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Both the tie-breaking experiment and the regression-discontinuity analysis are partic-

ularly subject to the external validity limitation of selection-X interaction in that the

effect has been demonstrated only for a very narrow band of talent, i.e., only for those

at the cutting score... Broader generalizations involve the extrapolation of the below-X

fit across the entire range of X values, and at each greater degree of extrapolation, the

number of plausible rival hypotheses becomes greater.

– Donald T. Campbell and Julian Stanley (1963; Experimental and Quasi-Experimental

Designs for Research)

1 Introduction

In a regression discontinuity (RD) framework, treatment status changes discontinuously as a function

of an underlying covariate, often called the running variable. Provided conditional mean functions

for potential outcomes given the running variable are reasonably smooth, changes in outcome dis-

tributions at the assignment cutoff must be driven by discontinuities in the likelihood of treatment.

RD identification comes from a kind of virtual random assignment, where small and presumably

serendipitous variation in the running variable manipulates treatment. On the other hand, because

the running variable is usually related to outcomes, claims for unconditional “as-if random assign-

ment” are most credible for samples near the point of discontinuity. RD methods need not identify

causal effects for larger and perhaps more representative groups of subjects. Our epigraph suggests

this point was no less apparent to RD’s inventors than to today’s nonparametricians.

A recent study of causal effects at Boston’s selective public schools – known as “exam schools”

– highlights the possibly local and potentially limiting nature of RD findings. Boston exam schools

choose their students based on an index that combines admissions test scores with a student’s grade

point average (GPA). Abdulkadiroğlu, Angrist, and Pathak (forthcoming) use parametric and non-

parametric RD estimators to capture the causal effects of exam school attendance for applicants with

index values in the neighborhood of admissions cutoffs. In this case, nonparametric RD compares

students just to the left and just to the right of each cutoff. For most of these marginal students,

the resulting estimates suggest that exam school attendance does little to boost achievement.1 But

applicants who only barely manage to gain admission to, say, the highly selective Boston Latin

School, might be unlikely to benefit from an advanced exam school curriculum. Stronger applicants
1In an RD study of New York exam schools, Dobbie and Fryer (2012) similarly find little evidence of gains for

admitted applicants at the cutoff.
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who qualify more easily may get more from an elite public school education. Debates over affirmative

action also focus attention on inframarginal applicants, including some who stand to gain seats and

some who stand to lose their seats should affirmative action considerations be brought in to the

admissions process.2

Motivated by the question of how exam school attendance affects achievement for inframarginal

applicants, this paper tackles the theoretical problem of RD identification for applicants other than

those in the immediate neighborhood of admissions cutoffs. Our first tack extrapolates parametric

models for conditional mean functions estimated to the left and right of cutoffs. As noted by Angrist

and Pischke (2009), in a parametric framework, extrapolation is easy.

As it turns out, functional-form-based estimation procedures fail to produce compelling results

for the empirical question that motivates our theoretical inquiry. The resulting estimates of exam

school effects away from the cutoff are mostly imprecise and sensitive to the polynomial used for

extrapolation, with or without the implicit weighting induced by a nonparametric bandwidth. We

therefore turn to a conditional independence argument that exploits a key feature of most RD

assignment mechanisms: treatments is assigned as a deterministic function of a single observed

covariate, the running variable. The association between running variable and outcome variables is

therefore the only source of omitted variables bias in RD estimates. If, for example, the running

variable were randomly assigned, or otherwise made independent of potential outcomes, we could

ignore it and analyze data from RD designs as if from a randomized trial.

The special nature of RD assignment leads us to a conditional independence assumption (CIA)

that identifies causal effects by conditioning on covariates besides the running variable, with an eye

to eliminating the relationship between running variable and outcomes. It’s not always possible to

find such good controls, of course, but, as we show below, a straightforward statistical test isolates

promising candidates. As an empirical matter, we show that conditioning on baseline scores and

demographic variables largely eliminates the relationship between running variables and test score

outcomes for 9th grade applicants to Boston exam schools, though not for 7th grade applicants

(for whom the available controls are not as good). These results lay the foundation for a matching

strategy that identifies causal effects for inframarginal 9th applicants.

Our estimates of effects away from the cutoff are mostly in line with RD estimates of causal

effects at the cutoff. In particular, away-from-the-cutoff estimates suggest BLS attendance has

little effect on either math or English achievement, while the O’Bryant school may generate some
2In a study of tracking at Kenyan elementary schools, Duflo, Dupas, and Kremer (2011) use a combination of RD

and a randomized trial to document treatment effect heterogeneity as a function of the running variable used to track
students.
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gains, especially in English Language Arts (ELA). The ELA gains for successful O’Bryant applicants

approach one-fifth of a standard deviation. Perhaps surprisingly, therefore, those who seem most

likely to gain from any expansion in exam school seats are relatively weak applicants who currently

fail to gain admission to Boston’s least selective exam school. Ultra-high ability applicants, that is,

BLS applicants who easily clear the threshold for Boston’s most selective public school, are likely to

do well with our without the benefit of a BLS experience, at least as far as standardized test scores

go.

2 Causal Effects at Boston Exam Schools

Boston’s three exam schools serve grades 7-12. The high-profile Boston Latin School (BLS), which

enrolls about 2,400 students, is the oldest American high school, founded in 1635. BLS is a model

for other exam schools, including New York’s well-known selective high schools. The second oldest

Boston exam school is Boston Latin Academy (BLA), formerly Girls’ Latin School. Opened in 1877,

BLA first admitted boys in 1972 and currently enrolls about 1,700 students. The John D. O’Bryant

High School of Mathematics and Science (formerly Boston Technical High) is Boston’s third exam

school; O’Bryant opened in 1893 and now enrolls about 1,200 students.

The Boston Public School (BPS) system spans a wide range of peer achievement. Like many

urban students elsewhere in the U.S., Boston exam school applicants who fail to enroll in an exam

school end up at schools with average SAT scores well below the state average, in this case, at

schools close to the 5th percentile of the distribution of school averages in the state. By contrast,

O’Bryant’s average SAT scores fall near the 40th percentile of the state distribution of averages,

a big step up from the overall BPS average, but not elite in an absolute sense. Successful Boston

BLA applicants find themselves at a school with average scores around the 80th percentile of the

distribution of school means, while the average SAT score at BLS is the fourth highest among public

schools in Massachusetts.

Between 1974 and 1998, Boston exam schools reserved seats for minority applicants. Though

quotas are no longer in place, the role of race in exam school admissions continues to be debated

in Boston and is the subject of ongoing litigation in New York. Our CIA-driven matching strategy

is used here to answer two questions about the most- and least-selective of Boston’s three exam

schools; both questions are motivated by the contemporary debate over affirmative action in exam

school admissions. Specifically, we ask:

1. How would inframarginal low-scoring applicants to O’Bryant, Boston’s least selective exam
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school, do if they were lucky enough to find seats at O’Bryant in spite of falling a decile

or more below today’s O’Bryant cutoff? In other words, what if poorly qualified O’Bryant

applicants now at a regular BPS school were given the opportunity to attend O’Bryant?

2. How would inframarginal high-scoring applicants to BLS, Boston’s most selective exam school

and one of the most selective in the country, fare if their BLS offers were withdrawn in spite of

the fact that they qualify easily by today’s standards? In other words, what if highly qualified

applicants now at BLS had to settle for BLA?

The first of these questions addresses the impact of exam school attendance on applicants who

currently fail to make the cut for any school but might do so with minority preferences restored or

exam school seats added in an effort to boost minority enrollment. The second question applies to

applicants like Julia McLaughlin, whose 1996 lawsuit ended racial quotas at Boston exam schools.

McLaughlin was offered a seat at BLA, but sued for a seat at BLS, arguing, ultimately successfully,

that she was kept out of BLS solely by unconstitutional racial quotas. The thought experiment

implicit in our second question sends high-scoring BLS students like McLaughlin back to BLA.

2.1 Data

The data used here merge BPS enrollment and demographic information with Massachusetts Com-

prehensive Assessment System (MCAS) scores. MCAS tests are taken each spring, typically in

grades 3-8 and 10. Baseline (i.e., pre-application) scores for grade 7 applicants are from 4th grade.

Baseline English scores for 9th grade applicants come from 8th grade math and 7th grade ELA tests

(the 8th grade English exam was introduced in 2006). We lose some applicants with missing baseline

scores. Scores were standardized by subject, grade, and year to have mean zero and unit variance

in the BPS population.

Data on student enrollment, demographics and test scores were combined with the BPS exam

school applicant file. This file records applicants’ current grade and school enrolled, applicants’

preference ordering over exam schools, and applicants’ Independent Schools Entrance Exam (ISEE)

test scores, along with each exam schools’ ranking of its applicants as determined by ISEE scores

and GPA. These school-specific rankings become the exam school running variables in our setup.

Our initial analysis sample includes BPS-enrolled students who applied for exam school seats

in 7th grade from 1999-2008 or in 9th grade from 2001-2007. We focus on applicants enrolled in

BPS at the time of application (omitting private school students) because we’re interested in how

an exam school education compares to regular district schools. Moreover, private school applicants
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are much more likely to remain outside the BPS district and hence out of our sample if they fail

to get an exam school offer. Applicants who apply to transfer from one exam school to another are

also omitted.3

2.2 Exam School Admissions

The sharp CIA-based estimation strategy developed here is predicated on the notion that exam

school offers are a deterministic function of exam school running variables. Exam school running

variables are constructed by ranking a weighted average of ISEE scores and applicants’ GPAs at

the time of application. In practice, however, Boston exam school offers take account of student

preferences over schools as well as their ISEE scores and GPAs. Students list up to three exam

schools for which they wish to be considered, in order of preference. Admissions offers are determined

by a student-proposing deferred acceptance (DA) algorithm, using student preferences and school-

specific running variables as inputs. The DA matching process complicates our RD analysis because

it loosens the direct link between running variables and admissions offers. As in Abdulkadiroğlu,

Angrist, and Pathak (forthcoming), our econometric strategy begins by constructing analysis samples

that restore a deterministic link between exam school offers and running variables, so that offers

are sharp around admissions cutoffs. A description of the manner in which these sharp samples are

constructed appears in the appendix.4

The sharp RD treatment variable is an offer dummy, denoted Dik, indicating applicants offered

a seat at school k, determined separately as a function of rank for applicants in each school-specific

sharp sample. For the purposes of empirical work, school-specific ranks are centered and scaled to

produce the following running variable:

rik =
100

Nk
⇥ (⌧k � cik), (1)

where Nk is the total number of students who ranked school k (not the number in the sharp sample).

Scaled school-specific ranks, rik, equal zero at the cutoff rank for school k, with positive values

indicating students who ranked and qualified for admission at that school. Absent centering, scaled

ranks give applicants’ percentile position in the distribution of applicants to school k. Within sharp

samples, we focus on a window limited to applicants with running variables no more than 20 units
3For more on data, see the appendix to Abdulkadiroğlu, Angrist, and Pathak (forthcoming).
4Instead of defining sharp samples, a dummy for threshold crossing (qualification) can be used to instrument fuzzy

offers. The extension of our CIA approach to fuzzy designs is discussed in Section 5, below. The construction of
sharp sample produces an asymptotic efficiency gain, however, since those in the sharp sample are compliers in a
setup that uses qualification as an instrument for offers (this is implied by results in Frolich (2007) and Hong and
Nekipelov (2010), which show that the ability to predict compliance reduces the semiparametric efficiency bound for
local average treatment effects.)
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(percentiles) away from the cutoff. For qualified 9th grade applicants at BLS, this is non-binding

since the BLS cutoff is closer to the top of the 9th grade applicant distribution than the .8 quantile.

In sharp samples, offers are determined by the running variable, but not all offers are accepted.

This can be seen in Figures 1a and 1b, which plot school-specific offer and enrollment rates around

O’Bryant and BLS admissions cutoffs. Specifically, the figures show conditional means for sharp

sample applicants in a one-unit binwidth, along with a conditional mean function smoothed using

local linear regression (LLR).5 As can be seen in Table 1, which reports estimates that go with these

figures, 72% of 7th graders offered a seat at O’Bryant enroll there, while among 9th grade applicants

offered an O’Bryant seat, 66% enroll. Enrollment rates are much higher for those offered a seat at

BLS, while many applicants not offered a seat at BLS end up at Boston’s second most selective exam

school, BLA. At the same time, movement up the ladder of exam school selectivity is associated

with dramatic changes in peer composition. This can be seen in Figure 2a and 2b, which plot peer

achievement of applicants’ classmates (as measured by baseline MCAS scores), for applicants within

20 percentile points of the O’Bryant and BLS cutoffs.

2.3 Results at the Cutoff

As a benchmark, we begin with estimates for marginal applicants. Figures 3a and 3b show little

evidence of gains in 10th grade math scores for 7th grade applicants offered exam school seats. On

the other hand, among both 7th and 9th grade applicants, 10th grade ELA scores seem to jump at

the O’Bryant cutoff. The figure also hints at an O’Bryant-induced gain in math scores, though only

for 9th grade applicants.

Our estimators of the effect of an exam school offer are derived from models for potential out-

comes. Let Y1i and Y0i denote potential outcomes in treated and untreated states, with the observed

outcome determined by
yi = Y0i + [Y1i � Y0i]Di.

In a parametric setup, the conditional mean functions for potential outcomes given the running
5For school k, data in the estimation window were used to construct estimates of Ê[y

i
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where h is the bandwidth. The bandwidth used here is a version of the DesJardins and McCall (2008) bandwidth
(hereafter, DM) studied by Imbens and Kalyanaraman (2012), who derive optimal bandwidths for sharp RD using
a mean square-error loss function with a regularization adjustment. The DM smoother (which generates somewhat
more stable estimates in our application than the bandwidth Imbens and Kalyanaraman (2012) prefer) is also used
to construct nonparametric RD estimates, below.
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variable are modeled as:

E[Y0i|ri] = f0(ri)

E[Y1i|ri] = ⇢+ f1(ri),

using polynomials, fj(ri); j = 0, 1.

Substituting polynomials in E[yi|ri] = E[Y0i|ri] + E[Y1i � Y0i|ri]Di, and allowing for the fact

that the estimation sample pools data from different test years and application years, the parametric

estimating equation for applicant i observed in year t is:

yit = ↵t +
X

j

�jpij +
X

`

�`di` + (1�Di)f0(ri) +Dif1(ri) + ⇢Di + ⌘it (2)

This model controls for test year effects, denoted ↵t, and for application year, indexed by ` and

indicated by dummies, di`. The model also includes a full set of application preference dummies,

denoted pij .6 The effects of the running variable are controlled by a pair of pth-order polynomials

that differ on either side of the cutoff, specifically:

fj(ri) = ⇡1jri + ⇡2jr
2
i + ...+ ⇡pjr

p
i ; j = 0, 1. (3)

The benchmark estimates set p = 3.

Non-parametric RD estimators differ from parametric in three ways. First, they narrow the

estimation window when the optimal data-driven bandwidth falls below 20. Non-parametric estima-

tors also use a tent-shaped edge kernel centered at admissions cutoffs, instead of the uniform kernel

implicit in parametric estimation. Finally, non-parametric models control for linear functions of the

running variable only, omitting higher-order terms. The nonparametric estimating equation is:

yit = ↵t +
X

j

�jpij +
X

`

�`di` + �0(1�D)ri + �1Diri + ⇢Di + ⌘it

= ↵t +
X

j

�jpij +
X

`

�`di` + �0ri + �⇤Diri + ⇢Di + ⌘it (4)

Non-parametric RD estimates come from a kernel-weighted LLR fit of equation (4), estimated sep-

arately in the sharp sample of applicants to O’Bryant and BLS.

Consistent with the figures, estimates of (2) and (4), reported in Table 2, show little in the way

of score gains at BLS. But the non-parametric estimates suggest an O’Bryant offer may boost 10th

grade ELA scores for both 7th and 9th grade applicants. Other estimates are either smaller or less

precise, though among 9th grade O’Bryant applicants, we see a marginally significant effect on math.
6As explained in the appendix, this controls for applicant-preference-group composition effects in the sharp sample.
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Other estimates, not reported here, present a broad picture of small effects on 7th grade exam school

applicants tested in 7th and 8th grade (see Abdulkadiroğlu, Angrist, and Pathak (forthcoming) for

nonparametric estimates of effects on middle school scores.) Results for the 10th grade ELA scores

of O’Bryant applicants offer the strongest evidence of an exam school gain.

2.4 To Infinity and Beyond: Parametric Extrapolation

The running variable is the star covariate in any RD scene, but the role played by the running

variable is distinct from that played by covariates in matching and regression-control strategies. In

the latter, we look to comparisons of treated and non-treated observations conditional on covariates

to eliminate omitted variables bias. As Figure 4 highlights, however, in an RD design, there is no

value of the running variable at which both treatment and control subjects are observed. Nonpara-

metric identification comes from infinitesimal changes in covariate values across the RD cutoff. As

a practical matter, however, nonparametric inference procedures compare applicants with covariate

values in a small - though not infinitesimal - neighborhood to the left of the cutoff with applicants

whose covariate values put them in a small neighborhood to the right. This empirical comparison

requires some extrapolation, however modest. Identification of causal effects away from the cutoff

requires a more substantial extrapolative leap.

In a parametric setup such as described by (2) and (3), extrapolation is easy though not neces-

sarily credible. For any distance, c, we have

⇢(c) ⌘ E[Y1i � Y0i|ri = c] = ⇢+ ⇡⇤1c+ ⇡⇤2c
2 + ...+ ⇡⇤pc

p, (5)

where ⇡⇤1 = ⇡11 � ⇡10, and so on. The notation in (5) masks the extrapolation challenge inherent

in identification away from the cutoff: potential outcomes in the treated state are observed for

ri = c > 0, but the value of E[Y0i|ri = c] for positive c is never seen. The dotted lines in Figure

4 show two equally plausible possibilities, implying different causal effects at ri = c. It seems

natural to use observations to the left of the cutoff in an effort to pin down functional form, and

then extrapolate this to impute E[Y0i|ri = c]. With enough data, and sufficiently well-behaved

conditional mean functions, f0(c) is identified for all values of c, including those never seen in the

data. It’s easy to see, however, why this approach may not generate robust or convincing findings.

The unsatisfying nature of parametric extrapolation emerges in Figures 5a and 5b. These figures

show observed and imputed counterfactual 10th grade math scores for 7th and 9th grade applicants.

Specifically, the figures plot nonparameteric estimates of the observed conditional mean function

E[Y0i|ri = c] for O’Bryant applicants to the left of the cutoff, along with imputed E[Y1i|ri = c]
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to the left. Similarly, for BLS applicants, the figures plot nonparametric estimates of observed

E[Y1i|ri = c] for applicants to the right of the cutoff, along with imputed E[Y0i|ri = c] to the right.

The imputations use linear, quadratic, and cubic specifications for fj(ri). These models generate a

wide range of estimates, especially as distance from the cutoff grows. For instance, the estimated

effect of BLS attendance to the right of the cutoff for 9th grade applicants changes sign when the

polynomial goes from second to third degree. This variability seems unsurprising and consistent

with Campbell and Stanley (1963)’s observation that, “at each greater degree of extrapolation, the

number of plausible rival hypotheses becomes greater.” On the other hand, given that f0(ri) looks

reasonably linear for ri < 0 and f1(ri) looks reasonably linear for ri > 0, we might have hoped for

results consistent with those from linear models, even when the specification allows something more

elaborate.

Table 3, which reports the estimates and standard errors from the models used to construct

the fitted values plotted in Figure 5, shows that part of the problem uncovered in the figure is

imprecision. Estimates constructed with p = 3 are too noisy to be useful at c = +/ � 5 or higher.

Models setting p = 2 generate more precise estimates than when p = 3, though still fairly imprecise

for c � 10. On the other hand, for very modest extrapolation (c = 1), a reasonably consistent

picture emerges. Like RD estimates at the cutoff, this slight extrapolation generates small positive

estimates at O’Bryant and small negative effects at BLS for both 7th and 9th grade applicants,

though few of these estimates are significantly different from zero.7

Using Derivatives Instead

Dong and Lewbel (2012) propose an alternative to parametric extrapolation based on the insight

that the derivatives of conditional mean functions are nonparametrically identified at the cutoff

(a similar idea appears in Section 3.3.2 of DiNardo and Lee, 2011). First-order derivative-based

extrapolation exploits the fact that

fj(c) ⇡ fj(0) + f 0
j(0) · c. (6)

This approximation can be implemented using a nonparametric estimate of f 0
j(0).

The components of (6) are estimated consistently by fitting linear models to fj(ri) in a neigh-

borhood of the cutoff, using a data-driven bandwidth and slope terms that vary across the cutoff.
7To parallel Figure 5, the estimates in Table 3 are from models omitting controls for test year, application year

and application preferences. Estimates from models with these controls differ little from those reported in the table.
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Specifically, the effect of an offer at cutoff value c can be approximated as

⇢(c) ⇡ ⇢+ �⇤ · c, (7)

with parameters estimated using equation (4). The innovation in this procedure relative to LLR

estimation of (4) is in the interpretation of the interaction term, �⇤. Instead of a bias-reducing

nuisance parameter, �⇤ is seen in this context as identifying a derivative that facilitates extrapolation.

As a practical matter, the picture that emerges from derivative-based extrapolation of exam school

effects is similar to that shown in Figure 5.

3 Calling on the CIA

RD designs take the mystery out of treatment assignment. In sharp samples of applicants to Boston

exam schools, we know that exam school offers are determined by

Di = 1[ri > 0].

This signal feature of the RD design implies that failure to control for ri is the only source of omitted

variables bias in estimates of the causal effect of Di.

Armed with precise knowledge of the source of omitted variables bias, we propose to identify

causal effects by means of a conditional independence argument. In sharp samples, Boston exam

school offers are determined by measures of past achievement, specifically ISEE scores and students’

GPAs. But these are not the only lagged achievement measures available. In addition to demographic

variables that are highly predictive of achievement, we observe pre-application scores on MCAS tests

taken in 4th grade and, for high school applicants, in 7th or 8th grade. Conditioning on this rich

and relevant set of controls may serve to break the link between running variables and outcomes.8

To formalize this identification strategy, we gather the set of available controls in a covariate

vector, xi. Our conditional independence assumption (CIA) asserts that:

CONDITIONAL INDEPENDENCE ASSUMPTION (CIA)

E[Yji|ri, xi] = E[Yji|xi]; j = 0, 1

In other words, potential outcomes are assumed to be mean-independent of the running variable

conditional on xi. We also require treatment status to vary conditional on xi:
8Cook (2008) credits Goldberger (1972a) and Goldberger (1972b) for the observation that when treatment status

is determined solely by a pre-treatment test score, regression control for pre-treatment scores eliminates omitted
variables bias. Goldberger credits Barnow (1972) and Lord and Novick (1972) for similar insights.
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COMMON SUPPORT
0 < P [Di = 1|xi] < 1 a.s.

The CIA and common support assumptions identify any counterfactual average of interest. For

example, the average of Y0i to the right of the cutoff is:

E[Y0i|Di = 1] = E{E[Y0i|xi, Di = 1]|Di = 1} = E{E[yi|xi, Di = 0]|Di = 1}, (8)

while the average treatment effect on the treated is identified by a matching-style estimand:

E[Y1i � Y0i|Di = 1] = E{E[yi|xi, Di = 1]� E[yi|xi, Di = 0]|Di = 1}.

3.1 Testing and Bounding

Just as with conventional matching strategies (as in, for example, Heckman, Ichimura, and Todd

(1998) and Dehejia and Wahba (1999)), the CIA assumption invoked here breaks the link between

treatment status and potential outcomes, opening the door to identification of a wide range of

average causal effects. In this case, however, the prior information inherent in an RD design is also

available to guide our choice of the conditioning vector, xi. Specifically, by virtue of the conditional

independence relation implied by the CIA, we have:

E[Y1i|ri, xi, ri > 0] = E[Y1i|xi] = E[Y1i|xi, ri > 0],

so we should expect that
E[yi|ri, xi, Di = 1] = E[yi|xi, Di = 1], (9)

to the right of the cutoff. Likewise, the CIA also implies:

E[Y0i|ri, xi, ri < 0] = E[Y0i|xi] = E[Y0i|xi, ri < 0],

suggesting we look for
E[yi|ri, xi, Di = 0] = E[yi|xi, Di = 0], (10)

to the left of the cutoff.

Regressions of outcomes on xi and the running variable on either side of the cutoff provide a

simple test for (9) and (10). Mean independence is stronger than regression independence, of course,

but regression testing procedures can embed flexible models that approximate nonlinear conditional

mean functions. In practice, simple regression-based tests seem likely to provide the most useful

specification check since such tests are likely to reject in the face of any sort of dependence between

outcomes and running variable, while more elaborate specifications with many free parameters may
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lack the power to detect violations.9

Concerns about power notwithstanding, the CIA is demanding and may be hard to satisfy. A

weaker and perhaps more realistic version limits the range of running variable values for which the

CIA is maintained. This weaker bounded conditional independence assumption asserts that the CIA

holds only over a limited range:

BOUNDED CONDITIONAL INDEPENDENCE ASSUMPTION (BCIA)

E[Yji|ri, xi, | ri |< d] = E[Yji|xi, | ri |< d]; j = 0, 1

Bounded CIA says that potential outcomes are mean-independent of the running variable conditional

on xi, but only in a d-neighborhood of the cutoff. Testing BCIA, we look for

E[yi|ri, xi, 0 < ri < d] = E[yi|xi, 0 < ri < d] (11)

to the right of the cutoff, and

E[yi|ri, xi,�d < ri < 0] = E[yi|xi,�d < ri < 0] (12)

to the left of the cutoff.

At first blush, the BCIA evokes nonparametric RD identification in that it leads to estimation of

casual effects inside an implicit bandwidth around the cutoff. An important distinction, however, is

the absence of any promise to make the d-neighborhood smaller as the sample size grows. Likewise,

BCIA requires no choice of bandwidth or local polynomial smoothers with an eye to bias-variance

trade-offs. Rather, the largest value of d that appears to satisfy BCIA defines the playing field for

CIA-based estimation.

Beyond providing an opportunistic weakening of the CIA, the BCIA assumption allows us to

avoid bias from counterfactual composition effects as distance from the cutoff grows. Moving, say,

to the left of the BLS cutoff, BLS applicants start to fall below the BLA cutoff as well, thereby

changing the relevant counterfactual from BLA to O’Bryant for BLS applicants not offered a seat

there. The resulting change in Y0i (where potential outcomes are indexed against BLS offers) is

likely to be correlated with the BLS running variable with or without conditioning on xi. To argue

otherwise requires the distinction between BLA and O’Bryant to be of no consequence. BCIA avoids

the resulting composition bias by requiring that we not extrapolate too far to the left of the BLS

cutoff when looking at BLS applicants.
9Fan and Li (1996), Lavergne and Vuong (2000), Ait-Sahalia, Bickel, and Stoker (2001), and Angrist and Kuer-

steiner (2011) develop nonparametric conditional independence tests.
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3.2 Alternative Assumptions and Approaches

CEI vs CIA

A weaker alternative to the CIA asserts conditional independence between average causal effects and

the running variable, instead of between potential outcomes and the running variable. A Conditional

Effect Ignorability (CEI) assumption, similar to that introduced by Angrist and Fernandez-Val

(2010) in an instrumental variables setting, describes this as follows:

CONDITIONAL EFFECT IGNORABILITY (CEI)

E[Y1i � Y0i|ri, xi] = E[Y1i � Y0i|xi]

CEI means that - conditional on xi - we can ignore the running variable when computing average

causal effects, even if potential outcomes are not individually mean-independent of the running

variable.10

CEI has much of the identifying power of the CIA. In particular, given CEI, the effect of treatment

on the treated can be written as:

E[Y1i � Y0i|Di = 1] = E{E[yi|xi, ri = 0+]� E[yi|xi, ri = 0�]|Di = 1}, (13)

where E[yi|xi, ri = 0+] and E[yi|xi, ri = 0�] denote right- and left-hand limits of conditional-on-xi
expectation functions for outcomes at the cutoff. In other words, the CEI identifies causal effects

away from the cutoff by reweighting nonparametrically identified conditional-on-covariates effects at

the cutoff.

In practice, CIA-based estimates seem likely to be more useful than those derived from equation

(13). For one thing, not being limited to identification near the cutoff, CIA-based estimation uses

more data. Second, CEI relies on the ability to find a fair number of observations near the cutoff for

all relevant covariate values, a tall order in many applications. Finally, the CEI is harder to assess.

CEI implies that the derivative of the conditional average treatment effect given covariates should

be zero at the cutoff; as noted by Dong and Lewbel (2012), this derivative is non-parametrically

identified (and given by the interaction term in the nonparametric estimating equation, (4)). In

practice, however, samples large enough for reliable nonparametric estimates of conditional mean

functions may still generate inconclusive results for derivatives. Not surprisingly, therefore, our

experiments with CEI estimators for Boston exam school applicants failed to produce estimates that

seem precise enough to be useful.
10Lewbel (2007) invokes a similar assumption in a setup using exclusion restrictions to correct for classification

error in treatment status.
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CIA in a Latent Factor Model

Instead of being intrinsically meaningful, running variables and the conditioning variables in our CIA

assumption can be modeled as noisy measures of a single underlying ability measure, ✓i. Suppose

that a version of the CIA holds for latent ability. In other words, we’re prepared to assume only

that
E[Yji|ri, ✓i] = E[Yji|✓i]; j = 0, 1 (14)

for unobserved ✓i. Not knowing ✓i, however, we condition on a vector of proxies, xi, instead. Given

(14), when is proxy conditioning good enough?

A sufficient condition for proxy conditioning to support identification in a latent factor model is

that
ri ?? ✓i | xi. (15)

In the exam school setting, (15) says that the running variable contains no further information

about ability after conditioning on baseline scores. Conditions (14) and (15) are easily seen to imply

covariate-based CIA. In ongoing work, Rokkanen (2013) explores identification strategies for RD in

more general latent factor models where identification is based on (14), without also assuming (15).

Other Related Work

Battistin and Rettore (2008) also consider matching estimates in an RD setting, though they don’t

exploit an RD-specific conditional independence condition. Rather, in the spirit of Lalonde (1986),

Battistin and Rettore propose to validate a generic matching estimator by comparing non-parametric

RD estimates with conventional matching estimates constructed at the cutoff. If matching and RD

produce similar results at the cutoff, matching seems worth exploring away from the cutoff as well.

Other related discussions of RD identification away from the cutoff include DiNardo and Lee

(2011) and Lee and Lemieux (2010), both of which note that the local interpretation of nonparametric

RD estimates can be relaxed by treating the running variable as random rather than conditioning on

it. In this view, observed running variable values are the realization of a non-degenerate stochastic

process assigning values to individuals of an underlying type. Each type contributes to local-to-cutoff

average treatment effects in proportion to that type’s likelihood of being represented at the cutoff.

Since “type” is an inherently latent construct, the DiNardo-Lee-Lemieux interpretation doesn’t

seem to offer concrete guidance as to how causal effects might change away from the cutoff. The

distinction between fixed and random running variables parallels that between inference with fixed

and stochastic regressors in classical regression theory. In practice, this distinction offers researchers

the option to fix the marginal distribution of regressors observed in any particular sample. The
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empirical consequences of regressor conditioning boil down to an adjustment of standard errors.11

At the same time, Lee and Lemieux (2010, p. 298-299) note that observed covariates may provide

a useful lever for the RD extrapolation problem: “It remains to be seen whether or not and how

information on the reliability [of a test-based running variable], or a second test measurement, or

other covariates that can predict assignment could be used in conjunction with the RD gap to learn

about average treatment effects for the overall population.” Our approach takes up this challenge.12

3.3 CIA-based Estimators

We economize on notation by omitting explicit conditioning on running variable values falling in the

[�d, d] interval; expectations in this section should be understood to be conditional on the largest

value of d that satisfies BCIA. Where relevant, the constant c is assumed to be no bigger than d in

absolute value.

At specific running variable values, the CIA leads to the following matching-style estimand:

E[Y1i � Y0i|ri = c] =

E{E[yi|xi, Di = 1]� E[yi|xi, Di = 0]|ri = c} (16)

Alternately, on the right-hand side of the cutoff, we might consider causal effects averaged over all

positive values up to c, a bounded effect of treatment on the treated:

E[Y1i � Y0i|0 < ri  c] =

E{E[yi|xi, Di = 1]� E[yi|xi, Di = 0]|0 < ri  c} (17)

Paralleling this on the left, the bounded effect of treatment on the non-treated is:

E[Y1i � Y0i|� c  ri < 0] =

E{E[yi|xi, Di = 1]� E[yi|xi, Di = 0]|� c  ri < 0} (18)

We consider two estimators of (16), (17) and (18). The first is a linear reweighting estimator

discussed by Kline (2011). The second is a version of the Hirano, Imbens, and Ridder (2003) propen-

sity score estimator based on Horvitz and Thompson (1952). We also use the estimated propensity
11See Abadie, Imbens, and Zheng (2011) for a detailed discussion of this point.
12Moving in a different direction, Jackson (2010) outlines an extrapolation approach that identifies inframarginal

effects at exam schools in Trinidad and Tobago by exploiting the fact that students with the same running variable
(a test score) can end up at different schools, depending on their preferences. Jackson (2010) identifies effects away
from the cutoff by differences-in-differences style contrasts between infra-marginal high- and low-scoring applicants
with different rankings. Cook and Wing (2012) explore a similar idea, offering supportive Monte Carlo evidence for
this approach.
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score to document common support, as in Dehejia and Wahba’s (1999) pioneering propensity score

study of the effect of a training program on earnings.

Kline’s reweighting estimator begins with linear models for conditional means, which can be

written:

E[yi|xi, Di = 0] = x0i�0 (19)

E[yi|xi, Di = 1] = x0i�1

Linearity is not really restrictive since the parametrization for x0i�j can be rich and flexible. Substi-

tuting in (16), we have

E[Y1i � Y0i|ri = c]

= (�1 � �0)
0E[xi|ri = c], (20)

with similar expressions based on (17) and (18).

Let �(xi) ⌘ E[Di|xi] denote the propensity score. Our propensity score weighting estimator

begins with the observation that the CIA implies

E


yi(1�Di)

1� �(xi)
|xi

�
= E[Y0i|xi]

E


yiDi

�(xi)
|xi

�
= E[Y1i|xi]

Bringing these expressions inside a single expectation and over a common denominator, the treatment

effect on the treated for those with 0 < ri < c is given by

E[Y1i � Y0i|0 < ri  c] = E

⇢
yi[Di � �(xi)]

�(xi) [1� �(xi)]
· P [0 < ri  c|xi]

P [0 < ri  c]

�
. (21)

Similar formulas give the average effect for non-treated applicants and average effects at specific,

possibly narrow, ranges of running variable values. The empirical counterpart of (21) requires a

model for the probability P [0 < ri  c|xi] as well as for �(xi). It seems natural to use the same

parameterization for both. Note also that if c = d, the estimand in (21) simplifies to

E[Y1i � Y0i|Di = 1] = E

⇢
yi[Di � �(xi)]

[1� �(xi)]E[Di]

�
,

as in Hirano, Imbens, and Ridder (2003).13

13The expectations and conditioning here refer to distributions in the sharp sample of applicants for each school.
Thus, treatment effects on the treated are for treated applicants in a school-k sharp sample. When the estimand
targets average effects at specific r

i

= c, as opposed to over an interval, the probabilities P [r
i

= c|x
i

] and P [r
i

= c]
needed for (21) become densities.
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4 The CIA in Action at Boston Exam Schools

We start by testing BCIA in estimation windows that set d equal to 10, 15, and 20. Regressions

used for testing control for baseline test scores along with indicators of special education status,

limited English proficiency, eligibility for free or reduced price lunch, race (black/Asian/Hispanic)

and sex, as well as indicators for test year, application year and application preferences. Baseline

score controls for 7th grade applicants include 4th grade math and ELA scores, while for 9th grade

applicants, baseline scores include 7th grade ELA scores and 8th grade math scores.

CIA test results, reported in Table 4, show that conditioning fails to eliminate the relationship

between running variables and potential outcomes for 7th grade applicants; most of the estimated

coefficients are significantly different from zero for both 10th grade math and ELA scores. At the

same time, test results for 9th grade applicants seem promising. Most test statistics (that is, running

variable coefficient estimates) for 9th grade applicants are smaller than the corresponding statistics

for 7th grade applicants, and only one is significantly different from zero (this is for math scores to

the left of the BLS cutoff in the d = 20 window). It should be noted, however, that few 9th grade

applicants fall to the right of the BLS cutoff. CIA tests for BLS applicants with Di = 1 are forgiving

because the sample for this group is small.14

We complement formal CIA testing with a graphical tool motivated by an observation in Lee and

Lemieux (2010): in a randomized trial using a uniformly distributed random number to determine

treatment assignment, this number becomes the running variable for an RD design. The relationship

between outcomes and running variable should be flat, however, except possibly for a jump at the

quantile cutoff which determines proportion treated. Our CIA assumption implies this same pattern.

Figure 6 therefore plots 10th grade math and ELA residuals constructed by partialing out xi against

running variables in a d = 20 window. The figure shows conditional means for all applicants in

one-unit binwidths, along with conditional mean functions smoothed using local linear regression.

Consistent with the test results reported in Table 4, Figure 6 shows a strong positive relationship

between outcome residuals and running variables for 7th grade applicants. For 9th grade applicants,

however, the relationship between outcome residuals and running variables is essentially flat, except

perhaps for ELA scores in the BLS sample.

The difference in CIA test results for 7th and 9th grade applicants may be due to the fact that

baseline scores for 9th grade applicants come from a grade closer to the outcome test grade than

for 7th grade applicants. In combination with demographic control variables and 4th grade scores,
14The unchanging sample size to the right of the BLS cutoff as d shrinks reflects the high BLS admissions threshold

for 9th grade applicants: the d = 10 limit isn’t binding for BLS on the right.
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7th or 8th grade MCAS scores do a good job of eliminating the running variable from 9th graders’

conditional mean functions for 10th grade scores. By contrast, the most recent baseline test scores

available for 7th grade applicants are from 4th grade tests.15 In view of the results in Table 4 and

Figure 6, the CIA-based estimates that follow are for 9th grade applicants only.

Columns 1-4 of Table 5 report linear reweighting estimates of average treatment effects. These

are estimates of E[Y1i � Y0i|0 < ri < d] for BLS applicants and E[Y1i � Y0i| � d < ri < 0] for

O’Bryant applicants, in samples that set d equal to 10, 15, and 20. The estimand for BLS is

E[Y1i � Y0i|0 < ri  d]

= (�1 � �0)
0E[xi|0 < ri  d], (22)

while that for O’Bryant is

E[Y1i � Y0i|� d  ri < 0]

= (�1 � �0)
0E[xi|� d  ri < 0], (23)

where �0 and �1 are defined in (19). The BLS estimand is an average effect of treatment on the

treated, since treated observations in the estimation window must have positive running variables.

Likewise, the O’Bryant estimand is an average effect of treatment on the non-treated.

As with RD estimates at the cutoff, the CIA results in Table 5 show no evidence of a BLS

achievement boost. At the same time, results for inframarginal unqualified O’Bryant applicants

offer some evidence of gains, especially in ELA. The math estimates range from .09� when d = 10 to

.16� when d = 20, though the estimate effect for d = 10 is only marginally significantly different from

zero. Linear reweighting results for the ELA scores of O’Bryant applicants are clear cut, however,

ranging from .18� to .2� and significantly different from zero for each choice of d. The CIA estimates

are remarkably consistent with the corresponding RD estimates at the cutoff: compare, for example,

the CIA estimates in columns 1 and 3 of Table 5 to the nonparametric O’Bryant RD estimates at

the cutoff of .13� (SE=.07) in math and .18� (SE=.07) for ELA, shown in column 3 of Table 2.

Figure 7 completes the picture on effects away from the cutoff by plotting linear reweighting

estimates of E[Y1i|ri = c] and E[Y0i|ri = c] for all values of c in the [�20, 20] interval. To the left

of the O’Bryant cutoff, the estimates of E[Y0i|ri = c] are fitted values from regression models for

observed outcomes, while the estimates of E[Y1i|ri = c] are implicitly an extrapolation and labelled

accordingly. To the right of the BLS cutoff, the estimates of E[Y1i|ri = c] are fitted values while
15The addition of quadratic and cross-subject interaction terms in baseline scores fails to improve CIA test results

for 7th grade applicants.
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the estimates of E[Y0i|ri = c] are an extrapolation. The conditional means in this figure were

constructed by plugging individual values of xi into (19) and smoothing the results using local linear

regression.16 The figure presents a picture consistent with that arising from the estimates in Table

5. In particular, the extrapolated BLS effects are small (for ELA) or noisy (for math), while the

O’Bryant extrapolation reveals a remarkably stable gain in ELA scores away from the cutoff. The

extrapolated effect of O’Bryant offers on math scores appears to increase modestly as a function of

distance from the cutoff, a finding probed further below.

4.1 Propensity Score Estimates

CIA-based estimation of the effect of exam school offers seems like a good setting for propensity

score methods, since the conditioning set includes multiple continuously distributed control variables.

These features of the data complicate full covariate matching. Our logit model for the propensity

score uses the same control variables and parametrization as were used to construct the tests in

Table 4 and the linear reweighting estimates in columns 1-4 of Table 5.17

The estimated propensity score distributions for admitted and rejected applicants exhibit a sub-

stantial degree of overlap. This is documented in Figure 8, which plots the histogram of estimated

scores for treated and control observations above and below a common horizontal axis. Not surpris-

ingly, the larger sample of O’Bryant applicants generates more overlap than the sample for highly

selective BLS. Most score values for untreated O’Bryant applicants fall below about .6. Each decile

in the O’Bryant score distribution contains at least a few treated observations; above the first decile,

there appear to be more than enough for accurate inference. By contrast, few untreated BLS appli-

cants have covariate values for which a BLS offer is highly likely. We should therefore expect the

BLS counterfactual to be estimated less precisely than that for O’Bryant.

It’s also worth noting that because the sample contains no BLS controls with propensity score

values above .8 (or .9 in one window), the BLS estimates fail to reflect outcomes for applicants

with admissions probabilities above this value. Figure 8 documents other noteworthy features of

conditional-on-score comparisons: the O’Bryant treatment effect on the non-treated implicitly com-

pares the many non-treated applicants with low scores to the fewer (though still plentiful) treated

O’Bryant applicants with scores in this range; the BLS treatment effect on the treated compares a

modest number of treated applicants, more or less uniformly distributed across score values, with

corresponding untreated observations, of which many more are low-scoring than high.
16Smoothing here uses the edge kernel with Stata’s default bandwidth.
17Propensity score models for the smaller sample of BLS applicants omit test date and application preference

dummies.
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The propensity-score-weighted estimates reported in columns 5-8 of Table 5 are remarkably

consistent with the linear reweighting estimates shown in columns 1-4 of the table. In particular,

the estimates here suggest most BLS students would do no worse if they had had to go to BLA

instead, while low scoring O’Bryant applicants might enjoy substantial gains in ELA were they

offered a seat at O’Bryant. At the same time, the propensity score estimates for BLS applicants

reported in columns 6 and 8 are highly imprecise. These BLS estimates are not only much less

precise than the corresponding O’Bryant estimates, the standard errors here are two-four times

larger than those generated by linear reweighting for the same samples. Linear reweighting looks

like an attractive procedure in this context.18

5 Fuzzy CIA Models

Estimates of the effect of O’Bryant offers on the ELA scores of 9th grade applicants are reasonably

stable as distance from the cutoff grows. By contrast, the estimated effect of O’Bryant offers on

math scores appears to increase as window width or distance from the cutoff increases. In a window

of width 10, for example, estimated O’Bryant math effects are only marginally significantly different

from zero, while the estimate in a window of width 20 is almost twice as large and significant (at

.16� with a standard error of .05�). Taken at face value, this finding suggests that the weakest

9th grade applicants stand to gain the most from O’Bryant admission, an interesting substantive

finding. Omitted variables bias (failure of CIA) seems unlikely to explain this pattern since the

relevant conditional independence tests, reported in columns 1 and 5 of Table 4, show no violations

of CIA.

An alternative explanation for the pattern of O’Bryant math estimates plotted in Figure 7

begins with the observation that exam school offers affect achievement by facilitating exam school

enrollment. Assuming, as seems plausible, that exam school offers affect outcomes solely through

enrollment (that is, other causal channels, such as peer effects, are downstream to enrollment),

the estimates in Table 5 can be interpreted as the reduced form for an instrumental variables (IV)

procedure in which exam school enrollment is the endogenous variable. The magnitude of reduced

form comparisons is easier to interpret when the relevant first stage estimates scale these effects. If

the first stage changes as a function of the running variable, comparisons of reduced form estimates
18The standard errors reported in this table use a bootstrap with 500 replications. Bootstrap standard errors provide

asymptotically valid confidence intervals for estimators like (21) since, as note by Hirano, Imbens, and Ridder (2003),
the propensity-score-weighting estimator is asymptotically linear. As noted at the end of Section 3.1, estimates based
on CEI instead of the CIA are imprecise. Still, the general pattern is similar, suggesting positive effects at O’Bryant
only.
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across running variable values are meaningful only after rescaling. In principle, IV methods make

the appropriate adjustment. A question that arises here, however, is how to interpret IV estimates

constructed under the CIA in a world of heterogeneous potential outcomes, where the average causal

effects identified by IV potentially vary with the running variable.

We estimate and interpret the causal effects of exam school enrollment by adapting the dummy

treatment/dummy instrument framework outlined in Abadie (2003). This framework allows for un-

restricted treatment effect heterogeneity in potentially nonlinear IV models with covariates. The

starting point is notation for potential treatment assignments, W0i and W1i, indexed against the

instrument, in this case, exam school offers indicated by Di. Thus, W0i indicates (eventual) exam

school enrollment among those not offered a seat, while W1i indicates (eventual) exam school en-

rollment among those offered a seat. Observed enrollment status is

Wi = W0i(1�Di) +W1iDi.

The core identifying assumption in our IV setup is a generalized version of CIA:

GENERALIZED CONDITIONAL INDEPENDENCE ASSUMPTION (GCIA)

(Y0i, Y1i,W0i,W1i) ?? rik | xi

GCIA can be assumed to hold in a d�neighborhood of the cutoff as with BCIA. We also maintain

the common support assumption given in Section 3.

The GCIA generalizes simple CIA in three ways. First, GCIA imposes full independence instead

of mean independence; this seems innocuous since any behavioral or assignment mechanism satis-

fying the latter is likely to satisfy the former. Second, along with potential outcomes, the pair of

potential treatment assignments (W0i and W1i) is taken to be conditionally independent of the run-

ning variable. Finally, GCIA requires joint independence of all outcome and assignment variables,

while the CIA in Section 3 requires only marginal (mean) independence. Again, its hard to see why

we’d have the latter without the former.

5.1 Fuzzy Identification

As in Section 3.3, the expectations in this section should be understood to be conditional on the

largest value of d that satisfies GCIA.

Local Average Treatment Effects

In a local average treatment effects (LATE) framework with Bernoulli treatment and Bernoulli

instruments, the subset of compliers consists of individuals whose treatment status can be changed
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by changing the instrument. This group is defined here by W1i > W0i. A key identifying assumption

in the LATE framework is monotonicity: the instrument can only shift treatment one way. Assuming

that the instrument Di satisfies monotonicity with W1i � W0i, and that for some i the inequality is

strong, so there is a first-stage, the LATE theorem (Imbens and Angrist, 1994) tells us that

E[yi|Di = 1]� E[yi|Di = 0]

E[Wi|Di = 1]� E[Wi|Di = 0]
= E[Y1i � Y0i|W1i > W0i]

In other words, a simple Wald-type IV estimator captures average causal effects on exam school

applicants who enroll when they receive an offer but not otherwise.

Abadie (2003) generalizes the LATE theorem by showing that the expectation of any measurable

function of treatment, covariates, and outcomes is identified for compliers. This result facilitates IV

estimation using a wide range of causal models, including nonlinear models such as those based on

the propensity score. Here, we adapt the Abadie (2003) result to a fuzzy RD setup that identifies

causal effects away from the cutoff. This requires a conditional first stage, described below:

CONDITIONAL FIRST STAGE

P [W1i = 1|xi] > P [W0i = 1|xi] a.s.

Given GCIA, common support, monotonicity, and a conditional first stage, the following identifica-

tion result can be established (see the appendix for details):

THEOREM 1 (FUZZY CIA EFFECTS)

E[Y1i � Y0i|W1i > W0i,0 < ri  c]

=
1

P [W1i > W0i|0 < ri  c]
E

⇢
 (Di, xi)

P [0 < ri  c|xi]
P [0 < ri  c]

yi

�
(24)

for  (Di, xi) ⌘
Di � �(xi)

�(xi)[1� �(xi)]
(25)

Estimators based on (24) capture causal effects for compliers with running variable values falling

into any range over which there’s common support.19

At first blush, it’s not immediately clear how to estimate the conditional compliance probability,

P [W1i > W0i|0 < ri  c], appearing in the denominator of (24). Because everyone to the right of the

cutoff is treated, there would seem to be no data available to estimate compliance rates conditional

on 0 < ri  c (in the original LATE framework, the IV first stage measures the probability of
19The weighting function in the numerator is much like that used to construct average treatment effects in Hirano,

Imbens, and Ridder (2003) and Abadie (2005). Extensions of this theorem along the lines suggested by Theorem 3.1
in Abadie (2003) identify the marginal distributions of Y0i and Y1i.
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compliance). Paralleling an argument in Abadie (2003), however, the appendix shows that

P [W1i > W0i|0 < ri  c] = E

⇢
 (Wi, Dixi)

P [0 < ri  c | xi]
P [0 < ri  c]

�
(26)

where

 (Wi, Dixi) = 1� Wi (1�Di)

1� �(xi)
� (1�Wi)Di

�(xi)
.

Average Causal Response

The causal framework leading to Theorem 1 is limited to Bernoulli endogenous variables. For some

applicants, however, the exam school treatment is mediated by years of attendance rather than a

simple go/no-go decision. We develop a fuzzy CIA estimator for ordered treatments by adapting

a result from Angrist and Imbens (1995). The ordered treatment framework relies on potential

outcomes indexed against an ordered treatment, wi. In this context, potential outcomes are denoted

by Yji when wi = j, for j = 0, 1, 2, ..., J . We assume also that potential treatments, w1i and w0i,

satisfy monotonicity with w1i � w0i and generate a conditional first stage:

E[w1i|xi] 6= E[w0i|xi]

The Angrist and Imbens (1995) Average Causal Response (ACR) theorem describes the Wald

IV estimand as follows:

E [yi | Di = 1]� E [yi | Di = 0]

E [wi | Di = 1]� E [wi | Di = 0]
=

X

j

⌫jE [Yji � Yj�1,i | w1i � j > w0i]

where

⌫j =
P [w1i � j > w0i]P
` P [w1i � ` > w0i]

=
P [wi  j | Di = 0]� P [wi  j | Di = 1]

E [wi | Di = 1]� E [wi | Di = 0]

Wald-type IV estimators therefore capture a weighted average of the average causal effect of in-

creasing wi from j � 1 to j, for compliers whose treatment intensity is moved by the instrument

from below j to above j. The weights are given by the impact of the instrument on the cumulative

distribution function (CDF) of the endogenous variable at each intensity.

The GCIA assumption allows us to establish a similar result in a fuzzy RD setup with an ordered

treatment. The following is shown in the appendix:

THEOREM 2 (FUZZY AVERAGE CAUSAL RESPONSE)
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E {E [yi | Di = 1, xi]� E [yi | Di = 0, xi] | 0 < ri  c}
E {E [wi | Di = 1, xi]� E [wi | Di = 0, xi] | 0 < ri  c}
=

X

j

⌫jcE [Yji � Yj�1,i | w1i � j > w0i, 0 < ri  c] (27)

where

⌫jc =
P [w1i � j > w0i | 0 < ri  c]P
` P [w1i � ` > w0i | 0 < ri  c]

(28)

This theorem says that a Wald-type estimator constructed by averaging covariate-specific first-

stages and reduced forms can be interpreted as a weighted average causal response for compli-

ers with running variable values in the desired range. The incremental average causal response,

E [Yji � Yj�1,i | w1i � j > w0i, 0 < ri  c] , is weighted by the conditional probability the instrument

moves the ordered treatment through the point at which the incremental effect is evaluated.

In practice, we estimate the left hand side of (27) by fitting linear models with covariate inter-

actions to the reduced form and first stage. The resulting estimation procedure adapts Kline (2011)

to an ordered treatment and works as follows: estimate conditional linear reduced forms interacting

Di and xi; use these estimates to construct the desired average reduced form effect as in (22) and

(23); divide by a similarly constructed average first stage.20 The same procedure can be used to

estimate (27) for a Bernoulli treatment like Wi, in which case the average causal response identified

by Theorem 2 becomes the average causal effect identified by Theorem 1 (though the corresponding

estimates won’t be algebraically the same unless the propensity score model used under Theorem 1

is linear).

5.2 Fuzzy Estimates

As with the sharp estimates discussed in Section 4, fuzzy enrollment effects are estimated for ap-

plicants to the left of the O’Bryant cutoff and to the right of the BLS cutoff, in windows setting

d equal to 10, 15 and 20. The enrollment first stage changes remarkably little as distance from

the cutoff grows. This can be seen in columns 1-4 of Table 6, which report estimates of the ef-

fect of exam school offers on exam school enrollment, constructed separately for O’Bryant and

BLS applicants using equation (26). The propensity score model is the same as that used to con-

struct the estimates in Table 5 (Table 6 shows separate first stage estimates for the math and ELA

samples, as these differ slightly). Given this stable first stage, its unsurprising that estimates of

E[Y1i � Y0i|W1i > W0i, 0 < ri  d], reported in columns 5-8 of the table, change little as a function
20Specifically, let �0 be the main effect of D

i

and let �1 be the vector of interactions with x

i

in a first stage regression
of w

i

on D

i

, x

i

, and D

i

x

i

. The denominator of (27) is �0 + �

0
1µxc

, where µ

xc

= E[x
i

|0  r

i

 c].
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of d. The pattern here is consistent with that in Table 5, with small and statistically insignificant

effects at BLS, and evidence of large effects at O’Bryant. Estimates of O’Bryant effects on ELA

scores range from an impressive gain of .38� when d = 20, to a still-substantial .27� when the win-

dow is half as wide. The estimated O’Bryant effects on math scores are also considerable, varying

from .17� to .23�.

The gains for inframarginal applicants who enroll at O’Bryant are perhaps too large to be credible

and may therefore signal failure of the underlying exclusion restriction, which channels all causal

effects of an exam through an enrollment dummy. Many who start in an exam school drop out, so

we’d like to adjust these estimates for years of exam school exposure. We therefore treat years of

exam school enrollment as the endogenous variable and estimate the ACR parameter on the right-

hand side of equation (27), using the modified linear reweighting procedure described above. The

covariate parameterization used to construct both reduced form and first stage estimates is the same

as that used to construct the sharp estimates in Table 5.

First stage estimates for years of exam school enrollment, reported in columns 1-4 of Table 7,

indicate that successful BLS applicants spend about 1.8 years in BLS between application and test

date, while successful O’Bryant applicants spend about 1.4 years at O’Bryant between application

and test date. The associated ACR estimates, reported in columns 5-8 of the table, are in line with

those in Table 6, but considerably more precise. For example, the effect of a year of BLS exposure

on ELA scores is estimated to be no more than about .05�, with a standard error of roughly the

same magnitude. This compares with estimates of about the same size in column 8 of Table 6, but

standard errors for the latter are five or more times larger. The precision gain here would seem to

come from linearity of the estimator and not the change in endogenous variable, paralleling precision

gains seen in the switch from propensity score to linear reweighting when constructing the sharp

estimates in Table 5.

ELA estimates for O’Bryant show gains of about .14� per year of exam school exposure, a finding

that appears to be more stable across window width than the corresponding dummy enrollment

estimates in column 7 of Table 6. This comparison suggests that some of the variability seen in the

estimates in Table 6 comes from a failure to adjust for small changes in the underlying first stage for

years of enrollment across windows (as can be seen in column 3 of Table 7). At the same time, the

estimated O’Bryant math gains in column 5 of Table 7 still fade in a narrower window, a pattern

seen for the O’Bryant math estimates in Tables 5 and 6.

25



6 Summary and Directions for Further Work

RD estimates of the effect of Boston exam school offers generate little evidence of an achievement gain

for most applicants on the margin of admission, but these results need not be relevant for applicants

with running variable values well above or well below admissions cutoffs. This observation motivates

RD-inspired identification strategies for causal effects away from the cutoff. Parametric extrapolation

seems like a natural first step, but a parametric approach generates unsatisfying estimates of the

effects of exam school offers, sensitive to functional form and too imprecise to be useful. We therefore

turn to identification strategies based on a conditional independence assumption that focuses on the

running variable.

A key insight emerging from the RD framework is that the only source of omitted variables

bias is the running variable. Our conditional independence assumption therefore makes the running

variable ignorable, that is, independent of potential outcomes, by conditioning on other predictors

of outcomes. When the running variable is ignorable, treatment is ignorable. The conditional

independence assumption underlying ignorability has strong testable implications that are easily

checked in this context. Specifically, the CIA implies that in samples limited to either treated

or control observations, regressions of outcomes on the running variable and the covariate vector

supporting CIA should show no running variable effects. A modified or bounded version of the CIA

asserts that this conditional independence relation holds only in a neighborhood of the cutoff.

Among 9th grade applicants to the O’Bryant school and the Boston Latin School, bounded condi-

tional independence appears to hold over a reasonably wide interval. Importantly, the conditioning

variables supporting this result include 7th or 8th grade and 4th grade MCAS scores, all lagged

versions of the 10th grade outcome variable. Lagged middle school scores in particular seems like a

key control, probably because these relatively recent baseline tests are a powerful predictor of future

scores. Lagged outcomes are better predictors, in fact, than the running variable itself, which is a

composite constructed from applicants’ GPAs and a distinct exam school admissions test.

Results based on the CIA suggest that inframarginal high-scoring BLS applicants gain little (in

terms of achievement) from BLS attendance, a result consistent with the RD estimates of BLS effects

at the cutoff reported in Abdulkadiroğlu, Angrist, and Pathak (forthcoming). At the same time, CIA-

based estimates using both linear and propensity score models generate robust evidence of strong

gains in English for unqualified inframarginal O’Bryant applicants. Evidence of 10th grade grade

ELA gains also emerge from the RD estimates of exam school effects reported by Abdulkadiroğlu,

Angrist, and Pathak (forthcoming), especially for nonwhites. The CIA-based estimates reported here
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suggest similar gains would likely be observed should the O’Bryant cutoff be reduced to accommodate

currently inframarginal high school applicants, perhaps as a result of re-introducing affirmative action

considerations in exam school admissions.

We also modify CIA-based identification strategies for fuzzy RD and use this modification to

estimate the effects of exam school enrollment and years of exam school attendance, in addition to

the reduced form effects of exam school admissions offers. A fuzzy analysis allows us to explore the

possibility that changes in reduced form offer effects as a function of the running variable are driven

by changes in an underlying first stage for exam school exposure. Interestingly, the fuzzy extension

opens the door to identification of causal effects for compliers in RD models for quantile treatment

effects. As noted recently by Frandsen, Frölich, and Melly (2012), the weighting approach used by

Abadie, Angrist, and Imbens (2002) and Abadie (2003) breaks down in a conventional RD framework

because the distribution of treatment status is degenerate conditional on the running variable. By

taking the running variable out of the equation, our framework circumvents this problem, a feature

we plan to exploit in future work on distributional outcomes.

In a parallel and ongoing investigation, Rokkanen (2013) develops identification strategies for

RD designs in which the CIA conditioning variable is an unobserved latent factor. Multiple noisy

indicators of the underlying latent factor provide the key to away-from-the-cutoff identification in

this context. An important unsolved econometric problem implicit in our empirical strategy is causal

inference conditional on a pretest. Estimators that condition on the results of a specification test may

have sampling distributions for which conventional asymptotic approximations are poor. Pretesting

is a challenging and virtually ubiquitous problem in applied econometrics. It remains to be seen

whether recent theoretical progress on the pretesting problem (e.g., Andrews and Guggenberger

(2009); Belloni, Chernozhukov, and Hansen (2012)) can be applied fruitfully in this context.

Finally, the mixed results reported here raise the question of what might explain the variation

in our estimates across schools. In a pair of recent papers, Abdulkadiroğlu, Angrist, Dynarski,

Kane, and Pathak (2011) and Angrist, Cohodes, Dynarski, Pathak, and Walters (2013) document

large gains at Boston charter high schools when using admissions lotteries to estimate the effects

of charter attendance relative to regular district schools. These gains appear to vary inversely with

students’ baseline achievement, suggesting that the quality of the implicit counterfactual may be an

important driver of the treatment effects arising from school choice. The fallback school for most

O’Bryant applicants (a regular district school) may have lower value-added than the fallback school

for BLS applicants (mostly the BLA exam school), even though the gain in peer quality is larger at

the admissions cutoff for the latter. In ongoing work, we’re continuing to explore the nexus linking
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school choice, school quality, and measures of students’ baseline ability.

28



Table 1: Destinations of Applicants to O’Bryant and Boston Latin School

D=0 D=1 D=0 D=1
(1) (2) (3) (4)

Traditional Boston public schools 1.00 0.28 0.08 0.05
O'Bryant 0.00 0.72 0.06 0.00
Latin Academy 0.00 0.00 0.86 0.01
Latin School ... ... 0.00 0.93

Traditional Boston public schools 1.00 0.34 0.15 0.04
O'Bryant 0.00 0.66 0.00 0.00
Latin Academy ... ... 0.86 0.02
Latin School ... ... 0.00 0.94

Notes: This table describes the destination schools of Boston exam school applicants. Enrollment rates are 
measured in the fall admissions cycle following exam school application and estimated using local linear 
smoothing. The sample of Boston 7th grade applicants includes students who applied for an exam school seat 
between 1999-2008.  The sample of Boston 9th grade applicants includes students who applied for an exam 
school seat between 2001-2007. 

Table 1. Boston Destinations

O'Bryant Latin School

Panel A. 7th Grade Applicants

Panel B. 9th Grade Applicants

Table 2: Reduced Form Estimates for 10th Grade MCAS Scores

Latin Latin
O'Bryant School O'Bryant School

(1) (2) (3) (4)

Math -0.011 -0.034 0.034 -0.055
(0.100) (0.060) (0.056) (0.039)
1832 1854 1699 1467

ELA 0.059 0.021 0.125** 0.000
(0.103) (0.095) (0.059) (0.061)
1836 1857 1778 1459

Math 0.166 -0.128 0.128* -0.144*
(0.109) (0.117) (0.066) (0.076)
1559 606 1386 361

ELA 0.191* 0.097 0.180*** 0.048
(0.112) (0.187) (0.066) (0.106)
1564 607 1532 458

* significant at 10%; ** significant at 5%; *** significant at 1%

Table 2. RD Estimates for 7th and 9th Grade Applicants

Parametric Nonparametric

Notes:  This table reports estimates of the effects of exam school offers on 10th grade 
MCAS scores.  The sample covers students within 20 standardized units of offer cutoffs.  
Parametric models include a cubic function of the running variable, allowed to differ on 
either side of offer cutoffs.  Non-parametric estimates use the edge kernel, with 
bandwidth computed following DesJardins and McCall (2008) and Imbens and 
Kalyanaraman (2012).   Optimal bandwidths were computed separately for each school.  
Robust standard errors are shown in parentheses. The number of observations is 
reported below standard errors. 

Panel A. 7th Grade Applicants

Panel B. 9th Grade Applicants
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Table 3: Parametric Extrapolation Estimates for 10th Grade Math

c  = -1 c  = -5 c  = -10 c  = -15 c  = 1 c  = 5 c  = 10 c  = 15
(1) (2) (3) (4) (5) (6) (7) (8)

Linear 0.041 0.061 0.085 0.110 -0.076** -0.051 -0.021 0.010
(0.052) (0.057) (0.072) (0.093) (0.035) (0.040) (0.049) (0.061)
1832 1832 1832 1832 1854 1854 1854 1854

Quadratic 0.063 0.204 0.391* 0.588 -0.056 -0.111 -0.152 -0.161
(0.075) (0.125) (0.237) (0.384) (0.051) (0.088) (0.162) (0.261)
1832 1832 1832 1832 1854 1854 1854 1854

Cubic 0.034 0.167 0.247 0.266 -0.050 -0.096 -0.106 -0.065
(0.110) (0.336) (0.921) (1.927) (0.073) (0.220) (0.589) (1.215)
1832 1832 1832 1832 1854 1854 1854 1854

Linear 0.088 0.083 0.077 0.071 -0.090 0.079 0.291*** 0.502***
(0.057) (0.059) (0.070) (0.088) (0.065) (0.063) (0.108) (0.168)
1559 1559 1559 1559 606 606 606 606

Quadratic 0.170** 0.264** 0.427* 0.639* -0.147* -0.106 0.078 0.409
(0.085) (0.133) (0.237) (0.372) (0.088) (0.142) (0.303) (0.713)
1559 1559 1559 1559 606 606 606 606

Cubic 0.143 0.069 -0.059 -0.355 -0.061 0.196 0.996 3.094
(0.119) (0.327) (0.851) (1.735) (0.118) (0.338) (0.910) (2.543)
1559 1559 1559 1559 606 606 606 606

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes: This table reports estimates of effects on 10th grade Math scores away from the RD cutoff at points indicated in the column heading. Columns 1-4 
report estimates of the effect of O'Bryant attendance on unqualified O'Bryant applicants. Columns 5-8 report the effects of BLS attendance on qualified 
BLS applicants. The estimates are based on first, second, and third order polynomials, as indicated in rows of the table. Robust standard errors are shown 
in parentheses.

Table 3. Parametric Extrapolation Estimates for 10th Grade Math

O'Bryant Latin School

Panel A: 7th Grade Applicants

Panel B: 9th Grade Applicants

30



Table 4: Conditional Independence Tests

D = 0 D = 1 D = 0 D = 1 D = 0 D = 1 D = 0 D = 1
Window (1) (2) (3) (4) (5) (6) (7) (8)

20 0.022*** 0.015*** 0.008*** 0.014*** 0.015*** 0.006 0.013*** 0.018***
(0.004) (0.004) (0.002) (0.002) (0.004) (0.005) (0.003) (0.003)

838 618 706 748 840 621 709 750

15 0.023*** 0.015*** 0.010*** 0.012*** 0.014** 0.006 0.007 0.015***
(0.006) (0.005) (0.003) (0.003) (0.005) (0.006) (0.005) (0.005)

638 587 511 517 638 590 514 519

10 0.030*** 0.016** 0.010* 0.007 0.024** 0.001 0.012 0.012
(0.009) (0.008) (0.006) (0.005) (0.010) (0.009) (0.010) (0.008)

419 445 335 347 421 447 338 348

20 0.002 0.005 0.008** 0.018 0.003 0.002 0.006 0.055
(0.004) (0.003) (0.003) (0.028) (0.004) (0.004) (0.005) (0.053)

513 486 320 49 516 489 320 50

15 0.010 0.000 0.006 0.018 0.009 -0.000 0.000 0.055
(0.006) (0.005) (0.006) (0.028) (0.006) (0.006) (0.007) (0.053)

375 373 228 49 376 374 229 50

10 0.003 -0.001 0.007 0.018 0.014 -0.004 0.014 0.055
(0.011) (0.009) (0.009) (0.028) (0.011) (0.010) (0.015) (0.053)

253 260 142 49 253 261 142 50

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes: This table reports regression-based tests of the conditional independence assumption described in the text.  Cell entries show the coefficient on the 
running variable in models for 10th grade math and ELA scores that control for baseline scores, along with indicators for special education status, limited 
English proficiency, eligibility for free or reduced price lunch, race (black/Asian/Hispanic) and sex, as well as indicators for test year, application year 
and application preferences.  Estimates use only observations to the left or right of the cutoff as indicated in column headings, and were computed in the 
window width indicated at left.  Robust standard errors are reported in parentheses.

Panel B. 9th Grade Applicants

Panel A. 7th Grade Applicants

Table 4. Conditional Indepdence Tests

Math ELA
O'Bryant Latin School O'Bryant Latin School
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Table 5: CIA Estimates of the Effect of Exam School Offers for 9th Grade Applicants

Latin Latin Latin Latin
O'Bryant School O'Bryant School O'Bryant School O'Bryant School

Window (1) (2) (3) (4) (5) (6) (7) (8)
20 0.156*** -0.031 0.198*** 0.088 0.148*** -0.028 0.251*** 0.054

(0.039) (0.094) (0.041) (0.084) (0.052) (0.192) (0.090) (0.207)
N untreated 513 320 516 320 509 320 512 320
N treated 486 49 489 50 482 49 485 50

15 0.129*** -0.080 0.181*** 0.051 0.116** -0.076 0.202*** 0.018
(0.043) (0.055) (0.047) (0.088) (0.052) (0.161) (0.069) (0.204)

N untreated 375 228 376 229 373 228 374 229
N treated 373 49 374 50 370 49 371 50

10 0.091* -0.065 0.191*** -0.000 0.123* -0.093 0.186** -0.052
(0.054) (0.054) (0.055) (0.097) (0.070) (0.249) (0.073) (0.356)

N untreated 253 142 253 142 253 142 253 142
N treated 260 49 261 50 258 49 259 50

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes: This table reports estimates of the effect of exam school offers on MCAS scores for 9th grade applicants to O'Bryant and BLS. Columns 1-4 report 
results from a linear reweighting estimator, while columns 5-8 report results from inverse propensity score weighting, as described in the text.  Controls are the 
same as used to construct the test statistics except that the propensity score models for Latin School omit test year and application preference dummies. The 
O'Bryant estimates are effects on nontreated applicants in windows to the left of the admissions cutoff; the BLS estimates are are effects on treated applicants 
in windows to the right of the cutoff. Standard errors (shown in parentheses) were computed using a nonparametric bootstrap with 500 replications.  The table 
also reports the number of treated and untreated (offered and not offered) observations in each window, in the relevant outcome sample.

Table 5. CIA Estimates of the Effect of Exam School Offers on 9th Grade Applicants

Linear Reweighting Propensity Score Weighting
Math ELA Math ELA

Table 6: Fuzzy CIA Estimates of LATE (Exam School Enrollment) for 9th Grade Applicants

Latin Latin Latin Latin
O'Bryant School O'Bryant School O'Bryant School O'Bryant School

Window (1) (2) (3) (4) (5) (6) (7) (8)
20 0.659*** 0.898*** 0.660*** 0.900*** 0.225** -0.031 0.380** 0.060

(0.062) (0.054) (0.062) (0.052) (0.088) (0.217) (0.183) (0.231)
N untreated 509 320 512 320 509 320 512 320
N treated 482 49 485 50 482 49 485 50

15 0.666*** 0.898*** 0.667*** 0.900*** 0.174** -0.085 0.302** 0.020
(0.047) (0.048) (0.050) (0.047) (0.080) (0.177) (0.125) (0.225)

N untreated 373 228 374 229 373 228 374 229
N treated 370 49 371 50 370 49 371 50

10 0.670*** 0.898*** 0.678*** 0.900*** 0.184* -0.104 0.274** -0.058
(0.055) (0.048) (0.050) (0.047) (0.108) (0.274) (0.121) (0.402)

N untreated 253 142 253 142 253 142 253 142
N treated 258 49 259 50 258 49 259 50

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes: This table reports fuzzy RD estimates of the effect of exam school enrollment on MCAS scores for 9th grade applicants to O'Bryant and BLS.    The 
O'Bryant estimates are effects on nontreated applicants in windows to the left of the admissions cutoff; the BLS estimates are for treated applicants in windows 
to the right of the cutoff.  The first stage estimates in columns 1-4 and the estimated causal effects in columns 5-8 are from a modified propensity-score style 
weighting estimator described in the text.  Standard errors (shown in parentheses) were computed using a nonparametric bootstrap with 500 replications.  The 
table also reports the number of treated and untreated (offered and not offered) observations in each window, in the relevant outcome sample.

Table 6. Fuzzy CIA Estimates of the Effects of Exam School Enrollment on 9th Grade Applicants

First Stage LATE
Math ELA Math ELA
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Table 7: Fuzzy CIA Estimates of Average Causal Response (Years of Exam School Enrollment) for
9th Grade Applicants

Latin Latin Latin Latin
O'Bryant School O'Bryant School O'Bryant School O'Bryant School

Window (1) (2) (3) (4) (5) (6) (7) (8)
20 1.394*** 1.816*** 1.398*** 1.820*** 0.112*** -0.017 0.142*** 0.048

(0.064) (0.096) (0.065) (0.093) (0.029) (0.050) (0.030) (0.045)
N untreated 513 320 516 320 513 320 516 320
N treated 486 49 489 50 486 49 489 50

15 1.359*** 1.816*** 1.363*** 1.820*** 0.095*** -0.044 0.133*** 0.028
(0.064) (0.099) (0.064) (0.089) (0.032) (0.031) (0.034) (0.047)

N untreated 375 228 376 229 375 228 376 229
N treated 373 49 374 50 373 49 374 50

10 1.320*** 1.816*** 1.312*** 1.820*** 0.069 -0.036 0.145*** -0.000
(0.080) (0.095) (0.080) (0.089) (0.043) (0.031) (0.041) (0.054)

N untreated 253 142 253 142 253 142 253 142
N treated 260 49 261 50 260 49 261 50

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes: This table reports fuzzy RD estimates of the effect of years of exam school enrollment on MCAS scores for 9th grade applicants to O'Bryant and BLS.  
The O'Bryant estimates are effects on nontreated applicants in windows to the left of the admissions cutoff; the BLS estimates are for treated applicants in 
windows to the right of the cutoff.  The first stage estimates in columns 1-4 and the estimated causal effects in columns 5-8 are from a modified linear 2SLS 
estimator described in the text.  Standard errors (shown in parentheses) were computed using a nonparametric bootstrap with 500 replications.  The table also 
reports the number of treated and untreated (offered and not offered) observations in each window, in the relevant outcome sample.

Table 7. Fuzzy CIA Estimates of the Effects of Years of Exam School Enrollment on 9th Grade Applicants

First Stage ACR
Math ELA Math ELA
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Figure 1: Offer and Enrollment at O’Bryant and Boston Latin School
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Figure 2: Peer Achievement at O’Bryant and Boston Latin School
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Figure 3: 10th Grade Math and ELA Scores at O’Bryant and Boston Latin Schools
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Figure 4: Identification of Boston Latin School Effects At and Away from the Cutoff. ⇢(0) is an
effect at the cutoff; ⇢DL(c) is an effect near the cutoff approximated using a first derivative; ⇢A(c)
and ⇢B(c) are possible effects well away from the cutoff.
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Figure 5: Parametric Extrapolation at O’Bryant and Boston Latin School for 10th Grade Math.
O’Bryant extrapolation is for E[Y1i|ri = c]; BLS extrapolation is for E[Y0i|ri = c].
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Figure 6: Visual Evaluation of CIA in the Window [�20, 20]
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Figure 7: CIA-based Estimates of E[Y1i|ri = c] and E[Y0i|ri = c] for c in [�20, 20] for 9th Grade
Applicants. To the left of the O’Bryant cutoff, the estimates of E[Y0i|ri = c] are fitted values for
observed outcomes while the estimates of E[Y1i|ri = c] are extrapolations. To the right of the
BLS cutoff, the estimates of E[Y1i|ri = c] are fitted values while the estimates of E[Y0i|ri = c] are
extrapolations. These estimates were constructed using the linear reweighting estimator discussed
in the text.
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Appendix

Defining Sharp Samples

Boston exam school applicants rank up to three schools in order of preference, while schools rank

their applicants according to an average of GPA and ISEE scores. Applicants are ranked only for

schools to which they’ve applied, so applicants with the same GPA and ISEE scores might be ranked

differently at different schools depending on where they fall in each school’s applicant pool (each

also school weights ISEE and GPA a little differently). Applicants are ranked at every school to

which they apply, regardless of how they’ve ordered schools. Student-proposing deferred acceptance

(DA) generates offers from student preference and school-specific rankings as follows:

• In round 1: Each student applies to his first choice school. Each school rejects the lowest-

ranked applicants in excess of capacity, with the rest provisionally admitted (students not

rejected at this step may be rejected in later steps.)

• At round ` > 1: Students rejected in Round `-1 apply to their next most preferred school

(if any). Each school considers these students and provisionally admitted students from the

previous round, rejecting the lowest-ranked applicants in excess of capacity from this combined

pool and producing a new provisional admit list (again, students not rejected at this step may

be rejected in later steps.)

The DA algorithm terminates when either every student is matched to a school or every unmatched

student has been rejected by every school he has ranked.

Let ⌧k denote the rank of the last applicant offered a seat at school k; let cik denote student i’s

composite score at school k; and write the vector of composite scores as ci = (ci1, ci2, ci3), where cik

is missing if student i did not rank school k. A dummy variable qi(k) = 1[cik  ⌧k] indicates that

student i qualified for school k by clearing ⌧k (rank and qualification at k are missing for applicants

who did not rank k). Finally, let pik denote student i’s kth choice and represent i’s preference list

by pi = (pi1, pi2, pi3), where pik = 0 if the list is incomplete. Students who ranked and qualified for

a school will not be offered a seat at that school if they get an offer from a more preferred school.

With three schools ranked, applicant i is offered a seat at school k in one of three ways:

• The applicant ranks school k first and qualifies: ({pi1 = k} \ {qi(k) = 1}).

• The applicant doesn’t qualify for his first choice, ranks school k second and qualifies there:

({qi(pi1) = 0} \ {pi2 = k} \ {qi(k) = 1}).
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• The applicant doesn’t qualify at his top two choices, ranks school k third, and qualifies there:

({qi(pi1) = qi(pi2) = 0} \ {pi3 = k} \ {qi(k) = 1}).

We summarize the relationship between composite scores, cutoffs, and offers by letting Oi be student

i’s offer, with the convention that Oi = 0 means no offer. DA determines Oi as follows:

Oi =
JX

j=1

pijqi(pij)

"
j�1Y

`=1

(1� qi(pi`))

#
.

The formulation shows that the sample for which offers at school k are deterministically linked

with the school-k composite score - the sharp sample for school k - is the union of three sets of

applicants:

• Applicants who rank k first, so (pi1 = k)

• Applicants unqualified for their first choice, ranking k second, so (qi(pi1) = 0 \ pi2 = k)

• Applicants unqualified for their top two choices, ranking k third, so ((qi(pi1) = qi(pi2) =

0) \ pi3 = k).

All applicants are in at least one sharp sample (at the exam school they rank first), but can be in

more than one. For example, a student who ranked BLS first, but did not qualify there, is also in

the sharp sample for BLA if he ranked BLA second.

A possible concern with nonparametric identification strategies using sharp samples arises from

the fact that the sharp sample itself may change discontinuously at the cutoff. Suppose, for example,

that two schools have the same cutoff and a common running variable. Some students rank school

2 ahead of school 1 and some rank school 1 ahead of school 2. The sharp sample for school 1

includes both those who rank 1 first and those who rank 2 first but are disqualified there. This

second group appears only to the left of the common cutoff, changing the composition of the sharp

sample for school 1 (with a similar argument applying to the sharp sample for school 2). In view of

this possibility, all estimating equations include dummies for applicants’ preference orderings over

schools.

Proof of Theorem 1

We continue to assume that GCIA and other LATE assumptions hold. Given these assumptions,

Theorem 3.1 in Abadie (2003) implies that for any measurable function, g (yi,Wi, xi), we have

E [g (yi,Wi, xi) | xi,W1i > W0i] =
1

P [W1i > W0i | xi]
E [ (Wi, Di, xi) g (yi,Wi, xi) | xi] (29)
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where

 (Wi, Di, xi) = 1� Wi (1�Di)

1� P [Di = 1 | xi]
� (1�Wi)Di

P [Di = 1 | xi]

and

E [g (YWi, xi) | xi,W1i > W0i] =
1

P [W1i > W0i | xi]
E [W (Wi, Di, xi) g (yi, xi) | xi] ,

where W 2 {0, 1} and

0 (Wi, Di, xi) = (1�Wi)
P [Di = 1 | xi]�Di

(1� P [Di = 1 | xi])P [Di = 1 | xi]

1 (Wi, Di, xi) = Wi
Di � P [Di = 1 | xi]

(1� P [Di = 1 | xi])P [Di = 1 | xi]
.

Using the GCIA, we can simplify as follows:

E [g (YWi, xi) | W1i > W0i, 0 < ri  c]

= E {E [g (YWi, xi) | xi,W1i > W0i] | W1i > W0i, 0 < ri  c}

=

ˆ
1

P [W1i > W0i | xi]
E [W (Wi, Di, xi) g (yi, xi) | X] dP [xi | W1i > W0i, 0 < ri  c]

=
1

P [W1i > W0i | 0 < ri  c]

ˆ
E [W (Wi, Di, xi) g (y, xi) | xi]

P [0 < ri  c | xi]
P [0 < ri  c]

dP [xi](30)

=
1

P [W1i > W0i | 0 < ri  c]
E


W (Wi, Di, xi)

P [0 < ri  c | xi]
P [0 < ri  c]

g (yi, xi)

�
.

This implies that LATE can be written:

E [Y1i � Y0i | W1i > W0i, 0 < ri  c]

= E [Y1i | W1i > W0i, 0 < ri  c]� E [Y0i | W1i > W0i, 0 < ri  c]

=
1

P [W1i > W0i | 0 < ri  c]
E


 (Di, xi)

P [0 < ri  c | xi]
P [0 < ri  c]

yi

�

where

 (Di, xi) = 1 (Wi, Di, xi)� 0 (Wi, Di, xi)

=
Di � P [Di = 1 | xi]

(1� P [Di = 1 | xi])P [Di = 1 | xi]
.

Finally, by setting g (yi,Wi, xi) = 1 in equation (29) we get:

P [W1i > W0i | xi] = E [ (Wi, Di, xi) | xi] .
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Using the same steps as in equation (30), the GCIA implies:

P [W1i > W0i | 0 < ri  c] = E {P [W1i > W0i | xi] | 0 < ri  c}

= E


 (Wi, Di, xi)

P [0 < ri  c | xi]
P [0 < xi  c]

�
.

Proof of Theorem 2

Theorem 1 in Angrist and Imbens (1995) implies:

E [yi | Di = 1, xi]� E [yi | Di = 0, xi] =
X

j

P [w1i � j > w0i | xi]E [Yji � Yj�1,i | w1i � j > w0i, xi]

E [wi | Di = 1, xi]� E [wi | Di = 0, xi] =
X

j

P [w1i � j > w0i | xi] .

Given the GCIA, we have:

E {E [yi | Di = 1, xi]� E [yi | Di = 0, xi] | 0 < ri  c}

=
X

j

ˆ
P [w1i � j > w0i | xi]E [Yji � Yj�1,i | w1i � j > w0i, xi] dP [xi | 0 < ri  c]

=
X

j

ˆ
P [w1i � j > w0i | xi, 0  ri  c]E [Yji � Yj�1,i | w1i � j > w0i, xi] dP [xi | 0 < ri  c]

=
X

j

P [w1i � j > w0i | 0 < ri  c]

⇥
ˆ

E [Yji � Yj�1,i | w1i � j > w0i, xi] dP [xi | w1i � j > w0i, 0 < ri  c]

=
X

j

P [w1i � j > w0i | 0 < ri  c]E [Yji � Yj�1,i | w1i � j > w0i, 0 < ri  c] .

The GCIA can similarly be shown to imply:

E [E [wi | Di = 1, xi]� E [wi | Di = 0, xi] | 0 < ri  c]

=
X

j

P [w1i � j > w0i | 0 < ri  c] .

Combining these results, the ACR can be written:

E {E [yi | Di = 1, xi]� E [yi | Di = 0, xi] | 0 < ri  c}
E {E [wi | Di = 1, xi]� E [wi | Di = 0, xi] | 0 < ri  c}
=

X

j

⌫jcE [Yji � Yj�1,i | w1i � j > w0i, 0 < ri  c]

where

⌫ijc =
P [w1i � j > w0i | 0 < ri  c]P
` P [w1i � ` > w0i | 0 < ri  c]

.
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