dynamics, which are usually employed to describe the purely biological evolu-
tion of genetically determined behaviour. This surprising similarity of simple
social learning (imitation) and biological evolution has first been described by
Bjornerstedt (1993), who analysed an imitation rule where agents randomly
adopt other agent’s behaviour and where unsatisfied agents do so more often.

In all these models, imitation is based solely on recent information: the cur-
rent action and payoff of the role model. Why don’t agents also use past
information? The underlying rationale seems to be that agents meet anony-
mously. But if two strangers meet, they will have difficulty identifying the
success and behaviour of the other perfectly. Often, the assessment then has
to rely on signals which partly depend on the past and which imperfectly
reflect the present. Is this difference important and does it influence the re-
sulting evolutionary dynamics?



Success or behaviour of an unknown person are usually judged by clothing,
manners, body language etc. Frank (1987) argues that some of these signals
are beyond the control of the individual ( “hard-wired”) to explain the evolu-
tion of cooperation in a population. This suggests that behaviour is assessed
on the basis of character traits which are to a certain degree robust to changes
or difficult to change. Hence, a particular source of influence (and possibly
disturbance) on the observable success and behaviour are past utilities and
strategies: A person with a scar from a fight might be regarded as dangerous
although she turned her back on crime, while a driver of a prestigious car is
assumed to be successful, although she might not be anymore.

Contrary to this line of thought, the past normally leaves no trace in evo-
lutionary models of cooperation (Frank 1987, Harrington 1989, Amann and
Yang 1998): Once adapting a new strategy, agents immediately signal this
strategy. In a genetical context, where agents are programmed to play cer-
tain strategies, this assumption seems reasonable. In a social context, where
strategies are propagated by imitation, it is less clear why focussing on the
present is legitimate. If the evolution of cooperation is seen as a social rather
than a genetic phenomenon, it is thus sensible to examine what happens
to evolutionary dynamics, if agents are judged and imitated on the basis of
traits which do incorporate past events.

This article serves two purposes. On a conceptual level, it suggests a model
of information transmission, describes how this information is used for im-
itation and interaction, and how the resulting dynamics can be simulated.
On an applied level, it examines the influence of the past on the evolution
of cooperation. It turns out, that some influence of the past on signals has
a beneficial effect in the sense that the population reaches an asymptotically
stable state with some cooperation more smoothly. If there is too much in-
fluence of the past, however, the information used when imitating is out of
touch with reality and the population never reaches this state.

The following section suggests a way to model the dependence of signals on
the past using the idea of traits. Section 3 applies this information trans-
mission mechanism to a particular game which explains the evolution of
cooperation. Section 4 ties in the information transmission mechanism into
the imitation procedure while section 5 explains how the mechanism affects
the interaction between agents. Section 6 considers the dynamics which are
induced by imitation and interaction based on past-dependent signals. As
these dynamics are hard to describe in a closed form, the problem is adapted
for simulation in section 7. Finally, simulations are carried out for the pre-



viously introduced game in section 8 Section 9 concludes.

2 Dependence on the past

We want to assume, that the experiences of agent i, can be described by
events e!, where ¢ denotes the time, when the event occurred. Each event
consists of the strategy employed s! and the utility gained by this strategy u}:
el = (u!, st). These events carve themselves into the appearance of the agent
and form traits ;. Lacking additional information, an agent who wants to
learn from agent ¢ has to rely on signals which are based on these traits.

In comparison with the complete history of events, traits are less informative.
First, it is less clear what the agent actually did. There is a loss of modal in-
formation: upon meeting a person with a scar, we might not know, whether
it was caused by a fight or by an accident. Second, the time dimension might
be blurred. In other words, there is a loss of temporal information: for ex-
ample, it might be impossible to say, when exactly the scar was inflicted.

To represent the loss of modal information, we assume a function, which
maps events ¢! into a possibly lower dimensional trait space. This function
is called trait function. Supposing that strategies can be expressed as k-
dimensional vectors, that utility can be measured on the real line, and that
the trait space is [-dimensional the trait function g formally becomes:

g: Rf' — R E+1<1
(uf, s) —  gluy,s;). (1)

The loss of temporal information will be taken into consideration by weight-
ing the transformed events with respect to time. Formally, we employ an
intensity measure i ,(+), which has the same properties as a probability mea-
sure and assigns a weight to any time point between the starting time ¢, and
the present time ¢. Using this measure, we define the traits of an individual
1 at t as:

0 fto,t] x RN — IR
= [ () it ) @)

Finally, the information must be decoded to be useful for the receiver. This
step is necessary because the receiver is utimately interested in utility and
strategy of the agent and not in the traits. To represent the decoding, we



introduce a signal function. The signal function ¢~ maps back from the
[-dimensional trait space to the k + 1-dimensional space of strategies and
utility:
g— : Rl N Rk—i—l
0, — g (6}) (3)
Figure 1 depicts, how traits are composed and decomposed, when time is
discrete.
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Figure 1: The Composition of Traits

Traits carry the information about utility and strategy but this in-
formation is blurred by the past.

To simplify the model, one could assume, that the present trait is composed
from the last trait and the present event as depicted in figure 2. We want to
call such traits updatable. If the new trait is a convex combination of the old
trait and the present event, the resulting intensity measure for continuous
time becomes the exponential density.
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Figure 2: Updatable Traits

If traits are updatable, they are composed of the last trait and the
current event.

3 An Example: The Amann-Yang-Game

Information transmission between agents plays an important role for a series
of models trying to explain the evolution of cooperation (Frank 1984, Har-
rington 1987, Robson 1990, Amann and Yang 1998). While most of these
models are more concerned about stability and instability of cooperation
in populations, Amann and Yang (1998) describe an actual dynamic pro-
cess leading to some cooperation in a variation of the prisoners’ dilemma.
This process is fueled by the (rather mechanical) replicator dynamics, where
strategies grow proportional to their success. If the evolution of cooperation
is seen as a social phenomenon, it makes sense to replace the replicator dy-
namics by imitation. The result can then be compared to the result of the
replicator dynamics.

There are two players and four pure strategies in the game of Amann and
Yang:

e cooperate always (C),
e defect always (D),

e cooperate upon meeting a partner exhibiting a ” cooperative trait”, oth-



erwise avoid the interaction (CA), and

e defect upon meeting a partner exhibiting a ”cooperative trait”, other-
wise avoid the interaction (DA).

Obtaining the information about the trait, which is necessary for strategies
CA and DA, leads to costs k for the agent. If the interaction is avoided,
both participants get a side-payment which is larger than the payoff when
both agents defect but smaller than the payoff when both agents cooperate.
Besides this, the payoff matrix for an interaction is identical to that of the
ordinary prisoners’ dilemma.

To represent the strategies of agent i, we use the following vectors: C' =
(1,0,0,0), D = (0,1,0,0), CA = (0,0,1,0)’, and DA = (0,0,0,1)". To-
gether, with the utility obtained from the interaction, the events experienced
by agent i are represented as e! = (u!, (s!)')’, where s! is one of the above
vectors.

Amann and Yang assume that there is no influence of the past: Signals are
identical to traits which in turn reflect the strategy and utility from the in-
teraction. Using the framework of the previous section, there assumptions
can be embedded by setting trait and signal function to be identity functions
and assigning all weight to the present.’

Bearing in mind, that real life signals often do not only rely on the present
but also on the past and that a loss of modal information occurs, the follow-
ing alternative might be more appropriate. First, we want to assume, that
traits can only reflect, whether an individual intended cooperation or not and
whether it was careful or not. We will call the former cooperative trait (¢})
and the latter risk trait (7). Given a third trait measuring the utility (),
the trait function maps from the five dimensions describing the event to the
three dimensions of traits. Formally, the trait function can be represented
by the matrix

(4)

s
|
o O =
— = O
o~ O

0
0
1

o O O

If this matrix is multiplied from the left to the event vector, we obtain the
three-dimensional contribution of the event at time ¢ to the traits, where the

T Amann and Yang also analyse a variation of their game which includes random noise
in the signalling process. However, this noise is limited to the transmission of signals in
interactions and does not concern imitation.



first component relates to the utility, the second to carefulness, and the third
to cooperation. The actual trait (a!,7!,¢!)’, is then obtained by weighing
these contributions according to the time of occurrence. In case of updatable
traits in discrete time, the present contribution is weighed by a factor p while

the last trait is assigned the weight (1 — pu).

How does an agent infer the utility and strategy from traits? Because the
trait space is of lower dimensionality, an assumption needs to be made to
recover strategies from traits. For example, assuming independence between
carefulness and cooperation allows to retrieve the carefulness from the risk
trait and the cooperation aspect from the cooperative trait, while using the
utility trait as an indication for utility. The respective signal function trans-
forming traits at time ¢ into signals is:

- ) -2
(4)=st@ian = | ro-0-co) | ©
e

This signal function concludes the description of a more sophisticated but
complicated alternative to the transmission of information proposed by Amann
and Yang.

4 Imitation and traits

Having defined a model of information transmission alone, does not lead to
population dynamics. It is also necessary to specify how agents use the in-
formation. We want to employ an imitation procedure that is structured in
the way we described in the introduction. The success — now measured by
the utility signal — is used by an agent 7 to assess the value of her current
strategy. We suppose that the value v*, which agent 7 assigns to her strategy
upon meeting agent 7, is monotonous increasing in the difference between j’s
utility signal and 4’s utility u’ — @’. Further, we assume the value to lie in
the interval [0;1], where the maximum is reached for all u* > @’ and the
minimum will be attained for v’ — @’ having the smallest possible value.

If mixed strategies are allowed, the new strategy of 7 can be gained by blend-
ing i’s current strategy si and j’s strategy signal 5/ using the value v%:

e = sl 43 (1= o) )

7



If only pure strategies are allowed, the value v? can be taken to indicate the

probability of ¢ keeping her strategy. Once an agent has decided to adapt to
the strategy of the other, this strategy is identified using the signal vector.
Each component of this signal vector can be regarded as the probability of
the role model using the respective strategy.

For pure strategies the imitation procedure is identical to that of Weibull
(1995, p. 158). However, the information framework here is richer: It en-
compasses the case of Weibull as a special case where the signal is identical
to the trait and all weight is put on the present.

5 Interaction and traits

Up to now, we have developed a model to describe the usage of information
within the imitation process. It seems plausible, that the information coded
in traits is not only available to learning agents but also to interacting agents.

In principle, all information that is available while imitating should also be
accessible while interacting. In other words, actions of the agent may condi-
tion on this information. If the agent conditions on additional information,
the strategy space is enlarged. This has implications for imitation: The new
strategies must be identifiable, otherwise they cannot be imitated. That
means, there have to exist signals which allow the agent to distinguish be-
tween this and other strategies. These signals, however, can again be used to
condition actions upon them. So, the strategy space is once more enlarged.
Such recursions can only be avoided when the information for imitation is
“richer” than that for interacting. Formally, the information partition must
be finer while imitating. This is true for the Amann-Yang-Game considered
earlier: While agents condition on cooperation and risk signal when imitat-
ing, they only condition on the cooperation signal when interacting. Had
they also conditioned on the risk signal, this would have enlarged the strat-
egy space by four strategies, which again would have needed new signals,
leading to additional strategies.

Allowing actions to condition on signals, has another consequence. It implies
that the utility of an agent does not only depend on the choice of the strategy
but also on her traits. This seems rather realistic: Past behaviour does not
only influence what other people learn from us but also how they behave
towards us.



6 Induced Dynamics

The framework introduced to model the influence of the past on imitation
is rather general. This generality comes at a price: The model is hardly
analytically tractable. Consider the simple setting of updatable traits. In
order to describe the evolution of strategies, it is not sufficient to keep track
of the strategies themselves; the prevailing traits also have an effect as they
determine the imitation behaviour. So, a state of the population is charac-
terised by the joint distribution of traits and strategies, while the transition
from one time point to the next time point is stochastic.

Stochastical transitions are sometimes approximated by deterministic dy-
namics (see e.g. Benaim and Weibull forthcoming). In fact, many determin-
istic dynamics such as the replicator dynamics can be understood as a de-
terministic approximation of stochastic phenomenena. This generally works
because populations are assumed to be large, so that the law of the large
number applies and the distribution of strategies is adequately summarised
by the shares of strategies within the population. It then suffices to analyse
the deterministic process governing these shares.

As soon as traits play some role, a representation of the common distribution
by the shares falls short from recognising important information. In particu-
lar, the correlation between strategy and utility traits is neglected but crucial
for the next state of the population. It is thus impossible, to get rid of the
stochastic element by just focusing on shares. Because the process cannot be
simply represented by the dynamics of shares, finding an analytical solution
is difficult and will not be pursued, here. Alternatively, we obtain an idea
how the population evolves by carrying out a simulation for a specific game.

7 Adapting the problem for simulation

Before we can simulate dynamics, we have to deal with the problems aris-
ing from the ” correct” representation of the model in a computer programme.

First, we have to overcome the limitation of computers to create continuously
timed events. We cannot simulate agents who are able to change their strat-
egy at any time but only at discrete time points. However, we can imagine
the agents to change their behaviour in between two of those time points and
think of the time points as discrete measurements to which the changes are
assigned. If we suppose poisson distributed changes and a constant expected



rate for such changes to occur, reducing the time between two discrete time
points is equivalent to decreasing the number of changes for each time unit.
Consequently, we can approximate continuously timed revisions to any ac-
curacy by using a sufficiently small share of agents revising their strategy
between two measurements.

Second, we cannot evaluate the integral in formula (2) because time events
are discrete. We solve this problem by assigning weights to the intervals
between two measurements instead of assigning them to single time points,
where the weights are taken to be the area below the graph of the density
function. The construction of the weights ensures, that their sum equals one.
Each transformed event is then weighted with the weight of the preceding
interval. The result is an approximation of the integral by a sum, which
again can be made arbitrarily precise by increasing the measurements for
each time unit.

Third, there is always a low probability that each strategy gets totally extinct
by chance. This is a consequence of the fact, that digital computers can only
store approximations for real numbers since they have to represent numbers
by finite states. If a strategy share falls below the lowest representable real
number above zero, it simply vanishes. The strategy will never return, even
if conditions for this strategy are optimal. To keep all strategies present, we
introduce spontaneous changes of behaviour which are not caused by imita-
tion but by mistakes or experiments of the agents. For pure strategies, we
assume that each agent adopts one of the strategies with a certain probabil-
ity. For mixed strategies, we will not allow any component of the strategy
vector to drop below this probability. The probability should be sufficiently
low not to exert too much influence on the induced dynamics but sufficiently
high to assure the presence of the strategies. This last requirement is similar
to the idea of Levine and Pesendorfer (2000) that the imitation mechanism
(and not experimentation) is the driving propagation mechanism.

8 Dynamics in the Amann-Yang-Game

To examine whether a population driven by imitation develops similar to
the replicator dynamics and to analyse the influence of the past on the evo-
lution of cooperation, a simulation is carried out for the Amann-Yang-Game.

First, we summarise some of Amann and Yang’s (1998) results: When the
price for information & is not too high the Amann-Yang-Game has two Nash-
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equilibria. One consists of a mixture between the strategies D and DA and
should be referred to as the ”defective equilibrium”. This equilibrium is not
locally stable. The other “cooperative” equilibrium is a mixture of the strate-
gies C', CA, and D and it is an asymptotically stable fix point. For specific
starting values, the shares of the strategies in the population approach this
equilibrium fluctuatingly (see figure 3), while they exhibit a particular pat-
tern: Careful cooperators (CA) succesfully invade a population of defectors.
After a certain level of cooperation is reached, being careful is not necessary
anymore and agents become careless (C'). This in turn gives defectors the
opportunity to spread.

Share
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Figure 3: Replicator Dynamics

The replicator dynamics exhibit a cyclical pattern, where careful
cooperation is followed by cooperation which entails defection.

Is the defective equilibrium still locally unstable when agents imitate more
successful agents on the basis of traits? To answer this question, the initial
state of the simulation will be the defective equilibrium. Assuming that the
defective equilibrium has been stable for a long time, we take all strategy
traits to represent the true strategies and all utility traits to equal the equi-
librium payoff. The value function from the imitation procedure will always
be taken to increase linearly in the difference between utility and utility signal
(see section 4). Trait and signal function will always be chosen as described
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in formulas (4) and (5). The intensity measure p will vary from simulation
to simulation.

The simplest choice for the intensity function is to put all weight on the
present. Doing so our model differs from the original model by Amann and
Yang just with respect to the learning dynamic: Where Amann and Yang
supposed the replicator dynamic, we will use the proposed imitation dynamic.
Our choice yields the dynamics depicted in figure 4. This dynamics resem-
ble the deterministic replicator dynamics to a remarkable degree — compare
with figure 3. Amann and Yang prove the instability of the defective equi-
librium with respect to small changes in strategy shares but they do not use
this equilibrium as a starting point for the dynamics. Accordingly, they do
not describe the complete transition from a defective to a partly cooperative
population. That such a transition is possible can be seen from figure 4. The
finding also suggests that starting condition do not matter for cooperation
to arise.

shares

Figure 4: Imitation Dynamics without Past

The social dynamics of imitation exhibit a pattern similar to the
biologically motivated replicator dynamics. For legend see figure 5.

The similarity between the findings of Amann and Yang and the simulation

12



indicates that the social behaviour of imitation and the evolutionary con-
cept of selection are closely related. While Weibull (1995) has proven this
for the neighbourhood of asymptotically stable states, it seems to hold more
generally: the pattern induced by imitation resembles the replicator dynam-
ics already when shares are still far from the equilibrium levels. This adds
justification for using the replicator dynamics to model social phenomena in
general and in the case of Amann and Yang in particular.
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Figure 5: Imitation Dynamics with Past

Moderate influence of past events on traits increases the similarity
between imitation dynamics and replicator dynamaics.

Up to now, the only innovation was the use of imitation instead of the repli-
cator dynamics. Next, we introduce the influence of the past. If we select
the exponential distribution as our intensity function and allow for a mod-
erate influence of past strategies and utilities on traits, the resulting process
resembles the replicator dynamics even more (see figure 5). The convergence
towards the asymptotic equilibrium is accelerated: It takes fewer cycles until
the shares are close to the cooperative equilibrium. This acceleration is due
to better informed agents: When the past has no influence, the decision to
imitate is based on two interactions, the interaction of the imitator and that
of the role model. However, when traits incorperate the past, they capture
the experience of a multitude of interactions —for example previous interac-
tions of imitator and role model with other agents as well as the interactions
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which entered previous learning. The multitude of interactions allows a more
stable prediction of the success of strategies in the current population. Sta-
tistically speaking, the sample on which agents base their decision is larger
and they are better in estimating the state of the population when traits are
moderately influenced by the past rather than without such influence.

1.0

0.8

0.6
1

shares of the strategies
0.4

0.2

Figure 6: Imitation Dynamics with Strong Influence of the Past

With a strong influence of past events on traits, agents adapt to an
outdated situation and the strateqy shares overshoot. For legend see
figure 5.

However, the influence of the past needs to be "moderate” for this obser-
vation to be true. If we increase the influence of the past (by changing the
parameter of the exponential distribution), the information about previous
interactions which is captured by traits is outdated. As a consequence, agents
adapt a population which is not existing anymore —see figure 6. The dynam-
ics become sluggish because agents continue imitating outdated strategies
while actually optimal strategies are driven to extinction. Accordingly, the
dynamics oscillate between the extremes. Without experimentation, no os-
cillation would occur and the dynamics would come to a halt the first time,
when one strategy takes over the population —in the depicted case this would
be careful cooperation.

There is a clear trade-off with respect to the influence of the past: The
greater the influence of the past on traits, the more information is used
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when imitating; at the same time, the information gets older and thus less
useful. So, imitation of successful agents leads to strategies closest to the
best response for some but not too much influence of the past on traits.

9 Concluding remarks

Assuming that the attempt of an agent to imitate the present behaviour of
a role model is systematically disturbed by the past of this role model, we
defined a model for the informational flow between agents. Additionally, we
formulated an imitation procedure based on this informational flow. This
framework is rich but it is difficult to describe the resulting dynamics analyt-
ically. Hence, we used simulation techniques and a particular game to get an
idea about how the influence of the past affects the distribution of strategies
in a population. More specifically, we analysed how imitation using different
types of available information affects the evolution of cooperation.

When the past has no influence, the dynamics resemble the replicator dy-
namics. This enforces the idea that the replicator dynamics, which originally
referred to biological phenomena, are a suitable deterministic approximation
to imitation, which describes a social behaviour. Moreover, a moderate in-
fluence of the past stabilises the dynamics and accelerates the convergence to
a stable state, so that the resulting process is even more similar to the repli-
cator dynamics. The intuition for this effect, is the following. The situation
in the population is sufficiently stable so that past experiences are valuable
to judge the current state of the population. If, however, the influence of the
past on the signals becomes stronger, signals get less and less informative
about the current population and agents start to adapt to the past. This
might even lead to a situation where the distribution of strategies in the
population never stabilises.

The theoretical concept of information transmission could also be applied to
other games to see whether the results are robust. Eventually, this may lead
to the identification of an analytical result which links the influence of the
past, imitation, and evolutionary dynamics.
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