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ABSTRACT 
 

Economic Status, Air Quality, and Child Health: 
Evidence from Inversion Episodes* 

 
On normal days, the temperature decreases with altitude, allowing air pollutants to rise and 
disperse. During inversion episodes, a warmer air layer at higher altitude traps pollutants 
close to the ground. We show how readily available NASA satellite data on vertical 
temperature profiles can be used to measure inversion episodes on a global scale with high 
spatial and temporal resolution. Then, we link inversion episode data to ground level pollution 
monitors and to daily in- and outpatient records for the universe of children in Sweden during 
a six-year period to provide instrumental variable estimates of the effects of air quality on 
children's health. The IV estimates show that the respiratory illness health care visit rate 
increases by 8 percent for each 10 μm/m³ increase in PM10; an estimate four times higher 
than conventional estimates. Importantly, by linking the health care data to detailed records 
of parental background characteristics, we show that children from low-income households 
suffer significantly more from air pollution than children from high income households. Finally, 
we provide evidence on the importance of several mechanisms that could contribute to the 
difference in the impact of air pollution across children in rich and poor households. 
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1 Introduction

Children in low- and high-income households differ in their health and wellbeing. The

socio-economic health gap is present at birth and increases over the child’s life cycle

(Case, Lubotsky and Paxson, 2001). The capacity formation framework of Cunha and

Heckman (2007) illustrates how childhood health could generate significant effects on

subsequent health, educational attainment and labor market outcomes through dy-

namic complementarities and cross productivity with the development of cognitive and

non-cognitive skills. An increasing number of design based studies have also found

that early life health does not only influence adult health, but also educational attain-

ments (Almond, Edlund and Palme, 2009) and labor market outcomes (Almond, 2006;

Nilsson, 2008). By now, there is strong evidence on the link between parents’ socio

economic status and child health (c.f. Currie, 2008 and Almond and Currie, 2011);

a link that suggests that parts of the intergenerational persistence in inequality are

due to differences in childhood health conditions. Yet, why children from poorer socio-

economic backgrounds experience more frequent and more severe health problems is far

from clear.

Differences in environmental amenities have been suggested as one culprit believed

to contribute to the socio-economic gap in child health. In this paper, we focus on

identifying how one aspect of the environment, ambient air pollution, influences chil-

dren’s respiratory health and to what extent and why poor air quality affects children

from different socio economic backgrounds differentially. Respiratory illnesses among

children account for a large proportion of the health care costs and productivity loss

due to parental work absence related to child health, and asthma is one of the most

common chronic conditions among children, affecting around 10-15% of the children in

developed countries. Air pollution is believed to be an important factor causing and

aggravating respiratory illnesses.
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The identification of the causal relationship between air quality and child health is,

however, hampered by a number of factors. First, high-income parents tend to reside in

larger metropolitan areas where pollution levels are, on average, higher and, at the same

time, high income parents may have more resources available to mitigate the effects of

poor air quality, which potentially leads to the health costs on the general population

being understated. Such between city residential sorting may induce substantially bi-

ased estimates of the effects of poor air quality. Second, within city sorting may also

lead to that families with low-income more often may live close to major roads than

high income families, and may therefore be exposed to worse air quality. At the same

time, houses in neighborhoods close to the major roads may have a worse standard

in general. Thus, there is a clear risk using cross sectional data that the influence of

ambient air pollution is overstated if, for example, we are not able to take housing stan-

dard, or other aspects of the home environment such as parental smoking, into account.

Alternatively, families with children who suffer from e.g. asthma may choose to locate

in areas with better air quality, which if not properly taken into account would bias

the effect of poor air quality on respiratory illness downwards. Third, since individual

monitoring of air pollution exposure is expensive, air quality measures typically stem

from a few ambient air quality monitors located in the most polluted areas. Hence,

measurement error in pollution exposure is likely to be a serious concern.

To address these issues, this paper uses NASA satellite data on vertical tempera-

ture profiles to provide causal estimates of the short term effects of poor air quality

on children’s health using inversion episodes as an instrumental variable. On normal

days, the temperature decreases monotonically with altitude and the constant flow of

air between warm and cool areas helps clear pollutants from the ground level air layer.

During inversion episodes, the temperature follows a non monotonic pattern in alti-

tude. The temperature first increases with altitude up to the inversion layer, and then
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decreases with altitude. This leads to a sharp deterioration of air quality in the ground

level air layer since pollutants are trapped under the inversion layer.

Using the vertical temperature profile data, which is readily available with high

spatial resolution on a global scale, we identify daily temperature inversion episodes for

six years. We merge the inversion episode data with ground level air quality monitor

data, and provide nonparametric estimates showing that, conditional on ground level

weather conditions, there is no apparent relationship between PM10 levels and inversion

strength – the temperature difference between the ground level air layer and the air

layer just above it – following normal nights. However, following inversion nights, there

is a strong positive relationship between inversion strength and PM10 levels.

When combining these data sources with administrative in and outpatient health

care records, we find a corresponding pattern between inversion strength and children’s

respiratory illnesses. On average, following inversion nights, the 24h PM10 levels are 30

percent higher than after normal nights and the respiratory illness rate is five percent

higher. At the relatively low pollution levels considered, these estimates suggest that

an increase of 10 µm/m3 PM10 is associated with an increase of the respiratory health

care visit rate by eight percent. This instrumental variable estimate is more than four

times larger than the corresponding ordinary least squares estimate from the same

data. The relationship between the OLS and the IV is almost identical to estimates in

previous studies that also address measurement error, avoidance behavior, and other

forms of endogeneity problems but use more context specific instrumental variables (see

e.g. Moretti and Neidell, 2011).

The validity of the instrumental variable approach developed here hinges on the

assumption that inversion episodes only influence respiratory health by their impact

on air quality. This identifying assumption could, for example, be violated if inversion

episodes also change e.g. children’s outdoor activities. For example, if inversion episodes
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are not only associated with pollution levels but also colder outdoor temperatures,

changes in cloud coverage, or other weather conditions that reduce outdoor activities,

our instrumental variable estimator would produce biased estimates of the effects of air

pollution on health outcomes.

We address this important concern in two ways. First, all our baseline estimates

control flexibly for ground level temperatures, cloud coverage, humidity and precipita-

tion, wind speed and season of the year. Second, as a falsification exercise we make

use of data on information on external causes for health care visits. Since accidents are

related to children’s activity patterns but arguably not directly to pollution levels, we

check whether the changes in air pollution from inversion episodes are related to the

risk of having to visit the health care providers due to an injury with external causes.

We find no evidence of a correlation between inversion episodes and injuries due to

external causes.

Our study contributes to the literature on air pollution and health in several ways.

First, the instrumental variable approach we develop can be used with high resolution

in both space and time on a global scale. Previous design-based studies have used in-

strumental variables that provide a valid inference in their particular contexts, typically

in areas with relatively high pollution levels. The method can easily be extended to

other countries, to other outcomes, and to other populations. Our approach opens up

the possibility for comparative studies of the effects of air pollutants in various contexts

using the same instrument. This could mitigate the concern that differing estimates of

effects of air pollution are due to differences in estimation methods, rather than different

effects on populations in e.g. developing vs. developed countries. The inversion data

can potentially also be used in combination with more location specific instruments to

improve estimation precision.

Second, as compared to other countries, Sweden has relatively low air pollution
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levels, and previous studies have only shed limited light on health effects in low pollution

areas. For example, the 24-hour mean PM10 level in our sample is 20µg/m3, 35µg/m3

in the United States, and 67µg/m3 in Mexico City. Yet, we still find substantial effects

from modest increases in PM10 levels. Our non parametric estimates indicate a linear

relationship at least up to 50µg/m3 (the current WHO 24 hour air quality guideline),

and hence, our results suggest that increasing the Swedish 24-h average PM10 level to

the United States level would increase children’s respiratory health care visit rate by,

on average, 12 percent. Clearly, even at levels well below current regulatory standards,

significant benefits on child health can be expected from improvements in air quality.

These benefits should be taken into account when considering the net benefits of stricter

air quality standards.

Third, the richness of the data allows us to examine the effects of air pollution by

background characteristics in a more detailed way than most previous studies. For

example, while we find that parents’ educational attainments seem to play a limited

role, household income seems to matter much more. The estimated effects are about

twice as large on children in households with an income below the median as compared

to those above. We also assess the relevance of some of the potentially important

mechanisms behind the SES-gap in the effects of air pollution. In particular, we find

that the gap between children in rich and poor households decreases substantially if

comparing children with relatively poor baseline health. We find no indication that the

SES-gap is explained by strong differences in avoidance behavior across rich and poor

households.

Combined with the absence of differential effects across households with differing

educational attainment, and no indication of strong nonlinearities in the effects of PM10,

these results suggest that economic resources via differences in children’s baseline health

play a bigger role than information differences in generating the SES-gap in the health
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effects of air pollution in our low pollution setting. Since pollution exposure early in

life has also been found to influence economic outcomes later in life (Nilsson, 2009;

Sanders, 2012; Isen, Rossin-Slater, Walker, 2013), it seems that environmental policies

could also play an important role in reducing inequality in economics outcomes.

Finally, the AIRS data can be incorporated in models predicting pollution levels

at many more locations than what is currently possible using ground based vertical

temperature sounders (e.g. available in 4 locations in Sweden, and 90 locations in

the US). By developing methods to produced more precise location-specific pollution

forecasts and effective means of disseminating such forecasts, the health care costs

associated with respiratory symptoms could potentially be reduced by allowing sensitive

populations to more effectively engage in defensive investments.

The rest of the paper is structured as follows: we start with a simple conceptual

framework to guide our empirical exercise in section 2. In section 3, a background on air

pollution and health is presented, and the data used is described in section 4. Section 5

discusses the econometric methodology, and the results can be found in section 6. The

final section summarizes and concludes the paper.

2 Conceptual Framework

To fix ideas, and motivate our empirical exercise, suppose that respiratory illnesses

induced by changes in air pollution are capture by the three key factors in equation (1)

Resp = f(P,A,H) (1)

where respiratory illnesses (Resp) are a function of ambient air pollution, (P),

parental awareness/avoidance behavior (A), and baseline child health (H ). P, A, and

H can be viewed as functions of parents’ income and/or education. In this paper, our
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three primary objectives are (i) first to provide causal estimates of the direct biological

effect of air pollution on respiratory health, ∂Resp/∂P. For this purpose, our empirical

strategy is designed to isolate the influences of pollution while holding avoidance behav-

ior and baseline health fixed. (ii) Our second objective is to document to what extent

the effects of pollution on child health may differ between children in different socio

economic groups. Recent studies (Nilsson, 2009; Currie, 2008) find suggestive evidence

that the reduced form effects of air pollution on children’s health tend to be larger on

children in low socio economic status (SES) households. i.e.:

∣∣dResp
dP

∣∣
LowSES

>
∣∣dResp

dP

∣∣
HighSES

However, conclusive evidence on the mechanisms behind the SES-gap in the effects

is still missing. So our third objective is to (iii) provide insights on the key under-

lying mechanisms. To emphasize the different channels highlighted in previous work,

assume that Equation (1) can be represented by the linear approximation that allows

for interaction effects between P and A, and P and H :

Resp = α1 + α2P + α3A+ α4H + α5P
2 + α6A× P + α7H × P (2)

In Equation (2), respiratory illnesses are portrayed as a function of the three key

factors displayed in equation (1), and capture three mechanisms that could contribute

to differences in the marginal effects of air pollution on children across socio-economic

groups. First, ambient air pollution affects child respiratory illnesses negatively through

an increase in P via α2+α5, where α5 captures potentially nonlinear effects of ambient

air pollution levels on child health. Second, the effects of an increase in P can be

mitigated by parental avoidance behavior (A) through the negative α6. Finally, the

influences of marginal changes in pollution can also be affected by the child’s health
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stock. Children with a higher level of H are assumed to be more resilient to effects of

changes in P and hence, α7 < 0.

This stylized framework suggests that children from poorer households can be more

affected by changes in ambient air pollution than children from richer households for

three reasons. First, as noted in the introduction, children from poorer households

generally have poorer health than children in rich households. Second, parents in richer

households generally have higher educational attainments and hence, may be more

aware of effects of air quality on child health or, alternatively, parents in high income

households may be more willing to engage in avoidance behavior to reduce the risk of

children’s respiratory illnesses since the parental costs of child illness could be higher

in terms of lost parental labor earnings. Third, children in poorer households may

be observed to be more influenced by average pollution levels within a municipality

since the pollution levels vary even within small neighborhoods. If noise from traffic

or ambient air pollution levels are reflected in housing prices, children from poorer

households may more often tend to reside closer to pollution sources and hence, be

exposed to higher levels of pollution. In other words, if children to poor and rich are

equally affected but we are not able to observe individual levels of exposure, only e.g.

municipality means, it may occur that children in poorer households are more affected

given the same level of average pollution levels within a municipality.

Equation (2) shed light on the importance of the three mechanisms, however it can,

of course, be extended to be made more complex and more realistic. For example, it is

possible that the extent of parental avoidance behavior depends on the level of P, i.e.

that parents in high pollution areas (such as Los Angeles) are more likely to be willing

to engage in (potentially costly) avoidance behavior than parents in low pollution areas

(such as in our setting). Similarly, parents of children with a lower health stock may

also be more willing to engage in avoidance behavior if their child is more likely to be
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affected by changes in pollution levels.

Below we provide evidence on the general effect, effects on children from differing

socio economic backgrounds and also try to shed some light on the importance of the

three mechanisms highlighted in equation (2); (i) non linearities in effects of air pollu-

tion, differences in (ii) avoidance behavior and/or (iii) baseline health across children

in rich and poor households.

3 Background on the relationship between air

quality and health

3.1 Particulates, Health, and Air Quality Policies in the European Union

Epidemiological studies have attributed negative health effects from exposure to partic-

ulate matter (PM). PM is a general term used for particles where the major components

are sulfate, nitrates, ammonia, sodium chloride, carbon, mineral dust and water. The

particles are identified according to their aerodynamic diameter, as either PM10 (with

a diameter of 10 micrometers or less1) or PM2.5 (with a diameter smaller than 2.5

µm). When breathed in, the particles are sufficiently small to penetrate to the thoracic

region, where the finer fraction has a high probability of deposition in the smaller con-

ducting airways and alveoli. Inhalation of PM has been found to trigger inflammation

in the smaller airways, leading to the exacerbation of asthma and chronic bronchitis,

airway obstruction and decreased gas exchange(Nel et al., 1998; Ghio and Devlin, 2001).

Besides aggravated asthma and increased respiratory symptoms, inhalation of PM has

also been associated with heart attacks were evidence suggests that the effects may be

expressed through several, probably interrelated, pathways (WHO, 2006).

1By definition, PM10 thereby includes both ‘coarse particles’ and the finer PM2.5 particles. Due
to data availability, we focus on PM10 in the current paper.
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To mitigate the effect on public health and environmental protection, Sweden follows

the air quality standards set by the EU-directive 2008/50/EG. For PM10, the limit

values for short-term (24 hours) are 50 µg/m3 (not to be exceeded more than 35 times

per calendar year) and 40 µg/m3 long term (annual) exposure.2 However, the inability

to identify a threshold below which adverse health effects are not observed implies that

any limit value may leave some residual risk when exposed to PM. This has led the

World Health Organization (WHO) to recommend more stringent air quality guidelines

(WHO, 2006), with a 24-hour mean of 50 µg/m3 and an annual mean of 20 µg/m3.

The US EPA 24-hour PM10 standard is 150 µg/m3 (not to be exceed more than 1 time

per year).

In Europe, it is the short-term limit of PM10 that is most often exceeded in cities and

urban areas. Countries such as Poland, Italy, Turkey, Latvia, Lithuania, Sweden, the

United Kingdom and the Balkan region all exceeded the daily limit value in 2010. Sites

that exceeded the 24 hour limit value were traffic sites (33 percent), urban background

sites (29 percent), other, mostly industrial sites (17 percent) and rural sites (14 percent)

within the EU (EEA, 2012). Figure A1 shows the attainment situation for PM10 in

2010 in the EU-27 countries.

In Sweden, the total emission of particles decreased by around 23 percent between

1990 and 2000, but has since remained constant (see Figure A2). In Sweden, the energy

and transport sector contribute to more than 75 percent of total particle emissions

(SEPA, 2012). The dominant factors contributing to the emissions are electricity and

heat production, and in urban areas emissions from road vehicles including road wear.

3.2 Previous studies on Pollution and Respiratory Health

Epidemiology

2Limits also exist for PM2.5, but so far only at the long-term annual level.
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Epidemiological studies on the health effects of air pollution have to a large extent

relied on cross sectional data and compared the prevalence of hospitalizations due to

respiratory illness in cities with differing pollution levels at a single point in time, or

used time-series data for e.g. PM10 levels and asthma for a particular city or region.

Using these approaches, it is difficult to draw causal conclusions about the magnitude

of the effects on health.

Cross-sectional studies are likely to confound effects of pollution with effects of un-

observed factors that are correlated with pollution levels and respiratory illnesses in the

cross section. It is not even clear in which direction omitted variables will tend to bias

such estimates; a higher pollution level could signal better employment opportunities

and income which, in turn, may mitigate the risk of experiencing respiratory health

problems. Alternatively, higher air pollution levels could simply capture effects of un-

observed factors such as a generally worse environment, housing standard, parental

or child smoking patterns, etc. which, in turn, may result in overstated estimates of

the effects of air pollution. Pure time series studies may, on the other hand, not only

capture the effect of variations in pollution but also other unobserved factors that co

varies with pollution patterns, for example, weather conditions, seasonal variations in

activity patterns As discussed further below, temporal fluctuations in air quality are

also, to the extent that they are captured in pollution forecasts, potentially related to

defensive investments or avoidance behavior among sensitive populations such as asth-

matics. Such behavioral changes are likely to lead to understated effects of poor air

quality.

There are a few exceptions in the epidemiological literature on the effects of air

pollution on health that employ a design based approach for inference. Pope, Schwartz

and Ransom (1992) examine the effects of variations in PM levels following a temporary

shutdown of production in a steel mill. By comparing respiratory related emergency
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room visits in the valley where the mill was located to the neighboring valley, they find

that when PM levels dropped following the plant shut down so did respiratory illnesses.

Economics

Economists have contributed to the literature on effects of poor air quality on health

in several ways during the last decade, primarily by highlighting potential identifica-

tion problems and by using increasingly sophisticated empirical strategies designed to

address these endogeneity problems.

First, air pollution is not randomly assigned across locations. Chay and Greenstone

(2003b) note that air quality is capitalized in house prices where individuals with a

higher income (which can be seen as a function of productivity and health) and/or

individuals with preferences for clean air may sort into better air quality areas. Thus,

exposure to pollution levels is typically endogenous. Failing to account for this kind

of residential sorting, unobserved determinants of health may bias the estimation of

the effect of pollution on health. In the absence of a randomized experiment, this

has led to a rise in estimation techniques to isolate exogenous changes in pollution.

For example, Chay and Greenstone (2003b,a) use the implementation of the Clean Air

Act of 1970 and the recession of the early 1980s to exploit the induced temporal and

spatial variation in TSP levels in the United States. Lleras-Muney (2010) use seemingly

random allocations of military families across military bases in the US to estimate the

effects of air pollution on children’s hospitalizations.

Some studies use seasonal variations in pollution levels within residential areas to

address endogenous sorting (e.g. Currie and Neidell (2005); Currie, Hanushek, Kahn,

Neidell and Rivkin, 2009) . One potential problem with using seasonal variation is the

risk of confounding by weather conditions, since weather directly affects health (De-

schenes and Moretti, 2009) and pollution levels. Accounting for all possible weather
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factors influencing both pollution and health is a challenging task. Knittel, Miller and

Sanders (2011) show that including higher order terms for temperature and precipi-

tation as well as second-order polynomials for some weather conditions, such as wind

speed, humidity, and cloud cover, have a substantial impact on estimates of pollution

on infant mortality.

A third complication arises from measurement error both in monitored pollution

levels but even more importantly when assigning pollution exposure to the individual.

In particular when using fixed effect models. Since individual exposure indicators are

typically only available for small samples, the predicted pollution level is at best a noisy

measure for true exposure. Studies typically assign data from ambient air pollution

monitors to the residential location of the individuals, an approach that is likely to

generate substantial measurement errors due to the spatial variation in pollution. If

the measurement error in e.g. PM10 levels can be written as PM10 = u + PM10∗

, where PM10 is the observed exposure, PM10∗ is the true level of exposure and u

is the measurement error, assumed to be independent from the true exposure level

cov(u, PM10∗) = 0, then the OLS estimates of the effects of air pollution will be

biased towards zero. There are good reasons to suspect that measurement error is an

important problem in pollution exposure studies and that accounting for measurement

error is important.

A final problem is that the effect of pollution on health might be highly dependent

on behavioral responses. For example, individuals might undertake defensive invest-

ments by purchasing preventive pharmaceuticals (Deschenes et al., 2012) or, perhaps

particularly relevant in high pollution settings, engage in avoidance behavior and re-

duce their time spent outdoors (Neidell, 2009). Ignoring behavioral responses could

generate downward biased estimates. To account for avoidance behavior, Moretti and

Neidell (2011) estimate the health effects of ozone by employing data on daily shipping
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traffic in the port of Los Angeles as an instrumental variable for ozone levels. Their

findings are striking. The OLS estimates are significant but small; exposure to ozone

causes $11.1 million per year in annual hospital costs in Los Angeles. IV estimates,

accounting for behavioral responses, measurement errors and potential confounders are

considerably higher; indicating an annual cost of $44 million from respiratory related

hospitalizations. Their results underscore the importance of accounting for unobserved

factors in order to understand the full welfare effects caused by air pollution.

Schlenker and Walker (2011) instrument air pollution using air traffic congestion in

remote major airports to estimate the health impact of air pollution on populations

living in the vicinity of 12 local major airports in California. They find that car-

bon monoxide (CO) leads to significant increases in hospitalization rates for asthma,

respiratory, and heart related emergency room admissions that are an order of mag-

nitude larger than conventional estimates. They assess the differential impact across

age groups, but they do not examine whether the effects differ across socio economic

groups.

3.3 Previous Studies on Temperature Inversions, Pollution, and Health

As we will see in our analysis, the majority of inversion episodes are far from catas-

trophic; however, many of the worst pollution episodes on record have been found to

coincide with inversion episodes.3 Most recently, in January 2013, severe smog marked

three straight days of dangerous air pollution in Beijing, China. The hazardous air-

borne smoke, with alarming levels of PM matter exceeding 900 µg/m3 in some districts,

led the authorities to implement an emergency response plan for the first time in the

Chinese history.

3E.g. Donora, Pennsylvania (1948), The London Fog (1952), and the Union Carbide plant disaster
in Bhopal (1984).
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Many studies have previously related inversion episodes to poor air quality. For

example, a study by Kukkonen et al. (2005) finds that inversion periods in European

cities coincide with levels of PM far above average. Likewise, in January 2004, Utah’s

Cache Valley (US) experienced an event of stagnant weather conditions that drove

particulate concentrations to new levels, two times the 24-hour standard used at the

time by the US EPA (Malek, Davis, Martin and Silva, 2006).

A few studies have also examined the effects of inversion episodes on public health.

Abdul-Wahab, Bakheit, and Siddiqui (2005) suggest an association between the monthly

number of inversion days and the monthly mean of daily visits to the emergency de-

partment in Oman. Beard et al. (2012) used weather balloon data in Salt Lake County

and related inversion episodes to emergency room visits and found a positive correla-

tion. Wallace, Nair and Kanaroglou (2010) first used the AIRS data to look at public

health using cross section data on 674 asthmatics (on average 55 years old) in Hamil-

ton, Ontario, Canada. They found evidence of an association between an indicator for

inversion and sputum cell counts (an indicator of airway inflammation).

Methodologically, the most similar previous work is a recent study by Arceo-Gomez,

Hanna and Olivia who uses information on inversion episodes measured in one (1) lo-

cation over Mexico City4. Arceo-Gomez et al. exploit the number of thermal inversions

over the city per week as an instrumental variable for weekly pollution levels in the

municipalities within the city. Their result indicates that a 1 percent increase in PM10

over a year leads to a 0.42 percent increase in infant mortality, while a 1 percent increase

in CO results in a 0.23 percent increase in infant mortality. They do not provide any

results across socio economic groups.

Arceo-Gomez et al. compare the estimates from their developing country setting to

4The instrumental variable approach we use was developed independently and without knowledge of
their paper. The first-stage results were presented at the ASSA Meetings in Chicago in 2010, Uppsala
University (2010), and at SIEPR, Stanford University (2010).
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estimates from US studies, but acknowledge that they are not fully comparable since

the models differ across studies. By using the approach developed in the current study,

comparative studies can be conducted on a global scale; in areas with high (such as

Mexico City, with a PM10 24-h mean of 67 µg/m3), medium (e.g. the United States,

PM10 24-h mean of 35 µg/m3), or relatively low levels of pollution (e.g. the Swedish

cities in our sample, PM10 24-h mean of 20 µg/m3) using the same identification

strategy.

4 Data

We compiled a dataset on daily health care visits, weather conditions and pollution

measures from September 2002 until September 2007. Each data source is described in

detail below and summary statistics is provided in Table 1.

4.1 Data sources

i) Identifying inversion episodes

To identify inversion episodes, we exploit vertical temperature profile data available

from NASA’s Atmospheric Infrared Sounder (AIRS).5 In 2002, the AIRS instrument was

launched onboard the NASA satellite AQUA. AIRS produces a 3-D map of temperature

and water vapors in the atmosphere. The primary mission of AIRS is to improve

weather predictions, and collect a wide range of data twice a day.

NASA provides the AIRS data in three different forms. Level 1 data provides the

highest resolution (1.5km×1.5km) and is not yet available to researchers outside NASA.

Level 2 data (L2) has a spatial resolution of approx. 45km×45km. Level 3 data (L3),

which we use, has a spatial resolution of 1°×1° which corresponds to approximately

5As part of the activities of NASA’s Science Mission Directorate and it is archived and distributed
by the Goddard Earth Sciences (GES) Data and Information Services Centre (DISC).
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100km×100km at the relevant latitude. The data is collected twice a day; at 02am and

02pm local time. The L3 standard products are the primary public L3 product that

only contains well-validated fields and includes temperature and water vapor profiles

that are reported for 24 pressure levels. Grid maps coordinates range from –180.0° to

+180.0° in longitude and from –90.0° to +90.0° in latitude. In the current study, we use

L3 data due to the easy access and its readiness for use by researchers. Downloading the

L3 data for a particular region is straightforward and irregularities have been corrected

by the NASA. Future studies could exploit additional spatial variation using L2 data.

The L3 temperature profile data contains temperatures for 22 layers, defined by

average air pressure in the layer. To identify inversion episodes, we use the tempera-

tures for the two pressure levels closest to the ground (1000 hPa and 925hPa).6 The

1000hPa layer temperature corresponds to the surface conditions and 925hPa layer

measure conditions at approx. 600m above the sea level. In the analysis, we use the

temperature differences between these two layers to identify inversion episodes and in-

version strength. Under normal conditions, the temperature decreases with altitude

and hence, the temperature difference between the 925hPa and 1000hPa air layer is

negative. Under inversion episodes, the difference is positive. As further motivated

in section 4, we focus on night-time inversion episodes which occurred on around 25

percent of the days in our sample. The inversion strength is defined as the temperature

difference between the two layers during inversion, with higher values corresponding to

stronger inversions7.

We also use information on cloud coverage and humidity from the AIRS data. Cloud

coverage is important since the AIRS instruments cannot retrieve temperature profiles

if the grid cell is under complete cloud coverage. Missing values from the inability to

6AIRS Level 3 version 5 with spatial box: 55S, 10W, 70N, 24E.
7It is possible to calculate whether inversion occurs at higher altitudes as well. We abstained from

doing so since we expected that the strongest effect on pollution would come from inversion episodes
close to the ground.
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measure temperature profiles is another reason why researchers may prefer to use L3

data over L2 data.8 Humidity data is also important, since it has been linked to both

air pollution level and health.

We also gathered wind and precipitation data measured every third hour at 119

weather stations around Sweden maintained by the Swedish Meteorological and Hydro-

logical Institute (SMHI) as additional controls in our analysis. As a first step, daily

means are calculated, after which the distance to the closest temperature grid point is

obtained. Then, we assign the mean of the six nearest weather stations to each grid

point, weighting by the inverse distance between the station and the grid centroid. Miss-

ing values were replaced by the monthly-municipality mean. We also present estimates

without these additional weather variables included.

ii) Pollution data

Pollution data for the period studied is obtained from the Swedish Environmental Re-

search Institute, IVL. Pollution monitors collect data on either an hourly or a daily

basis. We assign each pollution monitor to the nearest temperature grid by calculating

the distance to the grid cell centroid (see Figure 1). Since some of the municipalities

have more than one monitor, a daily municipality-pollution mean is calculated. Out

of Sweden’s 290 municipalities, 90 measured PM10 daily during the period studied.

We concentrate on PM10 levels due to data availability; other pollutants are measured

with much lower frequency, consistency, and spatial coverage. The PM10 levels are

furthermore highly focused on in policy circles due to the health effects associated with

PM exposure.9

8In our sample, on average 13.5 % (i.e. around 4 days per month) of the AIRS observations are
missing due to full cloud coverage. The share of missing temperature profile days per month: Jan
(.196) Feb ( .160) March (.111) April (.093) May (.095) June (.113) July (.132) Aug (.107) Sept( .119)
Oct (.149) Nov (.171) Dec (.178).

9Sweden follows the air quality standards set by the EU-directive 2008/50/EG. For PM10 there are
limit values for short-term (24 hours) and long-term (annually) exposure. However, the consequent
inability to identify a threshold below which adverse health effects are not observed implies that
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However, a cautionary note is clearly in order before interpreting our results as the

effects of PM10 on children’s health outcomes. Since data on other pollutants is patchy

in spatial and temporal coverage, we are not able to assess the influence of inversion on

other pollutants in our setting; hence, our subsequent two stage least squares results

of the effects of PM10 on health outcomes should be interpreted with care, because

they may reflect the impact of e.g. nitrous oxides or particulates, or a combination

of these pollutants. This is an endemic problem in the air pollution literature since

all air pollutants are never measured. Because of this, we conservatively interpret

the PM10 levels as a measure of air quality. Future studies with more diverse data

on pollutants could examine which types of measured pollutants are most affected by

inversion episodes. Notice that we also discuss the role of other pollutants further along

with the reduced form results below.

We link the inversion data to the pollution data by assigning each pollution monitor

to its closest AIRS grid centroid point located over land, and use the 24h average PM10

concentration as our air quality indicator.

iii) Health data

Health measures were constructed utilizing both inpatient and outpatient data from

the Swedish National Board of Health and Welfare (Socialstyrelsen), and cover all

children living in Sweden in the age span of 0-18 years.10 The inpatient data contains

information on all visits to the health care providers which result in an overnight stay

any limit value may leave some residual risk when exposed to PM. This has led the World Health
Organization (WHO) to recommend more stringent air quality guidelines (WHO, 2006).

10Young children are among the most susceptible to effects of air pollution (ALA, 2001; Kim et
al., 2004). Compared to adults, children have higher breathing rates and therefore a higher intake
of air pollutants per unit of body weight. Since children’s lungs and immune system are not fully
developed, exposure to air pollution opens up for the possibility of different responses than seen in
adults. Furthermore, they also spend more time outdoors than adults when concentrations from air
pollution are generally higher, thereby adding to their potential exposure. Since as much as 80 percent
of alveoli are formed postnatally and the lung continues to develop throughout adolescence, exposure
to air pollutants poses a serious risk to this population group(Schwartz, 2004).
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at hospitals. The outpatient data captures visits where the patient does not stay

overnight.11 The data includes information on date of admission, type of diagnosis

and municipality of residence. The ICD codes have been aggregated using the Clinical

Classification Software (CCS) developed by the Agency for Healthcare Research and

Quality (AHRQ).

Using individual identifiers, it is possible to link these administrative records to

background data on individual characteristics, such as year and month of birth, place

of residence, parents’ income and educations from Statistics Sweden. Using these two

data sources, we calculated the rate of health care visits due to respiratory illness by

dividing the number of daily visits in each municipality by the total number of children

residing in the municipality, multiplied by 10,000.

4.2 Summary statistics: Health, Weather and Pollution

Table 1 provides summary statistics of the variables described above. Panel A presents

the means and standard deviations for the outcome variables used in the analysis.

Information on the rate of health care visits is divided into cause of visit, and broken

down by age. We also provide statistics on health care visits due to external causes.

Since there exists no obvious causal pathway relating these accidents to air pollution or

our instrumental variable, we later use the rate of visits caused by externally reasons

in a check of the internal validity of our findings.

Panel B in Table 1 summarizes descriptive statistics for the key covariates used

in our analysis. In order to shed some light on how pollution levels are affected by

the occurrence of inversions, the weekly development of PM10 levels during night-time

inversions as compared to normal nights is illustrated in Figure 2. As expected, the

11As all children in Sweden have access to free healthcare through taxation these measures of respi-
ratory health problem should be highly valid.
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pollution levels are significantly higher following inversion episodes. The level of PM10

accumulates over the week, increasing from Monday to Fridays and diminishes over the

weekend. This weekend effect is due to decreased traffic volumes (Murphy et al., 2007),

and occurs both during normal conditions and inversion episodes.

Figure 3 shows the monthly patterns of PM10 levels and shows peaks in March

and April, much likely due to both residential and commercial heating, as these are in

general cold months in Sweden. But this is also due to the fact that snow coverage

on roads is largely absent during these months, while studded tires are used which

increase road wear and which are also strongly associated with PM levels. During

our sample period, most nocturnal inversions occur during the first (55 percent) and

second (24 percent) quarter of the year. For the third and fourth quarter of the year,

the corresponding frequencies were 6 percent and 15 percent, respectively. Moreover,

on a monthly basis, the PM10 levels are on average higher during inversion episodes

as compared to normal nights. From Figures 2 and 3, it is clear that the weekly and

seasonal changes influence the behavior of pollutants under both inversions, as well as

under normal conditions. This implies that both seasonal and weekly variations are

important factors to take into account in our analysis since, for example, children’s

outdoor activity patterns are also likely to vary across weekdays and seasons.

For the 90 municipalities measuring PM10 in the period September 2002 to Septem-

ber 2007, there are 34,175 valid vertical temperature profiles, that is when temperature

readings are non missing in both layers. Out of these, 8,608 night-time inversions were

identified. Descriptive statistics for the key variables conditional on inversion status

are provided in Table 2. Comparing normal nights with inversion nights, we conclude

that the health care visit rate is, on average, 4.7 percent higher during the latter. Sim-

ilarly, the PM10 level is on average 59.6 percent higher throughout inversion nights,

confirming the pattern in Figures 2 and 3.

22



As expected, both daily and nightly temperatures are, on average, higher during

normal conditions, since inversion episodes are more frequent during the winter months

than during the summer months. A similar pattern can be observed for the remaining

four weather variables. These mean differences in weather conditions across seasons

highlight the importance of flexibly accounting for season of the year, day of week

patterns, and weather conditions in the analysis for our identification strategy to provide

valid causal inference. Our econometric specification is presented next.

5 Econometric framework

The purpose of this paper is to study the causal relationship between air quality

(PM10m) on child health (the rate of hospital visits related to respiratory illnesses

per 10 000 children). To motivate the use of instrumental variables, let us first consider

the structural equation of the effect of PM10 on health, where we, for brevity, omit the

time aspect:

Healthm = β0 + β1PM10m + em (3)

β1 is the parameter of interest and our primary objective is to test whether β1 6=0. In

other words, if exposure to air pollution has an effect on respiratory illness related hos-

pital visits in municipality m. em, is the error term. Under the identifying assumption

that the error term is uncorrelated with pollution exposure, PM10⊥em, the ordinary

leasy square estimate of β1 reflects the causal impact of one additional unit of PM10

per m3 on the rate of health care visits due to respiratory illnesses.

As pointed out in previous studies and as discussed above, several factors complicate

the estimation of this relationship and we have strong reasons to question whether the

exogeneity assumption holds. To deal with the endogeneity of residential location,
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weather conditions, measurement error, and avoidance behavior we use the incidence

of nighttime inversions as an instrumental variable in a municipality by date panel

data framework. We estimate the following two equations by Two Stage Least Squares

(2SLS):

Respiratory Illness Ratemd = β0 + β1PM10md + α′Wmd + ηd + θm + emd (4)

PM10md = γ0 + γ1Inversionmd + ρ′Wmd + ηd + θm + vmd (5)

where (4) is the second-stage and (5) is the first-stage equations. Inversionmd is our

binary instrumental variable indicating whether an inversion occurred in municipality

m at date d, or not. Both equations contain a vector of weather and time changing

demographic characteristic Wmd where α1 and ρ1 are corresponding parameter vectors

that will be estimated. We include in Wmd, precipitation, wind speed, humidity, cloud

cover, and their squared counterparts, together with daily and nightly temperature

polynomials to account for a potential nonlinear relationship between temperature,

pollution levels and respiratory illnesses. We also include timevarying variables such

as the average age of the children in the municipality and the share of mothers with

college degrees as additional controls in Wmd.

ηd is a set of common year by month effects and day-of-week effects that nonpara-

metrically accounts for year-specific seasonal effects and weekday variations in pollu-

tion and respiratory illnesses. The year-month effects take into account, for example,

year-specific seasonal patterns in respiratory illnesses associated with e.g. influenza

outbreaks. θm are municipality-specific effects which are included in order to account

for permanent differences across municipalities affecting pollution concentrations and

respiratory illnesses (e.g. time invariant demographic characteristics, industry compo-

sition, altitude and other geographic conditions).
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In all estimations the errors are clustered at the municipality level, since all children

in the same municipality are exposed to the same levels of predicted pollution, which

are measured with error and are likely to be correlated over time within municipality.

Two Specification Issues

Two general specification issues are worth noting before discussing the validity of the

inversion episodes as an instrument variable. First, it is far from obvious that the lin-

ear specification as outlined in equation (2) is the appropriate functional form between

PM10 and respiratory illnesses. Nonlinearities in the effects of PM10 are interesting

for regulatory threshold purposes. But they are also of interest for the extrapolation of

our low pollution setting results to higher pollution settings, since if strong nonlineari-

ties are present, there is a clear risk that our estimates would understate the predicted

effects in higher pollution regions. Nonlinearities could also be important when trying

to understand the differences across socio-economic for the reasons discussed above.

Below, we provide non parametric estimates of the reduced form and first stage from

a generalized additive model (Hastie and Tibshirani, 1986) using a local linear smoother

with a narrow bandwidth to assess whether our baseline linear estimator is appropriate.

This highly flexible model, which non parametrically takes daily weather conditions and

seasonal patterns into account, provides estimates that are highly similar to the results

from our 2SLS estimator outlined above. As shown below, the non parametric estimates

provide no indication of strong nonlinearities in the effects of PM10 on respiratory

illnesses in our setting.

Second, note that we focus on the contemporaneous effects of changes in air quality

on health care visits due to respiratory illnesses. A potential concern with this daily

specification is that temporary increases in pollution levels may simply displace the

timing of respiratory illnesses forward. Such a short term forward shift in the timing
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of health effects, so-called harvesting effects, would imply that while we may see an

increase in health effects on high pollution days, the respiratory illness rate may fall

and be fully compensated for over the following days. To check the validity of this

concern, we estimate distributed lag model assessing whether a lagged increase in pol-

lution following inversion episodes reduces the current respiratory illnesses rate. We

also checked if instrumenting the PM10 levels during the past few days using the share

of inversion nights during those days changes the results. We find no indications of

strong displacement effects.

Instrument validity

Before proceeding to the results, we conclude this section with some additional remarks

on identification with respect to inversion episodes as an instrumental variable. The

exclusionary restriction may not hold if sensitive individuals are able to correctly un-

derstand and predict inversion occurrences and their effects on pollution levels. We

believe this to be unlikely in general, and particularly in our setting. Information or

predictions of inversion episodes are not available to the public. Neither information on

inversion, nor inversion strength, are published in Swedish media or by local authorities,

and vertical temperature profiles were not available on a large scale, nor was the data

from the four Swedish ground level sounder stations used in pollution level forecasts.12

Yet, it is possible that particularly sensitive populations may have strong enough

incentives to gather private information on inversion episodes since it is such a strong

predictor of air quality. In some heavily polluted areas around the world, temperature

inversions can sometimes be observed with the naked eye. In Sweden, this is generally

not the case due to relatively low pollution levels and low humidity. But to address

12Personal communication with Michael Norman at IVL, where the pollution data is stored and
provides the pollution prognosis for Stockholm, September 6 2013. Access to SMHI’s and the Swedish
Military’s in total 4 weather balloon stations that measure vertical temperature profiles on a daily
basis is under way according to SMHI but is not available at present (2013-11-04) .
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this potential concern, we focus on the effects of night-time inversion episodes. Night-

time inversion episodes are also more frequent and constitute a stronger predictor of

PM10 levels in our setting.13 As discussed above, previous studies from high pollution

settings (Los Angeles) have suggested that avoidance behavior may understate the

effects of pollution on health (Neidell, 2009; Moretti and Neidell, 2011). Hence, for

our estimation strategy to provide estimates that hold avoidance behavior fixed, it is

crucial that individuals cannot perfectly observe inversion status and inversion strength

and adjust their behavior accordingly. By using night-time inversions, we believe that

the risk of instrument observance is minimized. Even if individuals understand the

meteorological relationship in question in general, it seems unlikely that they are able

to correctly identify inversion episodes and inversion strength at 2 am in the morning.

For these reasons, we believe that the instrumental variable approach used here should

be able to provide causal estimates that hold avoidance behavior fixed.

However, we also provide indirect evidence to try to back up this assumption. Any

test of the extent and prevalence of avoidance behavior relies on proxies (Graff Zivin and

Neidell, 2012). We check whether children’s activity patterns change during inversion

episodes by examining whether the health care visit rate due to injuries with external

causes changes during inversion episodes by estimating the following modified version

of the second-stage equation

Rate External Causesmd = β0 + β1PM10md + α′Wmd +Md + θm + emd (6)

The idea is that if inversions are associated with substantial changes, not only in pollu-

tion levels but also in e.g. children’s indoor/outdoor activity patterns, we may detect

13And second, as expected from the effects on air quality, when entered in the same equation as the
night-time inversion indicator, the reduced form effects on respiratory illnesses are negligible in size
and insignificant, unlike the night-time inversion indicator which remains strong and positive.
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that injuries due to external causes also change, i.e. that β1 6= 0 in equation (6). In

other words, if inversion episodes do not affect our proxy of avoidance behavior, we

would expect that β1 = 0 in equation (4).14

6 Baseline Results

We begin by providing an illustration of the identification strategy from non parametric

estimates of the reduced form and the first stage, and then report the first stage and

reduced form result from the fully specified linear model in Section 5.1. Throughout, we

provide a comparison of the ordinary least square (OLS) and the two-stage least squares

(2SLS) estimate. In section 5.2, we examine the robustness of the results to changes in

the specification and in section 5.3 we look at the impact across socio economic groups

and document a substantial gap in the effects between children in households with high

and low income. In section 5.4, we examine the potential causes of this gap.

6.1 First Stage and Reduced Form

We begin by presenting nonparametric estimates of the first stage and the reduced form.

Figure 4 shows the narrow bandwidth multivariate local linear regression estimates of

the first stage (PM10 level on inversion strength) and the reduced form (respiratory

illness rate on inversion strength) that flexibly control for ground level temperature

14Finally, instrument validity may theoretically also be compromised by reversed causality in the
first stage equation. That is, if emissions levels are an important determinant of ground level air
temperature, then we could find that higher pollution levels reduce the incidence of inversion episodes.
However, first, it seems unlikely that local anthropogenic emissions have a strong differential impact
on temperature in the two layers. Second even if so, our estimates would likely be downward biased
since local emissions primarily heat the ground level air layer, reducing the occurrence of inversion.
Third, we in Table A1 we test the likely severity of this concern by exploiting the well known variation
pollution levels over the weekdays. See section 5.2 below.
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and calendar month.15 The x-axis displays the inversion strength, i.e. the temperature

difference between the two air layers. Negative inversion strength values correspond

to the relationship between the outcome variables and the temperature differences on

normal days, and positive values to the relationship on inversion days. The left-hand

side y-axis measures the average PM10 level and the right-hand side y-axis measures

the respiratory health care rate. The kernel density estimate (dashed) shows the distri-

bution of observations with respect to the instrument. Around 25 percent of the days

in the sample are inversion days.

Figure 4 shows that, conditional on ground level temperature and the calendar

month, under normal circumstances the rate of hospital visits (black) and PM10 levels

is not strongly correlated with the temperature difference between the two air layers.

However, once an inversion occurs, both PM10 levels and the respiratory illnesses rate

increase almost linearly with the strength of the inversion. This first set of results and

the implied elasticity between PM10 and health care visits summarize the main results

of the paper. As we will see, even after adding a large set of additional control variables,

the estimated elasticity never deviates substantially from that which can be inferred

from this parsimonious, but highly flexible non parametric specification.

Table 3 reports the fully specified linear version of the reduced-form, the first stage,

OLS, and the IV specifications. In column (1), the PM10 levels are regressed on the

inversion dummy, and the other control variables, year by month time effects, and

municipality fixed effects as specified above in equation (2). The point estimate suggests

15We begin by presenting nonparametric estimates of the first stage and the reduced form. Figure
4 shows the narrow bandwidth multivariate local linear regression estimates of the first stage (PM10
level on inversion strength) and the reduced form (respiratory illness rate on inversion strength) that
flexibly control for ground level temperature and calendar month. The x axis displays the inversion
strength, i.e. the temperature difference between the two air layers. Negative inversion strength
values correspond to the relationship between the outcome variables and the temperature differences
on normal days, and positive values to the relationship on inversion days. The left-hand side y-axis
measures the average PM10 level and the right-hand side y axis measures the respiratory health care
rate. The kernel density estimate (dashed) shows the distribution of observations with respect to the
instrument. Around 25 percent of the days in the sample are inversion days.
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that the PM10 level is, on average, 6.15 µm/m3 higher following nigh-time inversion

episodes. Hence, relative to the mean PM10 level, inversion episodes increase the PM10

levels by approximately 30 percent. In column (2), the health care visit rate is regressed

on the inversion dummy and the other control variables. As expected, health care visits

are positively and significantly related to inversions. During inversion episodes, the

respiratory illness health care visit rate increases by close to 5 percent.

Column (3) reports the standard OLS estimates from the fully specified model and

column (4) the instrumental variable estimate. Similar to previous studies using an

instrumental variable approach that accounts for measurement error and avoidance

behavior, the instrumental variable approach IV estimates are up to four times larger

than the OLS estimates. Relative to the mean respiratory illness rate, the IV estimate

implies that for each 10 microgram/m3 increase in daily PM10 levels, health care visits

due to respiratory illnesses increase by 8 percent. The corresponding figure from a

simple OLS estimate is 2 percent. These huge differences underscore the importance of

properly accounting for measurement error, avoidance behavior and other endogeneity

problems.

6.2 Robustness

The OLS and IV comparison continues in Table 4 where, for comparison, the baseline

model estimates for OLS and the IV are once more reported in column (1). In column

(2), we add average age and age squared of the children in the municipality and year

to the baseline model, and in column (3) we add information on the share of mothers

with college education in the municipality of residence. None of these modifications

significantly changes the estimated effects. In column (4), we restricted the sample to

children living within 2 km of the nearest pollution monitor. Notice that since pollu-

tion monitors are located in downtown areas, the mean of respiratory related hospital
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admissions is higher. Moreover, notice that when restricting the sample to only those

close to the monitors, the OLS estimate changes dramatically (≈ 33 percent lower),

while the IV estimate changes marginally (≈ 6 percent lower). The differences in the

robustness of the results between OLS and IV are an indication of the validity of the

research design, since if unobservable covariates are uncorrelated to the instrument but

not to PM10 levels, we would expect the OLS to be more sensitive to changes in the

specification than the IV estimate. In column (5), we assess the robustness of the esti-

mates with respect to the included weather variables. If we drop the precipitation and

wind variables from the ground level weather stations, and instead only use the NASA

satellite weather data, the estimates hardly change at all. Hence, the IV-approach could

be implemented only using the NASA data.

Table A1 in Appendix A report additional specification checks intended to capture

cumu-lative/displacement effects. Column (1) review the baseline IV estimates for com-

parison, Column (2) report the estimate when using the average PM10 levels between

t and t-5 using the share of days with inversion as an instrument on day t respiratory

illness rates. Column (3) report the cumulative effect of PM10 over the last 5 days,

i.e. the sum of the lagged coefficients from a distributed lag model where each lag

is instrumented with the inversion status of that particular day. If harvesting effects

where an important concern in the current setting we would expect to find that the

cumulative effect over the recent past to be smaller than the effect from the baseline

contemporaneous model (i.e.
∑5

k=0 β
full
t−k < βbase

t ). The impact of the average PM10

level over the past 5 days should also be smaller than the contemporaneous effect. If

anything both the estimates are larger, but they are not statistically distinguishable

from the baseline estimates.16

16Except for the contemporaneous effect, none of the lagged coefficients in the distributed lagged
model are statistically significant, and do not follow any obvious pattern. Note that missing values on
any of the past days leads to that the day t is dropped from the distributed lag estimation, leading
to a substantially smaller sample size. We also estimated a model using full set of contemporaneous
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Finally, the last two columns of table A1 assess the relevance of reversed causality

in the first stage equation. To gauge the severity of this concern, we check whether

pollution levels affect inversion episodes by exploiting the well documented decrease

in pollution levels during weekends. In particular we regressed the inversion dummy

on a weekend dummy and the other variables in the main model (excluding the day of

week effects) Column (4) show that PM10 decreases by around 23 percent (-4.754/20.8)

during weekends. But despite this huge improvement in air quality, the frequency of

inversion episodes are not affected; the point estimate is not statistically significant,

positive, and close to zero. Thus, reversed causality in the first stage equation does not

seem to be a major concern.

6.3 Heterogeneity: by respiratory diagnosis and child age

So far, all respiratory illnesses have been lumped together, but it is possible that the

effect of PM10 varies across type of respiratory illness. In Table 5, we supply estimates

of the effect of PM10 separately across type of illnesses. In columns (2) to (5), we

separately explore the effect of air pollution by type of respiratory illness. We split

the respiratory illness diagnosis data into Pneumonia, Bronchitis, Asthma, and Other

respiratory conditions. The first three conditions are likely to be exacerbated from

current exposure as opposed to conditions such as Emphysema where the effect of

exposure is cumulative over time. Therefore, we expect to find the largest effects for

the first three conditions. This pattern is also largely confirmed by both the OLS and

the IV estimates, with the highest percent effect for Asthma, Bronchitis and Pneumonia,

and substantially lower but still significant for the other respiratory conditions.

Columns (6) and (7) provide separate estimates for pre-school children (0-5) and

weather controls but only lagged ground level temperature to minimized missing values. Results were
very similar. The full set of estimates are available on request. Schenkler and Walker (2011) use a
similar specification and find similar patterns.
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school age children (6-18). Note that the mean respiratory illness rate is higher for

children in the age span 0 5 years. Relative to the mean respiratory illness, the OLS

estimates are higher for the older children than for the younger children. The IV

estimates are positive and significant with the largest percentage effect on the increase

of respiratory related hospital admissions for the older age group.

However, note the differences between the OLS and the IV estimates in the two age

groups. The IV estimate is about 7 and 3 times larger than the OLS for the younger

and the older children respectively, potentially indicating that avoidance behavior is

more important among (the parents of) the younger children.

6.4 Examining the Effects across Socio-Economic Groups

Next we report estimates by parental socio economic characteristics. In Table 6, we

report the separate estimates for the sample of children with mothers having more than

high school education and for those who do not. We do not find any substantial differ-

ences in the effects with respect to maternal education (columns 2-3). However, when

turning to columns 4 and 5, we see clear evidence of the differential effect, depending on

household income. The IV estimates for low-income households (below median income)

suggest that the effects of a 10 µg/m3 increase in PM10 are around twice as large as

on children in high-income households (12 percent vs. 6 percent). Figure 5 illustrates

the differences by SES-groups graphically.

The finding that children from low-income families are much more affected by

changes in air quality than children from high income families clearly suggests that

policies that reduce pollution levels may also reduce the inequality in childhood health.

As highlighted in the conceptual framework outlined above, several potential mecha-

nisms have previously been brought forth that could potentially explain SES differences

in the effects of air pollution. A better understanding of the underlying mechanisms
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could be informative for understanding which types of policies that are likely to not

only reduce the effects of pollution, but potentially also reduce the socioeconomic differ-

ences in the impact. In the following section, we first discuss how our previous results

square with the suggested mechanisms and use the data at hand to try to quantify the

importance of the different mechanisms.

6.4.1 Evidence on the mechanisms behind the SES-gap

(i) Non-linearities

An important difference between rich and poor households could be that residential

segregation leads to differences in average levels of pollution exposure. In the case of

road traffic, if environmental disamenities such as air pollution and noise from traffic

are valued in the housing market, this would lead children from poorer households to

be located, all else equal, closer to major roads. Since local road traffic contributes

to a substantial share of the total PM10 exposure, a potentially important mechanism

behind the SES-gap could be that children from poorer households are exposed to

higher pollution levels than children from wealthier households. Since we measure

average PM10 levels at the municipality of residence level, the observed SES differences

could hence stem from nonlinearities in the effects of PM10.

However, this interpretation squares poorly with the results from the non paramet-

ric estimates in Figure 4 that give no indication of strong nonlinearities between PM10

and respiratory illnesses. Still, since we are only able to directly assess the effects of

PM10 on health, careful readers may worry that inversion episodes could generate a

substantial increase in other, unobserved, pollutants which, in turn, may be nonlinearly

related to respiratory illnesses. However, again, if non linearities in other unobserved

pollutants are important, we would expect that the reduced form relationship between

inversion strength and respiratory illnesses should also be strongly non linear during
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inversion episodes in Figure 4, which is not the case. In summary, at the relatively

low pollution levels considered, our results do not provide any strong evidence in favor

of the hypothesis that the differences in the observed effects between rich and poor

households are driven by non linearities in the effects of air quality.

(ii) Avoidance Behavior

Another reason why children from differing socio-economic backgrounds could suffer

more from changes in pollution levels is differing parental responses to changes in pol-

lution levels. As discussed above, avoidance behavior could influence estimates of the

effects of air quality on respiratory illnesses. If high socio-economic status parents are

more likely to engage in avoidance behavior, the SES-gap in the effects of ambient air

pollution could stem from differences in avoidance behavior.

Note first that, as argued above, our identification strategy is explicitly designed to

hold parental avoidance behavior fixed. Second, to the extent that knowledge about

risks of high pollution episodes following inversion episodes is more prevalent among

highly educated parents than low educated parents, we would expect to see differences

in the effects across households with differing educational attainment. As shown by

Table 6 and Figure 5, there is no indication of differential effects across families with

different educational attainments.

However, we also try to directly assess the prevalence of avoidance behavior. Any

test of the extent and prevalence of avoidance behavior relies on proxies (Graff Zivin

and Neidell, 2012). Previous studies examining avoidance behavior have used visits to

outdoor facilities (e.g Zoos or sporting events) in connection with warnings of predicted

high ozone episodes (Neidell, 2009; Moretti and Neidell, 2011) in high pollution settings.

Here, we use changes in in- and out patient health care visits due to externally

caused injuries to proxy for changes in children’s activity patterns. The idea is that if
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inversion episodes are associated with substantial changes in children’s activity patterns,

for example that parents are keeping their children indoors instead of allowing them

to play outside to reduce exposure, we would expect that the risk of accidental falls,

accidents with cyclists, or motor vehicles, etc. could change as well. Moreover, the

externally caused injury rate per 10,000 children has a similar mean and distribution

as the respiratory illness rate.

Since there is no obvious direct relationship between air quality and externally

caused injuries except through changes in activity patterns, we would expect to see

that changes in air pollution also change the risk of injuries due to external causes if

avoidance behavior is highly prevalent. Moreover, for avoidance behavior to be a strong

explanatory factor for the observed SES gap, children from richer households should

experience a substantially stronger relative change in the externally caused injury rate.

The estimates in Table 7 column (1) show the effect for the full sample and columns

(2) and (3) show the results for children in rich and poor households separately, a

non significant and small correlation between changes in PM10 and externally caused

injuries. The percent effect for respiratory illness is more than six times larger than the

effect on externally caused injuries. Moreover, there are no differences between children

in low- and high-income households.

These results first of all indicate that differences in avoidance behavior are not

likely to be the cause of the SES-gap in our low-pollution context. This result is

consistent with the absence of differential effects by maternal education. If knowledge

of risks of high pollution episodes is more prevalent among highly educated parents, we

would expect to see differences in effects across households with differing educational

attainment; which we do not.

In addition, the fact that the rate of externally caused injuries does not create any

change in response to high pollution episodes as instrumented by inversion episodes
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can also been seen as a falsification test of our identifying assumptions. It indirectly

validates that our instrumental variable estimates are not affected by e.g. changes in

activity patterns caused by or other unobserved variables correlated with both inver-

sion episodes and children’s respiratory illnesses. In other words, it seems reasonable to

assume that our instrumental variable estimates shift pollution exposure while parental

responses are held fixed.

(iii) Differences in Baseline Health

Children from poorer backgrounds have worse health in general (Currie et al., 2010). If

children with poorer general health are more susceptible to pollution shocks, the SES

gap in the effects of pollution could in part be explained by differences in children’s

baseline health across rich and poor households.

To assess the relevance of the hypothesis of differences in health capital between

children in high- and low-income households, we make use of data on health at birth.

Health at birth data is useful since it is a strong predictor of subsequent health in child-

hood and beyond, but also because this measure has been collected in a similar manner

for all cohorts and is available for virtually all children in our sample. Specifically, we

construct an index of initial health using the first principal component of gestational

week at birth and birth weight. The children are then split into a good and poor health

status group if they are above or below the median of the initial health index.

Table 8 presents the results for the full sample split into high and low health chil-

dren in columns (1) and (2). Columns 3 through 6 then show the results after splitting

the sample further into high- and low-income of the parents. The first two columns

show that the IV effects of pollution are larger for children with poorer initial health

than children with better initial health, while the OLS differences are negligible. An

increase of 10µg/m3 PM10 increases the respiratory illness rate by 4 percent for chil-
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dren with good health and high-income parents, but are around three times larger for

children with good health but who have poorer parents. The two final columns in Ta-

ble 9 show that this huge SES gap decreases substantially if comparing children with

worse initial health in rich (9 percent) and poor (11 percent) households. Note also

that the standard errors are higher for children in low-income households with good

initial health than for low-income household children with poor initial health, and vice

versa for children from high-income households. This reflects the fact that children

from low-income households are substantially more prevalent in the poor initial health

group, and high-income household children are more prevalent in the high initial health

group.

Summary of the evidence on the underlying mechanisms

In summary, out of the mechanisms suggested to be able to explain differential effects of

ambient air quality on children’s health, differences in initial health across households

with differing economic conditions seem to be key in explaining the differential impact

of air quality on respiratory illnesses. However, since our identification strategy is de-

signed to hold avoidance behavior fixed, our estimates reflect the “biological” effects. In

high pollution settings where information differences across socio economic groups are

strong, it is likely that avoidance behavior plays a more prominent role in generating

differences in the effects of air pollution across socio economic groups.

Finally, an additional mechanism could be that parents with more resources may

have greater opportunities for, or receive higher returns (e.g. by reducing the lost

income due to work absence during children’s illness spells) from, medical defensive

investments. A higher level of defensive investments may reduce the need for visits to

health care facilities in connection with high pollution days and hence, this could also

contribute to parts of the SES-gap in the effect on health care visits. There is little
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evidence of the importance of defensive investments with respect to air quality, but

Deschenes et al. (2012) document that when ozone levels decrease, so does medication

expenditure. To our knowledge, there are no studies examining whether defensive

investments related to respiratory illnesses differ for children between socio-economic

groups.

Difference in medical defensive investments is difficult to completely rule out as

an additional explanatory factor given the lack of data on daily medical consumption.

However, in Sweden all children have health insurance, and medical expenses of children

(under age 18) are all fully subsidized if the sum of expenses of all children in the same

family exceeds SEK 2200 ( ≈ USD 320) for 12 months after the date when the threshold

is exceeded. Health care visits are free of charge for children aged below 19. Hence

in our setting, it seems unlikely that differences in defensive investments constitute a

major contributing factor to the SES gap in the effects of air quality on health.

7 Conclusions

The main contribution of this paper is the instrumental variable approach we develop

for causal inference in short term effects of poor air quality. The method can be used

on a global scale with a high spatial and temporal resolution. As an illustration of

the usefulness of the data, we examine the short run effects of pollution on children’s

respiratory illnesses in Sweden. The results are robust to a number of alternative spec-

ifications and suggest that poorer air quality significantly increases health care visits

due to respiratory illnesses for children aged below 18. There is a striking difference in

the costs associated with high pollution levels as predicted by the OLS and IV estima-

tors. OLS estimates of particle pollution on health care visits are statistically significant

although small in magnitude. In contrast, IV estimates accounting for avoidance behav-
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ior and measurement errors indicate a four times larger toll of pollution on respiratory

illnesses.

Moreover, the differences in the response to air quality changes across children in

high and low-income households clearly suggest that environmental policies that curb

local pollution levels could reduce the persistence of inequalities in health. In our

setting, despite heavily subsidized and universal access to preventive care, differences

in economic resources seem to be more important than information differences across

households. The non parametric estimates show no indication of strong nonlinearities

in the effects of PM10. Hence, our examination of the channels through which the

differential effects arise suggests that baseline health differences between children in

rich and poor households are key. Since pollution exposure early in life has also been

shown to influence cognitive ability, educational attainments and outcomes in the labor

market (Nilsson, 2009; Sanders, 2012), it seems that environmental policies could also

play an important role in reducing inequalities in economic outcomes. More research on

long term effects of early life air pollution exposure and the interaction with parental

income is of clear interest.

Note that since we only examine the impact on health care visits and disregard other

outcomes, such as parental work absence or use of pharmaceuticals, they represent a

lower bound of the total welfare costs of poor air quality. In addition, while the focus

on short-term changes in air quality aids the identification, our results only provide

limited insights into the effect of environmental policies that permanently improves air

quality. Since health is a stock variable (Grossman, 1972), it is possible that the full

health benefits of a permanently lower pollution level could be much higher than what

is suggested by our short-term effect estimates. Further research is needed on health

effects of policies that “permanently” change pollution levels. In addition, while the

focus of the current paper is not about identifying potential heterogeneous SES effects
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from different air pollutants, future studies with better data on different pollutants

could examine the effects inversion episodes have on other air pollutants besides PM10.

But the method could also be used to shed some additional light on effects of air

quality on e.g. labor supply on the extensive (Hanna and Oliva, 2011) and intensive

margin (Graff Zivin and Neidell, 2009) among adults. These studies have used panel

data methods to quantify the effects of poor air quality on labor supply in a setting

with high pollution levels and for farm workers, respectively. The NASA vertical tem-

perature profiles data opens up the possibility of comparative studies from areas with

widely differing pollution levels, different economic circumstances, and in various occu-

pations. Using similar identification strategies across studies could reduce the risks of

mistaking treatment heterogeneity across locations and/or populations with differences

in estimation strategies. The inversion data could also be used in combination with

more location-specific instrumental variables to boost precision of estimates.

Finally, the AIRS data can be incorporated in models predicting pollution levels at

many more locations than what is currently possible using ground based vertical tem-

perature sounders (e.g. available in four locations in Sweden). By developing methods

to produce more precise location specific pollution forecasts and effective means of dis-

seminating such forecasts, the health care costs associated with respiratory symptoms

could potentially be reduced by allowing sensitive populations to more effectively engage

in defensive investments.
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Figure 1: Municipalities, Temperature Grid Centroids ( ) and Air Quality Monitors (∆). 



 

Figure 2: Comparison of 24h-mean PM10 levels during normal and inversion episodes 

 

 

 
 

Figure 3: Seasonal comparison of 24h-mean PM10 levels during normal and inversion episodes 

 

 

 

 

 

 

 



 
Figure 4: Non-parametric Reduced Form and First-stage Estimates  
Generalized additive model estimates of respiratory health care visits per 10,000 children (black) and PM10 level (gray) on  inversion 

strength using a narrow bandwidth local linear smoother, controlling for calendar month and an extensive set of weather variables (see the 
text for details). Kernel density distribution estimate in the background (dashed), current WHO 24-h PM10 µg/m 3 guideline for reference 

(dotted). 
  



 

Figure 5: OLS and IV Estimates by Socio-Economic Status (10 μg/m
3
 PM10 increase)  



 

 

Table 1: Summary statistics for Health Care Visits, PM10, and covariates  

 Mean Standard deviation 

   

A. Dependent variables   

Rate of daily respiratory related hospital visits per 10,000 children 

Any respiratory illness 2.16 2.55 

Age 0-5 4.45 5.77 

Age 6-10 1.47 3.40 

Age 13-18 1.03 2.19 

Asthma 1.68 2.55 

Pneumonia 0.56 1.52 

Bronchitis 0.78 1.88 

Other respiratory illness 1.82 2.51 

External causes 2.44 2.33 

   

B. Independent variables   

PM10 (μm/m
3
) 20.77 17.57 

  m         (       ) 

Daytime (ground level) 

277.57 9.31 

  m         (       ) 

Nighttime (ground level) 

275.04 7.99 

Precipitation (mm) 

(N=33,079) 

0.51 1.14 

Windspeed (m/s) 

(N=33,079) 

3.26 1.75 

Daily Cloud cover ratio 0.43 0.28 

Nightly Cloud cover ratio 0.45 0.27 

   

Share of Inversion days 0.25 0.43 

Inversion strength  -1.35 2.80 

Number of Observations 34 175  

 

  



 

Table 2: Descriptive statistics for key variables conditional on inversion 

status 

Normal Nights 

N=25,567 Mean Standard Deviation . 

    

Rate of health care visits per 

10,000 children: 

 

Any respiratory illness 2.14 2.51 

    

PM10 (μm/m
3
) 18.06 13.09 

  m         (       ) 

Daytime (ground level) 

277.80 8.90 

  m         (       ) 

Nighttime (ground level) 

276.06 7.48 

Precipitation (mm) 

(N=24,862) 

0.63 1.24 

Wind speed (m/s) 

(N=24,862) 

3.48 1.79 

Daily Cloud cover ratio 0.47 0.27 

Nightly Cloud cover ratio 0.49 0.26 

Inversion nights  

N=8,608   

   

Rate  of health care visits per  

10,000 children: 

Any respiratory illness 2.24 2.68 

    

PM10 (μm/m
3
) 28.82 25.08 

  m         (       ) 

Daytime (ground level) 

276.87 10.40 

  m         (       ) 

Nighttime (ground level) 

272.01 8.68 

Precipitation (mm) 

(N=8,217) 

0.15 0.59 

Windspeed (m/s) 

(N=8,217) 

2.61 1.46 

Daily Cloud cover ratio 0.33 0.27 

Nightly Cloud cover ratio 0.32 0.26 

 

  



 

 

Table 3: Baseline Estimates 

 First-stage Reduced 

form 

OLS IV 

Dependent variable: 

 

Pm10 

 

Respiratory 

related health 

care visits 

per 10,000 

children 

Respiratory 

related health 

care visits 

per 10,000 

children 

Respiratory 

related health 

care visits 

per 10,000 

children 

 (1) (2) (3) (4) 

Inversion 6.154*** 

(0.892) 

0.106*** 

(0.0275) 

  

PM10   0.00398*** 

(0.000908) 

0.0172*** 

(0.00253) 

Number of clusters 90 90 90 90 

Mean of dependent variable 20.78 2.164 2.164 2.164 

Observations 34 156 34 156 34,156 34,156 

Weather controls (Nasa+SMHI): Yes Yes Yes Yes 

First-stage F-stat.    47.99 
Notes: Robust standard errors in parentheses clustered at the municipality level, *** p<0.01, ** p<0.05, * p<0.1. This 

table presents the first-stage and reduced-form estimates of the effect of pollution on respiratory related hospital visits 
for children aged below 18 in Sweden. The rate of hospital visits is calculated by dividing the number of hospital visits 

each day in each municipality by the total number of children in the municipality and then multiplying by 10,000. Thus, 

the coefficient can be interpreted as the number of hospital visits per day and 10,000 children aged below 18. This model 
includes year-month fixed effects, municipality fixed effects and day-of-week fixed effects. Temperature controls 

(polynomials of degree up to four) of the daily and nightly temperatures, cloud coverage, cloud coverage^2, humidity, 

humidity^2, H20 levels, precipitation, precipitation^2, wind speed, wind speed^2  are included in all regressions. Each 

regression is weighted by the total number of children in the municipality. The percent effect is (PM10 

coefficient*10)/(mean of dependent variable) in the last two columns. 

 

  



 

Table 4: OLS and IV Regression results for the effect of PM10 on respiratory illnesses 

Dependent 

variable: 

Respiratory related health care admissions per 10,000 children 

Specification: Baseline 

specification: 

Baseline 

specification: 

Full Baseline 

specification: 

Full Baseline 

specification: 

Full Baseline 

specification: 

 

 

 + age + age 

+ maternal 

education 

within 2km 

of pollution 

monitor 

without 

weather 

station data 

 (1) (2) (3) (4) (5) 

 

OLS estimates 

     

PM10 0.00398*** 0.00398*** 0.00394*** 0.00262*** 0.00401*** 

 (0.000908) (0.000914) (0.000926) (0.000744) (0.000901) 

IV estimates      

PM10 0.0172*** 0.0173*** 0.0174*** 0.0166*** 0.0171*** 

 (0.00253) (0.00252) (0.00251) (0.00421) (0.00225) 

Observations 34,156 34,156 34,156 34,156 34,156 

Other Controls No Yes Yes Yes Yes 

SMHI weather Yes Yes Yes Yes No 

NASA weather Yes Yes Yes Yes Yes 

Mean outcome 2.164 2.164 2.164 2.215 2.164 

F-stat 1
st
  Stage  47.67 47.67 47.99 49.88 44.80 

# of cluster 90 90 90 90 90 

Effect OLS  1.8% 1.8% 1.8% 1.2% 1.9% 

Effect IV  7.9% 8.0% 8.0% 7.5% 7.9% 
See notes to Table 1. Column (4) represents children living within 2km of the nearest pollution monitor. The percent 

effect is (PM10 coefficient*10)/(mean of dependent variable)  

 

 

 

 

 

 

 

 

  



 

Table 5: Effects by child age and by sub-diagnosis. 

 
Dependent Variable: Respiratory related health care admissions per 10,000 children 

 (1) (2) (3) (4) (5) (6) (7) 

 Full baseline 

specification 

Asthma Bronchitis Pneumonia Other 

respiratory 

Pre-School 

Kids 

School-age 

Kids 

        

OLS estimates 

PM10 

0.00394*** 

(0.000926) 

0.00283*** 

(0.000601) 

0.000385** 

(0.000192) 

0.000052 

(0.000087) 

0.000670*** 

(0.000221) 

0.00422** 

(0.00163) 

0.00343*** 

(0.0007) 

IV estimates 

PM10 

0.0174*** 

(0.00251) 

0.00956*** 

(0.00181) 

0.00190* 

(0.000986) 

0.00108** 

(0.000483) 

0.00485*** 

(0.00155) 

0.0280*** 

(0.00618) 

0.0123*** 

(0.00193) 

Weather controls Yes Yes Yes Yes Yes Yes Yes 

Other Controls Yes Yes Yes Yes Yes Yes Yes 

Observations 34,156 34,156 34,156 34,156 34,156 34,156 34,156 

F-stat first-stage IV 47.67 47.99 47.99 47.99 47.99 46.92 48.63 

Number of clusters 90 90 90 90 90 90 90 

Mean respiratory illness  2.164 0.890 0.188 0.115 0.971 4.445 1.184 

Percent effect (OLS) 1.8% 3.2% 2.0% 0.5% 0.7% 0.9% 2.9% 

Percent effect (IV) 8.0% 10.7% 10.1% 9.4% 5.0% 6.3% 10.4% 

Notes: The percent effect is (PM10 coefficient*10)/(mean of the dependent variable) 

 

  



Table 6: Examining the Effects across Socio-Economic Groups. 

 
Dependent Variable: Respiratory related health care admissions per 10,000 children 

 (1) (2) (3) (4) (5) 

 Full baseline 

specification 

Mother’s 

Education: 

> High School 

Mother’s 

Education: 

≤ High school  

Family  

Income: 

> Median 

Family  

Income: 

≤ Median 

      

OLS estimates 

PM10 

0.00394*** 

(0.000926) 

0.00497*** 

(0.00113) 

0.00333*** 

(0.000897) 

0.00392*** 

(0.000833) 

0.00422*** 

(0.00117) 

IV estimates 

PM10 

0.0174*** 

(0.00251) 

0.0190*** 

(0.00319) 

0.0183*** 

(0.00374) 

0.0120*** 

(0.00441) 

0.0307*** 

(0.00365) 

Weather controls Yes Yes Yes Yes Yes 

Other Controls Yes Yes Yes Yes Yes 

Observations 34,156 34,156 34,156 34,156 34,156 

F-stat first-stage IV 47.67 45.02 44.27 46.26 42.72 

Number of clusters 90 90 90 90 90 

Mean respiratory illness  2.164 2.186 2.266 2.011 2.584 

Percent effect (OLS) 1.8% 2.3% 1.5% 1.9% 1.6% 

Percent effect (IV) 8.0% 8.7% 8.1% 6.0% 11.9% 

Notes: The percent effect is (PM10 coefficient*10)/(mean of the dependent variable) 

 

 



Table 7: Examining the Causes of the SES-gap in the Effects: Avoidance Behavior 

Dependent variable: Injuries due to External Causes per 10,000 children 

   

  Family income 

 All  High income Low Income 

Specification: (1) (2) (3) 

    

OLS estimates 0.000317 0.000258 0.000362 

PM10 (0.000970) (0.00107) (0.000961) 

    

IV estimates 0.00448 0.00407 0.00473 

PM10 (0.00586) (0.00588) (0.00700) 

    

Weather controls Yes Yes Yes 

Other controls No No No 

    

Observations 34,156 34,156 34,156 

F-stat first-stage IV 49.13 50.40 47.44 

Number of clusters 90 90 90 

Mean resp. illness rate 2.437 2.482 2.393 

Effect on outcome variable OLS 0.1% 0.1% 0.2% 

Effect on outcome variable IV 1.8% 1.6% 1.8% 

Notes: The percent effect is (PM10 coefficient*10)/(mean of the dependent variable) 

 

  



Table 8: Results for subsamples based on initial health index and family income. 

 Respiratory related health care admissions per 10,000 children 

  

 Health Index Good Initial Health (High index) Bad Initial Health (Low index) 

Dependent Variable: 
High Low High income 

families 

Low income 

families 

High income 

families 

Low income 

families 

 (1) (2) (3) (4) (5) (6) 

       

OLS  

Pm10 

0.00432*** 

(0.00107) 

0.00427*** 

(0.00112) 

0.00441*** 

(0.00109) 

0.00424*** 

(0.00123) 

0.00393*** 

(0.000895) 

0.00478*** 

(0.00161) 

       

IV       

Pm10 
0.0183*** 

(0.00362) 

0.0257*** 

(0.00437) 

0.00851** 

(0.00396) 

0.0337*** 

(0.00744) 

0.0201** 

(0.00867) 

0.0330*** 

(0.00551) 

Weather controls Yes Yes Yes Yes Yes Yes 

       

Observations 33,231 33,231 33,231 33,231 33,231 33,231 

Number of clusters 88 88 88 88 88 88 

Mean resp. illness rate 2.178 2.490 1.920 2.539 2.161 2.885 

F-stat 1st Stage 43.93 44.57 44.55 42.87 45.33 43.34 

       

Effect on outcome OLS 2.0% 1.7% 2.3% 1.7% 1.8% 1.7% 

Effect on outcome IV 8.4% 10.3% 4.4% 13.3% 9.3% 11.4% 
Notes: The health index is based on the first principal component using birth weight and gestational weeks at birth. The children are split into high and low initial health based on 

whether they are above or below the median of the index. See Table 4 for full specification details. The percent effect is (PM10 coefficient*10)/(mean of the dependent variable) 

 

  



Appendix A 

 

 
Figure A1: The graph illustrates the range of concentrations from all types of stations in 

μm/m
3
 officially reported by the EU member states and how the concentrations relate to the 

limit value set by EU legislation (marked by the red line). Source: EEA (2012). 

  

 

 

 

Figure A2: PM10 emissions in Sweden between 1990 and 2010, measured in thousands of 

ton. Source: SEPA. 

 



 

Table A1: Additional Specification Checks 

Dependent variable: Respiratory Illness Rate at day t PM10 Inversion 

Specification: (1) (2) (3) (4) (5) 

PM10 (t) (baseline) 0.017*** 

(0.003) 

    

    
̅̅ ̅̅ ̅̅ ̅(avg. past 5 days)  0.020*** 

(0.003) 

   

Cumulative PM10 Effect ( ∑       
 
      0.019*** 

(.007) 

  

Weekend Dummy    -4.754*** 

(0.993) 

0.0042 

(0.003) 

Weather controls Yes Yes Yes Yes Yes 

Other controls Yes Yes Yes Yes Yes 

Observations 34,156 34,156 9,591 34,156 34,156 

Number of clusters 90 90 88 90 90 

Mean outcome var. 2.2 2.2 2.1 20.8 0.25 

Notes: All reported estimates are IV estimates, except last two columns. Robust standard errors in parentheses clustered at the 

municipality level, *** p<0.01, ** p<0.05, * p<0.1. Column (1) repeats fully specified model IV model results (see Table 4), 

Column (2) use the share of inversions nights between t to t-5 to instrument average PM10 levels during the same period. Column 
(3) presents the cumulative effect from a instrumented distributed lag model from t to t-5. Column (4) show the drop in PM10 

levels on weekends, while column (5) show that the sharp drop in pollution levels on weekends do not influence inversions. 
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