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In this paper, we propose a new approach to estimating sample selection models that 
combines Generalized Tukey Lambda (GTL) distributions with copulas. The GTL distribution 
is a versatile univariate distribution that permits a wide range of skewness and thick- or thin-
tailed behavior in the data that it represents. Copulas help create versatile representations of 
bivariate distribution. The versatility arising from inserting GTL marginal distributions into 
copula-constructed bivariate distributions reduces the dependence of estimated parameters 
on distributional assumptions in applied research. A thorough Monte Carlo study illustrates 
that our proposed estimator performs well under normal and nonnormal settings, both with 
and without an instrument in the selection equation that fulfills the exclusion restriction that is 
often considered to be a requisite for implementation of sample selection models in empirical 
research. Five applications ranging from wages and health expenditures to speeding tickets 
and international disputes illustrate the value of the proposed GTL-copula estimator. 
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1 Introduction

Sample selection is an issue that arises frequently in empirical studies, especially with micro-
data. Nonrandom data that are subject to sample selection yield estimates that may be
biased and inconsistent, which harms inference about economic theory and guidance for
policy making. Ever since the seminal work of Heckman (1974, 1979), sample selection has
been an important issue in both theoretical and applied microeconometrics. The typical
sample selection model consists of a selection equation and an outcome equation, where the
outcome is observable only for the subsample of data. Lee (1978) extends the selection model
to the case where outcome equations differ by regimes and a selection equation illustrate the
sorting mechanism.

In the footsteps of these seminal works, most empirical applications follow a paramet-
ric approach where the model is estimated with the full information maximum likelihood
method or a two-step (limited information maximum likelihood) method under the assump-
tion of the joint normality. However, these estimators are criticized for their sensitivity to
the distributional assumption. In general, violation of the normality assumption leads to in-
consistency. For example, the Monte Carlo study by Zuehlke and Zeman (1991) shows that
violation of the joint normal assumption results in biased and imprecise estimates. Newey
(1999) shows that under certain assumptions, the two-step estimator can be consistent even
when the distribution is misspecified.

The recent theoretical literature has paid more attention to semi-parametric or non-
parametric approaches, which do not require any parametric distributional assumptions.
The semiparametric approaches usually take a two-step estimation procedure, where the se-
lection correction term is estimated semi- or non-parametrically: see, for example, Cosslett
(1993), Ahn and Powell (1993), and Newey (2009). Das et al. (2003) develop a nonparamet-
ric approach, which allows an outcome equation to be non-parametric. While such estimators
weaken the distributional assumptions, parametric estimation yields greater efficiency pro-
vided that the distribution is correctly specified.1

This paper proposes an alternative maximum likelihood estimator of the sample selection
model, replacing the standard assumption of a joint normality with a more flexible distri-
butional assumption. Early work on selection models that relaxes the normality assumption
was done by Lee (1982, 1983). His approach was to transform nonnormal disturbances in the
model into normal variates that are then assumed to be jointly normally distributed. As we
will see, this is a special case of the copula approach that Smith (2003) applies to the sample
selection model. Under the copula approach, a multivariate distribution is constructed from
separately specified marginal distributions. Our proposed estimator continues along this line
of research by inserting more flexible marginal distributions into the copula function.

1See Vella (1998) and Lee (2001) for a survey of the literature. In addition to the maximum likelihood and
semiparametric approaches, the literature has added various other estimation methods. Golan et al. (2004)
develop a generalized maximum entropy (GME) estimator, which may perform well with small samples.
van Hassel (2011) develops a Bayesian inference of the selection model, where errors are both normally and
non-normally distributed. Meijer and Wansbeek (2007) discuss estimation of the selection model within the
Generalized Method of Moments (GMM) framework.
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In particular, we model the marginal distributions with the Generalized Tukey lambda
(GTL) distribution. First proposed by Pregibon (1980) and Freimer et al. (1988), the GTL
distribution is very flexible, allowing varying degrees of asymmetry and tail thickness. For
example, it nests the logistic and uniform distributions and approximately nests familiar
distributions such as the normal, Student’s t, Gumbel, and χ2 distributions. Because of this
versatility, the GTL is a good candidate distribution for modelling the unobservables in the
selection and outcome equations. These GTLs are then inserted as marginal distributions
into a copula in order to construct a highly versatile bivariate distribution that replaces
the bivariate normality distribution that underlies the approach of Heckman (1979) and Lee
(1978). The flexibility of this GTL-copula distribution effectively frees the sample selection
model from any particular distributional assumption. Moreover, this flexibility is achieved
with just a few additional parameters, which is both parsimonious and time-efficient relative
to semi- or non-parametric approaches. The estimated parameters also indicate whether the
distribution deviates from normality.

A new estimator has value if its strengths are exploited in applications with real data.
We report on five applications on a wide variety of topics: wages of married women, wages
of children in a lower-income country, health expenditures, speeding tickets, and interna-
tional disputes. In all five, the joint normality assumption is rejected, and nine of the ten
marginal densities are decidedly non-normal. Not surprisingly, the estimates of the selection
and outcome equations differ significantly as well: in varying ways, the distributional mis-
specification changes the magnitude of the estimated economic effects and the interpretation
of the estimated relationships. This sample of five applications is not really too self-selected:
these were the only applications we examined.

The structure of this paper is as follows. The next section outlines the sample selection
model and states the likelihood function in its general form. Section 3 lays out the copula
approach with special reference to the sample selection model. This is followed in Section
4 by an introduction of the GTL distribution and a description of its attractive properties.
In Section 5, we report on a Monte Carlo study of the proposed GTL-copula estimator: it
performs well under both normal and nonnormal designs, whereas the standard estimator
that assumes joint normality is subject to substantial bias if the distributional assumption
is violated. In Section 6, we examine the relevance of the GTL-copula estimator in the five
real-world applications that were mentioned above, in comparison with the familiar estimator
of the joint normal sample selection model. Section 7 concludes the paper.

2 The Sample Selection Model

In this paper, we consider the simplest form of the sample selection model, which is sometimes
referred to as a type 2 Tobit model (Amemiya, 1985). This model consists of two latent
equations: a selection equation and an outcome equation. For observation i, i = 1, . . . , N ,
the selection equation is

si = 1(zi
′γ + νi > 0) (1)

2



where 1(·) is an indicator function, and the outcome equation is

yi = xi
′β + σεi, (2)

where σ is a scale parameter.2 (νi, ǫi) is independent of (z
′
i, x

′
i), and (νi, ǫi) is identically and

independently distributed across observations in the sample.
The outcome equation is of primary interest, but the outcome is observable only when

si = 1. When νi and εi are not independent of each other, OLS estimation of equation
(2) with the subsample for which si = 1 yields inconsistent estimates of β. This is the
well-known selectivity bias problem (Heckman, 1979).

For expository simplicity, we focus on this model in the following discussions. However,
it is straightforward to extend our proposed method to other variants of the selection model.
For example, a different outcome might be observed depending on whether si = 0 or si = 1.
This so-called switching regression model is also known as the Roy model or as a type 5
Tobit model (Roy, 1951; Amemiya, 1985).

Equations (1)-(2) may be estimated by the full information maximum likelihood method
(Heckman, 1974). In a general form, the likelihood function of the sample selection model
may be written as

L =

N
∏

i=1

[

∫ −zi′γ

−∞

fν(ν)dν

]si=0
[
∫ ∞

−zi′γ

fνε(ν, εi)dν

]si=1

, (3)

where fν is a univariate pdf of ν, and fνε is a bivariate pdf of ν and ε. To implement
maximum likelihood estimation, the functional forms of fν and fνε must first be specified.
The standard assumption is that νi and εi are jointly normally distributed. This leads to
the following likelihood function:

L =
N
∏

i=1

[Φ(−zi
′γ)]

si=0

[

σ−1φ

(

yi − xi
′β

σ

)

Φ

(

zi
′γ + (ρ/σ)(yi − xi

′β)
√

1− ρ2

)]si=1

(4)

where σ is now the standard deviation of ε and ρ is the coefficient of correlation between ε
and ν. φ(·) and Φ(·) are the pdf and cdf of the standard normal distribution, respectively.

Although this maximum likelihood estimator (and the closely related two-step estimator
of Heckman (1979) and Lee (1978)) is widely used in empirical applications, it is criticized
for its relatively strong assumption of the normality. Generally, violation of the normality
assumption results in inconsistency.

This paper relaxes the joint normality assumption while maintaining the parametric
structure. Our proposed method follows and extends the copula approach suggested by
Smith (2003).

2 The scale parameter for the selection equation is set to 1 for identification.
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3 The Copula Approach

A copula is a parametric representation of a joint distribution with given marginal distri-
butions, thus permitting flexible dependence structures. For an introduction to copulas, see
Nelsen (2006) and Trivedi and Zimmer (2007). Copulas have been widely used in the finance
literature (e.g., see Cherubini et al. (2004) and references therein). Prokhorov and Schmidt
(2009) discuss the estimation of panel data models with copulas to capture dependence
over time. Cameron et al. (2004) use a copula to model two equations for count data;
Zimmer and Trivedi (2006) add a binomial outcome equation to two of such equations. In
this section, we briefly discuss the copula approach with particular reference to the sample
selection model, drawing in particular on Smith (2003).

Let Wj be a continuous random variable with a marginal distribution Fj = Fj(ωj) =
Pr(Wj ≤ ωj) for j = 1, 2. Define a joint distribution of these two random variables as
F12(ω1, ω2) = Pr(W1 ≤ ω1,W2 ≤ ω2). A copula function C(·) couples the two marginal
distributions together to generate the joint distribution:

F12(ω1, ω2) = C(F1, F2; θ),

where θ is a (vector of) parameter(s) that governs the degree of dependence between the ran-
dom variables. The properties of the copula function are that (i) C(F1, 0; θ) = C(0, F2; θ) =
0, (ii) C(F1, 1; θ) = F1 and C(1, F2; θ) = F2, and (iii) it is 2-increasing. The third property
is a technical expression that implies ∂2C/∂F1∂F2 ≥ 0, which in turn guarantees that the
bivariate pdf is non-negative.3 Note also C(F1, F2; θ) = C(F2, F1; θ).

Given a joint cdf, the density function of W1 = ω1 conditional on W2 ≤ ω2 is obtained
simply by the chain rule:

∂

∂ω1

F12(ω1, ω2) =
∂

∂F1

C(F1, F2; θ)×
∂F1

∂ω1

, (5)

and ∂F1/∂ω1 is simply a univariate pdf, f1(ω1). f2(ω2|W1 ≤ ω1) is similarly derived.
In order to rewrite the likelihood function of (3) in terms of a copula, note that the

integral inside the second pair of brackets in (3) can be rewritten

∫ ∞

−zi′γ

fνε(ν, εi)dν =
∂

∂ε
(Fε(ε)− Fνε(−zi

′γ, ε)) |ε=εi,

where Fε(·) is a univariate cumulative distribution function (cdf) of ε and Fνε(·) is a bivariate
3Let F = C(F1, F2; θ). The bivariate pdf is derived as ∂2F/∂ω1∂ω2 = (∂2C/∂F1∂F2) × (∂F1/∂ω1) ×

(∂F2/∂ω2). Furthermore, the third property has the following implication for continuous and discontinuous
copula functions alike (Nelsen, 2006): for every F1a ≤ F1b and F2a ≤ F2b, we have C(F1b, F2b)−C(F1b, F2a)−
C(F1a, F2b) + C(F1a, F2a) ≥ 0.
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cdf of ν and ε. Using (5), the likelihood function is

L =
N
∏

i=1

[Fν(−zi
′γ)]

si=0

[(

1− ∂

∂Fε

C(Fν(−zi
′γ), Fε(εi); θ)

)

× fε(εi)

]si=1

,

since the integral inside the first pair of brackets of (3) is simply the cdf of ν, Fν(·).
Many different copula functions are available, each with its own characteristics. Here, we

describe six of them that we will use later in this paper. One of the most frequently used
copulas is the Gaussian copula:

C(F1, F2; θ) = Φ2(Φ
−1(F1),Φ

−1(F2); θ),

where Φ2(·) is a cumulative distribution function of a bivariate normal distribution with a
coefficient of correlation θ, −1 ≤ θ ≤ 1, which is a dependence parameter in the copula
framework. If marginal distributions of W1 and W2 are normal, then the joint distribution
is reduced to a bivariate normal distribution; if even only one of the marginal distributions
is other than normal, it is not. In the context of sample selection models, this Gaussian
copula appears as part of a two-step estimator in Lee (1982) and in the context of a FIML
estimator in Lee (1983). The common selection model of Heckman (1974) uses a bivariate
normal distribution, which is a Gaussian copula with normal marginals. Throughout this
paper, we will call this the normal-Gaussian model.

Another example is the FGM (Farlie-Gumbel-Morgenstern) copula:

C(F1, F2; θ) = F1F2(1 + θ(1− F1)(1− F2)),

where θ is a dependence parameter, −1 ≤ θ ≤ 1. Prieger (2002) inserts this FGM copula into
a selection model of hospitalization duration. One of the attractive features of this copula
is its mathematical simplicity, which facilitates computation since no integration is involved
(unlike the Gaussian copula4).

Archimedean copulas belong to a family of copulas that are generically defined by a
generator function ϕ(·) that is a continuous, convex and decreasing function with ϕ(1) = 0:

C(F1, F2; θ) = ϕ−1(ϕ(F1) + ϕ(F2)).

Table 1 lists four examples of such generator functions, each dependent on a single parameter
θ that determines the degree of dependence, as will be discussed later on.5 Archimedean

4If selection is not merely binomial but rather multinomial in unordered ways, the use of a Gaussian
copula necessitates integration of a multivariate normal distribution, which becomes a tedious chore.

5A longer list of the family of Archimedean and non-Archimedean copulas is available in, for example,
Nelsen (2006). Moreover, although this paper considers only copulas with one dependence parameter, there
exist copulas with more than one dependence parameters. For example, a Student’s t copula is given by
C(F1, F2; θ1, θ2) = t2(t

−1

θ2
(F1), t

−1

θ2
(F2); θ1, θ2), where t2(·; θ1, θ2) is a bivariate Student’s t cdf with coefficient

correlation θ1 and θ2 degrees of freedom, and tθ2(·) is the inverse of univariate cdf of Student’s t with θ2
degrees of freedom.
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Table 1: Archimedean copula and generator functions

Copula Name C(u1, u2; θ) ϕ(t)

Clayton
(

F−θ
1 + F−θ

2 − 1
)−1/θ

θ−1
(

t−θ − 1
)

Frank −θ−1 log

(

1 +
(e−θF1 − 1)(e−θF2 − 1)

(e−θ − 1)

)

− log

(

e−θt − 1

e−θ − 1

)

Gumbel exp
(

−
(

(− logF1)
θ + (− logF2)

θ
)1/θ
)

(− log(t))θ

Joe 1−
[

(F̃1)
θ + (F̃2)

θ − (F̃1F̃2)
θ
]1/θ

− log
(

1− (1− t)θ
)

For Joe, F̃j = 1− Fj for j = 1, 2.

copulas have several attractive attributes (Smith, 2003). First, similar to the FGM copula,
they do not require integration. Second, their mathematical structure facilitates the calcu-
lation of the likelihood function and its scores and Hessian. For example, derivatives of C
follow straightforwardly with use of the rule for a derivative of an inverse function:

∂

∂F1
C(F1, F2; θ) =

ϕ
′

(F1)

ϕ′(C(F1, F2; θ))
,

where ϕ′(·) is a derivative of ϕ(·).
More importantly, Archimedean copulas are attractive since they exhibit various depen-

dence structures. This is illustrated in Figure 1, which shows a contour plot of the bivariate
pdf for each copula, where the marginal distributions are standard normal and the overall
degree of dependence is the same for each case except FGM.6 A Frank copula exhibits sym-
metric dependence in that the degree of dependence is the same in the lower and upper tails
of a joint distribution.7 In this aspect, the Frank copula is similar to the Gaussian and FGM
copulas, but its dependence is weaker in the tails than the Gaussian one. In contrast, the
Clayton copula is asymmetric with strong lower tail dependence but weaker upper tail de-
pendence, and the Gumbel and Joe copulas exhibit strong upper tail but weaker dependence
in a lower tail.

In application, the dependence structure is rarely known in advance, but the choice of
the copula function does matter for the fit of the model. Copulas are not nested relative
to each other. Thus, information criteria such as the Akaike Information Criterion (AIC)
or the Bayesian Information Criterion (BIC) are useful in selecting the best-fitting copula.8

6For each copula, Kendall’s τ equals 0.333, except for FGM where τ equals 0.2.
7Formally, a copula C is said to be radially symmetric if C(F1, F2; θ) = F1+F2− 1+C(1−F1, 1−F2; θ).

However, a joint distribution generated with a radially symmetric copula is symmetric only if marginal
distributions are symmetric as well.

8AIC is defined as −2 lnL+2k and BIC as −2 lnL+ (lnN)k, where lnL is the maximized log likelihood
and k is the number of the parameters in the model. The copula with the smallest information criterion
is preferred. When marginal distributions are fixed across copulas, the selection based on the smallest
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Figure 1: Contour plots of bivariate pdf for different copulas
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(e) Gumbel copula: θ = 1.5
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(f) Joe copula: θ = 1.9050
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Alternatively, Vuong’s (1989) test can be used to weigh one copula against another.9 To
allow for potential copula misspecification, Trivedi and Zimmer (2007) recommend that the
standard errors be estimated in robust sandwich form under the theory of quasi-maximum
likelihood (White, 1982).

As the captions to Figure 1 suggest, the dependence parameter θ may govern the degree
of dependence but it is not comparable across different copulas. A common measure of
dependence is Kendall’s τ , which may be computed for general copula functions as10

τ = 4

∫ 1

0

∫ 1

0

C(F1, F2)dC(F1, F2)− 1,

and for Archimedean copulas as

τ = 1 + 4

∫ 1

0

ϕ(t)

ϕ′(t)
dt. (6)

In principle, τ ranges from −1 to 1. The lower and upper bounds correspond to perfect
negative and positive dependence, respectively. A copula for which τ attains both bounds is
called comprehensive. When τ = 0, the two random variables are independent.11 The copula
corresponding to independence is the Product copula (also referred to as the Independence
copula), C(F1, F2) = F1F2. The Product copula can be expressed as a special (or limiting)
case of each copula, achieved with a certain value of θ that we will denote as θind; see Table
2.

If ν and ε are independent, the parameters of the outcome equation (β) may be estimated
consistently and efficiently on the self-selected subsample. Therefore, testing for indepen-
dence is practically important. If θind falls in the interior of the range of θ, independence may
be tested with Wald, Lagrangian Multiplier (LM), or Likelihood Ratio (LR) tests. Under
the null of independence, the test statistic is distributed as χ2(1), provided that the copula
specification is treated as a “given.” However, for an arbitrary copula, the model is estimated

information criteria is equivalent to choosing the copula attaining the largest value of the log likelihood
function.

9For example, compare the Joe and Gumbel copula models. The Vuong test statistic V is calculated as

V =

√
Nm̄

√

N−1
∑N

i=1
(mi − m̄)2

=
Nm̄√

N − 1sm
,

where mi = lnLJ
i − lnLG

i , with lnLJ
i and lnLG

i denoting the contribution of observation i to the log

likelihood of the Joe and Gumbel models, respectively, and where m̄ = N−1
∑N

i=1
mi and sm is the sample

standard deviation of m. V has an asymptotic standard normal distribution. At a 5% significance level, the
Joe copula is preferred if V exceeds 1.96; the Gumbel copula is preferred if V is less than −1.96, and the
test is inconclusive if V falls between these two critical values. Each pair of copula functions may thus be
compared.

10Another common dependence measure is Spearman’s ρ. See Nelsen (2006) for the definitions of Kendall’s
τ and Spearman’s ρ.

11In contrast, if the familiar Pearson’s coefficient of correlation equals 0, independence is not implied.
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Table 2: Dependence parameter θ and Kendall’s τ

Copula Name Range of θ θind Kendall’s τ(θ) Range of τ

Product N.A. N.A. 0 0

Gaussian −1 ≤ θ ≤ 1 0 2 sin−1(θ)/π −1 ≤ τ ≤ 1

FGM −1 ≤ θ ≤ 1 0 2θ/9 −2/9 ≤ τ ≤ 2/9

Archimedean Family

Frank −∞ < θ < ∞ 0 1− 4 [1−D1(θ)] /θ −1 < τ < 1

Clayton 0 ≤ θ < ∞ 0 θ/(θ + 2) 0 ≤ τ < 1

Gumbel 1 ≤ θ < ∞ 1 (θ − 1)/θ 0 ≤ τ < 1

Joe 1 ≤ θ < ∞ 1 · 0 ≤ τ < 1

Notes: θind is the value of θ if independent. For Frank, D1(θ) is a Debye function: D1(θ) =
1

θ

∫ θ

0

t

et − 1
dt.

For Joe, there is no closed form. Equation (6) is evaluated numerically.

under the quasi-maximum likelihood principle, such that LR test is no longer distributed
as χ2(1) while Wald and LM tests are still valid with sandwich-type adjustments (White,
1982).12

Not all copulas are comprehensive as Table 2 shows. The Gaussian and Frank copulas
are comprehensive, but the range of τ for the FGM copula is only −2/9 ≤ τ ≤ 2/9, which
indicates that it can accommodate only moderate degrees of dependence. Clayton, Gumbel
and Joe copulas allow only positive dependence such that 0 ≤ τ ≤ 1. This seems restrictive,
but a simple modification of the underlying model evades the restriction: specify yi =
xi

′β + σεi as in equation (2) but let εi = −ε∗i and define the copula with respect to (ε∗, ν)
instead. This formulation does not change any other structure of the model but does allow
for negative dependence between ε and ν even with these copulas: −1 ≤ τ ≤ 0.13 We will
refer to these sign-switched copula implementations as nClayton (i.e., negative-Clayton),
nGumbel and nJoe copulas.

For these three copulas, whether in regular or negative form, independence occurs at the
boundary of the range of θ. In a such case, the test for independence is one-tailed rather than
two-tailed, and the test statistic is distributed as a χ2 mixture, namely χ2

m = 1
2
χ2(0)+ 1

2
χ2(1),

(e.g., Gouriéroux et al. (1982)), where χ2(0) is a mass at 0 with a probability of one—and
the same caveats as above apply when the copula is selected arbitrarily or with a pretest

12A search for the best copula turns the quasi-ML estimator into a pretest estimator, which may cause
deviations from these distributions.

13Equivalently, we can specify the selection equation (1) as s∗i = zi
′γ + νi with ν = −ν∗ and a copula for

(ε, ν∗). This kind of formulation is not uncommon in the literature; see, for example, Maddala (1983), Lee
(1983) or Newey (1999). In a switching regression model that has two outcome equations, modifying one of
the outcome equations is certainly preferable since it keeps the relation between the selection equation and
the other outcome equation intact.
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rather than a priori given.
In the sample selection model, the conditional expectation of the outcome given the

selection status is often of interest. For example, the expectation of yi conditional on si = 1
is

E(yi|si = 1) = xi
′β + σE(εi|si = 1)

= xi
′β + σ

∫ ∞

−∞

εfε|ν(ε|νi > −zi
′γ)dε, (7)

where fε|ν is a conditional density of ε given ν. When the copula is Gaussian and the
marginal distribution of εi is normal, then an analytical expression is available. Otherwise,
the integral in equation (7) may be computed by Gaussian quadrature or simulation.14

4 Specifying the Marginal Distributions: The Case for GTL

4.1 Marginal Distributions for the Copulas

One of the main advantages of the copula approach is that it enables us to separate the spec-
ification of the marginal distributions of ε and ν from the specification of the dependence
structure. In particular, there is no need to rely on marginal (or joint) normal distribu-
tions anymore, which has long been the traditional assumption. The recent literature is
slowly realizing this possibility, but the marginal distributions that have been specified are
not particularly flexible. Consider first the marginal distribution of ε in the outcome equa-
tion. Smith (2005) and Dancer et al. (2008) fix their marginals as normal distributions while
considering several copulas. Genius and Strazzera (2008) consider normal, logistic, and Stu-
dent’s t distributions and, in their application, end up preferring the latter. As is well-known,
the Student’s t family contains the normal distribution as a limiting case when the degrees of
freedom parameter goes to ∞, and it closely approximates the logistic distribution when the
degrees of freedom parameter equals 8 or 9 (Albert and Chib, 1993; Mudholkar and George,
1978). More generally, the t distribution offers flexibility in capturing thicker (but not thin-
ner) tails than normality. However, the t distribution is symmetric, which can be a drawback.
Asymmetric distributions are available: Lee (1982) considers the χ2 distribution with several
degrees of freedom, and Yen et al. (2009) work with a generalized log-Burr distribution.15

Other asymmetric distributions that might be useful are the gamma, skewed normal and
skewed t distributions. Of all these, χ2 and gamma are right-skewed only.

As for the marginal distribution of ν in the selection equation, most researchers assume
normality because of the structure of the traditional Heckman model; infrequently, some
specify a logistic distribution (underlying the logit discrete choice). Asymmetric alternatives
are the extreme maximum value and extreme minimum value distributions that underlie the

14 The analytical expression is also available with Student’s t copula and ε is marginally distributed as the
t distribution. Heckman et al. (2003) use Student’s t copula even though they do not refer it to as a copula.

15The pdf of a (standardized) generalized log-Burr distribution is fε(ε) = eε
(

1 + eε

κ

)−κ−1
, where κ is a

shape parameter. With κ = 1, it is a logistic distribution, and as κ → ∞, it is an extreme value distribution.
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loglog and cloglog models. The scobit model of Nagler (1994) is developed from the Burr
distribution. However, the asymmetry of these models is not flexible.16

Thus, the literature suggests several options that the applied researcher may choose from,
but this menu is still not satisfactory. It is usually not known a priori whether a marginal
distribution is symmetric or asymmetric. This is especially true of the selection equation
because of its latent structure and its observed binary outcome. Furthermore, it is not
practical to try out several marginal distributions. For example, if only three candidate
marginal distributions are considered (say, one symmetric, one left-skewed, and one right-
skewed), this already yields nine combinations to estimate for each copula, which itself
must be selected optimally as well. This becomes a tedious, laborious task. Therefore, we
propose using a flexible distribution for each margin: a Generalized Tukey lambda (GTL)
distribution. This distribution allows symmetry or asymmetry and thick or thin tails. It
nests a logistic distribution but also approximately nests other familiar distributions. With
GTL distributions as marginals, the only remaining task is to choose a suitable copula. Let
us therefore now examine the GTL distribution.

4.2 The GTL Distribution

The Generalized Tukey lambda distribution was first proposed as a link function by Pregibon
(1980) in the context of a generalized linear model and was analyzed in detail by Freimer et al.
(1988).17 The random variable ǫ from the GTL distribution is given by a quantile function
Q(u),

ǫ = Q(u) = µ+ σ

(

uα−δ − 1

α− δ
− (1− u)α+δ − 1

α+ δ

)

, (8)

where u ∈ [0, 1] and µ and σ are location and scale parameters, respectively, and α and δ
are shape parameters. In the following discussions, we consider the canonical form such that
µ = 0 and σ = 1. The quantile function Q(u) translates the quantile of u into a random
variable ǫ. Therefore, the cdf of this distribution F (ǫ) is defined as

F (ǫ) = u = Q−1(ǫ).

16Olsen (1980) assumes the uniform distribution for ν so that the selection equation is consistently esti-
mated by a linear probability model.

17This distribution differs from the so-called Generalized Lambda Distribution (GLD) designed by
Ramberg and Schmeiser (1974); see also Karian and Dudewicz (2011). Both the GTL and the GLD dis-
tributions are two-parameter extension of the one-parameter Tukey lambda distribution of Hastings et al.
(1947) and Tukey (1960), but they differ in their formulation and in the parameter values that provide ap-
proximations to asymmetric distributions. The parameter space for GLD has gaps, which complicates MLE
estimation. Moreover, while GTL and GLD generally approximate symmetric distributions in the same way,
the logistic density is a special case of GTL but, due to a technicality, can only be closely approximated by
the GLD.
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Figure 2: GTL distributions with different α and δ
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(a) δ is fixed at 0
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(b) α is fixed at 0

Except for a few special values of α and δ, the function Q−1 does not have a closed-form
expression and must therefore be evaluated numerically.18 The pdf f(ǫ) is given by

f(ǫ) =
∂F (ǫ)

∂ǫ
=

∂Q−1(ǫ)

∂ǫ
=

1

∂Q(u)/∂u
=

1

uα−δ−1 + (1− u)α+δ−1
,

which is nonnegative for u ∈ [0, 1].
The pdf of the GTL distribution exhibits a wide range of shapes for different values of α

and δ. The parameter α controls thickness of tails: tails become thinner as α increases (Fig-
ure 2a). On the other hand, the parameter δ is related to the symmetry of the distribution.
When δ < 0 (δ > 0), the distribution is right (left) skewed (Figure 2b).19 For δ = 0. the
distribution is symmetric. The shape of the density does not even have to be bell-shaped
as Figure 2 might suggest; for a suitable choice of α and δ, tails may end abruptly (have a
positive value at the end of the range), and the density may be J-shaped or U-shaped.

The range of ǫ may be finite or infinite. The lower bound ǫL is finite and equals −1/(α−δ)
if α− δ > 0; otherwise, it is −∞. The upper bound ǫU is 1/(α+ δ) if α + δ > 0; otherwise,
it is ∞. We define the density equal to zero if ǫ is outside of the finite range.

Although no analytical expression of the pdf exists, the moments are analytically calcu-

18For example, for α = 1 and δ = 0, Q is linear in u, so that ǫ has a uniform distribution. For α − δ =
α + δ = 0, Q(u) = ln(u) − ln(1 − u) by L’Hôpital’s rule, such that F (ǫ) = eǫ/(1 + eǫ) becomes the cdf of
the logistic distribution. When α − δ → ∞ and α + δ = 0, u = 1 − e−ǫ: this is the cdf of the exponential
distribution.

19However, for large values of α, this link changes direction: a positive (negative) δ implies a minor degree
of right (left) skewness (Freimer et al., 1988).
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lated. For convenience in notation, define λ1 = α− δ and λ2 = α + δ. The first and second
moments are given by

E(ǫ) = −1/(λ1 + 1) + 1/(λ2 + 1) = −2δ/(λ1 + 1)(λ2 + 1)

E(ǫ2) =
2

(2λ1 + 1)(λ1 + 1)
+

2

(2λ2 + 1)(λ2 + 1)
− 2

λ1λ2

(

B(λ1 + 1, λ2 + 1) +
λ1λ2 − 1

(λ1 + 1)(λ2 + 1)

)

,

where B(·, ·) is the beta function. Clearly, the mean is zero if and only if δ = 0. The
variance, found as V ar(ǫ) = E(ǫ2)− (E(ǫ))2, varies with α and δ as well. Higher moments
such as skewness and kurtosis may be similarly obtained, but the expressions are rather
complicated.20 For the kth moment to exist, the condition that min(λ1, λ2) > −1/k must
hold. That is, the mean exists only when λ1 > −1 and λ2 > −1, or equivalently, −α − 1 <
δ < α+1; the variance (i.e., the second moment) exists when λ1 > −1/2 and λ2 > −1/2, or
−α− 1/2 < δ < α+ 1/2; and so forth.

As shown above (footnote 18), GTL nests the logistic distribution by setting (α, δ) =
(0, 0) and the uniform distribution with (α, δ) = (1, 0) or (2, 0). It closely approximates a
variety of other distributions with a suitable choice of α and δ: for example, the normal distri-
bution with (α, δ) = (0.1436, 0), a Student’s t(5) with (α, δ) = (−0.0710, 0), and the Gumbel
distribution21 with (α, δ) = (0.1422,−0.2290) (Freimer et al., 1988; Vijverberg and Vijverberg,
2012).22

The literature of statistical data analysis offers several methods to fit the GTL dis-
tribution to data. Ramberg et al. (1979) propose the method of moments using the first
four moments. Öztürk and Dale (1985) discuss a least square estimation method, and
King and MacGillivray (1999) fit data by the “starship” method, which is a computationally
intensive grid-search. Su (2007) proposes an algorithm that combines a random grid search
with maximum likelihood estimation. However, these studies are limited to a univariate data
analysis.

Apart for data fitting exercises, the GTL distribution is not yet widely used, especially

20The kth moment of ǫ is given by the following expression (Freimer et al., 1988; Su, 2007;
Vijverberg and Vijverberg, 2012):

E(ǫk) =

∫ eU

eL

ǫkf(ǫ)dǫ =

∫ 1

0

(Q(u))k du =

∫ 1

0

k
∑

j=0

(

k

j

)j

(−1)j
(

uλ1 − 1

λ1

)k−j (
(1 − u)λ2 − 1

λ2

)j

du,

For the second equality, the fact that ǫ = Q(u) and du/dǫ = f(ǫ) is used, and the binomial theorem applies
for the third equality. The solution of these integrals varies according to whether λ1 and/or λ2 equal 0; see
Vijverberg and Vijverberg (2012, App.A).

21The Gumbel distribution should not be confused with the Gumbel copula.
22These comparisons may be determined by matching moments (Ramberg et al., 1979; Freimer et al.,

1988). A better fit is achieved by minimizing the absolute difference in the densities

(Vijverberg and Vijverberg, 2012). The absolute difference in the pdf is defined by
∫

∣

∣

∣
f̃(ǫ̃)− φ(ǫ̃)

∣

∣

∣
dǫ̃, where

ǫ̃ is standardized by its mean and standard deviation and f̃ is the corresponding pdf. Alternatively, one
might minimize the absolute difference between the cdfs or the largest difference between the cdfs or pdfs
along the range of ǫ̃ (Karian and Dudewicz, 2011; Vijverberg and Vijverberg, 2012).
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outside the statistics literature. Pregibon (1980) was the first to develop the GTL formulation
as a tool in a generalized linear model, which he applied to grouped data of a binary choice
outcome (mortality of beetles). In the economics literature, in the context of discrete choices
at the individual level, Koenker and Yoon (2009) explore maximum likelihood and Bayesian
estimators. Vijverberg and Vijverberg (2012) provide a thorough examination of the discrete
choice model with GTL disturbances, which they name the “pregibit” model, and discuss the
link with other binary choice models such as the probit, logit, linear probability, loglog and
cloglog models. The GTL distribution has also been used to estimate Lorenz curves in a study
of income and wealth distributions (Sarabia, 1997) and to generate skewed random variables
in Monte Carlo studies (e.g., Boero et al. (2004)). Vijverberg and Hasebe (2012) explore
the GTL distribution as a way to model disturbances in a simple linear model and study
the characteristics of the maximum likelihood estimators of this GTL regression model: the
estimator is consistent and asymptotically normally distributed if max(λ1, λ2) < 1/2. This
property extends to the data-fitting estimator of Su (2007).

4.3 Econometric Issues

With the present paper, we are the first to utilize the flexibility of the GTL distribution in
the context of sample selection models. The combination of the copula approach and the
GTL marginal distributions creates a highly versatile bivariate distribution that essentially
enables us to drop a priori assumptions regarding the shape of the marginal distributions.
Since we retain the parametric structure of the model, we also achieve greater efficiency.23

In the rest of this section, we discuss several estimation issues.
First of all, the GTL parameters α and δ can differ between the distributions of ν and

ε because their shape may well differ. Thus, we add subscripts “ν” and “ε” to denote
parameters associated with the distributions of ν and ε, respectively.

Second, following Vijverberg and Vijverberg (2012), the selection equation can be esti-
mated in standardized form. Let µν and σν be the location and scale parameters (as in
equation (8) of the GTL-distributed ν, which vary with the values of αν and δν . Select µν

and σν to be equal to the mean and standard deviation of ν, provided that they exist. Then,
standardize ν with µν and σν : ν̃ = (ν − µν)/σν . This yields

Fν(−zi
′γ) =

∫ −zi′γ

−∞

fν(ν)dν =

∫ −zi′γ̃

−∞

fν̃(ν̃)dν̃ = Fν̃(−zi
′γ̃),

where −zi
′γ̃ = −(µν + zi

′γ)/σν and fν̃ = σνfν . Even though this standardization changes
the estimated coefficients of z, the role of z in the selection mechanism is the same. More-
over, since the dependence between ν and ε is expressed only through the copula function,
it does not affect the estimation of β in the outcome equation. The advantage of the stan-
dardization is to facilitate comparison of γ across different discrete choice models. But even
during estimation, standardization is beneficial: it tends to speed up the optimization of the

23We leave formal comparisons of efficiency between our proposed estimator and semiparametric estimators
as a topic for future research.
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likelihood function relative to the unstandardized case (Vijverberg and Vijverberg, 2012).
However, since these moments do not exist for all (α, δ) parameter values, standardization
is not always feasible. In such cases, the median and interquartile range, which always exist,
can be used instead of the mean and standard deviation.

Third, in regard to the outcome equation, let us ignore the selectivity issue for a moment
and consider the outcome equation as a simple linear regression model: y = x′β + σεε.
Consider the conditional expectation: E(y|x) = x′β + σεE(ε|x). Under the assumption that
ε is independent of x, E(ε|x) = E(ε). As shown above, the mean of a GTL(αε, δε)-distributed
ε is not zero unless δε = 0. Therefore, x′β itself is not the conditional expectation of y since
the intercept is shifted as a result of the non-zero mean of ε.

Furthermore, β is usually interpreted as the marginal effect of x on the conditional
expectation of y; i.e., β = ∂E(y|x)/∂x. Such an interpretation is valid, however, only when
E(ε) is defined. When ε is drawn from a GTL distribution with αε−δε ≤ −1 or αε+δε ≤ −1,
E(ε) cannot be defined, nor can E(y|x), therefore. But a more general interpretation of β
is still valid: as x′β determines the location of the distribution of y conditional on x, β
measures how much this location shifts as x changes.

Fourth, maximum likelihood estimation limits the parameter space of αε and δε. To
assure consistency and asymptotic normality, Vijverberg and Hasebe (2012) find that the
feasible range of the shape parameters is restricted by the condition αε − 0.5 < δε < αε +
0.5 and consequently αε < 0.5. As there is no lower bound on αε, it is not necessary
to require that the moments of ε exist. As for (αν , δν), there is no restriction, although
Vijverberg and Vijverberg (2012) offer a consideration to impose a restriction αν − 0.5 <
δν < αν + 0.5 for reason of economic plausibility. Namely, at the left endpoints of the range
of ν, the GTL density is tangent to the ν-axis only if αν − δν < 0.5, has an angled positive
slope if αν − δν = 0.5, and is perfectly vertical if 0.5 < αν − δν < 1; and the tail is high
if αν − δν ≥ 1. If αν − δν ≥ 0.5, the probability mass near the left endpoint is nonzero:
extreme tail outcomes are not “rare.” At the right endpoint, the tail exhibits the same shape
depending on the magnitude of αν + δν . Thus, the restriction αν −0.5 < δν < αν+0.5 makes
extreme tail outcomes rare, which is plausible from an economics perspective.

At these boundaries, the log-likelihood function is still continuous. We use mild penalty
functions if the iterative parameter search either ends up, or derails, in the area beyond the
bounds.

Fifth, as mentioned above briefly, we can reformulate the outcome equation in order to
allow negative dependence with Clayton, Joe and Gumbel copulas: specify yi = xi

′β + σεεi,
where εi = −ε∗i and define the copula with respect to ν and ε∗. If ε∗ has a GTL distribution
with parameters (α∗

ε, δ
∗
ε), ε has a GTL distribution with parameters (αε, δε) = (α∗

ε,−δ∗ε ).
Moreover, if τ ∗ is the value of Kendall’s measure of dependence between ε∗ and ν, it can be
easily shown that the dependence between ε and ν equals τ = −τ ∗. Since, for comparability
across models, we are interested in the distribution of (ε, ν), we will report values of τ and
δε rather than the values of τ ∗ and δ∗ε that are actually estimated. Accordingly, the signs of
the mean and skewness of ε are also switched relative to what is estimated for ε∗.

The next section examines the properties of the proposed estimator through a Monte
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Carlo study. In Section 6, we apply the copula-GTL sample selection model to actual data.
All the estimations in the following sections are implemented in STATA.24

5 Monte Carlo Simulations

It is difficult to anticipate how this new GTL-copula selection model compares with the
familiar Heckman (normal-Gaussian) selection model or with a selection model that is based
on a different bivariate distribution. Thus, we turn to a Monte Carlo study to shed light
on the following questions: (i) how badly biased is the estimator if the assumed dependence
structure is not correct, (ii) is the estimator able to detect the correct dependence structure,
(iii) is the traditional assumption of normal marginals harmful if marginals are actually
non-normal (and, in particular, are GTL densities), and (iv) are the parameters precisely
estimated even without exclusion restrictions?

The basic structure of the data generating processes (DGPs) is as follows:

{

si = 1(γ0 + γ1xi + γ2zi + νi > 0)
yi = β0 + β1xi + σεεi

where xi is drawn from a standard normal distribution and zi is from a uniform U [0, 1]
distribution. zi fulfils the exclusion restriction unless γ2 = 0. The sample size is set at
N = 2, 000, and the number of replications is 500 for each of the following settings. For
all the simulations, the parameters γ1 and β1 are fixed: (γ1, β1) = (1, 1). The values of the
other parameters vary with the research designs.

5.1 Varying the Dependence Structure

In our first research design, we draw νi and εi from each of the six copulas25 that were
described in Section 3 with standard normal marginals,26 and we examine the consequences
of estimating (i) a common normal-Gaussian selection model, (ii) a selection model with
GTL marginals and the correct copula function, or (iii) an optimally selected general GTL-
copula selection model.27 Thus, for each DGP, we estimate the model with each of the
copulas: both the correct copula and a series of erroneous ones that includes the Product
(Independence) copula. In real-world applications, we do not know which copula is correct.
For each replication, we select the best-fitting copula based on the largest value of the log
likelihoods: in effect, this corresponds to selecting the best-fitting copula with the Akaike

24We use STATA’s ml d2 module. This program will be made available upon request.
25To simulate draws from copulas, we adopt a conditional sampling method. See the appendix of

Trivedi and Zimmer (2007) for the procedure. For Gumbel and Joe copulas, the conditioning sampling
is numerically iterated.

26The standard normal here is not the GTL-approximation of the standard normal.
27In this aspect, this study is similar to the simulation study by Winkelmann (2011), who examined a

copula-based bivariate discrete choice model. To the best of our knowledge, there is no such simulation
study for the continuous outcome models. Moreover, Winkelmann (2011) simulates data with the Gaussian,
Frank, and Clayton; in this study, we also generate data with the FGM, Gumbel, and Joe copulas.
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criterion since the number of parameters is the same across copula specifications. We call
this the “Pretest” estimator.

We consider different degrees of dependence, specifically τ = 0.2, 0.333, 0.5. If the DGP
is jointly normal, these τ values correspond to correlation coefficients ρ = 0.31, 0.5, 0.71. In
the case of the FGM copula, only τ = 0.2 is considered since it does not allow for τ > 2/9.
The parameter vector is (γ0, γ1, γ2, β0, β1, σε) = (0.5, 1,−1, 1, 1, 1). Given these settings, the
portion of the sample with si = 1 is expected to be 50%: the outcome is observed for about
one half of the sample.

Table 3 summarizes the results of the simulations. Specifically, the table reports the bias
and standard deviation of the slope β1 of the outcome equation and of an intercept β∗

0 that
adjusts for the nonzero E[ε] such that it measures the predicted value of y for x = ε = 0
and thus is comparable across specifications.28 The table also reports on the distributional
parameters αε, δε, αν , and δν , as well as on Kendall’s τ , which of course is derived from
copula-specific dependence parameters θ. To save space, we report only the results from the
case of τ = 0.333; simulation results for τ = 0.2 and τ = 0.5 may be found in Appendix A.

The results show, first of all, that assuming the wrong dependence structure results in
biased estimates. For example, as shown in the table, when the DGP copula is not Gaussian,
the estimates obtained under a joint normality assumption are biased (first line of each panel).
However, the bias is not as large as that under the assumption of independence (Product
copula, second line of each panel in Table 3): assuming independence is more harmful than
choosing a wrong dependence structure.

Second, as the third line of each panel of Table 3 shows, when the copula is correctly
specified, the estimates are essentially unbiased. Third, it is unlikely that the true copula
will be selected every time. Table 4 reports the relative frequencies of selecting each copula
under different DGPs (distinguished by the DGP copula, with τ = 0.333). The true copula
is more likely to be selected, especially when dependence is stronger (see Appendix A)—but
other copulas are occasionally erroneously preferred.

Fourth, as one might expect, there is a slight cost to not knowing the true copula: in the
fourth line of each panel of Table 3, the “Pretest” copula estimator exhibits a slight bias and
is less precise than the true copula estimator under each DGP. However, it still performs
better than the joint normal estimator. This indicates that it is better to consider several
dependence structures than to blindly assume a joint normal distribution.

Fifth, Table 4 also indicates that even when the true copula is not selected, a copula
similar to the true one tends to be selected. For example, the Joe copula is the second most
selected when the true copula is Gumbel, and vice versa. Moreover, the Joe copula is the
second best after the Gumbel copula in terms of bias of β̂1 if the true copula is Gumbel (not
reported in the table). The coefficient of correlation between the estimates of β̂1 from the
Gumbel and Joe estimators is 0.92 when the true copula is Gumbel with τ = 0.333, whereas
the coefficient of correlation between the joint normal and Gumbel estimator is only 0.75.
On the other hand, a copula with a dependence structure opposite that of the true copula is

28More specifically, β∗

0 = β0 + σε

(

1

αε+δε+1
− 1

αε−δε+1

)

. Since the DGPs of Table 3 uses standard normal

marginals, β∗

0 in fact equals 1. For the estimator under the joint normality, β̂∗

0 = β̂0.
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Table 3: Biases and standard deviations when DGPs use different copulas; τ = 0.333

β∗

0
β1 αε δε τ αν δν

DGP Copula: Guassian

Normal-Gaussian 0.006 -0.003 -0.007
( 0.105 ) ( 0.069 ) ( 0.080 )

GTL-Product 0.397 -0.219 -0.003 -0.006 0.034 0.001
( 0.035 ) ( 0.039 ) ( 0.028 ) ( 0.016 ) ( 0.137 ) ( 0.057 )

GTL-Gaussian 0.006 -0.003 -0.001 -0.001 -0.007 0.033 0.002
( 0.107 ) ( 0.070 ) ( 0.032 ) ( 0.019 ) ( 0.083 ) ( 0.134 ) ( 0.055 )

Pretest 0.014 -0.008 0.002 -0.006 -0.011 0.034 0.002
( 0.113 ) ( 0.074 ) ( 0.033 ) ( 0.025 ) ( 0.086 ) ( 0.136 ) ( 0.056 )

DGP Copula: Frank

Normal-Gaussian 0.038 -0.021 -0.046
( 0.106 ) ( 0.069 ) ( 0.082 )

GTL-Product 0.381 -0.210 -0.033 0.016 0.034 0.001
( 0.035 ) ( 0.038 ) ( 0.028 ) ( 0.016 ) ( 0.137 ) ( 0.057 )

GTL-Frank 0.002 -0.001 0.000 0.000 -0.004 0.032 0.001
( 0.096 ) ( 0.064 ) ( 0.033 ) ( 0.019 ) ( 0.076 ) ( 0.135 ) ( 0.056 )

Pretest 0.002 -0.003 -0.009 0.009 -0.009 0.029 -0.001
( 0.109 ) ( 0.073 ) ( 0.037 ) ( 0.028 ) ( 0.083 ) ( 0.137 ) ( 0.057 )

DGP Copula: Clayton

Normal-Gaussian 0.055 0.013 -0.065
( 0.212 ) ( 0.125 ) ( 0.182 )

GTL-Product 0.363 -0.165 0.011 -0.037 0.032 0.001
( 0.032 ) ( 0.036 ) ( 0.029 ) ( 0.017 ) ( 0.136 ) ( 0.057 )

GTL-Clayton 0.010 -0.002 0.005 -0.004 -0.011 0.032 0.001
( 0.108 ) ( 0.063 ) ( 0.038 ) ( 0.027 ) ( 0.088 ) ( 0.133 ) ( 0.056 )

Pretest 0.015 0.001 0.009 -0.010 -0.017 0.038 0.000
( 0.142 ) ( 0.081 ) ( 0.038 ) ( 0.032 ) ( 0.122 ) ( 0.135 ) ( 0.056 )

DGP Copula: Gumbel

Normal-Gaussian 0.024 -0.037 -0.020
( 0.087 ) ( 0.059 ) ( 0.064 )

GTL-Product 0.410 -0.250 -0.006 0.012 0.033 0.001
( 0.038 ) ( 0.040 ) ( 0.030 ) ( 0.016 ) ( 0.137 ) ( 0.057 )

GTL-Gumbel 0.000 -0.001 -0.001 -0.001 -0.001 0.035 0.002
( 0.086 ) ( 0.059 ) ( 0.030 ) ( 0.018 ) ( 0.066 ) ( 0.134 ) ( 0.053 )

Pretest 0.014 -0.008 -0.003 -0.002 -0.013 0.037 0.003
( 0.090 ) ( 0.062 ) ( 0.031 ) ( 0.019 ) ( 0.070 ) ( 0.134 ) ( 0.055 )

DGP Copula: Joe

Normal-Gaussian 0.014 -0.056 -0.008
( 0.079 ) ( 0.055 ) ( 0.055 )

GTL-Product 0.427 -0.282 -0.004 0.027 0.034 0.001
( 0.040 ) ( 0.041 ) ( 0.031 ) ( 0.016 ) ( 0.137 ) ( 0.057 )

GTL-Joe -0.004 0.001 -0.001 -0.001 0.003 0.035 0.002
( 0.067 ) ( 0.051 ) ( 0.029 ) ( 0.017 ) ( 0.048 ) ( 0.131 ) ( 0.052 )

Pretest -0.014 0.003 0.002 0.000 0.012 0.034 0.004
( 0.070 ) ( 0.051 ) ( 0.030 ) ( 0.018 ) ( 0.051 ) ( 0.130 ) ( 0.052 )

Note: Bias and standard deviation (in parentheses) of the estimates are reported. For each DGP,

both marginal distributions are standard normal.

rarely selected. For example, as seen in Figure 1, the Clayton copula exhibits the opposite
dependence structure to Gumbel and Joe, and it is seldom chosen when the true copula is
Gumbel or Joe. The opposite case is also true.

These results indicate that the true dependence structure may be captured well by re-
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Table 4: Frequencies of selecting copulas under different DGPs for τ = 0.333

Estimated Copula of the DGP

copula Gaussian Frank Clayton Gumbel Joe

Gaussian 0.574 0.116 0.068 0.102 0.004
FGM 0.106 0.148 0.072 0.006 0.000
Frank 0.128 0.594 0.056 0.066 0.004
Clayton 0.060 0.074 0.802 0.002 0.000
Gumbel 0.118 0.058 0.000 0.528 0.170
Joe 0.014 0.010 0.002 0.296 0.822

Notes: Copula selection is based on the largest likelihood value. Boldface entries denote a correct

selection of the copula function. Since τ exceeds 2/9, data cannot be simulated with the FGM

copula. Thus, there is no column with a data generating process based on the FGM copula.

semblant copulas. This insight is important because even if the bivariate distribution differs
from all of the copulas considered in this study, the estimated model may still adequately
capture the true data generating process with one of the considered copulas since collectively
these copulas are able to mimic diverse dependence structures.29

Sixth, the shape parameters of the GTL distribution for the outcome equation (αε and
δε) are estimated precisely with small biases.30 Meanwhile, estimates of the shape param-
eters for the selection equation are somewhat less precise, with α̂ν having larger standard
deviations than δ̂ν ; this result is consistent with the findings by Koenker and Yoon (2009)
and Vijverberg and Vijverberg (2012). The difference in these two sets of parameters stems
from the fact that the outcome y is a continuous variable that reflects tails in more detail
than the discrete selection variable s can.

5.2 Varying the Marginal Distributions

The second question concerns the consequence of nonnormal marginal distributions. To see
this, we employ a research design with a copula that is always Gaussian with τ = 0.333, and
we draw νi and εi from GTL distributions with, for simplicity, the same (α, δ). We force
variations in the GTL tail properties by selecting six different combinations of α and δ: we
consider thinner and thicker tails than normal, with α = 0.33 and −0.33 respectively, and
we examine the effect of asymmetry with δ varying from 0.15 (left-skewed) to 0 (symmetric)
to −0.15 (right-skewed) for each value of α. When α = 0.33, skewness equals −0.45 and
0.45 for δ = 0.15 and δ = −0.15, respectively, and kurtosis equals 2.34 for δ = 0 and 2.72
for δ = 0.15 or −0.15. When α = −0.33, skewness equals 0 for δ = 0 and is not defined for
δ = 0.15 or −0.15, and kurtosis does not exist for any value of δ.

29Of course, it is also better to have more copulas. The cost of taking more copulas into consideration is
the additional time that it takes to maximize the added set of likelihood functions.

30The biases are evaluated by assuming that the true parameters are αε = 0.1436 and δε = 0, representing
the GTL approximation of the normal distribution.
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In these settings, the disturbances are standardized such that their population mean is 0
and their population variance is 1, and the value of β∗

0 is set at 1. All of this means that the
values of β0 and σε change accordingly across the six DGPs. The parameter γ2 equals −1, so
that zi satisfies the exclusion restriction. In each DGP, γ0 is chosen such that approximately
one half of the observations have observable outcomes.

Table 5 shows the simulation results from these settings. The deviations from normality
affect the performance of the traditional joint normal estimator significantly. Especially,
when the true distribution has thicker tails than the assumed normal distribution, the biases
can be huge. The standard deviations are also so large that the estimator is not reliable:
the assumption of bivariate normality makes the estimator vulnerable to outliers. However,
interestingly, for the setting with α = −0.33 and δ = 0.15, the normal-Gaussian estimator
seems to perform adequately—but τ is still estimated poorly. When tails are thinner, the
bias of β̂1 is smaller. The bias of β̂∗

0 tends to be larger when the distribution is skewed.
In contrast, our proposed estimator still performs well. As before, the shape parameters of

the selection equation are somewhat imprecise, but the parameters of the outcome equation
and τ are really well estimated. Under thick-tail distributions, the bias of β̂1 is essentially
zero.

5.3 Addressing the Exclusion Restriction

The presence of a variable (i.e., an instrument) in the selection equation that is excluded
from the outcome equation is crucial for semiparametric estimation. In parametric sam-
ple selection models, such an instrument is technically not necessary but practically highly
recommended: with it, the slope of the inverse Mill’s ratio in two-step estimation or the
correlation coefficient in maximum likelihood estimation is more robustly identified; without
it, the estimates of the entire model are sensitive to distributional misspecification (Vella,
1998; Puhani, 2000). Now, it should be noted that this recommendation is founded on ev-
idence gathered from the standard Heckman model, one that employs, in the terminology
of this paper, a Gaussian copula with normal marginals. The distributional assumption
that underlies the GTL-copula proposed in this paper is much more flexible. As a result,
it becomes more difficult to argue that the distribution is misspecified and to critique an
application for not including an instrument. Instruments may be useful but are no longer
virtually imperative. This is practically beneficial in empirical applications since, as is often
the case with instrument variable estimation, it is difficult to find variables that satisfy this
exclusion restriction. In this subsection, we explore several research designs to address these
assertions.

These designs are built around four different specifications. The main structure of the
simulated model is the same as the previous subsections. Specification 1 is the model of
the previous subsections and is the benchmark: the DGP contains one variable that satisfies
the restriction (z with a slope γ2 = −1), and z is indeed included in the estimated model.
Specification 2 uses the same DGP as Specification 1, but now the variable z is omitted from
the estimated model. In Specifications 3 and 4, z is not included in DGP; that is, γ2 = 0.
In Specification 3, z is correctly omitted from the estimated model, whereas in Specification
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Table 5: Biases and standard deviations when DGPs have nonnormal marginals

β∗

0
β1 αε δε τ αν δν

DGP:α = 0.33 and δ = 0.15
Normal-Gaussian 0.111 -0.049 -0.094

( 0.113 ) ( 0.070 ) ( 0.093 )
GTL-Product 0.308 -0.075 -0.005 0.027 0.076 0.017

( 0.032 ) ( 0.034 ) ( 0.034 ) ( 0.018 ) ( 0.184 ) ( 0.072 )
GTL-Gaussian 0.002 -0.002 0.014 0.001 -0.004 0.074 0.016

( 0.065 ) ( 0.025 ) ( 0.030 ) ( 0.018 ) ( 0.057 ) ( 0.177 ) ( 0.068 )
Pretest 0.005 -0.005 0.019 0.000 -0.005 0.076 0.020

( 0.074 ) ( 0.027 ) ( 0.033 ) ( 0.027 ) ( 0.061 ) ( 0.199 ) ( 0.081 )
α = 0.33 and δ = 0

Normal-Gaussian 0.051 -0.027 -0.043
( 0.098 ) ( 0.062 ) ( 0.074 )

GTL-Product 0.374 -0.173 -0.023 0.034 0.059 -0.001
( 0.034 ) ( 0.037 ) ( 0.028 ) ( 0.015 ) ( 0.152 ) ( 0.058 )

GTL-Gaussian 0.005 -0.003 0.013 -0.001 -0.005 0.059 0.000
( 0.083 ) ( 0.047 ) ( 0.031 ) ( 0.019 ) ( 0.068 ) ( 0.149 ) ( 0.056 )

Pretest 0.021 -0.013 0.015 -0.004 -0.016 0.060 0.001
( 0.092 ) ( 0.053 ) ( 0.032 ) ( 0.020 ) ( 0.075 ) ( 0.151 ) ( 0.057 )

α = 0.33 and δ = −0.15
Normal-Gaussian -0.085 0.038 0.049

( 0.162 ) ( 0.099 ) ( 0.114 )
GTL-Product 0.396 -0.201 -0.044 0.054 0.072 -0.010

( 0.039 ) ( 0.036 ) ( 0.029 ) ( 0.016 ) ( 0.254 ) ( 0.135 )
GTL-Gaussian -0.001 0.002 0.016 -0.006 -0.001 0.062 -0.015

( 0.096 ) ( 0.058 ) ( 0.035 ) ( 0.022 ) ( 0.075 ) ( 0.173 ) ( 0.075 )
Pretest 0.022 -0.013 0.014 -0.008 -0.017 0.064 -0.013

( 0.106 ) ( 0.064 ) ( 0.039 ) ( 0.024 ) ( 0.084 ) ( 0.173 ) ( 0.073 )

α = −0.33 and δ = 0.15
Normal-Gaussian 0.031 -0.017 -0.153

( 0.033 ) ( 0.029 ) ( 0.082 )
GTL-Product 0.070 -0.030 0.026 -0.051 0.009 0.003

( 0.015 ) ( 0.011 ) ( 0.040 ) ( 0.025 ) ( 0.105 ) ( 0.047 )
GTL-Gaussian -0.003 0.000 0.000 0.002 0.005 0.010 0.004

( 0.025 ) ( 0.012 ) ( 0.043 ) ( 0.029 ) ( 0.056 ) ( 0.102 ) ( 0.045 )
Pretest -0.002 0.001 0.004 -0.001 0.008 0.010 0.003

( 0.030 ) ( 0.012 ) ( 0.047 ) ( 0.033 ) ( 0.062 ) ( 0.103 ) ( 0.046 )
α = −0.33 and δ = 0

Normal-Gaussian -0.207 0.139 0.129
( 0.205 ) ( 0.154 ) ( 0.153 )

GTL-Product 0.264 -0.120 0.024 -0.086 0.003 0.001
( 0.036 ) ( 0.025 ) ( 0.042 ) ( 0.025 ) ( 0.126 ) ( 0.052 )

GTL-Gaussian -0.003 0.000 0.000 0.001 0.001 0.002 0.000
( 0.063 ) ( 0.032 ) ( 0.044 ) ( 0.032 ) ( 0.059 ) ( 0.122 ) ( 0.051 )

Pretest -0.004 0.003 0.003 -0.004 0.010 0.036 0.011
( 0.069 ) ( 0.035 ) ( 0.050 ) ( 0.038 ) ( 0.071 ) ( 0.533 ) ( 0.419 )

α = −0.33 and δ = −0.15
Normal-Gaussian -0.234 0.182 0.239

( 0.271 ) ( 0.232 ) ( 0.184 )
GTL-Product 0.086 -0.041 -0.004 -0.049 0.011 -0.002

( 0.025 ) ( 0.011 ) ( 0.043 ) ( 0.026 ) ( 0.104 ) ( 0.047 )
GTL-Gaussian 0.001 0.000 0.002 0.000 0.003 0.010 -0.002

( 0.021 ) ( 0.013 ) ( 0.042 ) ( 0.026 ) ( 0.048 ) ( 0.104 ) ( 0.046 )
Pretest 0.001 0.000 0.003 -0.002 0.008 0.010 -0.002

( 0.022 ) ( 0.013 ) ( 0.043 ) ( 0.027 ) ( 0.057 ) ( 0.104 ) ( 0.046 )

Note: See Table 3. For each DGP, the copula is Gaussian with τ = 0.333 and marginals that both

are GTL with the specified shape parameters.
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4, z is included in order to satisfy the exclusion restriction even though it is irrelevant.
The econometric model of Specifications 1, 3 and 4 may be estimated consistently with

the GTL-copula estimator. Under Specification 2, the estimator is biased and inconsistent
because of the omission of z. However, the flexibility of GTL is expected to be helpful: z
is effectively absorbed in the disturbance of the selection equation, such that the estimated
GTL distribution may absorb much of the effect of the omission of z. The normal-Gaussian
estimator cannot accommodate such an adjustment (unless z is normally distributed). Part
of this advantage of the GTL-copula estimator comes from an artifact of our specifications:
z is uncorrelated with x. Correlation would impart additional bias to both the GTL-copula
and the normal-Gaussian estimator because x is no longer exogenous in the selection equa-
tion. However, we do not consider such complications and instead focus on the purest
implementation of the exclusion restriction, a purely uncorrelated z.

The disturbances in these DGPs are generated with all of the GTL-copula distributions
considered in the previous subsections, but we fit the model only with a true copula in
order to save time. For each DGP, the parameter γ0 is selected such that about a half of
observations have observable outcomes.

Tables 6 and 7 show the results of the simulations. To save space, the tables report only
the bias and standard deviation of β̂1, the slope of x in the outcome equation, which is of
main interest in most applications. Table 6 repeats the distributional assumptions of Table
3; thus, the column for Specification 1 repeats the results for β̂1 in first and third lines of
each panel in Table 3. Table 7 is similarly linked with Table 5.

In the first panel of Table 6 where the DGP uses a joint normal distribution to generate
disturbances, the normal-Gaussian estimator yields slightly smaller biases than the GTL-
copula estimator: the structure imposed by (correctly assumed) joint normality limits the
bias in β̂1, or, stated otherwise, the unneeded flexibility of the GTL-copula estimator makes
β̂1 a little wilder. The absolute difference between β1 and the median of the sampling
distribution of β̂1 is actually less than 0.005 for both estimators and always smaller for the
GTL-copula estimator. In the other panels of Table 6, the bias of the normal-Gaussian
estimator mainly reflects the violation of the distributional assumption; the omitted variable
bias that is added in Specification 2 is only minor. The rise in bias in Specifications 3 and 4
as compared with Specification 1 illustrates the conclusion in the literature that the presence
of an instrument in the selection equation benefits the normal-Gaussian estimator.

By comparison, the GTL-copula estimator evidences very little bias, even when the in-
strument is erroneously omitted (Specification 2) or when the selection and outcome equa-
tions depend on the same explanatory variables (Specification 3). An instrument does im-
prove the estimator (Specification 1) but is not mandatory. Moreover, its standard deviation
tends to be lower than the normal-Gaussian estimator.

Table 7 reinforces all of these conclusions. Moreover, as the GTL distribution changes
from left-skewed to right-skewed, the bias of the normal-Gaussian estimator becomes more
positive, whether tails are thin (in first three panels) or thick (in the last three panels). All
the while, the GTL-copula estimator is virtually unbiased.

In sum, the results of the Monte Carlo study show that the assumption of the joint
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Table 6: Bias and standard deviation of β̂1 with and without an instrument when DGPs
use different copulas and normal marginals

Specification (1) Specification (2) Specification (3) Specification (4)
z in DGP/in model: Yes / Yes Yes / No No / No No / Yes

DGP Copula: Gaussian
Normal-Gaussian -0.0033 -0.0213 -0.0108 -0.0132

( 0.0687 ) ( 0.1104 ) ( 0.0933 ) ( 0.0989 )
GTL-Gaussian -0.0035 -0.0228 -0.0193 -0.0218

( 0.0700 ) ( 0.1165 ) ( 0.1150 ) ( 0.1193 )

DGP Copula: Frank
Normal-Gaussian -0.0207 -0.0655 -0.0645 -0.0635

( 0.0691 ) ( 0.1507 ) ( 0.1478 ) ( 0.1470 )
GTL-Frank -0.0010 -0.0144 -0.0079 -0.0085

( 0.0636 ) ( 0.1026 ) ( 0.0872 ) ( 0.0885 )

DGP Copula: Clayton
Normal-Gaussian 0.0129 -0.0721 -0.0862 -0.0865

( 0.1253 ) ( 0.2198 ) ( 0.2195 ) ( 0.2192 )
GTL-Clayton -0.0024 -0.0045 -0.0047 -0.0048

( 0.0629 ) ( 0.0748 ) ( 0.0745 ) ( 0.0750 )

DGP Copula: Gumbel
Normal-Gaussian -0.0374 -0.0566 -0.0537 -0.0537

( 0.0592 ) ( 0.0672 ) ( 0.0647 ) ( 0.0652 )
GTL-Gumbel -0.0011 -0.0093 -0.0028 -0.0028

( 0.0590 ) ( 0.0762 ) ( 0.0679 ) ( 0.0682 )

DGP Copula: Joe
Normal-Gaussian -0.0560 -0.0384 -0.0379 -0.0379

( 0.0553 ) ( 0.0651 ) ( 0.0643 ) ( 0.0650 )
GTL-Joe 0.0013 -0.0063 -0.0034 -0.0035

( 0.0507 ) ( 0.0675 ) ( 0.0641 ) ( 0.0644 )

Note: In each cell, the parenthesized value represents the standard deviation of β̂1.

normality is restrictive and results in a biased and imprecise normal-Gaussian estimator if
the assumption is violated, especially if the selection equation does not contain an instrument.
Our proposed GTL-copula estimator performs very well, even if instruments are absent from
the selection equation. The GTL-copula approach requires a choice from a menu of copula
functions because the researcher is typically ignorant of the true dependence structure. This
choice results in a less precise “pretest” estimator, but our approach is better than assuming
joint normality all the time. We are leaving a comparison of our proposed estimator with
semiparametric and nonparametric estimators for future research, but we do expect that for
plausible joint distributions our estimator is both statistically and computationally efficient.
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Table 7: Bias and standard deviation of β̂1 with and without an instrument when DGPs
use nonnormal marginals and a Gaussian copula

Specification (1) Specification (2) Specification (3) Specification (4)
z in DGP/in model: Yes / Yes Yes / No No / No No / Yes
DGP: α = 0.33 and δ = 0.15

Normal-Gaussian -0.0494 -0.1255 -0.1008 -0.1023
( 0.0703 ) ( 0.2113 ) ( 0.1739 ) ( 0.1769 )

GTL-Gaussian -0.0017 -0.0033 -0.0020 -0.0012
( 0.0248 ) ( 0.0381 ) ( 0.0251 ) ( 0.0322 )

DGP: α = 0.33 and δ = 0
Normal-Gaussian -0.0272 -0.0709 -0.0613 -0.0655

( 0.0620 ) ( 0.1347 ) ( 0.1210 ) ( 0.1293 )
GTL-Gaussian -0.0034 -0.0061 -0.0050 -0.0052

( 0.0473 ) ( 0.0541 ) ( 0.0528 ) ( 0.0528 )

DGP: α = 0.33 and δ = −0.15
Normal-Gaussian 0.0375 0.0508 0.0476 0.0471

( 0.0991 ) ( 0.1576 ) ( 0.1462 ) ( 0.1473 )
GTL-Gaussian 0.0018 0.0021 0.0026 0.0018

( 0.0579 ) ( 0.0683 ) ( 0.0687 ) ( 0.0688 )

DGP: α = −0.33 and δ = 0.15
Normal-Gaussian -0.0172 -0.0244 -0.0211 -0.0211

( 0.0292 ) ( 0.0571 ) ( 0.0331 ) ( 0.0331 )
GTL-Gaussian 0.0001 0.0011 0.0004 0.0004

( 0.0116 ) ( 0.0131 ) ( 0.0125 ) ( 0.0125 )

DGP: α = −0.33 and δ = 0
Normal-Gaussian 0.1395 0.1862 0.1746 0.1744

( 0.1540 ) ( 0.1812 ) ( 0.1739 ) ( 0.1740 )
GTL-Gaussian 0.0002 0.0024 0.0019 0.0019

( 0.0323 ) ( 0.0351 ) ( 0.0339 ) ( 0.0341 )

GDP: α = −0.33 and δ = −0.15
Normal-Gaussian 0.1819 0.3085 0.2424 0.2423

( 0.2323 ) ( 0.2341 ) ( 0.2668 ) ( 0.2668 )
GTL-Gaussian 0.0000 0.0043 0.0004 0.0004

( 0.0125 ) ( 0.0143 ) ( 0.0131 ) ( 0.0131 )

Note: In each cell, the parenthesized value represents the standard deviation of β̂1.

6 Applications

Greater flexibility is desirable only if it has practical relevance. Thus, we turn to five applica-
tions of a varied nature that all yield substantial changes in the estimation results: wages of
married women in Portugal (subject to labor force participation), wages of school-aged chil-
dren in Mexico (subject to not attending school and actually working), health expenditures in
the US (subject to having nonzero health expenditures), fines for speeding in Massachusetts
(subject to being given a ticket when speeding), and the intensity of international conflicts
(subject to a conflict existing between a pair of countries).
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Table 8: GTL-copula model selection: log-likelihood values and Vuong tests

Applications

Estimation Wages of Wages of school- Health Speeding International
method married women aged children expenditures tickets disputes

Normal-Gaussian a -2487.94 -4927.80 -10170.11 -45173.91 -9209.59

Copula b

Product -2317.81 -4473.11 -10135.11 -10402.06 -9095.19
Gaussian -2307.33 -4468.23 -10132.26 -10397.16 -9092.53
FGM -2312.97 -4471.31 -10135.05 -10305.82 -9075.48
Frank -2307.70 -4470.39 -10135.11 -10382.39 -9071.47

Clayton -2311.63 -4473.11 -10132.24 ... c
-9063.70

Gumbel -2300.68 -4473.11 -10134.55 ... c -9095.19
Joe -2295.18 -4473.11 -10134.71 ... c -9095.19
nClayton -2317.81 -4471.52 -10135.11 -5630.22 -9095.19
nGumbel -2317.81 -4461.85 -10135.11 -4320.31 -9095.19
nJoe -2317.81 -4461.63 -10136.83 -4098.00 -9095.19

Vuong tests d

Second best 2.50 0.44 0.01 13.30 3.10
GTL-Gaussian 3.26 1.57 0.01 24.12 8.60
Normal-Gaussian 10.29 11.73 4.30 76.04 4.08

Number of observations
Selection 2,339 15,526 5,574 68,357 149,004
Outcome 1,400 1,657 4,281 31.674 972
Share with outcome (%) 59.9 10.7 76.8 46.3 0.7

Boldface and italized entries denote the best and second-best model specification, respectively.
a The normal-Gaussian estimator corresponds to the traditional Heckman (1974) maximum likelihood
estimator that assumes joint normality.

b All copula models use different GTL marginals for the selection and outcome equations.
c The maximum likelihood estimation routine did not converge.
d Vuong tests are relative to the best model. Vuong test statistics are distributed standard normal; critical

values are 1.645 (10 percent), 1.96 (5 percent), 2.58 (1 percent).

Table 8 gives an overview of these five applications. The sample size varies greatly, as
does the share of the observations for which an outcome is observed. This variation builds a
picture of how the GTL-copula estimator performs with real-life data. The GTL-copula es-
timator dominates the common Heckman (normal-Gaussian) estimator that presumes joint
normality, sometimes by a wide margin. Different copulas are preferred in different applica-
tions. Thus, experimentation with a variety of copulas is recommended. In fact, as already
highlighted in Figure 1, the shapes of the copulas vary so much that a few specifications fail
to converge, particularly when the copula limits the range of dependence (Clayton, Gumbel,
Joe). We interpret this to mean that the data simply do not conform to the structure that
such a copula imposes: usually, when the copula’s “sign” is switched, the iterative search
proceeds more smoothly.

The table shows three Vuong tests, each of them comparing with the best model. Here,
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we find that the rejection of the joint-normal selection model happens sometimes because
neither the marginals nor the Gaussian correlation structure conform to a normal distribution
(columns 1, 4 and 5). Other times, the Gaussian copula is adequate but the marginals are
nonnormal (columns 2 and 3). Note also that a higher log-likelihood value does not always
translate into a larger Vuong test value: in column 5, the individual contributions to the
log-likelihood value vary much more between the GTL-Clayton and normal-Gaussian models
than between GTL-Clayton and the GTL-Gaussian or GTL-Frank models. Such variation
lowers the Vuong test value and reduces its power.

For all applications, detailed definitions and descriptive statistics of all variables are pro-
vided in Appendix B. For better readability, we have adjusted the acronyms of the variables
from what the authors used in their papers.

6.1 Wages of Married Women, Portugal

The first application is a study of wages among married women in Portugal (Martins, 2001).31

This topic is a classical example of the sample selection model (Heckman, 1974): market
wages are not observed for women who do not work. Estimation of the wage equation only
with the subsample of working women results in selectivity bias.

Martins (2001) estimates the model by both semiparametric and maximum likelihood
(normal-Gaussian) methods; we compare our GTL-copula estimator with the normal-Gaussian
estimator. Genius and Strazzera (2008) use the same data and estimate the model by a
copula-based maximum likelihood method that assumes a logistic distribution for the selec-
tion equation and a t distribution for the wage (outcome) equation.

We use the same specification as Martins (2001, Table 1). The covariates for the selection
equation are the number of children younger than 18 and younger than 3 living in the
family, years of schooling, age and age squared, and the log of the husband’s monthly wage.
The explanatory variables in the wage equation are years of schooling, Mincerian potential
experience (PEXP, defined as age minus years of schooling minus 6, divided by 10) in linear
and squared form (PEXP2), and interactions of the potential experience variables with the
number of children younger than 18. Out of 2,339 observations, 1,400 married women (about
60%) participate in the labor market reported their wages.

Among all specifications, the Joe copula attains the largest log likelihood value (Table 8).
The selection of the Joe copula is consistent with Genius and Strazzera (2008) and further
supported with the Vuong test: the Joe copula is preferred over the Gumbel copula, the
second-largest log likelihood value, with a test statistic of 2.50.

Table 9 summarizes the results of the normal-Gaussian and Joe-GTL estimators. In order
to make the selection equation comparable across estimators, the equation is standardized for
each copula; we standardize by the median and the interquartile range since with (α̂ν , δ̂ν) =
(−0.524,−0.080), the standard deviation of the disturbance ν of the selection equation is not
defined.32 The estimated GTL distribution of ν has thicker tails than the standard normal,
as is shown by the dashed curves in Figure 3a and 3b. δν is close to 0 and statistically not

31The data are available online at http://qed.econ.queensu.ca/jae/2001-v16.1/martins/.
32For the standard normal distribution, the median is 0 and the interquartile range is 1.349.
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Table 9: Estimation results: Log-wages of married women

Normal-Gaussian GTL-Joe
Variables Coeff. ( S.E. ) a Coeff. ( S.E. ) a

Selection equation: Labor force participation b

CHILDY18 -0.088 ( 0.022 ) -0.081 ( 0.021 )
CHILDY3 -0.061 ( 0.053 ) -0.041 ( 0.049 )
lnHUSBW -0.076 ( 0.059 ) -0.123 ( 0.059 )
YRSCH 0.111 ( 0.008 ) 0.146 ( 0.019 )
AGE 0.602 ( 0.195 ) 0.649 ( 0.229 )
AGE2 -0.092 ( 0.025 ) -0.094 ( 0.030 )
constant -0.440 ( 0.728 ) -0.294 ( 0.700 )
αν -0.524 ( 0.363 )
δν -0.080 ( 0.176 )

Outcome equation: Log of hourly wages

YRSCH 0.114 ( 0.004 ) 0.132 ( 0.003 )
PEXP 0.134 ( 0.080 ) 0.326 ( 0.057 )
PEXP2 -0.002 ( 0.017 ) -0.043 ( 0.011 )
PEXP × CHILDY18 0.035 ( 0.019 ) 0.008 ( 0.011 )
PEXP2 × CHILDY18 -0.012 ( 0.006 ) -0.005 ( 0.003 )
constant 4.472 ( 0.100 ) 4.191 ( 0.073 )
αε -0.278 ( 0.033 )
δε 0.174 ( 0.021 )
σ 0.555 ( 0.018 ) 0.200 ( 0.013 )

θ 0.346 ( 0.063 ) 2.892 ( 0.336 )
τ 0.225 0.505

lnL -2487.94 -2295.18
AIC 5005.88 4628.37

a White-robust standard errors in parentheses.
b The selection equation is standardized by the median and interquartile range.

significantly different from it, implying that the distribution is essentially symmetric. αν is
estimated imprecisely as well. In fact, we fail to reject the null hypotheses of (αν , δν) = (0, 0)
and even (αν , δν) = (0.1436, 0) at the 10% level of significance:33 our GTL estimates are
not inconsistent with ν being distributed logistically (Genius and Strazzera, 2008) or even
normally (Martins, 2001).

The estimated coefficients of the selection equation are mostly similar between the two
estimators except the husband’s wage: the GTL-Joe estimate is statistically significant and
is much larger than the normal-Gaussian estimate, which is insignificant.

On the other hand, the shape parameters of the distribution of ε of the wage equation
are statistically significant. The estimated value of αε imply that the distribution has thick
tails. This finding is consistent with Genius and Strazzera (2008), who estimate the degree of

33Wald test statistics are 2.53 and 4.41, respectively, with a 10% χ2(2) critical value of 4.61.
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Figure 3: Differences between normal-Gaussian and GTL-Joe: Wages of married women
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Figure 4: Density of scaled disturbances of the wage equation
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freedom parameter of their assumed t distribution to be 2.95 and thus find thick tails as well.34

At the same time, with δ̂ε = 0.174, the estimated GTL distribution of ε is not only heavy-
tailed but also left-skewed.35 In principle, this skewness could matter for the estimated wage
equation (e.g., see footnote 37 below). To illustrate, Figure 4 plots three estimated densities
of ε: normal, t with 2.95 degrees of freedom, and GTL with (α̂ε, δ̂ε) = (−0.278, 0.174). Each
density is scaled by the estimated scale parameter σ̂ε. Obviously, the normal density appears
unsuitable for these data. The t and GTL densities are much closer to each other, but the
GTL density is left-skewed. Thus, under GTL, low-wage outliers are more common than
high-wage outliers and are therefore not allowed to influence the location of the regression
line as much as under the t or normal distributional assumption.

The difference in the underlying distributional assumption is reflected in the estimated
coefficients of the wage equation. The rate of return to schooling rises by 1.8 percentage
points, and the estimated wage profiles are altered. Specifically, the GTL-Joe slopes of PEXP
and PEXP2 are larger in absolute values than the normal-Gaussian slopes and they become
statistically significant; at the same time, the slopes of PEXP and PEXP2 interacted with
the number of children less than 18 are smaller in magnitude and are no longer statistically
significant. Figure 5 plots expected log-wages as a function of potential experience, evaluated
at the average years of schooling, 7.24.36 Figure 5a shows that for a woman without a child

34We also replicate the result by Genius and Strazzera (2008) but suppress it to save space. If we estimate
a restricted model with δε = 0, the estimated αε is −0.227. Indeed, a GTL distribution with (α, δ) =
(−0.227, 0) approximates the t distribution with 2.95 degrees of freedom very closely.

35 Even though we cannot define skewness (and kurtosis) with these estimates, the positive value of δ̂ε
indicates the distribution is left-skewed. One measure of asymmetry is S = (Q75 −Q50)/(Q50 −Q25), where
Qk is the k-th quantile of the distribution: S < (>)1 denotes a left (right) skew. For our estimated (αε, δε),
this equals 0.83.

36For the GTL-Joe estimate, we must account for the fact that σεE (ε) = −0.1417 6= 0, given the estimates
of αε and δε; see equation (2).
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Figure 5: Log-wage profiles, married women in Portugal
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(a) Log-wage profile for CHILD18 = 0
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(b) Log-wage profile for CHILD18 = 2

in the household the normal-Gaussian estimate of the wage profile is straight, while the
GTL-Joe wage profile exhibits curvature. Having two children adds curvature to the wage
profiles (Figure 5b), but only slightly so for the GTL-Joe estimates.37

Finally, the estimators imply a different degree of dependence between ε and ν. As
estimated by the GTL-Joe model, τ is more than twice as large as that of the normal-
Gaussian model. Contour plots of the joint density in Figures 3c and 3d are strikingly
different. The Joe copula exhibits strong right tail dependence but weak left tail dependence.
It indicates that those who are more likely to participate in the labor market tend to earn
higher wages, conditional upon observable variables, but wages show more variation for
those who are less likely to participate. As a consequence, the estimated GTL-copula model
imposes a greater selectivity correction on the wage equation. This is well expressed in
the normal-Gaussian two-step estimation method by the familiar inverse Mill’s ratio that is
added to the wage equation for labor market participants (Heckman, 1979). Accordingly,
in Figure 5, the expected (unconditional) GTL-Joe wage profile lies substantially below the
normal-Gaussian profile.

6.2 Wages of School-Aged Children, Mexico

The sample selection model is widely used. Its estimates not only inform on the role of
explanatory variables, but also permit prediction of the outcome variable among those for
whom outcomes are not observed. Attanasio et al. (2012) use such predicted outcomes in

37The wage profile estimated by Genius and Strazzera (2008) is steeper and more sharply curved for women
without children (the slope estimates of PEXP and PEXP2 are 0.379 and −0.055, respectively), and the
profile is unchanged when the number of children increases.
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a structural model that evaluates the effect of a social experiment, PROGRESA, on school
attendance in Mexico. Specifically, the wage a child could earn when (s)he does not attend
school plays a role in the educational choice made by or for the child. To predict each
child’s (actually, boy’s) potential wage, the authors estimate the wage equation with an
inverse Mill’s ratio that corrects for sample selectivity. We compare the joint-normality (i.e.,
normal-Gaussian) maximum likelihood version of this selection model with our GTL-copula
estimator.38

The selection mechanism is actually of a dual nature: the out-of-school wage is observed
only if the child does not attend school and is at work earning a wage. However, we will treat
this as a single indicator. Our formulation of the selection and outcome equations follows the
specification of Attanasio et al. (2012). The selection equation has a long list of explanatory
variables that describe the child, his parents, the community’s schools, and the PROGRESA
program; see the table below. The explanatory variables in the outcome equation are the
community-level male agricultural wage (in log form), age, years of schooling, and a dummy
denoting residence in a community with a PROGRESA grant program. PROGRESA may
have an indirect, general-equilibrium impact on children’s wages. The sample contains 15,526
children, of whom 1,657 (about 11%) are not in school and work for a wage.39

Estimates are reported in Table 10. The best copula is nJoe, based on the log likelihood
values (Table 8). However, a Vuong test of GTL-nJoe against GTL-nGumbel, which attains
the second largest log likelihood value, is inconclusive. Even in comparison with GTL-
Gaussian, the Vuong test is not significantly in favor of GTL-nJoe. Therefore, we also
report the results of the Gaussian copula for comparison.

The disturbance of the selection equation has thick tails and is left-skewed. We can easily
reject the hypothesis of logistic ((αν , δν) = (0, 0)) or normal ((αν , δν) = (0.1436, 0)) distur-
bances. The outcome equation is right-skewed, however, with thick tails as well. Figure 6a
demonstrates the large difference of these GTL densities with the normal density (standard-
ized by the interquartile range). The cdf that yields selection probabilities (Figure 6b) is
therefore quite different as well. According to Table 10, the normal-Gaussian model finds
weak positive dependence that is statistically insignificantly different from independence.
The negative Joe and Gaussian copula models find weak negative dependence that is sta-
tistically still significant. Summarizing these various elements, the contour plots in Figure
6 bear out the fact that the GTL-nJoe distribution differs greatly from the joint normality
that underlies the Heckman model: the contours no longer have the familiar elliptical shape.

Interestingly, the GTL-nJoe and GTL-Gaussian contour plots are visually very similar
(Figures 6d and 6e). This is due to weak dependence that the estimated τ indicates. With
weak dependence, the difference in the Joe and Gaussian copula functions is not visible. The

38The normal-Gaussian estimator produces almost identical estimates and predictions as the two-step
procedure that Attanasio et al. (2012) use.

39The data are available online at http://restud.oxfordjournals.org/content/79/1.toc. We were
able to replicate equation (9) of Attanasio et al. (2012). However, their selection indicator was whether the
child is in school, and the logwage equation was estimated over all children who had a wage, whether they
attended school or not. From the discussion in the paper, this apparently was not the intent of the analysis
of this wage information.
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Figure 6: Differences between normal-Gaussian and GTL-copula: Wages of school-aged
children
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Table 10: Estimation results: Wages of school-aged children

Joint Normal Negative Joe - GTL Gaussian - GTL
Variables Coeff. ( S.E. ) a Coeff. ( S.E. ) a Coeff. ( S.E. ) a

The Selection Equation b

PROGRESA/eligible -0.016 ( 0.052 ) -0.010 ( 0.019 ) -0.010 ( 0.018 )
PROGRESA/ineligible -0.145 ( 0.053 ) -0.045 ( 0.037 ) -0.044 ( 0.037 )
Control/ineligible -0.123 ( 0.055 ) -0.037 ( 0.035 ) -0.033 ( 0.032 )
ORDER 0.015 ( 0.010 ) 0.006 ( 0.005 ) 0.006 ( 0.005 )
AGE 0.348 ( 0.129 ) 0.407 ( 0.409 ) 0.360 ( 0.375 )
AGE2 -0.002 ( 0.004 ) -0.010 ( 0.011 ) -0.009 ( 0.010 )
GRANT -0.027 ( 0.024 ) -0.006 ( 0.009 ) -0.005 ( 0.009 )
FATHERhome 0.066 ( 0.062 ) 0.018 ( 0.025 ) 0.018 ( 0.024 )
MOTHERhome -0.164 ( 0.063 ) -0.062 ( 0.049 ) -0.060 ( 0.049 )
INDIGENOUS -0.061 ( 0.041 ) -0.024 ( 0.019 ) -0.025 ( 0.020 )
DISTANCE97 0.034 ( 0.035 ) 0.008 ( 0.016 ) 0.009 ( 0.016 )
DISTANCE98 -0.017 ( 0.037 ) -0.002 ( 0.015 ) -0.003 ( 0.015 )
PRIMARY97 0.135 ( 0.197 ) 0.020 ( 0.079 ) 0.035 ( 0.080 )
PRIMARY98 -0.150 ( 0.138 ) -0.036 ( 0.059 ) -0.047 ( 0.062 )
SECONDARY97 -0.280 ( 0.128 ) -0.050 ( 0.064 ) -0.039 ( 0.059 )
SECONDARY98 0.226 ( 0.123 ) 0.028 ( 0.056 ) 0.019 ( 0.052 )
αs -1.268 ( 0.480 ) -1.299 ( 0.493 )
δs 1.087 ( 0.460 ) 1.131 ( 0.474 )

The Wage Equation

lnMAWAGE 0.862 ( 0.045 ) 0.881 ( 0.032 ) 0.881 ( 0.032 )
AGE 0.062 ( 0.036 ) 0.006 ( 0.006 ) 0.005 ( 0.007 )
YRSCH 0.014 ( 0.006 ) 0.005 ( 0.003 ) 0.005 ( 0.003 )
PROGRESA 0.062 ( 0.028 ) 0.030 ( 0.015 ) 0.033 ( 0.015 )
constant -1.039 ( 0.699 ) -0.002 ( 0.100 ) 0.022 ( 0.119 )

α1 -0.430 ( 0.030 ) -0.514 ( 0.045 )
δ1 -0.080 ( 0.027 ) -0.118 ( 0.055 )
σ 0.502 ( 0.022 ) 0.097 ( 0.006 ) 0.101 ( 0.007 )

ρ or θ 0.107 ( 0.213 ) 1.105 ( 0.033 ) -0.200 ( 0.073 )
τ 0.068 -0.057 -0.128

lnL -4927.80 -4461.63 -4468.23
AIC 9935.60 9011.27 9024.46

a Standard errors are clustered at a community level.
b The selection equation is standardized by the median and interquartile range. The selection equa-

tion also contains a long list of dummy variables for father’s education, mother’s education, and

state of residence, as well as an intercept.

coefficients in the outcome equation are only different by the third decimal place (except
constant terms). Therefore, it is plausible that we are not able to discriminate the two
models statistically.

According to the normal-Gaussian estimates, child wages are mostly related to the com-
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Figure 7: Kernel density plots of predicted log-wages
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munity’s male agricultural wage and for the rest vary with age, education and PROGRESA
status. The GTL-nJoe model refutes these age and education effects, and the PROGRESA
effect is reduced by half. Child wages move in tandem with male wages.40

As mentioned above, the purpose of the sample selection estimation in Attanasio et al.
(2012) is to predict a child’s potential wage out of school, and this predicted wage is used in
subsequent estimation to evaluate the impact of PROGRESA on school participation. The
differences in the parameter estimates result in differences in the predicted values. As can
be seen from the kernel densities in Figure 7, the predicted log-wages are very different: the
GTL-nJoe predictions are on average 0.321 higher than the normal-Gaussian predictions.
This is not merely a proportional shift: since the individual differences have a standard
deviation of 0.158, the predicted wages also vary relative to each other. It is conceivable that
these wage differences lead to different results in the subsequent analysis, but re-estimation
of the structural model developed by Attanasio et al. (2012) is beyond the scope of this
paper.

6.3 Health Expenditures, USA

Our third example concerns health expenditures, using data from Deb and Trivedi (2002)
that were originally drawn from the RAND Health Insurance Experiment.41 Out of the
sample of 5,574 observations, 76.8% report positive expenditures. In this application, the
selection is whether a person reported nonzero medical expenditures; the outcome variable

40The slope estimates of the selection equation are also generally smaller, but these slopes are not the only
thing that determines the magnitude of the impact on the discrete outcome. We found any given marginal
effect to be roughly similar when the estimated GTL-nJoe slope is about 40 percent of the normal-Gaussian
slope. This has to do with the fact that the mode of the estimated GTL density function is much taller
(Figure 6a).

41The data are available online at http://cameron.econ.ucdavis.edu/mmabook/mmaprograms.html.

34



is that person’s annual individual medical expenditures in logarithmic form.
The explanatory variables include health insurance variables (coinsurance rate, a dummy

“IDP” denoting a deductible plan, an annual participation incentive payment “API”, and
maximum medical deductible expenditures “MMDE”), health status variables (number of
chronic diseases and dummies for physical limitation and health status), family income, and
demographic characteristics such as age, gender, race, and household composition.42 The
database does not provide any variable that could be used as an instrument in the selection
equation. Therefore, the model does not satisfy exclusion restrictions and motivates the
discussion of the exclusion restriction in Section 5.3.

Table 11 reports the estimation results; demographic variables are suppressed to save
space. In this application, the optimal copula is Clayton, but the maximized likelihood
value of the Clayton copula is only slightly larger than that of the Gaussian copula, and
Vuong’s test does not discriminate the estimators significantly.

The shape parameters of the selection equation are statistically significantly different
from zero; a hypothesis of a normal distribution with (αν , δν) = (0.1436, 0) or a logistic
distribution with (αν , δν) = (0, 0) is easily rejected. Instead, the underlying distribution is
heavily left-skewed, with an implied skewness of −1.22 and a kurtosis of 5.78.

As for the outcome equation, its distribution is nearly symmetric—δ̂ε is small and statis-
tically insignificant and skewness is only 0.10—and has slightly heavier tails than the normal
distribution—kurtosis is 4.02. The estimated shape parameters would not permit rejection
of the logistic distribution, but the distribution does differ significantly from normality. The
GTL-Clayton slopes estimates in the outcome equation are smaller in absolute value that the
normal-Gaussian estimates with the exception of lnMDE: we find that health expenditures
are less sensitive to coinsurance, incentive payments, health status, family income, and de-
mographic variables (with the exception of age, which has the same effect). By implication,
health expenditures may well be less sensitive to a health policy reform than traditional
model estimates suggest.

Both sets of estimates indicate positive dependence between the disturbances in the two
equations. However they do differ: the GTL-Clayton estimate of the dependence of 0.24 is
only half as large as the normal-Gaussian dependence of 0.53.

6.4 Speeding tickets, Massachusetts

The sample selection model is also common in fields other than labor and health economics.
As a case in point, Makowsky and Stratmann (2009) examine the determinants of traffic
citations and fines for speeding, using a database that consists of all speeding-related stops
in Massachusetts from April 1, 2001 through May 31, 2001.43

A traffic stop results in either a ticket or a warning. When a ticket is issued, a driver has
to pay a fine. Whether a police officer issues a ticket or gives a warning is at the officer’s
discretion. If a ticket is issued, state law provides a formula for the amount of the fine: $50

42The variables are defined in Table B.3; see also Cameron and Trivedi (2005, Table 20.4).
43The data are available online at http://www.aeaweb.org/issue.php?journal=AER&volume=99&is

sue=1.
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Figure 8: Differences between normal-Gaussian and GTL-copula: Health expenditures
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Table 11: Estimation result: Health expenditures

Normal-Gaussian GTL-Clayton
Variables Coef. ( S.E. ) a Coef. ( S.E. ) a

Selection equation: incurring health expenditures b

lnCOINRATE -0.1068 ( 0.0277 ) -0.1468 ( 0.0322 )
IDP -0.1088 ( 0.0550 ) -0.0849 ( 0.1012 )
lnAPI 0.0295 ( 0.0087 ) 0.0350 ( 0.0102 )
lnMMDE 0.0007 ( 0.0160 ) 0.0098 ( 0.0185 )
PHYSLIM 0.2848 ( 0.0729 ) 0.3618 ( 0.0937 )
NDISEASE 0.0211 ( 0.0035 ) 0.0276 ( 0.0043 )
HEALTHgood 0.0577 ( 0.0428 ) 0.0453 ( 0.0499 )
HEALTHfair 0.2237 ( 0.0822 ) 0.2347 ( 0.0968 )
HEALTHpoor 0.7984 ( 0.2286 ) 0.8446 ( 0.3035 )
lnFAMINC 0.0553 ( 0.0166 ) 0.0501 ( 0.0196 )
αν 0.2190 ( 0.1074 )
δν 0.2592 ( 0.1047 )

Outcome equation: Log of health expenditures

lnCOINRATE -0.0760 ( 0.0351 ) -0.0476 ( 0.0339 )
IDP -0.1497 ( 0.0693 ) -0.1203 ( 0.0648 )
lnAPI 0.0149 ( 0.0104 ) 0.0085 ( 0.0098 )
lnMMDE -0.0235 ( 0.0197 ) -0.0274 ( 0.0180 )
PHYSLIM 0.3549 ( 0.0784 ) 0.2967 ( 0.0755 )
NDISEASE 0.0286 ( 0.0038 ) 0.0247 ( 0.0037 )
HEALTHgood 0.1559 ( 0.0523 ) 0.1323 ( 0.0469 )
HEALTHfair 0.4451 ( 0.1001 ) 0.4130 ( 0.0929 )
HEALTHpoor 0.9986 ( 0.2109 ) 0.7554 ( 0.2092 )
lnFAMINC 0.1214 ( 0.0222 ) 0.0955 ( 0.0201 )
αε 0.0150 ( 0.0244 )
δε -0.0121 ( 0.0261 )
σ 1.5701 ( 0.0303 ) 0.8592 ( 0.0313 )

θ 0.7356 ( 0.0366 ) 0.6190 ( 0.3063 )
τ 0.5262 0.2364

lnL -10170.11 -10132.24
AIC 20416.22 20348.49

The selection and outcome equations also contain demographic variables; see Table B.3.
a White-robust standard errors.
b The selection equation is standardized by mean and standard deviation.

+ $10 × (speed - (speed limit + 10)). Makowsky and Stratmann (2009, p.513) discuss the
political economy hypothesis and the opportunity-cost hypothesis of officer behavior. The
former relates the officers’ decision to “the fiscal condition of the government that employs
them and to whether the driver is a potential voter in local elections,” and the latter predicts
that “officers have a higher likelihood of issuing a ticket and issuing a larger fine amount
when the opportunity cost for contesting the ticket is higher for drivers.”

In this application, the selection indicator is whether a ticket is issued. The outcome
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Table 12: Estimation results: Speeding tickets (selection equation)

Normal-Gaussian GTL-nJoe GTL-Gaussian
Variables Coef. ( S.E. ) a Coef. ( S.E. ) a Coef. ( S.E. ) a

Selection Equation: Issuing a ticket b

lnMPHOVER 1.2231 ( 0.0758 ) 1.3974 ( 0.1002 ) 1.6417 ( 0.1795 )
CDL -0.2182 ( 0.0256 ) -0.1751 ( 0.0307 ) -0.2506 ( 0.0334 )
OUTTOWN 0.1958 ( 0.0277 ) 0.1576 ( 0.0406 ) 0.2130 ( 0.0370 )
OUTSTATE 0.1602 ( 0.0376 ) 0.1111 ( 0.0360 ) 0.1798 ( 0.0456 )
BLACK -0.0044 ( 0.0423 ) -0.0625 ( 0.0410 ) -0.0176 ( 0.0529 )
HISPANIC 0.2196 ( 0.0414 ) 0.1378 ( 0.0365 ) 0.2363 ( 0.0525 )
FEMALE -0.6602 ( 0.0810 ) -0.4249 ( 0.0823 ) -0.6251 ( 0.1014 )
lnAGE -0.3069 ( 0.0187 ) -0.1772 ( 0.0240 ) -0.3201 ( 0.0250 )
FEMALE × lnAGE 0.1456 ( 0.0232 ) 0.0887 ( 0.0229 ) 0.1314 ( 0.0292 )
lnDISTCOURT 0.0093 ( 0.0172 ) 0.0226 ( 0.0129 ) 0.0071 ( 0.0181 )
lnPVALUEPC -0.3238 ( 0.0846 ) -0.2234 ( 0.0815 ) -0.3516 ( 0.1087 )
OR -0.0007 ( 0.1476 ) -0.0776 ( 0.2020 ) -0.0543 ( 0.2117 )
OR × OUTTOWN 0.5792 ( 0.2380 ) 0.3680 ( 0.2159 ) 0.6932 ( 0.3642 )
OR × lnDISTCOURT -0.0109 ( 0.0601 ) 0.0007 ( 0.0379 ) -0.0320 ( 0.0680 )
SP -1.3561 ( 1.2928 ) -1.1961 ( 1.0324 ) -1.0851 ( 1.6202 )
SP × OUTTOWN -0.0519 ( 0.0462 ) -0.0632 ( 0.0429 ) -0.0619 ( 0.0565 )
SP × lnDISTCOURT 0.0672 ( 0.0236 ) 0.0335 ( 0.0163 ) 0.0797 ( 0.0316 )
SP × lnPVALUEPC 0.1815 ( 0.1160 ) 0.1564 ( 0.0915 ) 0.1707 ( 0.1431 )
SP × OR -0.2771 ( 0.2231 ) -0.2249 ( 0.1549 ) -0.2575 ( 0.2925 )
constant 1.0289 ( 0.9946 ) -1.0468 ( 0.8880 ) 0.1530 ( 1.4814 )
αν -0.8769 ( 0.2327 ) -0.6821 ( 0.2126 )
δν -0.4288 ( 0.0627 ) -0.2623 ( 0.0803 )

a Clustered standard error at municipality level.
b The selection equation is standardized by the median and interquartile range.

variable is the amount of fine (in logarithmic form), which is only observed when a ticket
is issued. About 46% of the 68,357 stops resulted in a speeding ticket with an average fine
of $122. The explanatory variables include the excess speed of the driver (“MPHOVER”,
in log form), driver characteristics (residence, race, ethnicity, gender, age, and the distance
to court), and measures of the fiscal condition of a municipality (a dummy “OR” whether a
municipality rejected a tax increase via an override referendum applicable to the operating
budget of the 2001 fiscal year; property value per capita; and a dummy “SP” whether the
traffic stop was made by a state police officer, who may have different incentives than a local
police officer). The regression model includes several interactions as well, as indicated in
the tables of results below. Finally, the selection equation also includes a dummy variable
“CDL”, denoting a commercial driver’s license, which fulfills the exclusion restriction.

Tables 12 and 13 report the estimation results of the selection equation and the outcome
equation, respectively. In this application, the best copula is nJoe. The likelihood values
are strikingly different between the normal-Gaussian estimator and the GTL-nJoe estimator.
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Table 13: Estimation results: Speeding tickets (outcome equation)

Normal-Gaussian GTL-nJoe GTL-Gaussian
Variables Coef. ( S.E. ) a Coef. ( S.E. ) a Coef. ( S.E. ) a

Outcome equation: Amount of fine

lnMPHOVER 0.9523 ( 0.0145 ) 1.1686 ( 0.0011 ) 1.2338 ( 0.0063 )
OUTTOWN 0.0271 ( 0.0123 ) -0.0002 ( 0.0001 ) 0.0001 ( 0.0005 )
BLACK -0.0228 ( 0.0100 ) 0.0001 ( 0.0001 ) -0.0009 ( 0.0005 )
HISPANIC 0.0363 ( 0.0108 ) -0.0001 ( 0.0001 ) -0.0002 ( 0.0007 )
FEMALE -0.0936 ( 0.0391 ) 0.0007 ( 0.0004 ) 0.0002 ( 0.0016 )
lnAGE -0.0214 ( 0.0086 ) 0.0004 ( 0.0001 ) 0.0013 ( 0.0009 )
FEMALE × lnAGE 0.0163 ( 0.0109 ) -0.0002 ( 0.0001 ) 0.0000 ( 0.0005 )
lnDISTCOURT 0.0263 ( 0.0035 ) -0.0001 ( 0.0000 ) -0.0001 ( 0.0002 )
lnPVALUEPC -0.0371 ( 0.0272 ) 0.0003 ( 0.0002 ) -0.0008 ( 0.0010 )
OR 0.0220 ( 0.0744 ) 0.0003 ( 0.0003 ) 0.0059 ( 0.0021 )
OR × OUTTOWN 0.0569 ( 0.0649 ) -0.0009 ( 0.0004 ) -0.0081 ( 0.0021 )
OR × lnDISTCOURT 0.0007 ( 0.0107 ) 0.0000 ( 0.0001 ) 0.0003 ( 0.0004 )
SP -0.1530 ( 0.3404 ) 0.0007 ( 0.0021 ) -0.0017 ( 0.0147 )
SP × OUTTOWN 0.0143 ( 0.0196 ) 0.0000 ( 0.0001 ) -0.0001 ( 0.0007 )
SP × lnDISTCOURT 0.0094 ( 0.0044 ) 0.0002 ( 0.0001 ) 0.0007 ( 0.0004 )
SP × lnPVALUEPC 0.0201 ( 0.0308 ) -0.0002 ( 0.0002 ) -0.0001 ( 0.0013 )
SP × OR -0.0548 ( 0.0317 ) 0.0002 ( 0.0003 ) -0.0019 ( 0.0016 )
constant 2.3312 ( 0.3048 ) 1.6608 ( 0.0026 ) 1.4807 ( 0.0195 )
αε -2.1298 ( 0.0525 ) -1.8155 ( 0.2145 )
δε 1.1202 ( 0.0557 ) 1.3718 ( 0.2057 )
σ 0.3361 ( 0.0079 ) 0.0004 ( 0.0000 ) 0.0030 ( 0.0006 )

ρ or θ 0.3411 ( 0.0373 ) 4.0190 ( 0.8066 ) 0.0553 ( 0.1506 )
τ 0.2216 -0.6151 0.0352

lnL -45173.91 -4098.00 -10397.16
AIC 90427.82 8283.99 20882.31

a Clustered standard error at municipality level.

The difference between the GTL-nJoe and GTL-Gaussian estimates is also large. Indeed, the
Vuong test can statistically discriminate between the three models in favor of nJoe (Table
8).

The implied degrees of dependence between the error terms are very different across the
estimators. The normal-Gaussian normal estimator yields a moderately positive dependence,
whereas the GTL-nJoe estimator exhibits a strong negative dependence; both are statistically
highly significant. Figures 9c and 9d shows the contour plots implied by these estimators.
As an intermediate form, the GTL-Gaussian estimator yields a small and insignificant degree
of dependence.

The values of α̂ν and δ̂ν indicate that the disturbances driving the selection equation are
considerably skewed and heavy-tailed. Even the first moment of this GTL distribution cannot
be defined. Accordingly, the selection equation is standardized by median and interquartile
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Figure 9: Differences between normal-Gaussian and GTL-copula: Speeding tickets
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(d) Contour Plot: GTL-nJoe
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(e) Contour Plot: GTL-Gaussian
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Table 14: Marginal effects on the probability of issuing a speeding ticket

Normal-Gaussian GTL-nJoe GTL-Gaussian
Variables Estimate ( S.E. ) a Estimate ( S.E. ) a Estimate ( S.E. ) a

lnMPHOVER 0.489 ( 0.025 ) 0.508 ( 0.096 ) 0.510 ( 0.186 )
OUTTOWN b 0.078 ( 0.010 ) 0.053 ( 0.009 ) 0.065 ( 0.013 )
OR b 0.147 ( 0.046 ) 0.066 ( 0.029 ) 0.123 ( 0.057 )
FEMALE b -0.061 ( 0.005 ) -0.042 ( 0.006 ) -0.052 ( 0.009 )
lnPVALUEPC -0.129 ( 0.033 ) -0.081 ( 0.034 ) -0.109 ( 0.032 )

Marginal effects are first evaluated for each observation, considering the interaction terms as well,
and then averaged across all observations.

a Standard errors are computed by the Delta method.
b For a dummy variable di, the marginal effect for each observation is calculated as Pr(si = 1|di =
1)− Pr(si = 1|di = 0).

Figure 10: Predicted probability Pr(si = 1): GTL-nJoe vs normal-Gaussian
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range in order to make the model comparable. Thus we find that, under GTL-nJoe, a higher
speed figures more prominently in the chance of receiving a speeding ticker, that the effect of
Hispanic ethnicity diminishes (as does the advantage of younger women), and that property
values matter less. The many interactions obscure the effect of the distributional (normal-
Gaussian) misspecification. Thus, Table 14 reports the marginal effect of a few selected
variables: indeed, while the signs of marginal effects are the same across the estimators, the
magnitudes differ. The political economy hypothesis as measured by property values and
the OR dummy finds less support.

Altogether, the distributional misspecification changes the predicted probability of re-
ceiving a ticket (Figure 10): for example, for drivers who have a 60% chance of getting a
speeding ticket for their offense under the normal-Gaussian model, the GTL-nJoe model
assigns anywhere between a 40% and an 80% chance.
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The difference in the outcome equation is even more striking. The disturbances are
sharply peaked and have thick tails (Figure 9a). Even though the coefficients on some of
variables are still statistically significant, no variable other than lnMPHOVER is econom-
ically significant any longer. The results indicate that the amount of fine is not varying
at the discretion of officer in response to observable factors, in contrast with the findings
by Makowsky and Stratmann (2009), but unobservable factors can occasionally cause major
deviations from the fine that state law prescribes.

The estimated values of the coefficient on lnMPHOVER also have different implications.
For the normal-Gaussian estimator, the coefficient on lnMPHOVER is less than 1, indicating
that the fine is inelastic with respect to the severity of the speeding violation (miles over the
speed limit). On the other hand, both GTL-copula estimators indicates an elasticity greater
than 1: the fine is elastic. This is more intuitive: a more severe speeding violation draws an
increasingly severe penalty; this also corresponds with the prescription in state law.44

6.5 International Disputes

The last application is in the area of political science and concerns the occurrence and severity
of international disputes. Sweeney (2003) hypothesizes that a dispute between a pair of states
with a greater degree of interest similarity is less likely to escalate to a severe level. There
may also be a significant interaction effect between the degree of interest similarity and the
balance of military capability. On the one hand, even if interests are dissimilar, balanced
military capabilities may still prevent disputes from escalating. On the other, if interests
are dissimilar and military capabilities are unbalanced, the weaker state may submit to the
stronger state without putting up a fight. Sweeney’s database consists of 149,004 country
pairs between 1886 and 1992 with 972 disputes between them (0.65%).45

Dispute severity is measured by an index that combines the level of hostility and the num-
ber of fatalities. States express their interest similarity by being involved in similar alliances.
Military balance is expressed as the ratio of the military capacity of the strongest member
of a pair of states over their total capability. Other control variables include democracy,
economic interdependence (measured by mutual trade flows relative to gross domestic prod-
uct), common membership in international governmental organizations, geography (country
contiguity and distance), aspects of the dispute (about territory and the number of states
involved in the dispute), and one dummy whether one of the states is labeled a major power
and another whether both states are labeled a major power.46

44Simple algebra with the formula for the amount of fine reveals that the elasticity exceeds 1 as long as
the driver exceeded the speed limit by 5 miles. The elasticity is not constant, though. Furthermore, when
mph over speed limit is less than 5, the elasticity is negative. However, in the entire sample, only 1% of the
stopped drivers were going less than five miles over speed limit; one fifth of them received a ticket.

45The data are available online at http://jcr.sagepub.com/content/47/6.toc. For more detail on the
variables, see also Oneal and Russett (1999).

46Sweeney (2003, Table 1) reports only one dummy variable, namely whether both are a major power.
However, his Table 1 can only be replicated with this set of two dummy variables. This is the specification
we follow.
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Figure 11: Differences between normal-Gaussian and GTL-Clayton: Severity of interstate
disputes
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Table 15: Estimation result: Severity of interstate disputes

Normal-Gaussian GTL-Clayton
Variables Coef. ( S.E. ) a Coef. ( S.E. ) a

Selection equation: Occurrence of interstate dispute b

lnCAPRATIO -0.569 ( 0.078 ) -0.752 ( 0.122 )
DEMOCRACY -0.026 ( 0.003 ) -0.036 ( 0.005 )
DEPENDENCE -15.386 ( 3.023 ) -19.460 ( 4.101 )
COMMON IGO 0.009 ( 0.001 ) 0.012 ( 0.002 )
ALLIES -0.182 ( 0.042 ) -0.258 ( 0.061 )
MAJOR POWERS 0.725 ( 0.035 ) 0.952 ( 0.067 )
CONTIGUOUS 0.932 ( 0.038 ) 1.267 ( 0.113 )
lnDISTANCE -0.166 ( 0.016 ) -0.214 ( 0.021 )
PEACE -0.097 ( 0.005 ) -0.131 ( 0.012 )
sp: PEACE-10 0.098 ( 0.005 ) 0.133 ( 0.013 )
constant -1.559 ( 0.135 ) -1.808 ( 0.195 )
αν 0.259 ( 0.033 )
δν -0.176 ( 0.035 )

Outcome equation: Severity of interstate dispute
lnCAPRATIO 130.575 ( 70.53 ) 1.846 ( 16.07 )
INT SIMILARITY 1.821 ( 31.21 ) -13.535 ( 6.823 )
lnCAPRATIO × INT SIMILARITY -152.243 ( 78.29 ) -5.704 ( 18.47 )
DEMOCRACY 0.546 ( 0.318 ) -0.044 ( 0.082 )
DEPENDENCE -1318.071 ( 294.9 ) -30.810 ( 79.66 )
COMMON IGO -0.168 ( 0.105 ) 0.048 ( 0.024 )
MAJOR v MAJOR 12.193 ( 6.437 ) -1.413 ( 1.328 )
CONTIGUOUS 8.854 ( 5.330 ) 0.987 ( 1.010 )
lnDISTANCE -1.035 ( 1.812 ) -0.045 ( 0.499 )
TERRITORY 12.100 ( 4.261 ) -0.162 ( 1.037 )
ACTORS 3.791 ( 0.477 ) 0.108 ( 0.094 )
constant 66.516 ( 32.69 ) 26.483 ( 7.931 )
αε -0.173 ( 0.019 )
δε -0.670 ( 0.019 )
σ 47.787 ( 0.950 ) 6.985 ( 0.535 )

ρ or θ -0.054 ( 0.084 ) 3.111 ( 0.500 )
τ -0.034 0.609
lnL -9209.59 -9063.70
AIC 18469.18 18185.40

a White-robust standard errors.
b The selection equation is standardized by mean and standard deviation.

To account for duration dependence (Beck et al., 1998), Sweeney (2003) adds to the
selection equation the number of years since the last dispute (PEACE) in the form of four
cubic spline variables. These variables make the matrix of explanatory variables in the
selection equation highly multicollinear: the condition number equals 888.2 where a value of
20 is supposed to raise a red flag. This multicollinearity interferes with the iterative search
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Table 16: Marginal effects on the probability of an interstate dispute occurring

Normal-Gaussian GTL-Clayton
5-pct Mean Median 95-pct 5-pct Mean Median 95-pct

lnCAPRATIO -0.749 -0.152 -0.031 -0.003 -1.325 -0.363 -0.195 -0.058
DEMOCRACY -1.170 -0.237 -0.049 -0.005 -2.135 -0.586 -0.315 -0.094
DEPENDENCE -0.496 -0.101 -0.021 -0.002 -0.839 -0.230 -0.124 -0.037
COMMON IGO 0.004 0.172 0.035 0.848 0.068 0.425 0.229 1.550
ALLIES -1.158 -0.229 -0.042 -0.004 -2.221 -0.587 -0.303 -0.086
CONTIGUOUS 0.205 2.201 1.191 7.533 1.376 5.078 3.880 12.632
lnDISTANCE -0.999 -0.203 -0.042 -0.005 -1.728 -0.474 -0.255 -0.076
MAJOR POWERS 0.087 1.395 0.492 5.613 0.731 3.120 1.989 9.256
PEACE a -1.227 -0.227 -0.065 -0.006 -1.803 -0.478 -0.288 -0.079
sp: PEACE-10 b 0.000 0.001 0.000 0.005 0.001 0.003 0.002 0.010

Effects shown are in percentage points. Effects are calculated for each observation separately and
then summarized across the sample. Continuous explanatory variables change by one standard
deviation. Dummy variables change from 0 to 1. Peacetime year variables change by one year.

a Summary statistics are computed over observations with at most 10 years since the last dispute.
b Summary statistics are computed over observations with more than 10 years since the last dispute.

The variable PEACE changes simultaneously.

for the maximum likelihood estimate of GTL-copula models. We opt for a simpler linear
spline with a knot at 10 years; this lowers the condition number to 38.3 and yields much
smoother convergence.

Estimation results are presented in Table 15 and Figure 11. The marginal distribution
of the selection disturbances is nonnormal mostly because it lacks a left tail (Figure 11a):
skewness equals 0.66 and kurtosis 3.35. In other words, states initiate a dispute for important
unobserved reasons (a large positive value of ν) but it never happens that they refrain
from disputes for important unobserved reasons (a large negative ν). The disturbances
of the outcome equation are strongly right-skewed with no left tail and a heavy right tail;
skewness and kurtosis values cannot even be computed for this (α̂ε, δ̂ε). Whereas the normal-
Gaussian model shows virtually no correlation between the selection and outcome equations
(ρ̂ = −0.054), the GTL-Clayton model estimates a strong positive dependence τ = 0.609,
which indeed is plausible: when a strong unobserved factor (a positive ν) causes states to
initiate a dispute, the dispute is more likely to become severe (a positive ε).

The estimated slopes of the selection equation of the GTL-Clayton model are all a bit
larger than those of the normal-Gaussian model. The explanatory variables indeed have a
larger effect: the probability of a dispute occurring ranges from 0 to 0.44 with the normal-
Gaussian model and from 0 to 0.57 with the GTL-Clayton model. The marginal effects of
the explanatory variables are accordingly much stronger, more than doubling on average;
see Table 16.

Even more striking is the sensitivity of the estimated outcome equation to the distribu-
tional assumption. Whereas the normal-Gaussian model counts six variables with t-statistics
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above 1.85 (including lnCAPRATIO and its interaction with INT SIMILARITY), the GTL-
Clayton model has only two statistically significant determinants: interest similarity by itself
(in a negative direction in confirmation of Sweeney’s hypothesis) and the number of common
IGOs (in an implausible positive direction). Military capacity appears to be irrelevant after
all; the number of actors and the volume of mutual trade flows that were the most significant
variables are no longer significant contributors to the explanation of dispute severity; disputes
over territory are no more severe than disputes for other reasons, nor are disputes between
two major powers. These magnitudes of these changes may be surprising, but the matrix of
explanatory variables is highly colinear (condition number of 89.9). When multicollinearity
is present, slight changes in the specification often lead to large changes in estimated slopes.

7 Conclusion

In this paper, we propose a new maximum likelihood estimator for the sample selection
model. We relax the assumption of a bivariate normal distribution by means of GTL marginal
distributions and copula functions that tie the marginals together into a bivariate distribu-
tion. While we still make a distributional assumption, it is a weak assumption, such that
our proposed estimator essentially does not impose any particular shape on the distribution.
The GTL distribution allows thick or thin tails and left-skewed or right-skewed shapes; the
collective set of copulas accommodates diverse dependence structures between two random
variables. Together, they create a highly versatile bivariate distribution, which include the
traditional joint normal estimator as a special case. In line with the terminology of the
GTL-copula estimator, we term the traditional estimator the normal-Gaussian estimator, as
it combines normal marginal distributions with a Gaussian copula.

The Monte Carlo study shows that the proposed estimator performs well under both
normal and non-normal settings, whereas the normal-Gaussian estimator performs poorly
when the distributional assumption is violated. A particularly valuable insight is that, unlike
the traditional estimator, the GTL-copula estimator is much less dependent on the presence
of an instrument in the selection equation that fulfills the exclusion restriction. Thus, no
longer should it be considered problematic that the selection equation contains the same
explanatory variables as the outcome equation.

The applications to real data also show economically significant differences between the
traditional estimator and our proposed estimator. For example, the amount of fine for
speeding violations proves to be determined only by the driver’s excessive speed—unlike the
estimates generated by the normal-Gaussian model that shows variations in fine by age,
gender, ethnicity, and out-of-town residential location. The GTL-copula-estimated effect of
a government grant program on wages of school-age children in Mexico proves to be only half
as large as the effect estimated with the traditional normal-Gaussian estimator. The wage
profile of Portuguese women is more sharply curved, with a curvature that varies less with
the presence of children in the household. Moreover, the husband’s wage is found to be more
important for the wife’s participation in the labor force. Health expenditures in the U.S.
prove to be less sensitive to coinsurance, incentive payments, health status, family income,
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and most demographic variables. In the application regarding international disputes, the
GTL-copula estimator changes the list of factors that increase the severity of these disputes.
In particular, military balance is no longer a relevant factor, which is a hotly debated issue
in the international relations literature.

The applications offered samples of size 2,339 to nearly 150,000 observations; the subsam-
ples for which an outcome was observed consisted of anywhere between 0.7% and 76.8% of the
total sample. Together, these applications illustrate how this highly nonlinear GTL-copula
estimator performs in applied research. In our experience, out of ten copula functions (as in
Table 8), there are often a few that prove to be incompatible with the data and therefore
present difficulties during the iterative search for the maximum likelihood estimate. This
should not be considered an undesirable feature of the GTL-copula approach since different
copula functions have different features. Indeed, it is the wide range of features that makes
the GTL-copula approach so flexible. We did find that the GTL-copula estimator has more
difficulty dealing with highly colinear sets of explanatory variables. We speculate that this
happens because GTL link functions must be numerically inverted; slight numerical inaccu-
racies become magnified when the direction of search derives from an ill-conditioned hessian
matrix.

The GTL-copula estimator that this paper proposes in the context of the standard sample
selection model (with one selection equation and one outcome equation, i.e., the type-2 Tobit
model) can be straightforwardly extended to other types of sample selection models. For
example, the Roy selection model has one selection equation that separates observations into
two states, with one outcome equation for each state, akin to Lee (1978). In preliminary
work, we examined three applications of the Roy model with the GTL-copula estimator and
found evidence similar to the findings reported in this paper for the typical sample selection
model. The model may also be expanded with more than two states or with a dual or higher-
dimensional selection mechanism. Thus, we add a highly flexible and practical estimator to
the literature.

Appendices

A Comparison of normal-Gaussian and GTL-copula estimators: Additional

Monte Carlo results

In this appendix, we present Monte Carlo results that parallel those of Tables 3 and 4 with
a reduced (τ = 0.2) and a strengthened (τ = 0.5) level of dependence.
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Table A.1: Biases and standard deviations when DGPs use different copulas; τ = 0.2

β∗

0
β1 αε δε τ αν δν

DGP Copula: Guassian
Normal-Gaussian 0.012 -0.006 -0.011

( 0.135 ) ( 0.083 ) ( 0.103 )
GTL-Product 0.244 -0.135 -0.002 -0.001 0.034 0.001

( 0.037 ) ( 0.039 ) ( 0.028 ) ( 0.017 ) ( 0.137 ) ( 0.057 )
GTL-Gaussian 0.012 -0.007 -0.001 0.000 -0.012 0.034 0.002

( 0.140 ) ( 0.086 ) ( 0.030 ) ( 0.018 ) ( 0.108 ) ( 0.137 ) ( 0.057 )
Pretest 0.007 0.002 0.001 -0.002 -0.002 0.035 0.002

( 0.158 ) ( 0.104 ) ( 0.032 ) ( 0.023 ) ( 0.106 ) ( 0.139 ) ( 0.057 )
DGP Copula: FGM

Normal-Gaussian 0.018 -0.010 -0.023
( 0.147 ) ( 0.089 ) ( 0.112 )

GTL-Product 0.236 -0.129 -0.013 0.012 0.034 0.001
( 0.036 ) ( 0.038 ) ( 0.029 ) ( 0.017 ) ( 0.137 ) ( 0.057 )

GTL-FGM 0.032 -0.017 -0.002 0.002 -0.028 0.031 0.001
( 0.103 ) ( 0.068 ) ( 0.030 ) ( 0.018 ) ( 0.079 ) ( 0.136 ) ( 0.057 )

Pretest -0.022 0.012 -0.002 0.008 0.016 0.039 0.001
( 0.143 ) ( 0.088 ) ( 0.034 ) ( 0.025 ) ( 0.099 ) ( 0.212 ) ( 0.057 )

DGP Copula: Frank
Normal-Gaussian 0.094 -0.022 -0.091

( 0.196 ) ( 0.115 ) ( 0.162 )
GTL-Product 0.234 -0.129 -0.014 0.014 0.034 0.001

( 0.036 ) ( 0.039 ) ( 0.029 ) ( 0.017 ) ( 0.137 ) ( 0.057 )
GTL-Frank 0.007 -0.001 0.001 0.000 -0.010 0.032 0.001

( 0.123 ) ( 0.066 ) ( 0.034 ) ( 0.024 ) ( 0.100 ) ( 0.137 ) ( 0.057 )
Pretest 0.033 -0.006 0.006 -0.008 -0.034 0.037 0.000

( 0.193 ) ( 0.106 ) ( 0.035 ) ( 0.027 ) ( 0.161 ) ( 0.138 ) ( 0.057 )
DGP Copula: Clayton

Normal-Gaussian 0.036 -0.019 -0.040
( 0.137 ) ( 0.084 ) ( 0.106 )

GTL-Product 0.224 -0.097 0.005 -0.018 0.033 0.001
( 0.034 ) ( 0.037 ) ( 0.029 ) ( 0.017 ) ( 0.137 ) ( 0.057 )

GTL-Clayton 0.008 -0.004 0.002 0.001 -0.009 0.033 0.001
( 0.125 ) ( 0.079 ) ( 0.032 ) ( 0.019 ) ( 0.100 ) ( 0.137 ) ( 0.057 )

Pretest -0.011 0.005 -0.004 0.008 0.003 0.032 0.000
( 0.125 ) ( 0.080 ) ( 0.033 ) ( 0.025 ) ( 0.097 ) ( 0.138 ) ( 0.057 )

DGP Copula: Gumbel

Normal-Gaussian 0.001 -0.019 0.003
( 0.105 ) ( 0.068 ) ( 0.077 )

GTL-Product 0.258 -0.161 0.002 0.007 0.034 0.001
( 0.039 ) ( 0.041 ) ( 0.029 ) ( 0.016 ) ( 0.137 ) ( 0.057 )

GTL-Gumbel 0.011 -0.008 -0.001 -0.001 -0.009 0.036 0.003
( 0.110 ) ( 0.075 ) ( 0.029 ) ( 0.017 ) ( 0.083 ) ( 0.137 ) ( 0.055 )

Pretest 0.010 -0.006 -0.002 -0.001 -0.009 0.036 0.002
( 0.098 ) ( 0.068 ) ( 0.030 ) ( 0.018 ) ( 0.074 ) ( 0.138 ) ( 0.056 )

DGP Copula: Joe
Normal-Gaussian -0.016 -0.026 0.023

( 0.094 ) ( 0.063 ) ( 0.067 )
GTL-Product 0.273 -0.186 0.011 0.013 0.034 0.001

( 0.041 ) ( 0.042 ) ( 0.030 ) ( 0.016 ) ( 0.137 ) ( 0.057 )
GTL-Joe 0.004 -0.004 -0.002 -0.001 -0.003 0.036 0.003

( 0.080 ) ( 0.060 ) ( 0.028 ) ( 0.017 ) ( 0.058 ) ( 0.135 ) ( 0.054 )
Pretest -0.017 0.003 0.002 -0.001 0.016 0.036 0.004

( 0.080 ) ( 0.059 ) ( 0.030 ) ( 0.017 ) ( 0.059 ) ( 0.135 ) ( 0.055 )

Note: See Table 3.
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Table A.2: Biases and standard deviations when DGPs use different copulas; τ = 0.5

β∗

0
β1 αε δε τ αν δν

DGP Copula: Guassian

Normal-Gaussian 0.000 0.000 -0.002
( 0.074 ) ( 0.053 ) ( 0.053 )

GTL-Product 0.564 -0.317 -0.007 -0.021 -0.500 0.034 0.001
( 0.033 ) ( 0.037 ) ( 0.028 ) ( 0.016 ) ( 0.137 ) ( 0.057 )

GTL-Gaussian 0.001 -0.001 0.000 -0.002 -0.002 0.031 0.002
( 0.079 ) ( 0.055 ) ( 0.034 ) ( 0.022 ) ( 0.057 ) ( 0.128 ) ( 0.053 )

Pretest 0.005 -0.003 0.007 -0.009 -0.003 0.034 0.003
( 0.081 ) ( 0.057 ) ( 0.040 ) ( 0.031 ) ( 0.058 ) ( 0.131 ) ( 0.054 )

DGP Copula: Frank

Normal-Gaussian 0.032 -0.018 -0.045
( 0.075 ) ( 0.053 ) ( 0.057 )

GTL-Product 0.545 -0.302 -0.060 0.005 0.033 0.001
( 0.032 ) ( 0.036 ) ( 0.028 ) ( 0.016 ) ( 0.137 ) ( 0.057 )

GTL-Frank -0.001 0.001 0.000 -0.001 0.000 0.030 0.001
( 0.068 ) ( 0.049 ) ( 0.034 ) ( 0.020 ) ( 0.050 ) ( 0.132 ) ( 0.055 )

Pretest -0.010 0.004 -0.011 0.008 0.002 0.026 -0.003
( 0.075 ) ( 0.055 ) ( 0.042 ) ( 0.031 ) ( 0.054 ) ( 0.135 ) ( 0.057 )

DGP Copula: Clayton

Normal-Gaussian -0.062 0.087 0.034
( 0.104 ) ( 0.071 ) ( 0.086 )

GTL-Product 0.524 -0.260 0.015 -0.063 0.034 0.001
( 0.030 ) ( 0.035 ) ( 0.028 ) ( 0.017 ) ( 0.137 ) ( 0.057 )

GTL-Clayton 0.003 0.001 0.008 -0.007 -0.002 0.027 0.002
( 0.078 ) ( 0.054 ) ( 0.042 ) ( 0.028 ) ( 0.060 ) ( 0.126 ) ( 0.055 )

Pretest -0.001 0.006 0.011 -0.011 0.001 0.033 0.000
( 0.079 ) ( 0.057 ) ( 0.043 ) ( 0.033 ) ( 0.061 ) ( 0.129 ) ( 0.055 )

DGP Copula: Gumbel

Normal-Gaussian 0.039 -0.046 -0.038
( 0.070 ) ( 0.050 ) ( 0.050 )

GTL-Product 0.572 -0.340 -0.026 0.005 0.034 0.001
( 0.034 ) ( 0.038 ) ( 0.030 ) ( 0.016 ) ( 0.137 ) ( 0.057 )

GTL-Gumbel -0.002 0.000 -0.001 -0.001 0.000 0.033 0.002
( 0.067 ) ( 0.048 ) ( 0.033 ) ( 0.019 ) ( 0.049 ) ( 0.127 ) ( 0.051 )

Pretest 0.008 -0.004 -0.001 -0.004 -0.008 0.037 0.002
( 0.070 ) ( 0.050 ) ( 0.034 ) ( 0.024 ) ( 0.053 ) ( 0.128 ) ( 0.053 )

DGP Copula: Joe

Normal-Gaussian 0.043 -0.077 -0.046
( 0.066 ) ( 0.047 ) ( 0.046 )

GTL-Product 0.583 -0.370 -0.048 0.032 0.034 0.001
( 0.035 ) ( 0.038 ) ( 0.031 ) ( 0.015 ) ( 0.137 ) ( 0.057 )

GTL-Joe -0.002 0.000 -0.001 -0.001 0.001 0.033 0.002
( 0.055 ) ( 0.042 ) ( 0.031 ) ( 0.018 ) ( 0.039 ) ( 0.124 ) ( 0.049 )

Pretest -0.005 0.002 0.000 0.002 0.006 0.031 0.003
( 0.070 ) ( 0.066 ) ( 0.033 ) ( 0.020 ) ( 0.048 ) ( 0.124 ) ( 0.050 )

Note: See Table 3.
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Table A.3: Frequencies of selecting copulas under different DGPs for τ = 0.2

Estimated Copula of the DGP

copula Gaussian FGM Frank Clayton Gumbel Joe

Gaussian 0.350 0.150 0.132 0.136 0.100 0.028
FGM 0.156 0.430 0.242 0.182 0.022 0.008
Frank 0.128 0.218 0.356 0.112 0.080 0.018
Clayton 0.148 0.138 0.130 0.512 0.016 0.000
Gumbel 0.144 0.054 0.100 0.036 0.362 0.262
Joe 0.078 0.012 0.040 0.022 0.420 0.684

Notes: See Table 4.

Table A.4: Frequencies of selecting copulas under different DGPs for τ = 0.5

Estimated Copula of the DGP

copula Gaussian Frank Clayton Gumbel Joe

Gaussian 0.754 0.110 0.038 0.074 0.002
FGM 0.002 0.006 0.000 0.000 0.000
Frank 0.130 0.804 0.022 0.034 0.002
Clayton 0.022 0.024 0.940 0.000 0.000
Gumbel 0.088 0.052 0.000 0.698 0.078
Joe 0.004 0.004 0.000 0.194 0.920

Notes: See Table 4.

50



B Variable Definitions and Summary Statistics

Table B.1: Wages of married women, Portugal a

Whole Sample Selected Sample
Number of Obs. 2,339 1,400

Variables Definition Mean Std. dev. Mean Std. dev.

Selection 1 if wage is observed 0.599 0.490
Outcome log of hourly wage (in escudos) 5.832 0.660

CHILDY18 the number of children younger
than 18 living in the family

1.622 1.096 1.524 0.997

CHILDY3 the number of children younger
than 3

0.197 0.438 0.206 0.433

lnHUSBW log of husband’s monthly wage
(in escudos)

11.196 0.378 11.222 0.382

YRSCH years of schooling 7.237 3.771 8.335 4.043

AGE age in years, divided by 10 3.842 0.941 3.715 0.880

AGE2 AGE squared 15.647 7.447 14.576 6.859

PEXP potential experience, age - years
of schooling - 6, divided by 10

2.518 1.063 2.282 0.996

PEXP2 PEXP squared 7.472 5.737 6.197 5.059

PEXP×CHILDY18 PEXP × CHILDY18 4.509 3.697 3.947 3.212

PEXP2×CHILDY18 PEXP2 × CHILDY18 12.818 13.598 10.405 11.454

a Source: Derived from the dataset used in Martins (2001); variable names have been slightly changed.
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Table B.2: Wages of school-aged children, Mexico a

Whole Sample Selected Sample
Number of Obs. 15,526 1,657

Variables Definition Mean S.D. Mean S.D.

Selection 1 if out of school and reporting a
wage

0.107 0.309

Outcome log of hourly wage 1.254 0.564

PROGRESA/eligible 1 if in PROGRESA community
and eligible

0.527 0.499 0.496 0.500

PROGRESA/ineligible 1 if in PROGRESA community
but ineligible

0.097 0.296 0.104 0.305

Control/eligible 1 if in Control community but el-
igible (reference catogory)

0.312 0.463 0.323 0.468

Control/ineligible 1 if in Control community and in-
eligible b

0.063 0.243 0.077 0.266

ORDER order of birth 2.522 1.280 3.176 1.552

AGE age in years 12.904 2.556 15.801 1.315

AGE2 age squared 173.042 66.481 251.395 39.308

GRANT ratio of grant to household in-
come

0.665 0.814 0.671 0.893

FATHERhome 1 if father presents in household 0.855 0.352 0.814 0.389

MOTHERhome 1 if mother presents in household 0.881 0.323 0.820 0.385

INDIGENOUS 1 if speak indigenous language 0.297 0.457 0.262 0.440

DISTANCE97 distance to secondary school in
1997

2.169 2.139 2.194 2.018

DISTANCE98 distance to secondary school in
1998

2.100 2.096 2.119 1.989

PRIMARY97 1 if primary school existed in
community in 1997

0.970 0.170 0.974 0.159

PRIMARY98 1 if primary school existed in
community in 1998

0.991 0.097 0.989 0.106

SECONDARY97 1 if secondary school existed in
community in 1997

0.275 0.446 0.259 0.438

SECONDARY98 1 if secondary school existed in
community in 1998

0.279 0.448 0.264 0.441

lnMAWAGE log of community-averaged male
agriculture wage

1.290 0.286 1.316 0.290

YRSCH completed years of education 5.075 2.258 5.931 2.260

PROGRESA 1 if in PROGRESA community 0.624 0.484 0.600 0.490

a Source: Derived from the dataset used in Attanasio et al. (2012); variable names have been slightly
changed. The selection equation also contains dummy variables for father’s education, mother’s educa-
tion, and state of residence.

b This definition is different from the data description provided at

http://restud.oxfordjournals.org/content/79/1.toc.
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Table B.3: Health expenditure, USA a

Whole Sample Selected Sample
Number of Obs. 5,574 4,281

Variables Definition Mean S.D. Mean S.D.

Selection 1 if medical expenditures > 0 0.768 0.422
Outcome log of annual medical expendi-

tures, constant dollars, excluding
dental and outpatient mental ex-
penditures

4.069 1.499

lnCOINRATE ln(coinsurance rate+1) with 0 ≤
rate ≤ 100

2.421 2.044 2.254 2.044

IDP 1 if individual deductible plan 0.262 0.440 0.245 0.430

lnAPI ln(annual participation incentive
payment) or 0 if no payment

4.727 2.681 4.740 2.676

lnMMDE ln(maximum medical deductible
expenditure) if IDP=1 and
MMDE>1 or 0 otherwise.

4.065 3.451 3.855 3.515

PHYSLIM 1 if physical limitation 0.124 0.323 0.140 0.342

NDISEASE number of chronic diseases 11.205 6.789 11.795 7.033

HEALTHgood 1 if good health 0.365 0.481 0.366 0.482

HEALTHfair 1 if fair health 0.078 0.269 0.080 0.272

HEALTHpoor 1 if poor health 0.016 0.124 0.018 0.134

lnFAMINC log of family income (in dollars) 8.697 1.221 8.778 1.091

lnFAMSIZE log of family size 1.241 0.540 1.222 0.532

YRSCHHEAD education of household head (in
years)

11.947 2.837 12.117 2.824

AGE age in years 25.576 16.730 26.431 17.121

FEMALE 1 if female 0.518 0.500 0.544 0.498

CHILD 1 if age is less than 18 0.405 0.491 0.382 0.486

GIRL FEMALE × CHILD 0.196 0.397 0.184 0.387

BLACK 1 if black 0.186 0.386 0.138 0.341

a Source: Derived from the dataset used in Cameron and Trivedi (2005); variable names have been slightly

changed.
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Table B.4: Speeding tickets, Massachusetts a

Whole Sample Selected Sample
Number of Obs. 68,306 31,642

Variables Definition Mean Std. dev. Mean Std. dev.

Selection 1 if ticket issued 0.463 0.499
Outcome log of fine amount (in dollars) 4.707 0.438

lnMPHOVER log of mile per hour over speed
limit

2.666 0.328 2.783 0.333

CDL 1 if commercial driver 0.030 0.169 0.023 0.149

OUTTOWN 1 if out of town driver 0.773 0.419 0.848 0.359

OUTSTATE 1 if out of state driver 0.155 0.362 0.222 0.415

BLACK 1 if a driver is black 0.045 0.206 0.051 0.219

HISPANIC 1 if a driver is hispanic 0.035 0.183 0.047 0.211

FEMALE 1 if a driver is female 0.390 0.488 0.332 0.471

lnAGE log of age 3.498 0.376 3.442 0.366

FEMALE × lnAGE FEMALE × lnAGE 1.368 1.726 0.332 0.471

lnDISTCOURT log of distance to court (in miles) 2.624 1.211 2.886 1.298

lnPVALUEPC log property value per capita 11.258 0.499 11.165 0.499

OR 1 if a tax increase rejected via
override referendum

0.020 0.139 0.026 0.160

OR × OUTTOWN OR × OUTTOWN 0.018 0.134 0.025 0.157

OR × lnDISTCOURT OR × lnDISTCOURT 0.055 0.427 0.074 0.494

SP 1 if an officer is state police 0.269 0.444 0.445 0.497

SP × lnDISTCOURT SP × lnDISTCOURT 0.886 1.606 1.508 5.540

SP × lnPVALUEPC SP × lnPVALUEPC 3.003 4.952 4.951 0.077

SP × OR SP × OR 0.003 0.056 0.006 0.077

a Source: Derived from the dataset used in Makowsky and Stratmann (2009); variable names have been

slightly changed.
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Table B.5: Severity of interstate disputes a

Whole Sample Selected Sample
Number of Obs. 149,004 972

Variables Definition Mean S.D. Mean S.D.

Selection 1 if an interstate dispute occurs 0.007 0.081

Outcome severity of dispute 70.751 51.779

lnCAPRATIO log of strong-state military capa-
bility divided by the total dyad
capability

-0.210 0.196 -0.252 0.204

INT SIMILARITY similarity of revealed preferences
between the two states

0.892 0.093

DEMOCRACY democracy level of the least
democratic state in the dyad

-3.320 6.630 -4.894 5.197

DEPENDENCE economic interdependence: ratio
of total dyad trade divided by
gross domestic product

0.001 0.005 0.003 0.006

COMMON IGO number of joint international
governmental organization
(IGO) memberships

25.256 14.251 28.214 15.883

ALLIES 1 if formally allied 0.133 0.340 0.258 0.438

MAJOR POWER 1 if one of the states is a major
power

0.175 0.380 0.521 0.500

MAJOR v MAJOR 1 if both states are major powers 0.130 0.336

CONTIGUOUS 1 if states are contiguous 0.080 0.271 0.687 0.464

lnDISTANCE log of distance 8.042 0.897 6.969 1.077

PEACE time since last dispute 20.939 20.788 9.188 15.328

sp: PEACE-10 linear spline term, = PEACE -
10 if PEACE> 10, = 0 otherwise

13.128 19.068 5.184 12.418

TERRITORY 1 if the dispute was over territo-
rial issues

0.258 0.438

ACTORS number of states in the dispute 3.789 4.528

a Source: Derived from the dataset used in Sweeney (2003); variable names have been slightly changed.
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