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1. Introduction

The spatial mismatch hypothesis, …rst formulated by Kain [20], states that,

residing in urban segregated areas distant from and poorly connected to major

centers of employment growth, black workers face strong geographic barriers

to …nding and keeping well-paid jobs. In the U.S. context, where jobs have

been decentralized and blacks have stayed in the central part of cities, the main

conclusion of the spatial mismatch hypothesis is to put forward the distance

to jobs as the main culprit for the high unemployment rates among blacks.

Since the study of Kain, dozens of empirical studies have been carried

out trying to test this hypothesis (see the surveys by Holzer [16], Kain [21]

and Ihlanfeldt and Sjoquist [18]). The usual approach is to relate a measure

of labor-market outcomes, based on either individual or aggregate data, to

another measure of job access, typically some index that captures the distance

from residences to centers of employment. The weight of the evidence suggests

that bad job access indeed worsens labor-market outcomes, con…rming the

spatial mismatch hypothesis.

The theoretical foundations behind these empirical results remain however

unclear. If researchers do agree on the causes (housing discrimination, so-

cial interactions) and on the consequences of the spatial mismatch hypothesis

(higher unemployment rates and lower wages for black workers), the economic

mechanisms and thus the policy implications are di¢cult to identify.

A …rst theoretical view developed by Brueckner and Martin [8] and Brueck-

ner and Zenou [9] is to argue that suburban housing discrimination skews black

workers towards the Central Business District (CBD) and thus keeps black res-

idences remote from the suburbs. Since black workers who work in the Subur-

ban Business District (SBD) support longer and more costly commuting costs,

few of them will accept SBD jobs. As a result, the black CBD labor pool is

large relative to the SBD pool, which exerts a strong pressure for central jobs.

If wages are set to deter shirking (e¢ciency wages), it is easy to see that unem-

ployment rates are higher and wages lower in the CBD than in the SBD since

unemployment acts as a worker discipline device so that high unemployment

rates are associated with low wages. The strength of this argument is that it

works with a simple minimum wage model since, because of restricted mobility,

the CBD-labor supply is much more higher than the SBD-labor supply.1 The

1Zax and Kain [43] have studied the case of a large …rm in the service industry which
relocated from the center of Detroit to the suburb Dearborn in 1974. Among workers whose
commuting time was increased, black workers were over-represented, and not all could follow
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main welfare recommendations of this model (which is also the common view

of the spatial literature; see, in particular, Ihlanfeldt and Sjoquist [18] and

Pugh [30]) is clearly through transportation solutions since they ameliorate

job access. The government can either improve the transportation network or

directly subsidize blacks’ commuting costs.2

Wasmer and Zenou [41] have proposed a di¤erent theory for the spatial mis-

match hypothesis. Using a search-matching model, they state that residential

distance to jobs prevents black workers to obtain information about jobs and

thus isolate them from employment centers. Indeed, if one believes that in-

formation decreases with distance to jobs, then restricted mobility (due for

example to housing discrimination) can have a dramatic impact on the labor

market. Little information reaches the area where blacks live and, as a result,

lowers their search e¢ciency and thus their probability to …nd a job. The key

question is then the negative relationship between distance to jobs and infor-

mation. If …rms advertize locally jobs (for example place help-wanted signs

in their windows or place ads in local newspapers), then, obviously, workers

living further away from these …rms have less information on these jobs than

those residing closer. This view has empirical supports. For example, Turner

[39] have shown that, in Detroit, suburban …rms using local recruitment meth-

ods (such as local newspapers or help-wanted signs in their windows) had few

inner-city black applicants whereas those using general formal methods (such

as city newspapers) had much more inner-city applicants. Holzer and Reaser

[17] have also found that, in four major metropolitan areas (Atlanta, Boston,

Detroit and Los Angeles), inner-city black workers apply less frequently for

jobs in the suburbs than in central cities because of higher costs of applying

and/or lower information ‡ows. The policy implication of this model is thus

quite di¤erent that the previous one. The government should ameliorate the

information about jobs and thus the search e¢ciency of inner-city black resi-

dents (for example, better information, better market structure organization).

Another theoretical view has been proposed by Coulson, Laing and Wang

[11]. Using also a search-matching model, they assume that the …xed en-

try cost of …rms is greater in the CBD than in the SBD and that workers

the …rm. This had two consequences: …rst, segregation forced some blacks to quit their jobs.
Second, the share of black workers applying for jobs to the …rm drastically decreased (53%
to 25% in 5 years before and after the relocation), and the share of black workers in hires
also fell from 39% to 27%.

2Arnott [3] constructs a model in which costly commuting is also the main explanation
of the spatial mismatch hypothesis.
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are heterogeneous in their disutility of transportation (or equivalently in their

search costs). These two fundamental assumptions are su¢cient to generate

an equilibrium in which central city residents experience a higher rate of unem-

ployment than suburban residents and suburban …rms create more jobs than

central …rms (higher job vacancy rate). Their model yields the same policy

implications that the two models above since improvements in the e¢ciency

of the matching function and/or in the transportation infrastructure yield a

lower level of unemployment. They propose however another policy that is

more speci…c to their model. The government should reduce the di¤erential

in the …xed entry cost in order to partially alleviate the spatial mismatch;

for example, by subsidizing the entry of …rms in the CBD. Such policies have

been implemented in the U.S. through the enterprise zone programs (Papke

[27], Boarnet and Bogart [6] and Mauer and Ott [25]). The basic idea is to

designate a speci…c urban (or rural) area, which is depressed, and target it for

economic development through government-provided subsidies to labor and

capital.3

In the present paper, we propose an alternative theoretical approach to

explain the spatial mismatch hypothesis. Using a search-matching model with

endogenous housing consumption and location, we show that distance to jobs is

harmful because it implies low search intensities. There is in fact a fundamental

trade-o¤ between short-run and long-run bene…ts of various location choices for

the unemployed. Indeed, locations near jobs are costly in the short run (both

in terms of high rents and low housing consumption), but allow higher search

intensities which in turn increase the long-run prospects of reemployment.

Conversely, locations far from jobs are more desirable in the short run (low

rents and high housing consumption) but allow only infrequent trips to jobs and

hence reduce the long-run prospects of reemployment. Therefore, for workers

residing further away from the CBD, it is optimal to spend the minimal search

e¤ort whereas workers residing close to jobs provide high search e¤ort.

In this context, spatial mismatch can be the result of optimizing behavior

on the part of the labor market participants since the unemployed can choose

low amounts of search and long-term unemployment. This implies that the

standard US-style mismatch arises because inner-city blacks choose to remain

in the inner-city and search only little. They do not relocate to the suburbs be-

cause the short run-long run gap is big enough to make locations near the jobs

3For a general survey on the theoretical foundations of the spatial mismatch, see Gobillon,
Selod and Zenou [13].
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too expensive. The policy implications are therefore quite di¤erent. In par-

ticular, “Moving to Opportunity” programs (such as the so-called Gautreaux

program) are just the correct policy device to reduce mismatch, rather than

lower search costs in some other way.

More precisely, a spatial labor market model is developed in which both

job-matching behavior and residential-location behavior are treated simulta-

neously. Since time is discrete, search intensity is the fraction of the period

during which the unemployed are actively searching. Equilibrium for this sys-

tem involves the interaction of two markets: a spatially concentrated (CBD)

labor market in which unemployed workers compete for jobs, and a spatially

dispersed land market in which all workers compete for residential land. The

most important linkage between these markets is in terms of the di¤ering job-

search intensities chosen by unemployed workers at various distances from the

CBD.

We …rst show that there is a non-linear decreasing relationship between

the residential distance to jobs of the unemployed and their search intensity

s. In fact, individuals living su¢ciently close to jobs search every day, s = 1,

whereas those residing far away provide a minimum search intensity, s = s0.

Workers living in between these two areas see a decrease in their search in-

tensity from s = 1 to s = s0. We then embed this result (the fact that the

unemployed’s search intensities are location dependent) into an urban equilib-

rium in which all individuals (including the unemployed) endogenously choose

their residential location. This is one of the main di¢culties that we had to

overcome. In a classi…cation theorem (see Theorem 2), we show that only three

urban con…gurations are compatible with the decreasing relationship between

search intensity and location. These possible equilibrium location patterns are

shown to di¤er only in terms of whether the unemployed workers occupy the

central core around the CBD, the periphery of the city, or possibly both.

Finally, since our purpose is to shed some light on the spatial mismatch

hypothesis, we focus on two urban equilibria: the core-periphery urban equi-

librium, in which the unemployed reside either close to jobs (and provide full

search intensity s = 1) or far away from jobs (and provide a positive minimal

level of search s = s0) and the segregated equilibrium where the unemployed

are always far away from jobs. We show that each equilibrium is unique, and

we give a set of su¢cient conditions for its existence.

The remainder of the paper is organized as follows. Section 2 sets up the

model and describes the land and labor markets. In section 3, we demonstrate
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our …rst result, namely the non-linear and decreasing relationship between

the residential distance to jobs of the unemployed and their search intensity.

Section 4 is devoted to our classi…cation theorem that shows that only three

urban con…gurations are compatible with the negative relationship between

search intensity and location. In section 5, we show the existence and the

uniqueness of the core-periphery equilibrium and of the segregated equilibrium.

Finally, we analyze some of the policy implications of our model in section 6.

2. The model

Consider a population of N workers who live in a monocentric city where

all jobs are concentrated in the central business district (CBD). All employed

workers earn the same prevailing daily wage, w, and all unemployed workers

receive a daily unemployment bene…t, b (where it is assumed that b < w).

Employed workers commute to the CBD each day, and unemployed workers

also travel to the CBD to search for jobs. Hence all workers desire to be near

the CBD, and compete for residential land on this basis. This urban system

is thus characterized by two interdependent markets: a labor market in which

unemployed workers compete for jobs at the CBD, and a land market in which

all worker compete for land near to the CBD. We now model each of these

markets in turn, and then consider the relevant interactions between them.

2.1. The labor market

Since our focus is on the spatial behavior of workers and their match with

…rms, we cannot use directly the standard macroeconomic matching function

(Mortensen and Pissarides [26] and Pissarides [29]). Instead, we need to spell

out the micro scenario that leads to a well behaved matching function. For

that, the present labor market is based on the model of job-matching behavior

developed in Smith and Zenou [38], hereafter referred to as [SZ]. It is in fact

a variation of the standard urn-ball model where the system steady state is

approximated by an exponential-type matching function as the population

becomes large (see among others Hall [15], Pissarides [28], Blanchard and

Diamond [5]). Let us describe it more precisely.

In our model it is assumed that (i) jobs are completely specialized in terms

of skill requirements, and that (ii) workers are heterogeneous in terms of their

skill endowments. Thus job matching here constitutes a process whereby het-

erogeneous workers allocate themselves to jobs with di¤erent skill require-
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ments. Heterogeneity of workers does not here imply any superiority or in-

feriority among their abilities. Rather, all are assumed to possess the same

level of general human capital, which is manifested in a variety of di¤erent

skills (as for example college graduates with degrees in di¤erent …elds). Hence

all workers are assumed to have the same chance of being quali…ed for any

given job, as modeled by a common quali…cation probability; ° .

In this context, the actual job matching process can be described as follows.

At any point in time (time is discrete), each worker is either employed or un-

employed, and only unemployed workers are assumed to search for jobs. Since

individual jobs are completely specialized, their creation and closing can be re-

garded as independent events. In particular, job creations and job closings are

here modeled as a simple ‘birth and death’ process in which ‘births’ are gov-

erned by a job-creation rate, ¸ (denoting the mean number of jobs per worker

created each day) and ‘deaths’ are governed by a job-closure rate, ½ (denoting

the probability that any currently existing job will be closed on a given day).

This process is taken to depend on the general state of economy, and hence

is treated as exogenous to the labor market. As mentioned above, the daily

wage, w; is assumed to be the same for all jobs and (for sake of simplicity) is

here assumed to be given exogenously. As in [SZ], the behavioral day-to-day

scenario for the job market model on a given day, t , can be summarized as

follows:

² At the beginning of day t those unemployed workers currently seek-
ing work travel to the job market (CBD). All current job vacancies are

posted, and are o¤ered at the going wage w. Each searcher applies for a

single job. No additional prior information about jobs is available, and

there is no communication between searchers. Hence searchers choose

jobs at random, and more than one searcher may apply for the same job.

² As mentioned above, each job applicant has the same probability, °, of
satisfying all quali…cations for the given job. If more than one applicant is

quali…ed for a job, the employer chooses a quali…ed applicant at random.

Otherwise the job is not …lled on day t.

² At the end of day t each successful applicant is noti…ed, and is requested
to start work on the following day. In addition, decisions are made by

employers as to which jobs are no longer pro…table and should be closed.

For currently active jobs which are closed, layo¤ notices are distributed

to workers. Moreover, for jobs which are …lled that day and then closed,
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the successful (but unlucky) applicants are also given notices. Finally,

those currently vacant jobs which are closed are simply removed from

the postings at the beginning of the next day. As mentioned above, all

jobs (active or vacant) have the same chance, ½, of being closed on day

t.

² In addition, those new job opportunities which have arisen during the
day (at rate, ¸, per worker) are added to the vacant job postings for the

next day.

For the present it is assumed that the residential locations of all workers

(both employed and unemployed) are given. In this context, the key decision

problem for each unemployed worker is to determine his search intensity, s,

which we here take to be the fraction of days he travels to the CBD in search

of work. If the average value of this fraction over all unemployed workers

is designated as the mean search intensity, s, then on any given day, the

probability that a randomly sampled worker will appear at the job market is

by de…nition s. Hence if the unemployment pool is large, then it follows (from

the Weak Law of Large Numbers) that the fraction of unemployed workers

appearing at the market each day is well approximated by s. This system

parameter, s, is also assumed to be given for the present.

In this context, it is shown in [SZ] that if jobs creations are character-

ized by the birth-and-death process described above, then there is a unique

steady-state distribution of unemployment and job vacancy levels for each set

of parameters (½; ¸; s; °). Moreover as population size, N , becomes large, this

distribution converges in probability to its mean value, characterized by a

steady-state unemployment rate, u, (representing the fraction of workers un-

employed on each day), and steady-state vacancy rate, v, (representing the

number of vacant jobs per worker on each day). These steady-state values are

given by the unique solution of the following steady-state equations:4

v + (1¡ u) = ¸ =½ (2.1)

½ (1¡ u) = (1¡ ½) u s ph (2.2)

4This steady state equilibrium can be compared to that of the standard matching model
(Mortensen-Pissarides [26], Pissarides [29]), by noting that the Beveridge curve in their
model is very similar to our steady-state condition (2.2). However, we do not use the
standard free entry condition to close the labor market equilibrium but our steady-state
condition (2.1) results from the underlying birth-death process on vacancies.
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where the hiring probability, ph (i.e., the probability that a randomly sampled

job searcher will be hired on a given day) is given by:5

ph =
v

u s

£
1¡ e¡(°su=v)¤ (2.3)

In particular, it is shown that the limiting number of jobs per worker in the

system at steady state is given by ¸=½. Hence, noting that the number of active

jobs per worker is precisely the fraction of employed workers, 1¡ u, it follows
that equation (2.1) is simply an accounting identity relating the number of

vacant jobs and active jobs to total jobs per worker. Similarly, noting that

½ (1¡ u) is the number of active jobs per worker closed on a given day, and
that (1¡ ½) u s ph is the number of active jobs created on a given day (i.e., the
fraction of vacant jobs which are …lled and not closed), it follows that equation

(2.2) amounts simply to the requirement that the number of active jobs per

worker remain constant in the steady state (this equation corresponds to the

standard Beveridge curve in the matching literature). If we now let d = ¸
½
¡ 1,

and solve for v in (2.1) as

v = u+ d (2.4)

then (2.1) through (2.4) are seen to imply that the steady-state unemployment

rate, u, must satisfy the single equation

½ (1¡ u) = (1¡ ½) (u+ d)
³
1¡ e¡° su

u+d

´
(2.5)

In terms of our present notation, it is shown in [SZ] (Lemma A.2 and Theorem

1.2) that

Theorem 1 (Labor Market Steady State). For each mean search

intensity, s 2 [0; 1], there exists a unique solution, u(s), to (2.5). In addition,
u(s) a positive decreasing di¤erentiable function of s with u(0) = 1.

Notice in particular that there is always a positive unemployment rate

in the steady state, regardless of how many jobs are being created. This is

5This hiring probability corresponds to the following aggregate matching function:

m(u; v) = v
h
1¡ e¡(°su=v)

i
which has the standard properties (increasing in both its arguments and concave, and homo-
geneous of degree 1). Observe that the individual probability to …nd a job for a job seeker
with search intensity s is given by:

s ph =
s

s

m(u; v)

u
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a consequence of the frictional unemployment inherent in the job-matching

process itself. There is always some chance that an unemployed worker will

not be hired on a given day, regardless of how many jobs are available.

For our later purposes, it is also important to notice that one can solve for

s in terms of u in (2.5), and obtain the following explicit form for the inverse

function:

s = Ã(u) = ¡
µ
u+ d

°u

¶
ln

·
1¡

µ
½

1¡ ½
¶µ

1¡ u
u+ d

¶¸
(2.6)

This relation allows one to determine for each unemployment rate, u, the

unique mean search intensity level, s, which will support u as a steady state.

2.2. The land market

As stated in the introduction, all jobs are assumed to be located at the center

(CBD) of a large metropolitan area. In a manner similar to Smith and Zenou

[36], this metropolitan area is taken to be representable by a circular mono-

centric city, in which the CBD is the unique center of all business activity and

in which all commuting distances are measured as straight-line distances to

the CBD. Hence individual locations, x, are identi…ed with distances for the

CBD. In addition the city is assumed to be closed with …xed total population,

N .6 As in the labor market model above (which appealed to large-number

approximations), the population, N , is here treated as a continuum in which

the in‡uence of individual workers is vanishingly small. Residential land (here

synonymous with housing) is rented by workers from absentee landlords. In

the terminology of Fujita [12], the present model is thus a closed city model

under absentee land ownership with land intensity,

L(x) = 2¼x (2.7)

at each distance x from the CBD. A key point in this model is that individuals

are now free to consume any amount of land consistent with their budgets. This

relaxation is of particular importance in that it allows unemployed workers to

compete for locations near the CBD, by consuming small amounts of land (and

living in crowded conditions) if necessary.

As in the labor market model above, workers can in principle change em-

ployment states from day to day. Loss of employment involves a change in

6This implies in particular that there is no in-migration or out-migration from the city.
In addition, there are no births or deaths of workers, so that individuals are assumed to be
‘in…nitely lived’.
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income from the daily wage, w, to the daily unemployment bene…t, b, and visa

versa. Hence, given the prevailing rent gradient, R(x), at each location x, this

change of income and employment status may motivate individuals to change

their location (or at least in the amount of housing consumed at their current

location). All such changes are assumed to be instantaneous, and are gov-

erned only by individual utility-maximizing behavior.7 This decision problem

for newly unemployed workers is complicated by the fact that …nding a new job

will involve some level of search intensity, s. In the labor market setting above,

unemployed workers must travel to the CBD to …nd jobs, so that high levels of

search intensity require frequent trips to the CBD. This leads to a fundamental

trade-o¤ between short-run and long-run bene…ts of various location choices

for the unemployed. On the one hand, locations near the CBD are costly in

the short run (both in terms of high rents and crowded living conditions), but

allow higher search intensities which in turn increase the long-run prospects of

reemployment. Conversely, locations far from the CBD are more desirable in

the short run (low rents and uncrowded conditions) but allow only infrequent

trips to the CBD and hence reduce the long-run prospects of reemployment.

To model this basic trade-o¤, we begin by assuming that all workers have

identical preferences among consumptions bundles (q; z) of land (housing), q,

and composite good, z, representable by a log-linear utility

U(q; z) = q®z¯ (2.8)

with ®; ¯ > 0, where it is also assumed that ® + ¯ < 1.8 However the budget
7In particular, there are assumed to be no relocation costs, either in terms of time or

money. This is a simplifying assumption, which is quite standard in urban economics. It
implies that workers change location as soon as they change employment status. In the
context of labor markets in which workers tend to experience long unemployment spells
(for example black workers), it is a rather good approximation since, when workers become
unemployed, they will be less able to pay land rents and, after some time, they will have
to relocate in cheaper places. This assumption could be relaxed by assuming for example
that workers only care about their expected utility, i.e. the fraction of their lifetime spent
employed and unemployed (this is the case if the discount rate is equal to zero) so that,
whatever their employment status, they always stay in the same location. This will however
complicate the analysis without changing our main result on the relationship between search
intensity and distance to jobs.

8This property, which implies ‘diminishing marginal utility on rays’ [i.e., U(¸q; ¸z) <
¸U(q; z) for all ¸ > 0], insures that the optimal-search-intensity problem discussed below
has a di¤erentiable maximum. It is important to emphasize here that (unlike the standard
urban economic model) the utility function in (2.8) is necessarily cardinal in nature, so that
properties such as diminishing marginal utility on rays are behaviorally meaningful. See
footnote 9 below for further discussion of this point.
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constraints for employed and unemployed workers are di¤erent. Each employed

worker living at location, x, has the standard budget constraint

qR(x) + cx+ z = w (2.9)

where z is taken as the numeraire good with unit price, R(x), is the prevailing

(daily) rent per unit of land at x, and where c is the daily round-trip cost of

commuting to the CBD. However, an unemployed worker at x not only has a

di¤erent daily income, b, but also has di¤erent travel costs depending on his

chosen level of search intensity, s. Hence the relevant budget constraint for

each such unemployed worker is of the form

qR(x) + scx+ z = b (2.10)

where, for example, searching every other day (s = 1=2) would yield an average

daily travel cost of cx=2. If one denotes the unemployed state for workers by

‘0’, and the employed state by ‘1’, then maximizing utility (2.8) subject to

(2.9) yields the following land demand for employed workers at x:

q1(x) =
®

®+ ¯
¢ w ¡ cx
R(x)

(2.11)

Similarly, maximizing (2.8) subject to (2.10) yields the following land demand

for unemployed workers at x:

q0(x) =
®

®+ ¯
¢ b¡ s(x)cx

R(x)
(2.12)

We can now derive the following indirect utility

U1(x) = a(w ¡ cx)®+¯R(x)¡® (2.13)

for each employed worker at x, where a = [®=(® + ¯)]®[¯=(® + ¯)]¯ and the

following indirect utility

U0(s; x) = a(b¡ scx)®+¯R(x)¡® (2.14)

for each unemployed worker at x, where in this case s is now included as a

relevant choice variable.9

9At this point it should be noted that there is a basic di¤erence between the present
utility formulation and that in [SZ]. In that paper the basic utility tradeo¤ for all workers
was postulated to be in terms of income versus leisure time. In a spaceless world with no
travel costs, it can be argued that time costs represent the key variable cost in job search.
Such costs of course continue to be important when space is introduced. But in the present
model, we have endeavored to keep the framework as simple as possible by focusing only on
the travel costs associated with spatial job search. A more satisfactory approach would of
course encompass both types of costs (including the time spent in travel itself).
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3. Optimal search intensities in the city

To model the trade-o¤ outlined above, we focus on the decision problem for

an unemployed worker at location x who is currently considering his choice

of search intensity, s (which for simplicity can be regarded as the choice of a

roulette wheel to use each morning in deciding whether to search that day). To

weigh alternative choices, he must evaluate the expected future consumption

streams resulting from each choice of s. At each point of time in the future the

worker will be in one of two states: unemployed (0) or employed (1). Hence,

if we now assume that the present value of future consumption bundles for all

workers is representable by a common utility discount rate, ¾ 2 (0; 1), and if
we designate the expected discounted utility streams starting in each state as

the lifetime values, V0 and V1, of these states,10 then (by employing the same

arguments as in [SZ]) it can be shown that V0 and V1 satisfy the following

identities:11

V0 =

µ
1¡ e0
1¡ ¾

¶
U0 + e0 V1 (3.1)

V1 =

µ
1¡ e1
1¡ ¾

¶
U1 + e1 V0 (3.2)

where

e0 =
s¾ ph

1¡ ¾ + s¾ ph (3.3)

10To be more precise, preferences over consumption streams, i.e., sequences of daily con-
sumption bundles, ! = [(qt; zt) : t = 1; 2; :::], are taken to be representable by a discounted
utility function of the form V (!) =

P
t ¾

tU(qt; zt), where U is the utility in (2.8). Behavioral
conditions for the existence of such representations (including ‘impatience’ for consumption
and ‘time stationarity’ of preferences) are given in Koopmans [23]. Of particular importance
for our present purposes is uniqueness of these representations: the behavioral discount rate,
¾, is unique, and the consumption utility, U , is unique up to a linear transformation. Hence
utility is necessarily cardinal in nature, and in fact, has the same measurement status as
money [if it is assumed that U(0; 0) = 0, as in (2.8)]. It is thus perfectly meaningful to
treat V (!) as the realization of a well de…ned random variable, V , with di¤erent conditional
distributions depending on the initial employment status of the worker. Hence the lifetime
values, V0 and V1, are the corresponding conditional means of V given initial states ‘0’ and
‘1’, respectively.
11It is easy to see that (3.1) and (3.2) correspond to the two following more intuitive

Bellman equations:
V0 = U0 + ¾ [s phV1 + (1¡ s ph)V0]
V1 = U1 + ¾ [½V0 + (1¡ ½)V1]
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e1 =
¾ ½

1¡ ¾ + ¾ ½ (3.4)

(and where dependence of the V ’s and U ’s on x and s is suppressed).

By substituting [(3.3),(3.4)] into [(3.1),(3.2)] and solving these equations

simultaneously, one may express V0 and V1 in terms of U0 and U1 as follows:

V0 =
(1¡ ¾ + ¾½)U0 + (s¾ph)U1
(1¡ ¾)(1¡ ¾ + ¾½+ s¾ph) (3.5)

V1 =
(1¡ ¾ + s¾ph)U1 + (¾½)U0
(1¡ ¾)(1¡ ¾ + ¾½+ s¾ph) (3.6)

Returning to our basic decision problem, suppose that an unemployed

worker at x is currently reconsidering his search intensity level, s. To charac-

terize his optimal choice of s as an equilibrium condition, it is convenient to

assume that the system is in steady state with some mean search intensity,

s. Associated with this mean intensity level is a steady-state hiring probabil-

ity (2.3) which we again denote by ph = ph (s). In addition, we also assume

that the current lifetime values, V0 and V1, of both employed and unemployed

workers are constant at all locations (as they must be in equilibrium to ensure

that no workers are motivated to relocate). In addition we note that w > b

implies desirability of employment, and hence that V1 > V0 in equilibrium.

Under these conditions, we ask whether there is some choice of s for the un-

employed worker at x which will improve his current lifetime value, i.e. for

which V0(s; x) > V0. Assuming that perturbations in the search intensity, s, of

this single individual cannot in‡uence population values, we may treat both

ph and V1 as constants in this decision problem. However, U0 and e0 are seen

from (2.14) and (3.3) to be directly in‡uenced by the choice of s. Hence it fol-

lows from these expressions, together with (3.1), that worker’s lifetime value,

V0(s; x), can be written as:

V0 (s; x) =

µ
1¡ e0 (s)
1¡ ¾

¶
U0 (s; x) + e0 (s) V1

=
a(b¡ scx)®+¯R(x)¡® + ¾ ph s V1

1¡ ¾ + ¾ ph s (3.7)

Finally, to rule out the possibility of a zero level of optimal search intensity,

we assume that some minimal amount of travel to the CBD is required (for

purchase of the composite good, z), and hence that there is always some in-

centive for unemployed workers to live in the city.12 Assuming that w > b and

12If the optimal search intensity for an unemployed worker were zero, then since unem-
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that all search costs other than travel are zero, it then follows that unemployed

workers are motivated to apply for jobs on every visit to the CBD. Hence there

is a correspondingminimal search intensity level, which we denote by s0 > 0.13

The relevant decision problem for this unemployed worker is thus to choose

a value of s 2 [s0; 1] which maximizes (3.7). Observe also from (2.14) that

positive utility is only achievable with positive net income, b ¡ scx, so that
location choices, x, must always be restricted to the interval [0; b

s0c
) . We have

the following result:

Proposition 1 (Optimal Search Intensities).

² At each location x, there is a unique search intensity s that maximizes
(3.7).

² For any prevailing hiring probability, ph, and constant lifetime values,
V0; V1, the optimal search intensity function, s(x), for unemployed work-

ers is given for each location, x 2 [0; b
s0c
);by

s(x) =

8>><>>:
1 for x · x(1)
®+¯

1¡(®+¯)
h

b
(®+¯)cx

¡ (1¡¾)V0
¾ ph(V1¡V0)

i
for x(1) < x < x(s0)

s0 for x ¸ x(s0)
(3.8)

where

x(s) =
b

sc
¢ s¾ ph (V1 ¡ V0)
(®+ ¯)(1¡ ¾)V0 + [1¡ (®+ ¯)]s¾ ph (V1 ¡ V0) (3.9)

Proof. See section A.1 in the Appendix.
The following comments are in order. First, using the …rst order condition

(A.3) in the Appendix, we can easily see the trade o¤ faced by the unemployed

when they decide their optimal search intensity level. The left hand side is the

short-run utility loss from a marginal increase in search intensity, and the right

hand side is the corresponding long-run utility gain from future employment.

Indeed, on the one hand, there is a direct and short-run cost of searching more

ployment bene…ts are taken to be exogenous, there would be no incentive to stay in the
city.
13We note in passing that the existence of a minimal positive search intensity, s0, implies

that the steady-state mean search intensity, s, can be no less that s0, and hence must also
be positive.
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today ¡@U0(s; x)=@s since it implies higher commuting costs14 and a lower
housing consumption, and thus lower instantaneous utility. On the other,

there is a long-run gain of searching more today ¾ ph [V1 ¡ V0 (s; x)] since it
increases the marginal chance to obtain a job (remember that the individual

probability to obtain a job is s ph) and the corresponding life-time surplus of

being employed. This leads to a fundamental trade-o¤ between short-run and

long-run bene…ts of various location choices for the unemployed. Indeed, loca-

tions near the CBD are costly in the short run (both in terms of high rents and

low housing consumption), but allow higher search intensities which in turn

increase the long-run prospects of reemployment. Conversely, locations far

from the CBD are more desirable in the short run (low rents and high housing

consumption) but allow only infrequent trips to the CBD and hence reduce the

long-run prospects of reemployment. Therefore, for workers residing further

away from the CBD (x ¸ x(s0)), it is optimal to spend the minimal search

e¤ort s0 whereas it is the contrary (s = 1) for workers residing close to jobs

(x · x(1)). Second, this result sheds some light on the spatial mismatch hy-
pothesis. Indeed, as stated in the introduction, distance to jobs is here harmful

because it decreases search intensity. Workers who live further away from jobs

spend minimal search e¤ort because the short-run gains (low rent and large

housing consumption) outweight the long-run gains (higher probability to …nd

a job). Third, from (3.8), it is clear that s(x) is continuous, nonincreasing,

and strictly decreasing on [x(1); x(s0)] (as shown in the top half of Figure 1).

Over the decreasing range in particular, this function embodies the contin-

uous trade-o¤ described above. The optimal search intensity s(x) decreases

at locations further from the CBD, as unemployed workers compensate for

losses in long-run job prospects by short-run gains in net income (maintaining

a constant lifetime value level, V0). Finally, if we take the value of s(x) for

interior locations, i.e. for x(1) < x < x(s0), it is easy to verify that it varies

negatively with commuting costs c and the lifetime value of the unemployed

V0, and positively with the hiring probability ph and the lifetime value of the

employed V1. The intuition is straightforward since when c or V0 is high and

when ph or V1 is low, then workers reduce their search e¤ort since either costs

of searching are too high or the rewards of searching are too low. Concerning

the discount rate ¾, one can verify that it is positively correlated with s(x) so

that putting more weight on today’s gain increases search intensity.

14Commuting costs have to be taken here in a broader sense as long as it measures access
to employment activities. For example, including time commuting costs in our framework
will imply that the marginal cost of an increased search leads to a reduced leisure time.
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Is this result consistent with empirical studies? In fact, most studies have

shown that workers’ search intensity is negatively related to their residential

distance to jobs. For example, Seater [34] has found that workers searching

further away from the residence are less productive than those who search

closer to where they live. Barron and Gilley [7] and Chirinko [10] have also

found that there are diminishing returns to search when people live far away

from jobs. Rogers [31] has also demonstrated that access to employment is a

signi…cant variable in explaining the probability of leaving unemployment.

[Insert Figure 1 here]

4. The di¤erent urban land use equilibria

So far, we have determined the optimal search intensity of the unemployed at

each location in the city. The key question now is how the urban land use

equilibrium looks. In other words, knowing this function s(x), where do the

unemployed and the employed locate in the city? The basic trade-o¤ for the

employed is between commuting costs and housing consumption whereas for

the unemployed, it is between commuting/search costs, housing consumption

and search intensity (and thus the duration of unemployment). In order to

determine the urban land use equilibrium, we have to de…ne the bid rent

function of each group of workers.15

4.1. Bid rents and locational equilibrium patterns

Given the utilities and lifetime values above, we now de…ne the equilibrium

bid-rents which are possible for any set of equilibrium values (ph; V0; V1) with

V1 > V0. Turning …rst to employed workers, we may observe from (3.2) and

(3.4) that their equilibrium utility level, U1, is constant over locations, and is

given by

U1 =

µ
1¡ ¾
1¡ e1

¶
(V1 ¡ e1V0)

= (1¡ ¾)V1 + ¾½(V1 ¡ V0) (4.1)

Hence it follows from the form of the indirect utility in (2.13) that the relevant

bid rent function, R1(x), for employed workers at each location, x 2 [0; wc ), is
15The bid rent is a standard concept in urban economics. It indicates the maximum land

rent that a worker located at a distance x from the CBD is ready to pay in order to achieve
the equilibrium utility level of his/her group.
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given by the relation:

a(w ¡ cx)®+¯R1(x)¡® = U1 = (1¡ ¾)V1 + ¾½(V1 ¡ V0)

) R1(x) =

·
a(w ¡ cx)®+¯

(1¡ ¾)V1 + ¾½(V1 ¡ V0)
¸ 1
®

(4.2)

The bid rent function for unemployed workers is considerably more complex,

in that it depends on the optimal search intensity level at each location. To

specify this function observe …rst from (3.1) and (3.3) that the equilibrium

utility, U0(x), at each location, x 2 [0; b
s0c
) is given [in a manner paralleling

(4.1)] by

U0(x) =

µ
1¡ ¾

1¡ e0(x)
¶
(V0 ¡ e0(x)V1)

= (1¡ ¾)V0 ¡ s(x)¾ph(V1 ¡ V0) (4.3)

Hence the indirect utility in (2.14) yields the following bid rent function, R0(x),

for unemployed workers at each location, x 2 [0; b
s0c
):

a[b¡ s(x)cx]®+¯R0(x)¡® = U0(x) = (1¡ ¾)V0 ¡ s(x)¾ph(V1 ¡ V0)

) R0(x) =

·
a[b¡ s(x)cx]®+¯

(1¡ ¾)V0 ¡ s(x)¾ph(V1 ¡ V0)
¸ 1
®

(4.4)

where s(x) is given by (3.8) above. [An instance of this (piecewise continuously

di¤erentiable) bid rent function is shown in the bottom half of Figure 1, where

the curve represents a typical ‘slice’ through the two-dimensional rent surface].

It should be clear that the bid rents are calculated such that the lifetime

utilities of both the employed and the unemployed workers, respectively, V1
and V0, are spatially invariant. Compare for example an unemployed worker

residing close to jobs and another unemployed worker living far away from jobs.

The former has a lower search (commuting) cost and a higher chance to …nd a

job but consume less land whereas the latter has a higher search (commuting)

cost and a lower chance to …nd a job but consume more land. The bid rent

de…ned by (4.4) exactly compensates these di¤erences by ensuring that these

two workers obtain the same lifetime utility V0. This is not true for the current

utility of the unemployed U0(x) because, as can be seen in (4.3), the land rent

does not compensate for s(x). In fact, the unemployed residing close to jobs

have a lower current utility than the ones living far away from jobs because

they provide more search intensity (indeed, using (4.3), it is easy to see that

U 00(x) > 0). However, because they provide more search intensity, they have
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a higher chance to …nd a job, and thus in the long-run they compensate the

short-run disadvantage so that all unemployed workers obtain V0.

If there is also postulated to be an exogenous level of agricultural rent (or

opportunity rent), RA, which is uniform in space, then it follows by standard

competitive arguments land at each location is assigned to the highest bidder.

This implies in particular that the equilibrium land rent function, R(x), must

be given at all locations, x, by

R(x) = maxfR0(x); R1(x); RAg (4.5)

In addition, land at x can only be occupied by workers (employed or unem-

ployed) if their bid rents are maximal. More precisely, if the population densi-

ties of employed workers and unemployed workers at x are denoted respectively

by ´1(x) and ´0(x), then at equilibrium we must have

´i(x) > 0) Ri(x) = R(x) ; i = 0; 1 (4.6)

Finally, we have the usual ‘land capacity’ condition that no more land be

consumed than is available, and ‘land …lling’ condition that all land with rents

higher than agricultural rent must be occupied by workers. To state these

conditions precisely, observe that, from above, the optimal land demand for

employed workers at x is given by (2.11) whereas the optimal land demand for

unemployed workers at x is given by (2.12), [with s = s(x)]. In terms of these

land demands, the land capacity condition and land …lling condition take the

respective forms [see for example in Fujita (1989, p.102)]

q0(x)´0(x) + q1(x)´1(x) · L(x) (4.7)

R(x) > RA ) q0(x)´0(x) + q1(x)´1(x) = L(x) (4.8)

where L(x) = 2¼x. Conditions [(4.6),(4.7)(4.8)] can be given a sharper form

in the present model as we now show.

4.2. Classi…cation of equilibrium land use patterns

With the non-linear bid rents de…ned by (4.2) and (4.4), di¤erent urban con…g-

urations can emerge. Indeed, the land market being perfectly competitive, all

workers propose di¤erent bid rents at di¤erent locations and (absentee) land-

lords allocate land to the highest bids. So depending on the di¤erent steepness

of the bid rents (as captured by their slopes), at each location, the employed

can outbid the unemployed or can be outbidden by the unemployed. An ex-

ample of the equilibrium rent function de…ned by (4.5) is shown in Figure 2.
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In particular, this …gure illustrates a case where unemployed workers occupy

both a central core of locations and a peripheral ring of locations about the

CBD, separated by an intermediate ring of employed workers. Other urban

con…gurations may also emerge. For example, the unemployed can occupy the

core of the city and the employed the suburbs. The reverse pattern may also

prevail. Since we want to focus on interesting urban con…gurations in which

the unemployed workers can outbid the employed workers for peripheral land

in equilibrium, we assume

w <
b

s0
(4.9)

Because this possibility is of considerable interest for our present purposes, we

shall assume (4.9) throughout the analysis to follow.16

But while (4.9) does allow for this possibility, it is by no means su¢cient.

Hence the main result of this section is to show that the conditions above imply

that in equilibrium there are exactly three possible locational con…gurations

of workers:

Theorem 2 (Equilibrium Location Patterns). In equilibrium there are
exactly three possible locational patterns:
(i) a central core of unemployed surrounded by a peripheral ring of employed,
(ii) a central core of employed surrounded by a peripheral ring of unemployed,
(iii) both a central core and peripheral ring of unemployed separated by an

intermediate ring of employed.

Proof. See section A.2 in the Appendix.

This theorem shows that, in a framework where workers’ search intensity is

location dependent (see Proposition 1), di¤erent urban equilibrium con…gura-

tions can emerge. In the …rst one (i), referred to as the Integrated Equilibrium,

the unemployed reside close to the CBD, have high search intensities and ex-

perience short unemployment spells. In the second one (ii), referred to as the

Segregated Equilibrium, the employed occupy the core of the city and bid away

the unemployed in the suburbs. In this case, the latter tend to stay unem-

ployed for a longer time since their search intensity is quite low. Finally, the

third case (iii), referred to as the Core-Periphery Equilibrium, is when there

16Observe that if one relaxes condition (4.9) and instead assumes w > b=s0, then it strongly
restricts the set of urban equilibria since the equilibrium that is more likely to prevail is the
one where the unemployed reside close to jobs and the employed at the periphery of the city.
If condition (4.9) holds, then the analysis is much more richer since three types of urban
equilibria can emerge, including the one described above.
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are two categories of unemployed: the short-run ones who reside close to jobs

and the long-term ones who live at the periphery of the city (see Figure 2).

In Wasmer and Zenou [41] where the relationship between search e¤ort

and distance to jobs is assumed instead of being derived (like here), only two

equilibria can emerge: (i) and (ii). We would thus like now to study the third

type of equilibrium, the core-periphery equilibrium, since it has not yet been

investigated, even though it is quite relevant. Furthermore, this equilibrium

encompasses the two other ones since the …rst equilibrium (i) is a limiting case

of the core-periphery equilibrium when xp = xf (xp is the border between the

employed and the long term-unemployed workers, and xf is the city-fringe;

see Figure 2) while the second equilibrium (ii) is a limiting case of the core-

periphery equilibrium when xc = 0 (xc is the border between the short-run

unemployed and the employed workers; see Figure 2).

The key question is to see under which conditions what equilibrium prevails.

Since we know from (4.2) and (4.4) that both bid rents R1(x) and R0(0) are

continuous, twice di¤erentiable, decreasing and convex, we have:

(1) If R1(0) > R0(0) and R1(xf) < R0(xf ), then there is a unique Segre-

gated Equilibrium (ii);

(2) IfR1(0) < R0(0) andR1(xf) > R0(xf ), then there is a unique Integrated

Equilibrium (i);

(3) If R1(0) < R0(0), R01(0) < R
0
0(0) and R1(xf ) < R0(xf), then there is a

unique Core-Periphery Equilibrium (iii).

Of course, because it is so cumbersome (since xf , V0, V1, ph and ½ are all

endogenous variables), the exact conditions on the exogenous parameters are

impossible to determine analytically. We have here implicit conditions that

link endogenous and exogenous variables.

Let us now focus on the more general equilibrium (iii) (since the others

are just a particular case of (iii)). We will characterize it, shows its existence

and uniqueness.

[Insert Figure 2]

5. The Core-Periphery equilibrium

To de…ne the core-periphery equilibrium, we …rst collect all the relevant para-

meters for the problem. For any probabilities, ½; ¾; °; s0 2 (0; 1), and scalars,
¸; ®; ¯; b; w; c;N;RA > 0 with ® + ¯ < 1 and s0w < b < w, we may de…ne

an admissible parameter vector, µ = (½; ¾; °; s0; ¸;N; ®; ¯; b; w; c;RA). Next,
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for any given lifetime values, V0; V1, with V1 > V0, and hiring probability,

ph 2 (0; 1), we de…ne the following set of functions. First, let the function s
be de…ned by (3.8) with ranges, x(1) and x(s0), given by (3.9). In terms of s

and (V0; V1; ph), we may then de…ne the additional functions, U0; R0; R1;and R;

respectively by (4.3), (4.4), (4.2), (4.5). Using R0; R1; and R, we next de…ne

the indicator functions, ±i; i = 0; 1, specifying the relevant regions occupied by

unemployed and employed workers, respectively:

±i(x) =

(
1 ; Ri(x) = R(x)

0 ; otherwise
; i = 0; 1 (5.1)

It should be noted that the validity of this characterization of the location

pattern is made possible by the more technical version of Theorem 2 proved in

the Appendix (Theorem A.1 plus Lemma 5) which shows that these indicator

functions are ambiguous only on a set of measure zero [i.e., that the equality

R0(x) = R1(x) holds only on a set of measure zero in the interval of relevant

distances, x]. Hence one can now sharpen the general set of locational equilib-

rium conditions [(4.6),(4.7),(4.8)] above by noting in the present case that at

almost every distance, x, at most one of the population densities, ´0(x) and

´1(x), can be positive. Hence, by substituting (2.11) and (2.12) into (4.8), and

observing that by de…nition, Ri(x) = R(x) i¤ ±i(x) = 1, it follows that the

appropriate population densities, must have the form

´0(x) =
L(x)

q0(x)
= 2¼x

µ
®+ ¯

®

¶
R0(x)

b¡ s(x)cx (5.2)

´1(x) =
L(x)

q1(x)
= 2¼x

µ
®+ ¯

®

¶
R1(x)

w ¡ cx (5.3)

At this point, it is important to reiterate that all of the above functions are

completely de…ned by the lifetime values, V0; V1, and hiring probability, ph.

With these functions, we can now give a formal general de…nition of equilibrium

as follows:

De…nition 1 (General). For any admissible parameter values,
µ = (½; °; s0; ¸;N; ¾; ®; ¯; b; w; c; RA), a nonnegative vector » = (V0; V1; ph; u; s;N0; N1)

is said to be an equilibrium for µ i¤ » satis…es the following …ve conditions

[where d = 1 ¡ ¸
½
; and where the functions (s; U0; R0; R1; R; ±0; ±1; ´0; ´1) are

given by the constructions above]:

ph =
u+ d

us

³
1¡ e¡° us

u+d

´
(5.4)

½(1¡ u) = (1¡ ½)usph (5.5)
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s =
1

N0

Z
s(x)±0(x)´0(x)dx (5.6)

Ni =

Z
±i(x)´i(x)dx ; i = 0; 1 (5.7)

N = N0 +N1 (5.8)

The …rst two conditions follow from [(2.3),(2.4),(2.5)] and de…ne the labor

market steady state, given the mean search intensity, s. Condition (5.6) de…nes

s in terms of the search intensities, s(x), and population densities, ´0(x), at

each location x occupied by unemployed workers [i.e., with ±0(x) = 1]. Finally,

condition (5.7) de…nes the population totals for employed and unemployed

workers, together with the accounting condition (5.8) that all workers are

either employed or unemployed.17

While this de…nition is conceptually quite simple in that it gives a …nite-

dimensional characterization of equilibrium [in terms of the scalar variables

(V0; V1; ph; u; s;N0; N1)], it is not very tractable analytically. In particular,

indicator functions such as ±0 and ±1 are di¢cult to analyze in practice. How-

ever, by employing Theorem 2 (and its more technical counterpart, Theorem

A.1 in the Appendix), one can give a more explicit characterization of these

indicator functions. In particular, it follows from Theorem 2 that employed

workers will always live in a single connected ring, and hence that the positive

support of the indicator function, ±1, must be closed interval, [xc; xp], with end

points given by18

xc = minfx ¸ 0 : ±1(x) > 0g (5.9)

xp = maxfx ¸ 0 : ±1(x) > 0g (5.10)

In addition, it follows that unemployed workers will live in at most two distinct

rings, the …rst given by [0; xc] and the second by [xp; xf ], where xf is the frontier

location (or city edge) as characterized by

xf = minfx ¸ 0 : R(x) = RAg (5.11)

Hence, in the present case, it is possible to remove the indicator functions

above, and replace [(5.6),(5.7)] by a more explicit set of conditions involving

only the density functions (´0; ´1) and the boundary variables (xc; xp; xf).

17Note that the bid-rent and population density conditions [(4.5),(4.6),(4.7),(4.8)] stated
above are not made explicit in this formulation, but rather are implicit in the de…nitions of
the indicator functions, ±0 and ±1.
18Given the possibility of ‘trivial intersection points’ (as in Lemma 5 of the appendix),

a more techically correct version of these conditions would be to replace ‘min’ in (5.9) by
‘essential in…mum’ and ‘max’ in (5.10) by ‘essential supremum’.
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This plan is now carried out for an important subclass of equilibria (the

core-periphery ones), which illustrate all the main features of the above model,

and which are su¢ciently tractable to allow a detailed analysis of equilibria.

The equilibrium bid-rent con…guration shown in Figure 2 yields a simple type

of core-periphery location pattern. Notice in particular that there are only

two search intensity levels for unemployed workers: all unemployed workers

in the central core search with full intensity, s = 1, and all in the peripheral

ring search with minimum intensity, s = s0. These constant-search-intensity

patterns are particularly easy to analyze, as should be evident from (3.8).

Moreover, Theorem 2 shows that essentially all equilibrium properties of the

system can be studied in terms of these simple cases. For in the other two

possible locational patterns, it is clear that so long as the equilibrium bid-rent

curves, R0 and R1, do not cross in the region [x(1); x(s0)], only maximal and

minimal search intensities will be involved. Moreover, the case illustrated in

Figure 2, where the region [x(1); x(s0)] is shown to be relatively small, is in

fact quite typical. This assertion is supported by the following result, which

shows that if utility is ‘almost linearly homogeneous’ in the sense that ® + ¯

is close to one, then the interval [x(1); x(s0)] is necessarily very small:

Proposition 2. If ®+ ¯ ¼ 1; then in equilibrium jx(1)¡ x(s0)j ¼ 0.

Proof: It is enough to observe from (3.9) that for any given lifetime values
and hiring probability (V0; V1; ph), the locations x(1) and x(s0) have a common

limiting value, b
c
¾ph(Vi¡V0)
(1¡¾)V0 , as ®+ ¯ ! 1:

Hence if diminishing marginal utility (along rays) is su¢ciently small, then

equilibrium can be safely assumed to involve only maximal and/or minimal

search intensities for unemployed workers.

With these observations, we now restrict attention to the constant-search-

intensity case. In particular, we focus on the class of core-periphery equilibria,

which involve both constant maximal search intensity in a central unemploy-

ment core [0; xc], and minimal search intensity in a peripheral unemployment

ring [xp; xf ]. The other two equilibrium possibilities (equilibria (i) and (ii))

with constant search intensities can then be regarded as limiting cases in which

either xc = 0 or xp = xf .

Our …rst objective is to give a formal de…nition of core-periphery equilib-

ria which specializes the general de…nition above, and which allows a more

detailed analysis of both existence and uniqueness properties. To do so, we
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…rst observe from (4.3) that in equilibrium, U0(x) ´ U0[s(x)], so that each

region with constant search intensity must necessarily involve constant utility.

For unemployed workers in the core region (with s = 1), this equilibrium core

utility level, U0, must satisfy

U c0 = (1¡ ¾)V0 ¡ ¾ph(V1 ¡ V0) (5.12)

and for those in the peripheral region (with s = s0), the corresponding periph-

eral utility level, which we denote by Up0 , must satisfy

Up0 = (1¡ ¾)V0 ¡ s0¾ph(V1 ¡ V0) (5.13)

Moreover, by evaluating (3.5) at both s = 1 and s = s0, we obtain the identity

(1¡ ¾ + ¾½)U c0 + (¾ph)U1
1¡ ¾ + ¾½+ ¾ph =

(1¡ ¾ + ¾½)Up0 + (s0¾ph)U1
1¡ ¾ + ¾½+ s0¾ph (5.14)

which can be solved for Up0 to yield

Up0 = ¿ (ph)U
c
0 + [1¡ ¿(ph)]U1 (5.15)

where

¿ (ph) =
(1¡ ¾ + ¾½) + s0¾ph
(1¡ ¾ + ¾½) + ¾ph 2 (0; 1) (5.16)

It is worth noting at this point that since w > b of course implies that U1 > U c0
in equilibrium, and since the positivity of steady-state unemployment levels, u

(Theorem 1) implies from (5.4) that steady-state hiring probabilities, ph, are

always positive, it follows from the convex combination in (5.15) that in every

core-periphery equilibrium one must have

U c0 < U
p
0 < U1 (5.17)

This again underscores the essential di¤erence between unemployed workers

in the central core and those in the periphery. Those in the central core are

giving up short-run utility for long-run utility gains. Hence, if the lifetime

value, V0, of all unemployed workers is the same, then the short-run utility

of those in the periphery must be greater than for those in the central core.

These constant utility levels (U c0 ; U
p
0 ; U1) will also turn out to be more useful

for analysis than the more general lifetime values (V0; V1). Hence the present

equilibrium conditions will be developed in terms of (U c0 ; U
p
0 ; U1).

Next we observe that the (outer) core boundary point, xc, and the (inner)

peripheral boundary point, xp, can now be characterized as intersections be-

tween these constant-utility curves as follows. First observe that since the bid

25



rent for core unemployed workers and employed workers must be the same at

xc, it follows from (2.13) and(2.14) that in equilibrium,

U c0
U1
=

µ
b¡ cxc
w ¡ cxc

¶®+¯
(5.18)

Similarly, since the bid rent for peripheral unemployed workers and employed

workers must be the same at xp, it also follows from (2.13) and (2.14) that in

equilibrium,
Up0
U1
=

µ
b¡ s0cxp
w ¡ cxp

¶®+¯
(5.19)

A …nal consequence of these constant utility levels is to yield more explicit

expressions for the population densities in (5.2) and (5.3). First, by solving for

rent R(x) in (2.13) and substituting this into (2.11) it follows from (5.3) that

the equilibrium employment density, ´1(x), is now given for all x 2 [xc; xp] by

´1(x) = 2¼x

µ
®+ ¯

®

¶µ
a

U1

¶ 1
®

(w ¡ cx) ¯® (5.20)

Similarly, by setting s(x) = 1, solving for R(x) in (2.14), and substituting

this into (2.12), it follows from (5.2) that the equilibrium core unemployment

density, ´c0(x), is given for all x 2 [0; xc] by

´c0(x) = 2¼x

µ
®+ ¯

®

¶µ
a

U c0

¶ 1
®

(b¡ cx) ¯® (5.21)

The same procedure with s(x) = s0 also yields the equilibrium peripheral

unemployment density, ´p0(x), de…ned for all x 2 [xp; xf ] by

´p0(x) = 2¼x

µ
®+ ¯

®

¶µ
a

Up0

¶ 1
®

(b¡ s0cx)
¯
® (5.22)

Given these population densities and corresponding boundary points, it fol-

lows that the integrals in (5.7) can now be calculated explicitly. In particular,

if N1 again denotes the equilibrium employment level, and if N c
0 and N

p
0 now

denote the equilibrium core unemployment level and peripheral unemployment

level, respectively, then N c
0 can be calculated explicitly as

N c
0 =

Z xc

0

´c0(x)dx

= 2¼

µ
®+ ¯

®

¶µ
a

U c0

¶ 1
®
½
¡
µ

®xc
c (®+ ¯)

¶
(b¡ cxc)

®+¯
® +µ

®

c (®+ ¯)

¶µ
®

c (2®+ ¯)

¶h
b
2®+¯
® ¡ (b¡ cxc)

2®+¯
®

i¾
(5.23)
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Similarly, N1 is now given by:

N1 =

Z xp

xc

´1(x)dx

= 2¼

µ
®+ ¯

®

¶µ
a

U1

¶ 1
®
½µ

®xc
c (®+ ¯)

¶
(w ¡ cxc)®+¯® ¡µ

®xp
c (®+ ¯)

¶
(w ¡ cxp)

®+¯
® +

µ
®

c (®+ ¯)

¶µ
®

c (2®+ ¯)

¶
¢h

(w ¡ cxc)
2®+¯
® ¡ (w ¡ cxp)

2®+¯
®

io
(5.24)

and Np
0 is given by:

Np
0 =

Z xf

xp

´p0(x)dx

= 2¼

µ
®+ ¯

®

¶µ
a

Up0

¶ 1
®
½µ

®xp
s0c (®+ ¯)

¶
(b¡ s0cxp)

®+¯
® ¡µ

®xf
s0c (®+ ¯)

¶
(b¡ s0cxf)

®+¯
® +

µ
®

s0c (®+ ¯)

¶µ
®

s0c (2®+ ¯)

¶
¢h

(b¡ s0cxp)
2®+¯
® ¡ (b¡ s0cxf)

2®+¯
®

io
(5.25)

Given these equilibrium population levels, we next observe that the sin-

gle most important simpli…cation made possible by present constant-search-

intensity hypothesis is the determination of the equilibrium mean search in-

tensity level, s. In particular, since the relevant search intensity function s(x)

has only two values, it now follows that equilibrium condition (5.6) can be

replaced by the much simpler form

s =
N c
0 + s0N

p
0

N c
0 +N

p
0

(5.26)

Hence the steady-state model of the labor market can be completely speci…ed

in terms of the three population variables (N c
0 ;N

p
0 ; N1). In particular, since

the equilibrium unemployment rate, u, is given by

u =
N c
0 +N

p
0

N
=
N ¡N1
N

(5.27)

it follows that the inverse relation in (2.6) now yields a single equilibrium

condition relating N c
0 and N

p
0 :

N c
0 + s0N

p
0

N c
0 +N

p
0

= Ã

µ
N ¡N1
N

¶
(5.28)
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This, together with the accounting identity

N c
0 +N

p
0 +N1 = N (5.29)

allows one to determine unique values of N c
0 andN

p
0 for each employment level,

N1. In addition, by substituting (5.26) and (5.27) into (5.4) it follows that the

hiring probability ph can then be determined as

ph =
N c
0 + s0N

p
0

N c
0 +N

p
0 +Nd

Ã
1¡ e¡°

Nc0+s0N
p
0

Nc0+N
p
0+Nd

!
(5.30)

To complete the equilibrium conditions for the present core-periphery case,

recall that the boundary points, (xc; xp; xf) must satisfy certain additional

consistency conditions. First, it follows by hypothesis that full search intensity,

s = 1, is optimal for core unemployed workers, and hence from (3.8) that the

core boundary point, xc, must satisfy

xc · x(1) (5.31)

Similarly, minimal search intensity, s = s0, is assumed to be optimal for pe-

ripheral unemployed workers, so that the peripheral boundary point, xp, must

satisfy

xp ¸ x(s0) (5.32)

Finally, it also follows by de…nition that bid rent for peripheral unemployed

workers must equal the agricultural rent, RA, at the frontier location, xf .

Hence, by letting x = xf , s(x) = s0, and U0(x) = Up0 in (2.14) [or (4.4)] it

follows that at the frontier location we must have

RA =

µ
a

Up0

¶ 1
®

(b¡ s0cxf)
®+¯
® (5.33)

This completes the set of equilibrium conditions for the core-periphery case.

Hence we have:

De…nition 2 (CP-Equilibrium). For any admissible parameter vector, µ =
(½; °; s0; ¸;N; ¾; ®; ¯; b; w; c; RA), a vector of values, » = (N c

0 ; N
p
0 ; N1; ph; U

c
0 ; U

p
0 ; U1;

xc; xp; xf), is said to be a core-periphery (CP) equilibrium for µ i¤ condi-

tions [(5.15),(5.18),(5.19),(5.23), (5.24),(5.25),(5.28),(5.29),(5.30),(5.31),(5.32),(5.33)]

are satis…ed.

Given this de…nition, we are now able to show the existence and the unique-

ness of the core-periphery (CP) equilibrium. The proofs of the existence and
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uniqueness of the core-periphery equilibrium are quite complex since they in-

volve two markets that are totally integrated. We have …rst the following

uniqueness property of core-periphery equilibria (proved in section A.3 in the

Appendix):

Theorem 5.1 (Uniqueness of CP-Equilibria). For each vector of admis-
sible parameters, µ = (½; °; s0; ¸;N; ¾; ®; ¯; b; w; c;RA), there is at most one

CP-equilibrium for µ.

Furthermore, the existence of a core-periphery equilibrium is established

by the following result (proved in section A.3 in the Appendix):

Theorem 5.2 (Existence of CP-Equilibria). For any admissible parame-
ters, bµ = (½; °; s0; ¸;N; ¾; ®; ¯; w; c); and any b 2 (bb; w) in Proposition 7 with
corresponding minimal and maximal equilibria, »(bµ; b), »(bµ; b), there exists
for each agricultural rent level, RA, in the interval (A.171) a unique CP-

equilibrium for µ = (bµ; b; RA).
6. Discussions and policy implications

In our model, there is room for policies because, as in the standard search-

matching literature (Mortensen and Pissarides [26], Pissarides [28]), market

failures are caused by search externalities. There are in fact two types of

search externalities: negative intra-group externalities (more searching workers

reduces the job-acquisition rate) and positive inter-group externalities (more

searching …rms increases the job-acquisition rate).

We would like now to show how the present paper provides a new eco-

nomics mechanism of the spatial mismatch hypothesis and thus new policy

implications. Since our goal is to give a theoretical explanation of the spatial

mismatch hypothesis, we focus now on equilibria (ii) (the Segregated Equilib-

rium) and (iii) (the Core-Periphery Equilibrium) because in both cases some

(or all) unemployed reside far away from jobs.

In the segregated equilibrium, the unemployed decide to reside far away

from jobs and thus voluntary choose low amounts of search and long-term

unemployment. In this context, the standard US-style mismatch arises because

inner-city blacks choose to remain in the inner-city and search only little.

They do not relocate to the suburbs (in our model this is the core, but in

the US mismatch it is the suburbs) because the short- run gains (low rent

and large housing consumption) outweigh the long-run gains of residing near
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jobs (higher probability of …nding a job). In the segregated equilibrium, the

spatial mismatch stems from voluntary choices of workers and not from imposed

restricted mobility such as housing discrimination.

In the core-periphery equilibrium (Figure 2), the unemployed are indi¤er-

ent between residential locations close and distant to jobs. However, if for some

reason like e.g. housing discrimination (see Yinger [42], for empirical evidence),

blacks are forced to live further from jobs, then this equilibrium provides an-

other rational explanation for the spatial mismatch hypothesis. Living far away

from jobs is harmful, not because of bad information about jobs, but because

of too low search e¤ort from workers. In other words, living in areas distant

to jobs and in which housing rents are low does not induce the unemployed

to put a lot of e¤ort in their search. They are happy to live on welfare since

it covers their housing costs and provide enough instantaneous utility. Thus,

in the core-periphery equilibrium, the spatial mismatch stems from involuntary

choices of workers, such as for example housing discrimination.

Even though the causes of spatial mismatch are di¤erent in these two equi-

libria, the consequences are similar. In both cases, the unemployed workers

provide too little search e¤ort and thus tend to have long unemployment spells

because they prefer short-run over long-run gains. In other words, the opportu-

nity costs (captured here by land rents, density and leisure time or commuting

costs) of not working (or even not participating to the labor market) are too low

to motivate these workers to search more. As a result, moving these workers to

other areas where these opportunity costs are higher (higher land rents, lower

commuting costs) will induce them to provide higher search levels. “Moving

to Opportunity” (MTO) programs are thus the correct policy device to reduce

mismatch, rather than lowering search costs in some other way.19

There have been several MTO programs implemented in the U.S. The start-

19The policy implications would had been quite di¤erent if residential segregation had
been the result of voluntary choices of workers wishing to share a common culture with
their neighbors or to interact in their own language (see among others Akerlof [1], Akerlof
and Kranton [2], Ihlanfeldt and Sca…di [19], Selod and Zenou [35] and Battu, McDonald and
Zenou [4], who have all emphasized the importance of voluntary choices in the explanation
of urban segregation of black workers). If, for example, black workers voluntary want to live
together, then it is di¢cult to move them to predominent white areas. In the present model,
in particular in the segregated equilibrium, location choices are decided by comparing short-
versus long-term gains and there is no desire to live among similar workers (the extension
to black and white workers is straightforward). So workers are ready to move and will then
bene…t from the policy since it changes the trade o¤s and induces them to provide higher
e¤ort levels.
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ing point was the Gautreaux program, implemented in 1976 in the Chicago

metropolitan area, which gave housing assistance (i.e. vouchers and certi…-

cates) to tenants in order to help diminishing the …nancial constraints pre-

venting low-income families from relocating to better neighborhoods (Goering,

Stebbins and Siewert [14], Turner [40]). Using quasi-experimental methods,

the di¤erent evaluations of the Gautreaux program suggest that the displaced

worker greatly improve their educational as well as their labor market outcomes

(Rosembaum [32]). However, one of the main drawback of the Gautreaux pro-

gram was that blacks were less likely to move because of racial discrimination

in the housing market. More recently, the MTO program has be launched

by the U.S. Department of Housing and Urban Development (HUD) in Bal-

timore, Boston, Chicago, Los Angeles and New York since 1994. In these

programs, the housing discrimination problem was overcome through the pro-

vision of additional services such as housing counseling and landlord outreach.

To avoid selection biases, participating families were randomly assigned to one

of three groups: (i) the ‘experimental’ or ‘MTO’ group, which received housing

assistance and mobility counseling and was required to move to low-poverty

neighborhoods (i.e. tracts with a population poverty rate not exceeding 10%);

(ii) the ‘comparison’ or ‘Section 8’ group, which received housing assistance

and could move anywhere; and (iii) the ‘control’ group, which received no

vouchers or certi…cates and could move on their own. The results of this MTO

program for most of the …ve cities mentioned above show a clear improvement

of the well-being of participants and better labor market outcomes (Ladd and

Ludwig [24], Katz, Kling and Liebman [22], Rosenbaum and Harris [33]).

Our paper is obviously very much in favor of the MTO programs. In

light of our results, it predicts that, relative to the ‘control’ group, displaced

workers (from low- to high-rental-housing areas) should provide higher search

e¤ort. If labor market participation is a good ‘proxy’ for search e¤ort, then the

…ndings of Rosenbaum and Harris [33] con…rm the predictions of our model.

Indeed, using the survey data from the MTO program in Chicago, the …ndings

of these authors, based on interviews an average of 18 months after families

moved from public housing to higher rental housing areas, show an increase

in labor force participation and employment. More precisely, Rosenbaum and

Harris [33] show that: ‘After moving to their new neighborhoods, the Section 8

respondents were far more likely to be actively participating in the labor force

(i.e. working or looking for a job), while for MTO respondents, a statistically

signi…cant increase is evident only for employment per se.’
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A. Appendix

A.1. Proof of Proposition 1

Let us …rst show that there is a unique maximum at each location x. To solve

this problem, we begin by partially di¤erentiating (3.7) with respect to s,

@

@s
V0 (s; x) =

¡a(®+ ¯)(b¡ scx)®+¯¡1R(x)¡®cx+ ¾phV1 ¡ V0(s; x)¾ph
1¡ ¾ + ¾ ph s

(A.1)

Hence the …rst-order condition, (@=@s)V0 (s; x) = 0, is seen to hold i¤ the

numerator is zero, which [by using (2.14)] can be rewritten as

U0(s; x)(®+ ¯)cx

b¡ scx = ¾ ph [V1 ¡ V0 (s; x)] (A.2)

or equivalently

¡@U0(s; x)
@s

= ¾ ph [V1 ¡ V0 (s; x)] (A.3)

To establish the uniqueness of solutions to (A.2) we partially di¤erentiate (A.1)

once more [and substitute (A.1) into the result] to obtain:

@2

@s2
V0 (s; x) =

¡aR(x)¡®(®+ ¯)[1¡ (®+ ¯)](b¡ scx)®+¯¡2cx¡ 2¾ ph @@sV0 (s; x)
1¡ ¾ + ¾ ph s

(A.4)

Finally, observing that the sign of (A.4) depends on the numerator, and that

the …rst term in the numerator negative (for positive net incomes) we may

conclude that
@

@s
V0 (s; x) ¸ 0 ) @2

@s2
V0 (s) < 0 (A.5)

In particular this implies that stationary points of (3.7) can only be local

maxima, and thus [by continuity of(A.1)] that there is at most one stationary

point. Thus, at each location x there is at most one solution to (A.2).

Let us now prove the second part of the proposition.

First, note that in equilibrium this optimal lifetime value must agree with

the prevailing lifetime value, V0, for unemployed workers, i.e., that V0(s; x) =

V0 in (A.2). Note also from (3.1) and (3.3) that in equilibrium we must have

U0(s; x) = (1¡ ¾)V0 ¡ s¾ ph (V1 ¡ V0) (A.6)

Hence, by substituting these results into (A.2) and solving for s, we obtain

s(x) =
®+ ¯

1¡ (®+ ¯)
·

b

(®+ ¯)cx
¡ (1¡ ¾)V0
¾ ph (V1 ¡ V0)

¸
(A.7)
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with unique inverse function, x(s), given by (3.9).

In terms of this inverse function (3.9), it follows at once from (A.1) that

@

@s
V0 (s; x) ? 0 , x 7 x(s) (A.8)

Let us now prove parts (i), (ii), and (iii) of (3.8). They are established

respectively as follows:

² (i) [x < x(1)] Observe from (A.8) and (A.5) that x < x(1)) @
@s
V0 (1; x) >

0 ) @2

@s2
V0 (1; x) < 0, so that V0(¢; x) must be increasing near s = 1.

Hence if there is some s1 2 [s0; 1) with V0(s1; x) > V0(1; x), then it follows
from the continuity of (A.1) that V0(¢; x) must achieve a di¤erentiable
minimum at some point interior to [s1; 1]. But since this contradicts

(A.5), it follows that no such s1 can exist, and hence that V0(1; x) is

maximal.

² (ii) [x > x(s0)] Again by (A.8), x > x(s0) ) @
@s
V0 (s0; x) < 0, so that

V0(¢; x) must be decreasing near s = s0. Hence if there is some s1 2
(s0; 1] with V0(s1; x) > V0(s0; x), then it again follows from the continuity

of (A.1) that V0(¢; x) must achieve a di¤erentiable minimum interior to

[s0; 1], which contradicts (A.5). Thus V0(s0; x) must be maximal.

² (iii) [x(1) · x · x(s0)] Finally, it also follows from (A.8) that x(1) ·
x ) @

@s
V0 (1; x) ¸ 0, and x · x(s0) ) @

@s
V0 (s0; x) · 0, so that by con-

tinuity there is some s 2 [s0; 1] with @
@s
V0 (s; x) = 0. Hence s = s(x) in

(A.7), and we may conclude from the uniqueness of di¤erentiable max-

ima observed above that V0[s(x); x] must be maximal.
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A.2. Proof of Theorem 2

To establish this result, we introduce the following de…nitions. With respect to

the bid rent functions, R0 and R1, a point x is said to be an intersection point

i¤ R0(x) = R1(x). Next, for any x ¸ 0 we say that R1 ? R0 to the right of x

i¤ for some " > 0 it is true that R1(z) ? R0(z) for all z 2 (x; x+ "). Similarly,
for any positive point, x > 0, we say that R1 ? R0 to the left of x i¤ for some
" > 0 it is true that R1(z) ? R0(z) for all z 2 (x ¡ "; x). An intersection
point, x > 0, is said to be an upcrossing [downcrossing] i¤ R1 < R0 [R1 > R0]

to the left of x and R1 > R0 [R1 < R0] to the right of x. For example, the

intersection point xc in Figure 2 is seen to be an upcrossing, and the point

xp is a downcrossing. Finally, and intersection point, x > 0, is said to be a

trivial intersection i¤ the curves touch but do not cross at x [i.e., i¤ for some

" > 0 it is true that either R1(z) > R0(z) for all z 2 (x¡ "; x) [ (x; x+ "), or
that R1(z) > R0(z) for all z 2 (x ¡ "; x) [ (x; x+ ")]. The term ‘trivial’ here

refers to the fact that in an open neighborhood of such intersection points, one

bid rent function strictly dominates the other except on a set of measure zero.

Hence such points can be ignored in characterizing the locational patterns of

employed and unemployed workers. From this viewpoint, it is also natural to

regard the (possible) intersection point, x = 0, as trivial whenever it is true

that either R1 < R0 or R1 > R0 to the right of x. With these de…nitions, our

main result is to show that at equilibrium, R0 and R1 can have at most two

nontrivial intersection points, and that the crossing properties at these points

imply the classi…cation in Theorem 2.

To establish this result, we …rst show that over the range of locations where

search intensity is either maximal [s(x) = 1] or minimal [s(x) = s0] the bid

rent functions R0 and R1 satisfy uniform ‘relative steepness’ conditions which

(in terms of the ‘crossing’ relations) imply that

Lemma 1. For the bid rent functions R0 and R1,
(i) There is at most one intersection point, x · x(1), and if 0 < x < x(1),

then x must be upcrossing.
(ii) There is at most one intersection point, x ¸ x(s0), and if x > x(s0), then
x must be downcrossing.

Proof: To establish this result we …rst observe from (4.2) and (4.4) that

for the functions S0 and S1 de…ned by

S0(x) =
1

a
R0(x)

® =
[b¡ s(x)cx]®+¯

(1¡ ¾)V0 ¡ s(x)¾ph(V1 ¡ V0) (A.9)
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S1(x) =
1

a
R1(x)

® =
(w ¡ cx)®+¯

(1¡ ¾)V1 + ¾½(V1 ¡ V0) (A.10)

it follows at once that for all x, R0(x) ¸ R1(x) , S0(x) ¸ S1(x), and hence
that all ordering relations between R0(x) and R1(x) are identically that same

as those between S0(x) and S1(x). This implies in particular that the above

intersection and ‘crossing’ properties de…ned for R0 and R1 are identically the

same for S0 and S1. Thus we proceed by establishing (i) and (ii) for S0 and

S1.

(i) Observe that since s(x) = 1 for all x · x(1), it follows that in this case

S0(x) takes the form

S0(x) =
(b¡ cx)®+¯

(1¡ ¾)V0 ¡ ¾ph(V1 ¡ V0) (A.11)

with derivative given by

S
0
0(x) = ¡

(®+ ¯)c

b¡ cx S0(x) (A.12)

[where S
0
0 is regarded as a right derivative at x = 0, and as a left derivative at

x = x(1)]. But since the derivative of S1(x) is seen to be

S
0
1(x) = ¡

(®+ ¯)c

w ¡ cx S1(x) (A.13)

it follows that if S0(x) = S1(x), then by (A.12) and (A.13),

¡S 0
0(x) > ¡S

0
1(x),

1

b¡ cx >
1

w ¡ cx , w > b (A.14)

Finally, since w > b by hypothesis, we may conclude that for all x · x(1),

S0(x) = S1(x)) ¡S 0
0(x) > ¡S

0
1(x) (A.15)

and thus that on the interval [0; x(1)]; S0 is relatively steeper than S1 [see for

example Fujita (1989, De…nition 2:2
0
, p.27)]. To establish property (i), it is

enough to observe from (A.15) that each intersection point, 0 < x < x(1), must

have both S1 < S0 to the left and S1 > S0 to the right, and thus must be an

upcrossing. Moreover, if there were two intersection points, say x; z 2 [0; x(1)]
with x < z, then (A.15) would also imply that S1 > S0 to the right of x and

S1 < S0 to the left of z. Hence by continuity there must exist an intermediate

intersection point, w 2 (x; z), which is not an upcrossing, and hence yields a
contradiction. Thus property (i) must hold for (S0; S1), and hence for (R0; R1)
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as well.

(ii) Next observe that since s(x) = s0 for all x ¸ x(s0), it follows in this case
that

S0(x) =
(b¡ s0cx)®+¯

(1¡ ¾)V0 ¡ s0¾ph(V1 ¡ V0) (A.16)

with derivative given by

S
0
0(x) = ¡

(®+ ¯)s0c

b¡ s0cx S0(x) (A.17)

[where S
0
0 is regarded as a right derivative at x = x(s0)]. But if S0(x) = S1(x),

then by (A.17) and (A.13),

¡S01(x) > ¡S
0
0(x),

1

w ¡ cx >
s0

b¡ s0cx , w <
b

s0
(A.18)

which together with condition (4.9) shows that for all x ¸ x(s0),

S0(x) = S1(x)) ¡S 0
1(x) > ¡S

0
0(x) (A.19)

Thus it follows from essentially the same argument as above that property (ii)

must hold for (S0; S1) and hence for (R0; R1).

Given these relative steepness results for the regions of constant search

intensities, we next analyze the region of variable search intensities, namely

in the distance band [x(1); x(s0)]. Here the key result is to show that with

respect to the functions S0 and S1 above:

Lemma 2. For any pair of intersection points, x; z 2 [x(1); x(s0)] with x < z,

¡S 0
1(x) ¸ ¡S

0
0(x)) ¡S 0

1(z) > ¡S
0
0(z) (A.20)

Proof: We begin by writing S0(x) in a more explicit form over the range

[x(1); x(s0)] as follows. First by (A.7) we have

b¡ s(x)cx = b¡ ®+ ¯

1¡ (®+ ¯)
·

b

(®+ ¯)cx
¡ (1¡ ¾)V0
¾ ph (V1 ¡ V0)

¸
cx

=

µ
®+ ¯

1¡ (®+ ¯)
¶µ

(1¡ ¾)V0
¾ ph (V1 ¡ V0)cx¡ b

¶
(A.21)

40



and also

(1¡ ¾)V0 ¡ s(x)¾ph(V1 ¡ V0)
= (1¡ ¾)V0 ¡ b¾ ph (V1 ¡ V0)

[1¡ (®+ ¯)]cx +
µ

®+ ¯

1¡ (®+ ¯)
¶
(1¡ ¾)V0

=
1

1¡ (®+ ¯)
·
(1¡ ¾)V0 ¡ ¾ ph (V1 ¡ V0) b

cx

¸
(A.22)

so that by (A.9)

S0(x) =

³
®+¯

1¡(®+¯)
´®+¯ ³

(1¡¾)V0
¾ ph (V1¡V0)cx¡ b

´®+¯
1

1¡(®+¯)
£
(1¡ ¾)V0 ¡ ¾ ph (V1 ¡ V0) b

cx

¤ (A.23)

Next, we introduce certain simplifying notation to facilitate the analysis of this

function. If we now let µ = ®+ ¯, A = (1¡ ¾)V0, D = ¾ph (V1 ¡ V0), and let
K0 = (µ=D)

µ (1¡ µ)1¡µ, then S0(x) can be written as

S0(x) = K0
cx

(Acx¡ bD)1¡µ (A.24)

with derivative

S
0
0(x) =

K0c

(Acx¡ bD)1¡µ ¡
K0Ac

2x(1¡ µ)
(Acx¡ bD)2¡µ (A.25)

Similarly, letting K1 = 1=[(1¡¾)V1+¾½ (V1 ¡ V0)], it also follows from (A.10)
that

S1(x) = K1(w ¡ cx)µ (A.26)

with derivative

S
0
1(x) = ¡

cµK1

(w ¡ cx)1¡µ (A.27)

Hence we have

¡S 0
1(x) ¸ ¡S 0

0(x)

, cµK1

(w ¡ cx)1¡µ ¸
K0Ac

2x(1¡ µ)
(Acx¡ bD)2¡µ ¡

K0c

(Acx¡ bD)1¡µ

, K0Acx(1¡ µ)
(Acx¡ bD)2¡µ ·

µK1

(w ¡ cx)1¡µ +
K0

(Acx¡ bD)1¡µ (A.28)

But if S0(x) = S1(x) then

µK1

(w ¡ cx)1¡µ =
µ

w ¡ cxK1(w ¡ cx)µ

=
µ

w ¡ cx
·
K0

cx

(Acx¡ bD)1¡µ
¸

(A.29)
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Thus, by substituting (A.29) into (A.28) and cancelling K0=(Acx¡bD)1¡µ, we
see that

¡S01(x) ¸ ¡S 0
0(x)

, (1¡ µ) Acx

Acx¡ bD · µ cx

w ¡ cx + 1

, (1¡ µ) 1

1¡ bD
Acx

· µ 1
w
cx
¡ 1 + 1 (A.30)

Finally, since the left hand side of the last inequality is clearly decreasing

in x and the right hand side is increasing in x,20 it follows that whenever

¡S01(x) ¸ ¡S 0
0(x) holds for an intersection point in [x(1); x(s0)], it must hold

as a strict inequality for all subsequent intersection points in [x(1); x(s0)], thus

establishing (A.20).

Next we introduce the following additional notation. Let the set of all

intersection points in [x(1); x(s0)] be denoted by I, and let the subset of all

nontrivial intersection points be denoted by I¤. The upcrossing points and
downcrossing points in I¤ are then denoted respectively by I¤U and I

¤
D . In

particular, if x lies in the open interval (x(1); x(s0)), then it follows from

the continuity of the derivatives of S0 and S1 on (x(1); x(s0)) that whenever

¡S01(x) ? ¡S 0
0(x) for some x 2 (x(1); x(s0), it must be true that S1 ? S0 to

the left of x and S1 7 S0 to the right of x. Conversely, it also follows from

continuity of derivatives that if either S1 ? S0 to the left of x or S1 7 S0 to

the right of x, then we must have ¡S 0
1(x) T ¡S00(x). With these observations

and conventions, we next show that

Lemma 3.
(i) There is at most one point, x 2 I, with ¡S 0

1(x) > ¡S 0
0(x), and at most

one point, z 2 I, with ¡S 0
1(z) < ¡S 0

0(z);

(ii) There is at most one trivial intersection point in I \ (x(1); x(s0)).

Proof: (i) In the …rst case if there are two such points, x; z 2 I, say with
x < z, then ¡S 0

1(x) > ¡S 0
0(x) would imply that S1 < S0 to the right of x,

and ¡S 0
1(z) > ¡S00(z) would imply that S1 > S0 to the left of z. Hence by

continuity there must be some upcrossing, w 2 (x; z) which by de…nition must
satisfy ¡S01(w) · ¡S 0

0(w). But since this together with x < w contradicts

20Recall that on the appropriate domains of de…nition for S0 and S1 in the present case,
we must have both Acx > bD and w > cx.
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Lemma 2, it follows that no such w can exist, and hence that no such z can

exist. The argument for the second case parallels that of the …rst, except that

the intermediate point, w, must satisfy ¡S 0
1(w) ¸ ¡S00(w). But by Lemma 2

this would require that ¡S 0
1(z) > ¡S 0

0(z), and we again obtain a contradiction.

(ii) If x 2 I \ (x(1); x(s0)) is trivial then we must have S 0
1(x) = S

0
0(x), since a

strict inequality would imply a reversal in the ordering of S1 and S0 on either

side of x. But there cannot be two such points, say x < z, since S
0
1(x) = S

0
0(x)

would imply ¡S 0
1(z) > ¡S 0

0(z) by Lemma 2.

With these preliminaries, we now have the following intersection properties

of R0 and R1 on [x(1); x(s0)]:

Lemma 4. The bid rent functions R0 and R1 exhibit the following three prop-
erties on [x(1); x(s0)]:
(i) There are at most two nontrivial intersection points in [x(1); x(s0)].
(ii) If the …rst nontrivial intersection point is a downcrossing, then it is the

only intersection point in [x(1); x(s0)].
(iii) If there are two nontrivial intersection points in [x(1); x(s0)], then the …rst

is upcrossing and the second is downcrossing.

Proof: To establish this result, we again argue in terms of the functions
S0 and S1. First observe from the continuity of S0 and S1 that the set I of

all intersection points in [x(1); x(s0)] is closed, and hence compact. Thus if I

is nonempty there must exist a …rst intersection point, x1, in [x(1); x(s0)]. In

terms of x1 and the sets, I¤; I¤U ; I
¤
D, de…ned above, our objective is thus to show

that (i) j I¤ j · 2, (ii) x1 2 I¤D ) I¤ = fx1g, and (iii) I¤ = fx1; x2g ) [x1 2
I¤U ; x2 2 I¤D]. To do so, we proceed by considering each possible relation be-
tween the derivatives S

0
1 and S

0
0 at x1, and show that conditions [(i); (ii); (iii)]

hold (possibly vacuously) in each case. Because the derivatives S
0
1 and S

0
0 are

possibly discontinuous at the end points x(1) and x(s0), it is convenient to

treat these cases separately. Hence for the present we assume that x1 lies in

the open interval (x(1); x(s0)), so that right and left derivatives at x1 are the

same:

(a) First if ¡S 0
1(x1) > ¡S 0

0(x1), then it follows at once from Lemmas 2 and

3(i) that I¤ = fx1g, and hence that (ii) holds [and (i),(iii) hold vacuously].
(b) If S

0
1(x1) = S

0
0(x1), then by Lemma 2 it follows that any subsequent point,

x2 2 I, must satisfy ¡S 0
1(x2) > ¡S 0

0(x2). But by Lemma 3(i) there is at most

one such point, so that I = fx1; x2g. Hence, suppose …rst that x1 is trivial
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(i.e., x1 2 I ¡ I¤). Then I¤ = fx2g, so that again (ii) holds [and (i),(iii) hold
vacuously]. Now suppose that x1 is nontrivial (i.e., x1 2 I¤). In this case we
see that I¤ = fx1; x2g, and ¡S 0

1(x2) > ¡S 0
0(x2)) x2 2 I¤D . Hence if it can be

shown x1 2 I¤U , then it will follow that (i) and (iii) both hold [and that (ii)
holds vacuously]. To do so, observe that since S

0
1(x1) = S

0
0(x1) also implies

from Lemmas 2 and 3(i) that I \ (x1; x2) = ;, and since x2 2 I¤D ) S1 > S0 to

the left of x2, it follows that in this case S1 > S0 must hold on all of (x1; x2).

Thus S1 > S0 to the right of x1, which together with the de…nition of nontrivial

points, implies that S1 > S0 cannot hold to the left of x1. But if S1 < S0 to

the left of x1, then x1 2 I¤U , and we are done. So it remains only to rule out
the case in which both S1 < S0 and S1 > S0 fail to hold to the left of x1. To

do so, observe that both these conditions can fail only if there is an increasing

sequence (xn) in [x(1); x(s0)] converging to x1 with S1(xn) = S0(xn) for all n.

But by de…nition, all such points must lie in I, which contradicts the de…nition

of x1 (as the …rst point in I ). Hence no such sequence can exist, and it must

be true that x2 2 I¤D.
(c) Finally, suppose that ¡S 0

1(x1) < ¡S 0
0(x1), so that in particular, x1 2 I¤U .

If there is a second point, x2 2 I¤, then we may assume that x2 is the …rst
nontrivial point to the right of x1. [Indeed, since I is closed and since Lemma

3(ii) implies the existence of at most one trivial point in I \ (x1; x(s0)), nonex-
istence of a …rst point in I \ (x1; x(s0)) would entail the existence of a de-
creasing sequence in I¤ converging to x1, which would contradict the condition
that S1 > S0 to the right of x1]. But since S1 > S0 to the right of x1, it then

follows that S1 > S0 must also hold to the left of x2 [since there is at most one

trivial intersection point, z 2 (x1; x2), and since S1 > S0 to the left of z implies
S1 > S0 to the right of z]. But this in turn implies that ¡S 0

1(x2) ¸ ¡S 0
0(x2).

Thus, by replacing x1 with x2 in part (a), it now follows from part (a) that if

¡S01(x2) > ¡S00(x2), then both conditions (i) and (iii) hold with I¤ = fx1; x2g
[and (ii) holds vacuously]. Moreover, if S

0
1(x2) = S

0
0(x2), then by the same

argument as in part (b) above, it follows that there is at most one additional

point, x3 2 I, beyond x2, and that S1 > S0 must hold on all of (x2; x3). But
this together with S1 > S0 on all of (x1; x2) would then contradict the hy-

pothesis that x2 is nontrivial, so that no intersection points can exist beyond

x2. Hence the only remaining possibility is that S1 < S0 to the right of x2,

which implies that x2 2 I¤D . Thus both conditions (i) and (iii) again hold
with I¤ = fx1; x2g [and (ii) holds vacuously].
The last remaining possibility is that x1 = x(1) or x1 = x(s0). But since
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x(s0) is the last point in [x(1); x(s0)], it follows that the condition, x1 =

x(s0), can never contradict (i); (ii);or (iii), so this case can be dispensed with.

Turning …nally to the case, x1 = x(1), observe that if S
0
0(x1) is interpreted as

a right derivative, then (A.25) and continues to hold. Hence Lemmas 2 and

3 are still applicable to x1, and it follows that all arguments in (a); (b);and

(c) not involving properties to the left side of x1 must continue to hold. An

inspection of these conditions shows that the only case which needs to be

reconsidered is the case in (b) with x1 2 I¤ and S 0
1(x1) = S

0
0(x1). If there

is a second point, x2 2 I, then by Lemmas 2 and 3 this point is unique and
satis…es ¡S 0

1(x2) > ¡S 0
0(x2), so that I

¤ = fx1; x2g and x2 2 I¤D. Hence it must
again be true that S1 > S0 on all of (x1; x2). But recall also that if S

0
0(x1) is

regarded as a left derivative then (A.15) continues to hold at x = x(1). Hence

the left derivatives at x1 must satisfy ¡S01(x1) < ¡S 0
0(x1), so that S1 < S0 to

the left of x1. Finally, this together with S1 > S0 to the right of x1 implies

that x1 2 I¤U , so that conditions (i) and (iii) again hold [with (ii) holding
vacuously].

Given these partial results, we are now ready to consider the full set of

possible intersections between R0 and R1 over the range where they are both

positive, which is contained in the interval [0; w
c
]. In a manner paralleling the

notation for local analysis of [x(1); x(s0)] in Lemma 4 above, we now denote

the (possibly larger) set of intersection points in [0; w
c
] by I, with corresponding

subsets I¤; I¤U ; I
¤
D of nontrivial intersections, upcrossings, and downcrossings.

Given this notation, we …rst show that these de…nitions yield a complete clas-

si…cation of nontrivial intersection points

Lemma 5.
(i) There are at most …ve intersection points, i.e., j I j · 5.
(ii) Every positive nontrivial intersection point is either an upcrossing or

a downcrossing, i.e., I¤ = I¤U [ I¤D.

Proof: (i) By Lemma 1 there is at most one intersection point in I\[0; x(1)]
and at most one in I¡ [0; x(s0)). Moreover, by part (ii) of Lemma 3 together
with part (i) of Lemma 4, there are at most three points in I \ (x(1); x(s0)),
making a total of at most …ve. (ii) If x 2 I¤ ¡ (I¤U [ I¤D), then either both
conditions R0 < R1 and R0 > R1 must fail to the left of x or both must fail

to the right of x. But in either case, there must be a sequence of distinct

intersections, (xn) in I ¡ fxg converging to x, which violates part (i) above.
Hence I¤ ¡ (I¤U [ I¤D) = ;.
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By employing these properties, we can now establish our main result, which

amounts to a sharper version of Theorem 2 in the text. In particular, property

(i) below implies that there are at most two reversals in the ordering of R0
and R1, and hence at most three distinct rings of locators. Property (ii)

then implies that if there are two reversals, say at points xc and x1, then

R0 > R1 must hold almost everywhere on both end intervals, (0; xc); (x1; wc );

and R1 > R0 must hold almost everywhere on the middle interval, (xc; x1).21

Hence the central core and peripheral ring can only be occupied by unemployed

workers, and the middle ring by employed workers.22

Theorem A.1 (Classi…cation of Intersections ). The rents functions, R0
and R1, exhibit the following two properties on the interval [0; wc ]:

(i) There are at most two nontrivial intersection points.

(ii) If there are two nontrivial intersection points, then the …rst is upcrossing

and the second is downcrossing.

Proof: In terms of the above notation, these two properties can be equiv-
alently stated as follows: (i) j I¤j · 2, and (ii) I¤ = fx1; x2g ) [x1 2 I¤U ; x2 2
I¤D]. To establish these properties we consider two cases, depending on the
ordering of rents at x = 0 :

(a) Suppose …rst that R1(0) < R0(0), and that I 6= ; with …rst intersection
point x1 2 I [which exists by Lemma 5(i) above]. Then by de…nition we must
have R1 < R0 to the left of x1. Here there are three possibilities to consider,

depending on the location of x1:

(a1) If x1 < x(1), then by Lemma 1(i) it follows that x1 2 I¤U and that

I \ [0; x(1)] = fx1g. Hence if there is a second point, x2 2 I, then x2 > x(1),
and we may again assume that x2 is the …rst such point. This implies that

R1 > R0 on (x1; x2), and in particular, that R1 > R0 to the left of x2: But

if x2 ¸ x(s0), then by Lemma 1(ii) it will follow that I = I¤ = fx1; x2g and
that x2 2 I¤D whenever x2 > x(s0). Similarly, if x2 = x(s0), then since (A.19)
was shown to hold for this case, it follows that R1 < R0 to the right of x2.

But this together with R1 > R0 to the left of x2, again implies that x2 2 I¤D .
21In fact Lemma 5(i) implies that ‘almost everywhere’ can be sharpened to ‘at most three

trivial intersection points’.
22Note that we here ignore the agricultural rent level, RA. Hence the existence of an

upcrossing point followed by a downcrossing point in [0; wc ] need not imply the existence of
both a core and peripheral ring of unemployed in equilibrium. In particular, if R1 < RA at
the downcrossing point, then there will only be a core ring of unemployed. However, this
possibility does not con‡ict with the assertion of Theorem 2.
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Hence conditions [(i); (ii)] will hold whenever x2 ¸ x(s0), so that we may now
assume x(1) < x2 < x(s0). Here there are two cases:

(a11) Suppose …rst that x2 is nontrivial. Then since R1 > R0 to the left of x2
implies that x2 is not in I¤U , it follows from Lemma 5(ii) that x2 2 I¤D. Hence if
there were a next intersection point, say x3 2 I¤, then since x2 is the only point
in I by Lemma 4(ii), we would have x3 > x(s0). Moreover, since R1 < R0

to the right of x2, it would also follow that R1 < R0 on (x2; x3), so that in

particular, x3 could not be downcrossing. But since this contradicts Lemma

1(ii), we may conclude that no such point exists, and hence that I¤ = fx1; x2g
with x1 2 I¤U and x2 2 I¤D. Thus conditions [(i); (ii)] must hold in this case.
(a12) Next suppose that x2 is trivial. Then by the proof of Lemma 3(ii) it

follows not only that x2 is the unique trivial intersection point in (x(1); x(s0)),

but also that S00(x2) = S
0
1(x2). Hence by Lemma 2 there can be at most one

subsequent nontrivial point in I, and it must be downcrossing. Moreover, by

Lemma 1(ii), there is at most one point in I \ (x(s0); wc ], which must also be
downcrossing. Finally since the occurrence of both these possibilities would

entail the existence of an intermediate upcrossing point which would then vio-

late either Lemma 2 or Lemma 1(ii), it follows that there can be at most one

point in I \ (x2; wc ] and that this point, say x3, must be downcrossing. Hence
if such an x3 exists, then conditions [(i); (ii)] hold with I¤ = fx1; x3g; x1 2 I¤U
and x3 2 I¤D. If no such point exists, then condition (i) holds with I¤ = fx1g
and condition (ii) holds vacuously.

(a2) If x1 2 [x(1); x(s0)], then by Lemma 4 there are only two cases to consider,
depending on whether jI¤j = 1 or jI¤j = 2.
(a21) If I¤ = fx1g, and if there is a second intersection, x2 2 I, then we must
have x2 > x(s0), so that x2 2 I¤D by Lemma 1(ii). But since R1 < R0 to the
left of x1 precludes the possibility that x1 2 I¤D, it follows from Lemma 5(ii)

that x1 2 I¤U , and hence that conditions [(i); (ii)] hold with I¤ = fx1; x2g.
(a22) If I¤ = fx1; x2g, and if there were a third intersection, x3 2 I, then we
would again have x3 > x(s0), so that x3 2 I¤D by Lemma 1(ii). But since

x2 2 I¤D by Lemma 4(iii), this would in turn imply the existence of an in-
termediate upcrossing point, x 2 (x2; x3), which would again contradict either
Lemma 2 or Lemma 1(ii), depending on whether x · x(s0) or x > x(s0). Hence
no such point can exist, and conditions [(i); (ii)] hold with I¤ = fx1; x2g.
(a3) Finally we note that x1 > x(s0) is not possible. For since x1 =2 I¤D [as
observed in (a21) above], this would contradict Lemma 1(ii).
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(b) Next suppose that R1(0) ¸ R0(0), and that I 6= ; with …rst intersection
point x1 2 I. If R1(0) = R0(0) then x1 = 0 and R1 > R0 to the right of

x1[by (A.15)]. Thus by our conventions above, x1 is a trivial intersection point

and can be discarded. Moreover, the second intersection point, say x01 must
have R1 > R0 to the left. Hence we may assume without loss of generality

that R1(0) > R0(0) and R1 > R0 to the left of x1. This in turn implies that

x1 =2 I¤U , and hence from (A.15) that x1 > x(1). Moreover, if x1 ¸ x(s0), then
since R1 > R0 to the left of x1, it follows by the same argument as for the case

‘ x2 ¸ x(s0)’ in (a1) above, that x1 2 I¤D and hence that conditions (i) holds
with I¤ = fx1g and condition (ii) holds vacuously. Thus we may now assume
that x(1) < x1 < x(s0). But again, R1 > R0 to the left of x1 implies that

this case for x1 is formally identical to that for x2 in (a11) and (a12) above.

Hence if x1 is nontrivial, it now follows from the argument in case (a11) that

condition (i) holds with I¤ = fx1g and (ii) holds vacuously. Similarly, if x1
is trivial, then the argument in case (a12) now shows that either there is an

additional point, x2 2 I¤D \ (x1; wc ] with I¤ = fx2g, or we must have I¤ = ;. In
either case, conditions (i) holds and (ii) holds vacuously.

Thus we may conclude that conditions [(i); (ii)] hold in all cases, and the

result is established.
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A.3. Existence and uniqueness of Core-Periphery equilibria

Theorem 5.1 shows the uniqueness of the core-periphery (CP) equilibrium

whereas Theorem 5.2 demonstrates its existence.

In order to prove these two theorems, we …rst need to introduce the concept

of ‘semi-equilibrium’, which is a weaker concept than our CP equilibrium, and

to show that for each choice of employment level, N1, this semi-equilibrium

exists uniquely. Then, using this …rst result, we prove the uniqueness (Theorem

5.1) and the existence (Theorem 5.2) of the core-periphery (CP) equilibrium.

A.3.1. Existence and uniqueness of Semi-Equilibria

To analyze the existence and uniqueness of CP-equilibria, we begin by intro-

ducing a weaker class of ‘semi-equilibria’ which will be :

De…nition 3. For any subvector of admissible parameters, eµ = (½; °; s0; ¸;N; ¾;
®; ¯; b; w; c), a vector of values, »

³eµ´ = (N c
0 ; N

p
0 ; N1; ph; U

c
0 ; U

p
0 ; U1; xc; xp), is

said to be a semi-equilibrium for eµ i¤ conditions [(5.15),(5.18),(5.19),(5.23),
(5.24),(5.28), (5.29),(5.30)] are satis…ed.

Such semi-equilibria thus satisfy all conditions of CP-equilibria except the

peripheral unemployment condition, (5.25), and the three boundary-point con-

ditions [(5.31),(5.32),(5.33)]. Notice in particular that since both the frontier

location, xf , and the agricultural rent, RA, appear only in the missing equa-

tions (5.25) and (5.33), they are not de…ned in semi-equilibria. Hence the

parameter subvector, eµ, excludes RA, and the semi-equilibrium vector, »(eµ),
excludes xf .

To establish existence and uniqueness of semi-equilibria for each N1, we

shall construct an appropriate mapping which will be shown to have a unique

…xed point. To do so, observe …rst that there is only a bounded range of

employment levels, N1, which are possible in equilibrium. In particular, (5.26)

shows that mean search intensity, s, must always lie between s0 and 1. But

since u is monotone decreasing in s by Theorem 1, and since (5.27) and (5.29)

show that N1 = N(1¡ u), it then follows that N1 is monotone increasing in s.
Hence if umin = Ã

¡1(1), umax = Ã¡1(s0), and we let

Nmin
1 = N(1¡ umax) = N [1¡ Ã¡1(s0)] (A.31)

Nmax
1 = N(1¡ umin) = N [1¡ Ã¡1(1)] (A.32)
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then in equilibrium we must have

Nmin
1 · N1 · Nmax

1 (A.33)

Given these restrictions, observe next from (5.26) that labor market steady

states depend only on the subvector of parameters, µ = (½; °; s0; ¸;N), which

we now designate as the steady-state parameters. With these de…nitions, we

now have the following characterization of labor market ‘core-periphery’ steady

states with employment levels satisfying (A.33):

Proposition 3. For each vector of steady-state parameters, µ = (½; °; s0; ¸;N),
and each employment level, N1 2 [Nmin

1 ; Nmax
1 ], there is a unique set of steady-

state values [N c
0(N1); N

p
0 (N1); ph(N1)]. In addition:

(i) the ratio, N c
0(N1)=N1, is increasing in N1, and

(ii) the remaining functions, Np
0 (N1) and ph(N1), are decreasing in N1.

Proof. If for any given µ = (½; °; s0; ¸;N) and N1 2 [Nmin
1 ; Nmax

1 ], we let

s(N1) = Ã
¡
N¡N1
N

¢ 2 [s0; 1], and solve for (N c
0 ; N

p
0 ) using [(5.28),(5.29)], we

obtain the unique (nonnegative) values

N c
0(N1) =

s(N1)¡ s0
1¡ s0 (N ¡N1) (A.34)

Np
0 (N1) =

1¡ s(N1)
1¡ s0 (N ¡N1) (A.35)

which together yield a unique hiring probability, ph(N1) 2 (0; 1), by (5.30).
To establish that N c

0(N1)=N1 is increasing in N1, it is convenient to rewrite

(5.28) as

Ã(u) =
N c
0 + s0(N ¡N1 ¡N c

0)

N ¡N1
=

(N c
0=N)(1¡ s0) + s0u

u
(A.36)

which in turn implies that, N c
0 , can be written in terms of u as follows:

N c
0(u) =

N

1¡ s0 [uÃ(u)¡ s0u] (A.37)

Hence observing that N1=N = 1 ¡ u, it follows that the ratio, Rc ´ N c
0=N1,

can also be written in terms of u as

Rc(u) =
1

1¡ s0

·
uÃ(u)

1¡ u ¡ s0
u

1¡ u
¸

(A.38)
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But since u decreasing in N1 by (5.27) it then su¢ces to show that Rc(u) is

decreasing. Moreover, since the second term in brackets is decreasing in u, it

is enough to show that the function,

f1(u) =
uÃ(u)

1¡ u (A.39)

is also decreasing in u. But by (2.6) it follows that

f1(u) = ¡ u

1¡ u
½µ

u+ d

°u

¶
ln

·
1¡

µ
½

1¡ ½
¶µ

1¡ u
u+ d

¶¸¾
= ¡1

°

µ
u+ d

1¡ u
¶
ln

·
1¡

µ
½

1¡ ½
¶µ

1¡ u
u+ d

¶¸
= ¡1

°

ln[1¡ !x(u)]
x(u)

(A.40)

where ! = ½=(1¡ ½), and where the function, x(u) = (1¡ u)=(u+ d) 2 (0; 1),
is decreasing in u. Hence it follows that

f 01(u) =
x0(u)
°x(u)2

½
!x(u)

1¡ !x(u) + ln [1¡ !x(u)]
¾

(A.41)

which together with x0(u) < 0, implies that we need only show that the quan-
tity in brackets is positive. But if we let z = !x 2 (0; 1) and consider the
function,

f2(z) = ln [1¡ z] + z

1¡ z (A.42)

then

f 02(z) =
z

(1¡ z)2 > 0 (A.43)

together with the boundary condition, f2(0) = 0, implies that f2(z) > 0 for all

z 2 (0; 1), and hence that f1(u) is decreasing.
To establish (ii), observe …rst that since N c

0(N1) is increasing in N1 by (i),

it follows at once from the accounting identity (5.29) that Np
0 (N1) is decreasing

in N1. To show that ph(N1) is also decreasing in N1, recall from (2.2) and (2.6)

that we have the steady-state identity

½ (1¡ u) ´ (1¡ ½) uÃ(u)ph(u)
) ½

1¡ ½ ´ f1(u)ph(u) (A.44)

where f1(u) is given by (A.39) above. But since f1(u) was shown to be de-

creasing, this implies (A.44) that ph(u) must be increasing, and hence that

ph(N1) is decreasing in N1
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Result (i) is perhaps most surprising, for it tells us that among those labor-

market steady states which are consistent with core-periphery land use pat-

terns, higher employment levels, N1, can only be supported by increasing the

number of full-time job searchers per employee. This appears to be a conse-

quence of both market friction e¤ects and the fact that all other job searchers

use only minimal search intensity, s0. Note also that since higher employment

levels decrease the hiring probability, ph(N1), this will tend to discourage ad-

ditional full-time searchers. Hence these two con‡icting forces already suggest

that there should be at most one CP-equilibrium.

Using this result, we can construct the desired mapping as follows. First,

if the utility ratios in (5.18) and (5.19) are denoted respectively by rc = U c0=U1
and rp = U

p
0=U1, then it follows from (5.15) that

rp = ¿ (ph)rc + [1¡ ¿(ph)] (A.45)

Moveover, since rc is seen from (5.18) to be a function of xc:

rc(xc) =

µ
b¡ cxc
w ¡ cxc

¶®+¯
(A.46)

and since Proposition 3 shows that the steady state value of ph is a well de…ned

function of N1, it follows that we may express the equilibrium value of rp as a

function of (N1; xc):

rp(N1; xc) = ¿ [ph(N1)] ¢ rc(xc) + f1¡ ¿ [ph(N1)]g (A.47)

Hence if (5.19) is solved for xp in terms of rp, then we may also write xp as a

function of (N1; xc):

xp(N1; xc) =
w ¢ rp(N1; xc)

1
®+¯ ¡ b

c
³
rp(N1; xc)

1
®+¯ ¡ s0

´ (A.48)

Next observe that if the utility parameters in the population densities (5.20),

(5.21), and (5.22) are now viewed as variables by writing ´1(x;U1), ´
c
0(x; U

c
0)

and ´p0(x; U
p
0 ), then it follows by inspection of (5.23), (5.24), and (5.25) that

the right hand sides are positive decreasing functions of their utility variables,

which range from zero to in…nity as the utilities range from in…nity to zero.

In particular, since the value, N c
0(N1) 2 (0; N1), is well de…ned by (A.34), it

then follows from (5.23) that there must be a unique utility value, U c0(N1; xc),

satisfying the condition that

N c
0(N1) =

Z xc

0

´c0[x;U
c
0(N1; xc)]dx (A.49)
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Hence (A.49) implicitly de…nes the function U c0(N1; xc) [which can be made

explicit by solving for U c0 in (5.25)]. By combining this with (A.46), we may

also express U1 as a function of (N1; xc):

U1(N1; xc) =
U c0(N1; xc)

rc(xc)
(A.50)

Finally, by employing these functions, we may de…ne the desired mapping,

Á(N1; xc), as follows:

Á(N1; xc) =

Z xp(N1;xc)

xc

´1[x; U1(N1; xc)]dx (A.51)

By comparing (A.49) with (5.24), we see that Á essentially de…nes a new value

of N1 for each given pair (N1; xc). Given this mapping, our key result is to

establish the following …xed-point property of Á:

Proposition 4. For each N1 2 (Nmin
1 ;Nmax

1 ] there exists a unique xc > 0 such

that

Á(N1; xc) = N1 (A.52)

Proof. To establish the desired result, observe from (A.52) that it su¢ces to

show that the function Á(N1; ¢) is decreasing with
lim
xc!0

Á(N1; xc) =1 (A.53)

and

lim
xc!b=c

Á(N1; xc) = 0 (A.54)

For this will imply that Á(N1; ¢) takes on the value N1 exactly once. To es-
tablish that Á(N1; ¢) is decreasing, observe from (A.51) together with the de-

creasing monotonicity of ´1(x;U1) in U1, that it is enough to show that (i)

xp(N1; xc) is decreasing in xc, and (ii) U1(N1; xc) is increasing in xc. For then

it will follow (by inspection) that the integral on the right hand side of (A.51)

must diminish as xc increases. To establish (i) observe …rst that rc(xc) is de-

creasing in xc (since b < w). But since ph(N1) is …xed (for the given value

of N1) this in turn implies from (A.47) that rp(N1; xc) is decreasing in xc.

Moreover, since (A.48) shows that

@

@rp
xp(rp) > 0 , w >

0@ wr
1

®+¯
p ¡ b

cr
1

®+¯
p ¡ cs0

1A c
, cws0 < bc

, w <
b

s0
(A.55)
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we see from (4.9) that xp must be increasing rp, so that xp(N1; xc) is also

decreasing in xc, and (i) must hold. To establish (ii), observe next that since

N c
0(N1) is …xed, it follows from (A.49) that an increase in xc implies that

´c0[¢; U c0(N1; xc)] must decrease, and hence that U c0(N1; xc) must be increasing
in xc. Finally, since rc(xc) is decreasing, this in turn implies from (A.50) that

U1(N1; xc) must be increasing in xc, so that (ii) holds as well.

Next, to establish (A.53), observe from (A.51) that it su¢ces to show that

(i) limxc!0 xp(N1; xc) = xp > 0, and (ii) limxc!0 U1(N1; xc) = 0. For then it

will follow both that the limiting interval of integration in (A.51) has positive

measure, and that the integrand, ´1[¢; U1(N1; xc)], diverges to in…nity, implying
that Á(N1; xc) must also diverge to in…nity. To establish (i), note …rst from

(A.46) that xc ! 0 implies rc(xc) ! (b=w)®+¯ 2 (0; 1). But since this in

turn implies from (A.47) that rp(N1; xc)! ¿1 (b=w)
®+¯ + (1¡ ¿ 1) > (b=w)®+¯

[where ¿ 1 = ¿ [ph(N1)] > 0], and since xp was shown above to be increasing in

rp, it then follows from (A.48) and (4.9) that limxc!0 xp(N1; xc) = xp with

xp >
w
h
(b=w)®+¯

i 1
®+¯ ¡ b

c

µh
(b=w)®+¯

i 1
®+¯ ¡ s0

¶ = 0
cs0
w
( b
s0
¡ w) = 0 (A.56)

To establish (ii), observe from the constancy of N c
0(N1) together with (A.49)

that

xc ! 0 ) ´c0[¢; U c0(N1; xc)]!1
) U c0(N1; xc)! 0 (A.57)

But since rp(N1; xc) was shown above to have a …nite positive limit as xc ! 0,

we may then conclude from (A.50) that limxc!0 U1(N1; xc) = 0, and (ii) hold
as well.

Finally to establish (A.54), observe …rst from (A.46) and (A.47) that b <

w ) rp < 1 ) xp < (w ¡ b)=[c(1 ¡ s0)], so that the limiting interval of
integration in (A.51) must be bounded as xc ! b=c. Hence it su¢ces to show

that

lim
xc!b=c

U1(N1; xc) =1 (A.58)

For this will in turn imply that the integrand, ´1[¢; U1(N1; xc)], converges uni-
formly to zero, and hence that limxc!b=c Á(N1; xc) = 0. To establish (A.58),

observe …rst from (A.46) that xc ! b=c) rc(xc)! 0, and hence from (A.50)

that either (A.58) holds or U c0(N1; xc)! 0. To see that the latter is not possi-

ble, observe that this would imply ´c0[¢; U c0(N1; xc)]!1, which together with
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xc ! b=c > 0;would imply that the right hand side of (A.49) must diverge to

in…nity, thus contradicting the constancy of N c
0(N1). Hence (A.58) must hold,

and the result is established.

In particular, the uniqueness of xc ensures the existence of a well-de…ned

core-boundary function, xc(N1), satisfying the identity

Á[N1; xc(N1)] = N1 (A.59)

Given this …xed-point property, can now be shown that

Theorem A.2 (Semi-Equilibria). For each subvector of admissible para-
meters, eµ = (½; °; s0; ¸;N; ¾; ®; ¯; b; w; c), and each employment level, N1 2
(Nmin

1 ; Nmax
1 ], there exists a unique semi-equilibrium, e»(N1) = (N c

0 ; N
p
0 ; N1; ph; U

c
0 ; U

p
0 ; U1; xc; xp),

for eµ.
Proof. Given N1, let xc = xc(N1) in (A.59) above. It then su¢ces to pro-

duce a unique set of admissible values (N c
0 ;N

p
0 ; ph; U

c
0 ; U

p
0 ; U1; xp) satisfying all

conditions of De…nition 2. To do so, we begin by taking (N c
0 ; N

p
0 ; ph) to be

the unique steady-state values de…ned by N1 in Proposition 3, so that (5.28),

(5.29), and (5.30) are automatically satis…ed. Using N c
0 = N c

0(N1), we then

de…ne U c0 = U c0(N1) by (A.49). Next, de…ning rc = rc(xc) by (A.46), we set

U1 = U1(N1; xc) in (A.50). Similarly, de…ning rp = rp(N1; xc) by (A.47), we

set Up0 = U1rp and set xp = xp(N1; xc) in (A.48). By construction, these values

automatically satisfy [(5.15),(5.18),(5.19),(5.23)]. Finally by (A.52) in Propo-

sition 4 together with the de…nition of Á in (A.51), we see that (5.24) is also

satis…ed, and hence that these values constitute a semi-equilibrium for eµ. But
since xc in Proposition 4 is unique, it follows from the above argument that

all other values (N c
0 ; N

p
0 ; ph; U

c
0 ; U

p
0 ; U1; xp) are unique, and hence that this is

the only semi-equilibrium for eµ with employment level N1.
A.3.2. Proof of Theorem 5.1: Uniqueness of CP Equilibria

First suppose there are two distinct CP-equilibria for µ, say

» = (N c
0 ; N

p
0 ; N1; ph; U

c
0 ; U

p
0 ; U1; xc; xp; xf ) (A.60)

e» = ( eN c
0 ;
eNp
0 ; eN1; eph; eU c0 ; eUp0 ; eU1; exc; exp; exf ) (A.61)

We then claim that N1 6= eN1. For if N1 = eN1, it would follow from the

construction of semi-equilibria in the proof of Theorem A.2 above that all

components of » and e» must be the same, except possibly the frontier locations,
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xf and exf . But the equality eUp0 = Up0 , together with equilibrium condition

(5.33), would then imply that xp = exp, and hence that » = e». Thus we may
henceforth assume without loss of generality thateN1 > N1 (A.62)

In this setting, we …rst observe from the strict monotonicty properties estab-

lished in Proposition 3 that the steady-state values ( eN c
0 ; eNp

0 ; eph) in e» must
satisfy the strict inequalities: eN c

0 > N c
0 (A.63)eNp

0 < Np
0 (A.64)eph < ph (A.65)

In addition the last inequality also implies from (5.16) that

¿(eph) > ¿ (ph) (A.66)

Given these preliminary observations, we …rst show that both of the following

inequalities must hold: exp < xp (A.67)eU1 < U1 (A.68)

To do so, we consider two possible cases: exc ¸ xc and exc < xc. First suppose
that exc ¸ xc. Then by (A.46) together with b < w, it follows that rc(exc) ·
rc(xc). But this together with (A.66) is easily seen to imply from (A.47) that

erp ´ rp( eN1; exc) < rp(N1; xc) ´ rp (A.69)

Moreover, since this in turn implies that r
1

®+¯
p ¡ er 1

®+¯
p > 0, and since (A.48)

implies that

exp =
w ¢ er 1

®+¯
p ¡ b

c

µer 1
®+¯
p ¡ s0

¶ < w ¢ r
1

®+¯
p ¡ b

c

µ
r

1
®+¯
p ¡ s0

¶ = xp
,

µ
w ¢ er 1

®+¯
p ¡ b

¶µ
r

1
®+¯
p ¡ s0

¶
<

µ
w ¢ r

1
®+¯
p ¡ b

¶µer 1
®+¯
p ¡ s0

¶
, w

µ
r

1
®+¯
p ¡ er 1

®+¯
p

¶
<
b

s0

µ
r

1
®+¯
p ¡ er 1

®+¯
p

¶
(A.70)

it then follows from (4.9) that (A.67) must hold. To establish (A.68), observe

next from (A.51),(A.53) and (A.62) thatZ exp
exc ´1(x; eU1)dx = eN1 > N1 = Z xp

xc

´1(x; U1)dx (A.71)
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But this together with exc ¸ xc and (A.67) implies that ´1(¢; eU1) > ´1(¢; U1) on
a set of positive measure, and hence from (5.20) that (A.68) must hold.

Next suppose that exc < xc. For this case we can establish (A.67) as follows.
First recall from part (i) of Proposition 3 that

eN1 > N1 ) eN c
0eN1 > N c

0

N1
(A.72)

Hence if we now let

F1(xc) =

Z xc

0

x(b¡ cx)¯=®dx (A.73)

F2(xc; xp) =

Z xp

xc

x(w ¡ cx)¯=®dx (A.74)

then by (5.20),(5.21),(5.23), and (5.24), together with (5.18) and (A.46), it

follows that

eN c
0eN1 > N c

0

N1
,

Ã eU c0eU1
!¡ 1

®
F1(exc)
F2(exc; exp) >

µ
U c0
U1

¶¡ 1
® F1(xc)

F2(xc; xp)

, rc(exc)¡ 1
®
F1(exc)
F2(exc; exp) > rc(xc)¡ 1

®
F1(xc)

F2(xc; xp)
(A.75)

But since exc < xc ) rc(exc) > rc(xc)) rc(exc)¡ 1
® < rc(xc)

¡ 1
® , we must have

F1(exc)
F2(exc; exp) > F1(xc)

F2(xc; xp)
(A.76)

Moreover, since exc < xc ) F1(exc) < F1(xc) by (A.73), it then follows from

(A.76) that

F2(exc; exp) < F2(xc; xp) (A.77)

Finally, since F2(xc; xp) is seen from (A.74) to be decreasing in xc and increas-

ing in xp, we may conclude from (A.77) that

exc < xc ) F2(xc; exp) < F2(exc; exp) < F2(xc; xp)
) exp < xp (A.78)

and hence that (A.67) must hold.

To establish (A.68) for this second case, observe …rst from (5.18) and (A.46)

that

exc < xc ) rc(exc) > rc(xc)
)

eU c0eU1 > U c0
U1

(A.79)
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Moreover, from (5.23) and (A.63) we see thatZ exc
0

´c0(x;
eU c0)dx = eN c

0 > N
c
0 =

Z xp

0

´c0(x; U
c
0)dx (A.80)

which together with exc < xc implies that ´c0(¢; eU c0) > ´c0(¢; U c0) on a set of
positive measure. Hence from (5.21) it follows that eU c0 < U c0 , and we may

conclude from (A.79) that (A.68) must hold.

Given the two conditions, (A.67) and (A.68), we can now establish the

desired uniqueness result by obtaining a contradiction as follows. Observe

…rst from (5.25) and (A.64) thatZ exf
exp ´p0(x; eUp0 )dx = eNp

0 < N
p
0 =

Z xf

xp

´p0(x; U
p
0 )dx (A.81)

But since (5.19) together with (4.9) and (A.67) imply that

eUp0eU1 = s®+¯0

µ
(b=s0)¡ cexp
w ¡ cexp

¶®+¯
< s®+¯0

µ
(b=s0)¡ cxp
w ¡ cxp

¶®+¯
=
Up0
U1

(A.82)

we see from (A.68) that eUp0 < Up0 , and hence that ´
p
0(x; eUp0 ) > ´p0(x; U

p
0 ) for

all x. Hence this together with (A.67) and (A.81) implies on the one hand

that exf < xf . But on the other hand, eUp0 < Up0 and together with equilibrium
condition (5.33) implies that exf > xf . Thus the assumption that » and e» are
distinct CP-equilibria for µ leads to a contradiction, and the uniqueness of

CP-equilibria is established.

A.3.3. Proof of Theorem 5.2: Existence of CP Equilibria

To establish conditions for the existence of CP-equilibria, we …rst construct

a limiting semi-equilibrium associated with the minimal employment level,

Nmin
1 , in (A.31) above. The strategy of the existence proof is then to establish

conditions on parameters under which semi-equilibria ‘su¢ciently close’ to this

limit will indeed be CP-equilibria.

To construct the desired limit, we begin by recalling that each minimal

employment level is uniquely de…ned by the steady-state parameters, µ =

(½; °; s0; ¸;N). To emphasize this dependence on µ, we now let N1 [= N
min
1

¡
µ
¢
]

denote the unique minimal employment level generated by µ. Next we show

that for any extension of µ to an admissible subvector of parameters, eµ =
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(µ; ¾; ®; ¯; b; w; c), this minimal employment level, N1, can be extended to a

unique vector of values,

» = (N
c

0; N
p

0; N1; ph; U
c

0; U
p

0; U1; xc; xp) (A.83)

which constitutes a semi-equilibrium for eµ. To start with, observe that since
N1 is by de…nition associated with the minimal level of search intensity, s0, it

follows from (5.26) that if » is a semi-equilibrium, then we must have

s0 =
N
c

0 + s0N
p

0

N
c

0 +N
p

0

) s0N
c

0 = N
c

0 ) N
c

0 = 0 (A.84)

Hence, in terms of core-periphery patterns, » is seen to represent the limiting

case in which the core unemployment level, N
c

0 just falls to zero. In view of

(5.23), it then follows that the core boundary point in » must be

xc = 0 (A.85)

To generate the remaining values in », observe …rst from (A.84) and (5.29)

that the peripheral unemployment level must be

N
p

0 = N ¡N1 (A.86)

and also from (5.29) together with Proposition 3 that the steady-state hiring

probability must be

ph = ph(N1) =
s0
¡
N ¡N1

¢¡
N ¡N1

¢
+Nd

µ
1¡ e¡°

s0(N¡N1)
(N¡N1)+Nd

¶
(A.87)

By (A.46) and (A.47) together with (5.16), it then follows that the utility

ratios, rc = U
c

0=U1 and rp = U
p

0=U1 must be given respectively by

rc =

µ
b

w

¶®+¯
(A.88)

rp = ¿ (ph)

µ
b

w

¶®+¯
+ 1¡ ¿ (ph) (A.89)

In particular, (A.89) implies that the peripheral employment boundary must

given in terms of (A.48) by

xp =
w ¢ r

1
®+¯
p ¡ b

c

µ
r

1
®+¯
p ¡ s0

¶ (A.90)
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Finally, to determine the utility levels associated with », it is convenient to be-

gin by employing (5.24) together with (A.90) to determine U1 by the relation,

N1 =

Z xp

0

´1(x;U1)dx (A.91)

[which is seen from (5.24) to yield a closed-form expression for U1]. This in

turn allows U
c

0 and U
p

0 to be determined respectively by

U
c

0 = rc ¢ U1 (A.92)

U
p

0 = rp ¢ U1 (A.93)

Given these values, it is then shown that » is in fact the continuous limit

of semi-equilibria, e»(N1), for eµ = (µ; ¾; ®; ¯; b; w; c), as N1 approaches N1:

Proposition 5. For each vector of admissible parameters, eµ = (µ; ¾; ®; ¯; b; w; c),
with steady-state parameter vector, µ, the state vector, », is a semi-equilibrium

for eµ, and in addition:
lim
N1#N1

e»(N1) = » (A.94)

Proof. To establish (A.94), observe …rst from the continuity of all functions

used in the constructions from (A.84) to (A.93) [together with the preservation

of equalities under limits] that the result will follow at once if it can be shown

that the core-boundary function, xc(N1), de…ned in (A.59) above converges to

zero, i.e., that

lim
N1#N1

xc(N1) = 0 (A.95)

To do so, suppose to the contrary that (A.95) fails. Then for any sequence

of values (Nm
1 ) µ (Nmin

1 ; Nmax
1 ] with limm!1 Nm

1 = N1 it follows from the

boundedness of xc(N1) 2 [0; b=c] (together with the Bolzano-Weierstrass The-
orem) that without loss of generality we may assume the existence of a positive

limit for the sequence, xmc = xc(N
m
1 ), say

lim
m!1

xmc = xc 2 (0; b=c] (A.96)

But the argument in (A.84) shows that

lim
m!1

N c
0(N

m
1 ) = 0 (A.97)

which in turn implies from (5.23) together with (A.96) that

lim
m!1

U c0(N
m
1 ) =1 (A.98)
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Moreover, since (A.96) also implies from (A.46) that

lim
m!1

rc[xc(N
m
1 )] =

µ
b¡ cxc
w ¡ xc

¶®+¯
2 £0; (b=c)®+¯¢ ; (A.99)

it would then follow from (A.50) that

lim
m!1

U1(N
m
1 ; x

m
c ) =1 (A.100)

Finally, since this together with the boundedness of xp(Nm
1 ; x

m
c ) in (A.48)

would imply from (A.51) that

lim
m!1

Á(Nm
1 ; x

m
c ) = lim

m!1

Z xp(Nm
1 ; x

m
c )

xmc

´1[x; U1(N
m
1 ; x

m
c )]dx = 0 (A.101)

we see from the identity Á(Nm
1 ; x

m
c ) ´ Nm

1 [in (A.52)] that this would contradict

the positivity of N1 = Nmin
1 (µ) [as implied by Theorem 1]. Hence failure of

(A.95) leads to a contradiction, and we may conclude that (A.95) must hold.

In view of the de…nition of N1 as the minimal employment level, Nmin
1 (µ),

we now designate » as the minimal semi-equilibrium for eµ. Proposition 5 then
shows how this (easily computed) minimal semi-equilibrium can be used to

draw inferences about the properties of semi-equilibria, e»(N1), in the neigh-
borhood of ». With this in mind, we …rst show that the optimality conditions

(5.31) and (5.32) are always satis…ed by the minimal semi-equilibrium, ». To

state this result, it is convenient to specialize the general functional de…nition in

(3.9) to the present case. For any parameter vector, eµ = (½; °; s0; ¸;N; ¾; ®; ¯; b; w; c),
and state vector, e» = (N c

0 ; N
p
0 ; N1; ph; U

c
0 ; U

p
0 ; U1; xc; xp), let x(1;eµ;e») be de…ned

by (3.9) together with (3.5) and (3.6), where s = 1 and U0 = U c0 . Similarly,

let x(s0;eµ;e») be de…ned by (3.9) together with (3.5) and (3.6), where s = s0
and U0 = U

p
0 . With this notation, we have that:

Proposition 6. For each vector of admissible parameters, eµ = (µ; ¾; ®; ¯; b; w; c),
the minimal semi-equilibrium, », for eµ in (A.83) satis…es the following two con-
ditions:

(i) xc < x(1;eµ; ») (A.102)

(ii) xp > x(1;eµ; ») (A.103)

Proof. To establish (i) observe …rst that by substituting (3.5) and (3.6) into
(3.9) [with s = 1 and U0 = U

c

0] and reducing, we obtain the expression

x
³
1;eµ; »´ = µb

c

¶Ã
¾ph

¡
U1 ¡ U c0

¢
(®+ ¯)(A+ ¾ph)U

c

0 + ¾ph
¡
U1 ¡ U c0

¢! (A.104)
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where A = 1¡ ¾ + ¾½ 2 (0; 1). But since U c0=U1 = rc = (b=w)®+¯ by (A.88)
it then follows [dividing through (A.104) by U

c

0] that

x
³
1;eµ; »´ = µb

c

¶0@ ¾ph

h¡
w
b

¢®+¯ ¡ 1i
(®+ ¯)(A+ ¾ph) + ¾ph

h¡
w
b

¢®+¯ ¡ 1i
1A (A.105)

which is clearly positive since w > b. Hence we may conclude from (A.85) that

(i) must hold.

To establish (ii) observe that for s = s0 we obtain the following parallel of

expression (A.104)

x
³
1;eµ; »´ = µ b

s0c

¶Ã
s0¾ph

¡
U1 ¡ Up0

¢
(®+ ¯)(A+ s0¾ph)U

p

0 + s0¾ph
¡
U1 ¡ Up0

¢! (A.106)

Now observing from (A.89) that U
p

0=U1 = rp = ¿z
¹ + 1¡ ¿ , where ¿ = ¿ (ph),

z = b=w, and ¹ = ®+ ¯, we may divide through (A.106) by U1 to obtain

x
³
1;eµ; »´ = µ b

s0c

¶µ
s0¾ph¿(1¡ z¹)

¹(A+ s0¾ph) (¿z
¹ + 1¡ ¿) + s0¾ph¿ (1¡ z¹)

¶
(A.107)

Hence writing xp in (A.90) as

xp =
w ¢ r

1
®+¯
p ¡ b

c

µ
r

1
®+¯
p ¡ s0

¶ = µ b

s0c

¶Ã s0
z
(¿z¹ + 1¡ ¿ )1=¹ ¡ s0
(¿z¹ + 1¡ ¿ )1=¹ ¡ s0

!
(A.108)

=

µ
b

s0c

¶0@ s0
z
(¿z¹ + 1¡ ¿)1=¹ ¡ s0¡

1¡ s0
z

¢
(¿z¹ + 1¡ ¿ )1=¹ +

h
s0
z
(¿z¹ + 1¡ ¿ )1=¹ ¡ s0

i
1A

and observing that for any positive numbers W;B;C;D

W

W +B
¸ C

C +D
, W

B
¸ C

D
(A.109)

it follows from a comparison of (A.107) and (A.108) that (ii) will hold i¤

s0
z
(¿z¹ + 1¡ ¿)1=¹ ¡ s0¡

1¡ s0
z

¢
(¿z¹ + 1¡ ¿ )1=¹

>
s0¾ph¿ (1¡ z¹)

¹(A+ s0¾ph) (¿z
¹ + 1¡ ¿ ) (A.110)

which can be equivalently written as

1

z ¡ s0

Ã
1¡ z

(¿z¹ + 1¡ ¿)1=¹
!
>

¾ph¿

(A+ s0¾ph) (¿z
¹ + 1¡ ¿)

µ
1¡ z¹
¹

¶
(A.111)
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Finally, recalling from (5.16) that

¿ =
A+ s0¾ph
A+ ¾ph

) ¾ph¿

A+ s0¾ph
=

¾ph
A+ ¾ph

=
1¡ ¿
1¡ s0 (A.112)

it follows that (ii) will hold i¤

1¡ z

(¿z¹ + 1¡ ¿ )1=¹
>
z ¡ s0
1¡ s0

µ
1¡ ¿

¿z¹ + 1¡ ¿
¶µ

1¡ z¹
¹

¶
(A.113)

To analyze this relation, we focus on the parameter, ¹ = ® + ¯, and for

notational simplicity we henceforth drop the bar on ¿ . Letting g(¹) be de…ned

by g(¹) = g1(¹)¡ g2(¹), where

g1(¹) = 1¡ z

(¿z¹ + 1¡ ¿)1=¹
(A.114)

g2(¹) =
z ¡ s0
1¡ s0

µ
1¡ ¿

¿z¹ + 1¡ ¿
¶µ

1¡ z¹
¹

¶
(A.115)

it follows that verifying (A.113) is equivalent to showing that [for each z = b=w]

the function g(¢) is positive on (0; 1). To do so, our strategy will be to show
that

lim
¹#0
g(¹) > 0 (A.116)

and that

¹ 2 (0; 1)) g0(¹) > 0 (A.117)

To establish (A.116) we …rst observe that by an application of L’Hospital’s

rule to the log of (¿z¹ + 1¡ ¿ )1=¹, one obtains the limiting relation

lim
¹#0
(¿z¹ + 1¡ ¿)1=¹ = z¿ (A.118)

and also by an application of L’Hospital that

lim
¹#0

µ
1¡ z¹
¹

¶
= ¡ ln(z) (A.119)

Hence it follows that

lim
¹#0
g(¹) =

¡
1¡ z1¡¿¢¡ z ¡ s0

1¡ s0

µ
1¡ ¿
1

¶
[¡ ln(z)] (A.120)

If we express the right hand side as f(z) = f1(z)¡ f2(z) where

f1(z) = 1¡ z1¡¿ (A.121)
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f2(z) =
z ¡ s0
1¡ s0

µ
1¡ ¿
1

¶
[¡ ln(z)]

=
z ¡ s0
1¡ s0 ln

¡
z¿¡1

¢
(A.122)

and recall that s0 < z = b=w < 1, then it su¢ces to show that for each

¿ 2 (0; 1);
z 2 (s0; 1)) f(z) > 0 (A.123)

Here our strategy is to show that f(1) = 0, f 0(1) = 0, and f 00(z) > 0 for

z 2 (s0; 1), so that f(z) must decrease to zero on (s0; 1). First, it follows by
an inspection of (A.121) and (A.122) that f(1) = 0. Next observe that

f 01(z) = (¿ ¡ 1)z¡¿ ) f 01(1) = ¿ ¡ 1 (A.124)

and

f 02(z) =
1

1¡ s0
h
ln
¡
z¿¡1

¢
+ (¿ ¡ 1)

³
1¡ s0

z

´i
) f 02(1) =

1

1¡ s0 [(¿ ¡ 1) (1¡ s0)] = ¿ ¡ 1 (A.125)

so that f 0(1) = 0: Finally, since ¿ 2 (s0; 1) implies both that

f 001 (z) = (1¡ ¿)¿z¡(1+¿) > 0 (A.126)

and that

f 002 (z) =
¿ ¡ 1
1¡ s0

³
z¡1 +

s0
z2

´
< 0 (A.127)

it follows that f 00(z) = f 001 (z)¡ f 002 (z) > 0 for z 2 (s0; 1), so that (A.123) [and
hence (A.116)] holds.

Next to establish (A.117), it must be veri…ed that g01(¹) > g02(¹) for all

¹ 2 (0; 1), where

g01(¹) =
z

¹2 (¿z¹ + 1¡ ¿ )1=¹
½
¿z¹ ln(z¹)

¿z¹ + 1¡ ¿ ¡ ln (¿z
¹ + 1¡ ¿)

¾
(A.128)

g02(¹) =
(z ¡ s0) (¿ ¡ 1)

¹2 (1¡ s0) (¿z¹ + 1¡ ¿)
½
¿z¹ ln(z¹) (1¡ z¹)
¿z¹ + 1¡ ¿ + (1¡ z¹) + z¹ ln (z¹)

¾
(A.129)

To show that

z

¹2 (¿z¹ + 1¡ ¿)1=¹
½
¿z¹ ln(z¹)

¿z¹ + 1¡ ¿ ¡ ln (¿z
¹ + 1¡ ¿)

¾
> (A.130)

(z ¡ s0) (1¡ ¿ )
¹2 (1¡ s0) (¿z¹ + 1¡ ¿ )

½
¿z¹ ln(z¹) (1¡ z¹)
¿z¹ + 1¡ ¿ + (1¡ z¹) + z¹ ln (z¹)

¾
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we …rst observe that the expression in braces on the left hand side of (A.130)

will be positive if for each z¹ 2 (0; 1) the function

k1(¿ ) = ¿z
¹ ln(z¹)¡ (¿z¹ + 1¡ ¿ ) ln (¿z¹ + 1¡ ¿) (A.131)

is positive on (0; 1). But since k(1) = 0 and since z¹ 2 (0; 1) implies that

k01(¿ ) = z
¹ ln(z¹) + (1¡ z¹) [ln (¿z¹ + 1¡ ¿ )¡ 1] < 0

for all ¿ 2 (0; 1), it follows that k1(¿) is indeed positive on (0; 1). Hence if the
right hand side of (A.130) is negative, we are …nished. On the other hand, if

it is nonnegative, then since

z; s0 2 (0; 1)) z >
z ¡ s0
1¡ s0 (A.132)

and since

¿z¹ + 1¡ ¿ 2 (0; 1)) (¿z¹ + 1¡ ¿ )¡1=¹ > (¿z¹ + 1¡ ¿ )¡1 (A.133)

it follows by setting x = z¹ 2 (0; 1) [and cancelling ¹2 in (A.130)] that it is
enough to show that

¿x

¿x+ 1¡ ¿ ln(x)¡ ln(¿x+ 1¡ ¿) >

(1¡ ¿ )
½
¿x ln(x)(1¡ x)
¿x+ 1¡ ¿ + x ln(x) + (1¡ x)

¾
(A.134)

But since the right hand side can be rewritten as

(1¡ ¿ )
½
¿x ln(x)(1¡ x)
¿x+ 1¡ ¿ + x ln(x) + (1¡ x)

¾
=

x ln(x)

¿x+ 1¡ ¿ ¡
¿x ln(x)

¿x+ 1¡ ¿ + (1¡ ¿ )(1¡ x) (A.135)

it follows by substituting (A.135) into (A.134), cancelling terms and multiply-

ing through by (¿x+ 1¡ ¿) that it is enough to show that for each ¿ 2 (0; 1)
the function

k2(x) = (1¡ ¿)(1¡ x) (¿x+ 1¡ ¿ ) + x ln(x)
¡ (¿x+ 1¡ ¿) ln (¿x+ 1¡ ¿ ) (A.136)

is positive for all x 2 (0; 1). But since k2(1) = 0, (A.136) will follow if the

derivative

k02(x) = (1¡ ¿ )¿(1¡ x)¡ (1¡ ¿ ) (¿x+ 1¡ ¿)
+ ln(x) + 1¡ ¿ [ln (¿x+ 1¡ ¿ ) + 1] (A.137)
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is negative on (0; 1). Moreover, since k02(1) = 0, this in turn will follow if the
second derivative

k002(x) =
1

x (¿x+ 1¡ ¿) f¿x +1¡ ¿
¡2¿(1¡ ¿)x[¿x+ (1¡ ¿ )]¡ ¿ 2xª (A.138)

is positive on (0; 1), which is equivalent to showing that for each ¿ 2 (0; 1) the
function

k3(x) = ¿x+ 1¡ ¿ ¡ 2¿(1¡ ¿)x[¿x+ (1¡ ¿ )]¡ ¿ 2x (A.139)

is positive on (0; 1). But since

k003(x) = ¡2¿(1¡ ¿)(2¿) < 0 (A.140)

we see that k3(¢) is strictly concave, and hence must achieve its minimum
on [0; 1] at one of the end points. Finally, since k3(0) = 1 ¡ ¿ > 0 and

k3(1) = (1¡ ¿ )2 > 0, we may conclude that k3(x) is indeed positive on (0; 1),
and thus that (A.117) must hold.

Together with the continuity property in (A.94), this result implies that all

semi-equilibria, e», su¢ciently close to » will also satisfy these optimality con-
ditions. Hence if eµ is now extended to a full parameter vector, µ = (eµ; RA) for
some given agricultural rent level, RA, then to ensure that such semi-equilibria,e», will actually be CP-equilibria, it remains to ensure that peripheral unem-
ployment condition (5.25) and the frontier condition (5.33) are both satis…ed

for µ.

Here we require additional restrictions on the relevant range of parameter

values. While many such conditions are possible (given the high dimension-

ality of the parameter space), we choose to focus on two alternative su¢cient

conditions which are most easily interpreted from an economic viewpoint. To

motivate the …rst of these conditions, recall from the discussion leading to

(4.9) that in order for there to exist a peripheral unemployment ring, the

unemployment-bene…t level, b, cannot be too small. Our …rst su¢cient con-

dition essentially involves a strengthening of (4.9) which asserts that if b is

‘su¢ciently large’, then for an appropriately speci…ed range of exogenous rent

levels, RA, there will exist a unique CP-equilibrium for µ = (eµ; RA). Our
second su¢cient condition asserts that if future utility levels are not too im-

portant relative to present utility levels for workers, i.e., if their utility discount

rate, ¾, is ‘su¢ciently small’, then essentially the same existence result holds.

While the proof of su¢ciency is rather technical, the basic intuition appears
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to be the same in each case. Both conditions essentially ensure that there

are strong incentives for unemployed workers to choose only a minimal level

of search intensity. This is most evident in the case of high unemployment

bene…ts, where unemployment becomes a relatively attractive situation. In

the case of utility-discount behavior, it is also clear that if the future is not

too important, then there is less incentive for unemployed workers to forego

current utility by searching for future work at full intensity.

To state these results in a precise way, we proceed in several steps. The

…rst step, which is really the key result, is to show that if either of these condi-

tions holds for a given parameter vector, eµ = (µ; ¾; ®; ¯; b; w; c), with minimal
semi-equilibrium, », in (A.83), then there will exist a ‘feasible frontier’ value

in the interval
³
xp;

b
s0c

´
which allows the peripheral unemployment condition

(5.25) to be satis…ed by the semi-equilibrium values
¡
N
p

0; U
p

0; xp
¢
. For conve-

nience, we state this result for each condition separately. First, for the case of

unemployment-bene…t levels, b, we have that:

Proposition 7. For any admissible parameter vector, bµ = (½; °; s0; ¸;N; ¾; ®;
¯;w; c), there exists a unique smallest unemployment-bene…t level,bb 2 (s0w;w),
such that for each b 2 (bb; w), the minimal semi-equilibrium, », for ³bµ; b´ sat-
is…es the strict inequality

N
p

0 <

Z b
s0c

xp

´p0(x;U
p

0)dx (A.141)

Proof. To establish the existence of such an unemployment-bene…t value,bb 2 (s0w;w), we begin by letting the minimal semi-equilibrium for each (bµ; b)
with b 2 (s0w;w) be denoted by

»(b) =
¡
N
c

0; N
p

0; N1; ph; U
c

0(b); U
p

0(b); U1(b); xc; xp(b)
¢

(A.142)

where the construction of (A.83) shows that the only quantities depending on

b are those indicated. For this family of minimal semi-equilibria, observe …rst

from (A.89) that

lim
b"w
rp(b) = lim

b"w

"
¿ (ph)

µ
b

w

¶®+¯
+ 1¡ ¿(ph)

#
= 1 (A.143)

which in turn implies from (A.90) that

lim
b"w
xp(b) = lim

b"w

24 w [rp(b)]
1

®+¯ ¡ b
c
³
[rp(b)]

1
®+¯ ¡ s0

´
35 = 0 (A.144)

67



Hence if we consider the function de…ned for each b 2 (s0w;w) by

G(b) = [rp(b)]
¡ 1
®

R b
s0c

xp(b)
x(b¡ s0cx) ¯®dxR xp(b)

0
x(w ¡ cx) ¯®dx

(A.145)

then it follows at once from (A.142), (A.143), and (A.144) that

lim
b"w
G(b) =1 (A.146)

But since rp(b) = U
p

0(b)=U1(b) by (A.93), it also follows from (5.20) and (5.22)

that for each b 2 (s0w;w),

G(b) =

Ã
U
p

0(b)

U1(b)

!¡ 1
®
R b

s0c

xp(b)
x(b¡ s0cx) ¯®dxR xp(b)

0
x(w ¡ cx) ¯®dx

=
2¼
¡
®+¯
®

¢ ³
a

U
p
0(b)

´ 1
® R b

s0c

xp(b)
x(b¡ s0cx) ¯®dx

2¼
¡
®+¯
®

¢ ³
a

U1(b)

´ 1
® R xp(b)

0
x(w ¡ cx) ¯®dx

=

R b
s0c

xp(b)
´p0[x; U

p

0(b)]dxR xp(b)
0

´1[x; U1(b)]dx
(A.147)

Moreover, since (A.91) together with (5.20) implies that

N1 =

Z xp(b)

0

´1[x;U1(b)]dx (A.148)

it then follows from (A.146), (A.147), and (A.148) that

lim
b"w

Z b
s0c

xp(b)

´p0[x;U
p

0(b)]dx = lim
b"w
N1G(b) =1 (A.149)

Hence for all su¢ciently large b 2 (s0w;w) we must have

N
p

0 <

Z b
s0c

xp(b)

´p0[x;U
p

0(b)]dx (A.150)

and the desired result follows by setting bb equal to the in…mum of all b 2
(s0w;w) satisfying (A.150).

Condition (A.141) together with the positivity of the density ´p0(¢; Up0) is
then seen to imply that for each parameter vector, (bµ; b), in Proposition 7
there exists a unique feasible frontier, xbf 2

³
xp;

b
s0c

´
, such that the peripheral

unemployment condition is satis…ed, i.e., such that

N
p

0 =

Z xbf

xp

´p0(x;U
p

0)dx (A.151)

Similarly, for the case of utility-discount rates, ¾, we have that:
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Proposition 8. For any admissible parameter vector, bµ = (½; °; s0; ¸;N; ®;

¯; b; w; c), there exists a unique largest utility-discount rate, b¾ 2 (0; 1), such
that for each ¾ 2 (0; b¾), the minimal semi-equilibrium, », for (bµ; ¾) satis…es
(A.141).

Proof. The proof of Proposition 8 closely follows that of Proposition 7. To
establish the existence of such a utility-discount rate, b¾ 2 (0; 1), we begin

letting the minimal semi-equilibrium for each (bµ; ¾) with ¾ 2 (0; 1) be denoted
by

»(¾) =
¡
N
c

0; N
p

0;N1; ph; U
c

0(¾); U
p

0(¾); U1(¾); xc; xp(¾)
¢

(A.152)

where again the construction of (A.83) shows that the only quantities depend-

ing on ¾ are those indicated. Then by letting ¿ (¾) = ¿(ph; ¾) in (5.16) it

follows that

lim
¾#0
¿ (¾) = lim

¾#0
(1¡ ¾ + ¾½) + s0¾ph
(1¡ ¾ + ¾½) + s0¾ph

= 1 (A.153)

This in turn implies from (A.89) that

lim
¾#0
rp(¾) = lim

¾#0

"
¿(¾)

µ
b

w

¶®+¯
+ 1¡ ¿(¾)

#
=

µ
b

w

¶®+¯
(A.154)

and hence from (A.90) together with (4.9) that

lim
¾#0
xp(¾) = lim

¾#0

24 w [rp(¾)]
1

®+¯ ¡ b
c
³
[rp(¾)]

1
®+¯ ¡ s0

´
35 = w

¡
b
w

¢¡ b
c
¡
b
w
¡ s0

¢ = 0 (A.155)

Thus, letting the function H be de…ned for all ¾ 2 (0; 1) by

H(¾) = [rp(¾)]
¡ 1
®

R b
s0c

xp(¾)
x(b¡ s0cx) ¯®dxR xp(¾)

0
x(w ¡ cx) ¯®dx

(A.156)

it follows from (A.154) and (A.155) that

lim
¾#0
H(¾) =1 (A.157)

The rest of the argument is essentially identical to that of Proposition 7 with

H(¾) replacing G(b). Here, b¾ is taken to be the supremum of values ¾ 2 (0; 1)
satisfying (A.150) with b replaced by ¾.

As in Proposition 7 above, this implies that for each parameter vector,

(bµ; ¾), in Proposition 8 there exists a unique feasible frontier, x¾f 2 ³xp; b
s0c

´
,

such that

N
p

0 =

Z x¾f

xp

´p0(x;U
p

0)dx (A.158)
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Since all subsequent development for both of these cases closely parallel one

another, we shall focus on the unemployment-bene…t case, and shall mention

the utility-discount case only when appropriate.

Next observe that if the feasible frontier, xbf , is added to the minimal semi-

equilibrium, », in (A.94), then the above results show that this state vector

»
³bµ; b´ = (N c

0; N
p

0; N1; ph; U
c

0; U
p

0; U1; xc; xp; x
b
f) (A.159)

satis…es all conditions for a CP-equilibrium except the frontier condition (5.33).

But since this condition involves the agricultural rent, RA, which is yet to be

speci…ed, it follows that this condition is automatically satis…ed for the rent

level, RA, de…ned by

RA =

µ
a

U
p

0

¶ 1
® ¡
b¡ s0cxbf

¢®+¯
® > 0 (A.160)

Hence for the parameter vector, eµ = ³bµ; b´, in Proposition 7 it follows that
»
³bµ; b´ satis…es all CP-equilibrium conditions for

³bµ; b; RA´. Note that since
N
c

0 = 0, this equilibrium does not yield a genuine core-periphery pattern of

unemployment. But it is clearly a limiting case of such equilibria which, in

a manner paralleling the designation of minimal semi-equilibria, can be des-

ignated as the minimal equilibrium for parameter vector eµ. Moreover, it is
equally clear from the continuity result in Proposition 5 together with the strict

inequalities in (A.102), (A.103), and (A.141), that each semi-equilibrium,

e»(N1) = (N c
0 ; N

p
0 ; N1; ph; U

c
0 ; U

p
0 ; U1; xc; xp) (A.161)

for eµ with N1 ‘su¢ciently close’ to N1, will still satisfy these conditions, i.e.

that

xc < x
³
1;eµ;e»(N1)´ (A.162)

xp < x
³
s0;eµ;e»(N1)´ (A.163)

Np
0 <

Z b
s0c

xp

´p0(x;U
p
0 )dx (A.164)

Hence if for each such e»(N1) we now de…ne the appropriate frontier value,

xf(N1) 2
³
xp;

b
s0c

´
, [in a manner paralleling (A.151)] to be the unique bound-

ary value satisfying

Np
0 =

Z xf (N1)

xp

´p0(x; U
p
0 )dx (A.165)
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and if we again solve for the appropriate agricultural rent level, RA(N1), by

RA(N1) =

µ
a

Up0

¶ 1
®

(b¡ s0cxf(N1))
®+¯
® (A.166)

then it follows at once that the state vector

e»[N1] = [e»(N1); xf (N1)] (A.167)

must be the unique CP-equilibrium for the parameter vector
³eµ; RA(N1)´.

Moreover, if we let N1 denote the supremum of all employment levels, N1,

satisfying these conditions, i.e.,

N1 = sup
n
N1 > N1 : e»(N1)satis…es (A.162),(A.163),(A.164)o (A.168)

[which necessarily exists and is less than Nmax
1 (eµ)] then it also follows that

the interval of possible CP-equilibrium employment levels for eµ is given by³
N1;N1

´
. If we de…ne the associated limiting frontier value, xbf , by

x
b
f = lim

N1"N1

xf(N1) (A.169)

and adjoin xf to the semi-equilibrium, e»(N1), for N1, then as a parallel to

»(bµ; b), it is natural to designate this combined state vector
»
³bµ; b´ = (N c

0; N
p

0; N1; ph; U
c

0; U
p

0; U1; xc; xp; x
b
f) (A.170)

as the maximal equilibrium for eµ = (bµ; b). Finally, since RA(N1) is easily seen
to be an increasing function of N1,23 it follows that the relevant interval of

possible agricultural rents, RA, generated by these CP-equilibria for eµ is given
by
³
RA(N1); RA(N1)

´
, which can be equivalently written in terms of (A.166)

as µ
a

U
p

0

¶ 1
® ¡
b¡ s0cxbf

¢®+¯
® < RA <

Ã
a

U
p

0

! 1
® ³
b¡ s0cxbf

´®+¯
®

(A.171)

This establishes the proof of Theorem 5.2.

23To see this observe …rst from part (ii) of Proposition 3 that Np
0 is decreasing in N1.

Moreover, it is shown in (A.67), (A.68), and (A.82) of the Appendix that xp, U1, and U
p
0 are

also decreasing in N1. But these monotonicty results are seen at once from (5.25) to imply
that the frontier value, xf , must be decreasing as well. Finally, since this together with the
decreasing monotonicity of Up0 implies that the right hand side of (5.33) must increase, it
follows that RA(N1) in (A.158) must increase with N1.
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As already discussed above, to prove Theorem 5.2, we used a su¢cient

condition expressed in terms of b (b shoud be su¢ciently large). We could also

express this su¢cient condition in terms of ¾. Indeed, in a similar manner,

one may easily de…ne minimal and maximal equilibria, »(bµ; ¾) and »(bµ; ¾), for
the parameter vector (bµ; ¾) in Proposition 8. It follows that, if the relevant
frontier values in each of these equilibria are denoted respectively by x¾f and

x
¾
f , then the relevant range of agricultural rents in this case is given by

µ
a

U
p

0

¶ 1
® ¡
b¡ s0cx¾f

¢®+¯
® < RA <

Ã
a

U
p

0

! 1
® ¡
b¡ s0cx¾f

¢®+¯
® (A.172)

Hence we have the following parallel result for the utility-discount case:

Theorem A.3 (Existence of CP-Equilibria). For any admissible parame-
ters, bµ = (½; °; s0; ¸;N; ®; ¯; b; w; c), and any ¾ 2 (0; b¾) in Proposition 8
with associated minimal and maximal equilibria, »(bµ; ¾), »(bµ; ¾), there ex-
ists for each agricultural rent level, RA, in the interval (A.172) a unique CP-

equilibrium for µ = (bµ; ¾; RA).
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Figure 1: Bid Rent for the Unemployed
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