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1 Introduction

If an outcome can only be achieved through the joint effort of two persons, it would be nonsensical

to ask what percentage each of the two persons has contributed to this outcome. Yet, this is

how decomposition analyses in economics are usually carried out. Typically, the aim of such

decompositions is to split up a given total effect into disjunct parts that can be attributed to

different factors. As indicated above, this may be an unattainable goal in many cases. The

interaction effects between different factors do not have to be as strong as in the example given

above, but in most real world contexts they are likely to be present. For example, the output

produced by two individuals may be higher than the sum of the output that can be produced by

each of the two individually (positive interaction). It may also be the case that two factors fully

or partly offset each other when they are jointly present as compared to when they are present in

isolation (negative interaction). In the case of more than two factors, the situation is even more

complex involving possible interaction effects of any subset of the factors considered.

Typical examples for decomposition methods used in economics include the decomposition of

distributional change into different factors (Juhn et al. (1993), DiNardo et al. (1996)), and the

decomposition of differences between groups into ‘characteristics’ and ‘returns’ effects (Blinder

(1973), Oaxaca (1973)). For example, in Juhn et al. (1993), the change in US wage inequality is

decomposed into the effects due to changes in observable characteristics, changes in observable

prices, and changes in unobservable characteristics and/or unobservable prices. In the seminal

contribution by DiNardo et al. (1996), changes in the US wage distribution are decomposed

into the parts contributed by changes in individual attributes, changes in unionization, changes

in the minimum wage, changes in supply and demand, and a contribution due to other changes

in the conditional wage structure. In the classic Oaxaca-Blinder decomposition, the differences

between two groups, for example black/white or male/female average wage differentials, are

decomposed into a part due to differences in characteristics, and a part due to differences in

returns to characteristics (also interpreted as ‘discrimination’).

The common method used in these approaches in order to arrive at an exact decomposition of an

overall effect into the parts contributed by different factors is to sequentially add the changes of

the different factors until all factors have been accounted for. The incremental changes defined

in this way provide an exact additive decomposition of the overall effect into parts contributed

by each factor. This widely used method has two drawbacks. The first one is that the result
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of the decomposition may depend on the order in which the different factors are added. The

second one is that the sequential decomposition provides an answer to the question of splitting

up the overall effect into disjunct parts even if there is no such answer. For example, in the case

described at the beginning of this section, the individual contribution of each of the two persons

is zero, but together they contribute a hundred percent. There is no way of splitting up the

overall effect into individual contributions. As another example, consider the case where (among

other things) the contributions of changes in unionization and shifts in the industry structure to

changes in the wage distribution are of interest. It will not be possible to completely separate

the influence of changes in unionization from those in the industry structure because part of

the effect of the changes in unionization will only materialize because the industry structure

shifts towards or away from industries with high levels of unionization.2 Similarly, in the classic

Blinder-Oaxaca decomposition which asks why male average wages exceed those of females, part

of the effect of higher wage returns for men only materialize because men may also have more

favorable characteristics. Again, it will not be possible to separate the effects of ‘characteristics’

and ‘returns’ in a strict sense.

It is not that the authors of the studies cited have not recognized the limitations of the kind of

sequential decompositions described above that are imposed by the existence of interaction effects

(see, e.g., Juhn et al., p. 429). However, to our best knowledge, no attempt has been made to

explicitly address these limitations. The aim of this paper is therefore to propose an alternative

decomposition scheme that i) takes seriously the existence of interaction effects and therefore

does not try to separate the influence of different factors where this is not possible, ii) provides

an exact decomposition of an overall effect into different contributions, and iii) is independent of

the ordering of the factors under consideration. The proposed alternative decomposition scheme

is generally applicable and can be viewed as a formal description of some of the aspects of the

notion that an overall effect is additively decomposed into the contributions of different factors

and their interactions.

The rest of the paper is organized as follows. Section 2 introduces the alternative decomposition

scheme involving interaction effects. Section 3 revisits sequential decomposition schemes and

examines their relationship to the decomposition involving interaction effects. In section 4, the

2This example is taken from Fortin et al. (2011) who provide a comprehensive treatment of the various

decomposition methods used in the literature including a discussion of many of the issues considered here. The

focus of Fortin et al. (2011) is on aspects such as identification which are largely independent of the point made

here (see below).
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framework is applied to the classic Oaxaca-Blinder decomposition and to an example involving

three-way interactions in order to highlight some of implications introduced by the existence of

interaction effects. Section 5 presents two empirical illustrations, and section 6 concludes.

2 Additive decompositions with interaction effects

As indicated above, the goal of many analyses in economics (and science in general) is to de-

compose the difference between two objects into the parts contributed by different factors. For

example, it may be investigated to what extent male wages are higher than female wages because

men have more favorable characteristics than women, or because returns to given characteristics

are higher for men than for women. As another typical example, consider the question of de-

composing the change in the distribution of income over time into the contributions of different

factors. This section provides a general additive decomposition formula for such changes.

2.1 The two factor case

First, consider the case where the change in an object f is thought to be caused by the change

of two factors. The overall change in the object can be written as f11 − f00 where f11 is the

outcome that results if both factors are changed, while f00 denotes the outcome that results if

both factors remain in their original state. The object f may be any outcome of interest, for

example, a wage, a distribution of wages, a functional of a distribution such as an inequality

index, or any other object of interest. In order to decompose the overall change into changes

contributed by individual factors, one has to introduce counterfactual outcomes f10, f01 which

describe what the outcome would be if only one of the factors was changed in isolation.

For example, in the case of the Oaxaca-Blinder decomposition, f is an average wage, f11 is

the average wage of men, f10 the average wage for individuals who have mens’ characteristics

but womens’ returns to characteristics, f01 the average wage for individuals with womens’ char-

acteristics but with mens’ returns to characteristics, and f00 the average wage of women (i.e.

individuals with womens’ characteristics and womens’ returns to characteristics). In the case

of decomposing changes of the income distribution over time, f11 and f00 denote the income

distributions of periods 1 and 0, f10 is the hypothetical income distribution that would result if

factor one was changed to its period 1 level but factor two was kept at its period 0 level, and f01
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is the hypothetical distribution that would result if factor one was kept at its period 0 level but

factor two was changed to its period 1 level.

In such a situation, the difference f11 − f00 may be decomposed as

f11 − f00 = (f10 − f00) (1)

+ (f01 − f00) (2)

+ [(f11 − f00)− (f10 − f00)− (f01 − f00)] . (3)

Here, (1) represents the ceteris paribus effect of factor one, (2) the ceteris paribus effect of factor

two, and (3) the interaction effect between the two factors. The ceteris paribus effects describe

the effects that occur if each of the factors is changed separately. If the two separate changes do

not add up to the overall change, this necessarily implies that there is an interaction effect. The

interaction effect is the part of the overall change that cannot be explained by changing both of

the factors in isolation, i.e. what remains if both ceteris paribus effects are subtracted from the

overall change.

The interaction effect has other, more intuitive interpretations:

[(f11 − f00)− (f10 − f00)− (f01 − f00)] (4)

= (f11 − f01)− (f10 − f00) (5)

= (f11 − f10)− (f01 − f00) (6)

It can be seen that the interaction effect is equal to both the effect of factor one varied by whether

or not factor two is present (5), and to the effect of factor two varied by whether or not factor

one is present (6).

2.2 The three factor case

In the three factor case, the decomposition is given by

f111 − f000 = (f100 − f000) (7)

+ (f010 − f000) (8)

+ (f001 − f000) (9)

+ [(f110 − f000)− (f100 − f000)− (f010 − f000)] (10)

+ [(f101 − f000)− (f100 − f000)− (f001 − f000)] (11)
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+ [(f011 − f000)− (f010 − f000)− (f001 − f000)] (12)

+ [(f111 − f000)− (7)− (8)− (9)− (10)− (11)− (12)] . (13)

Again, (7) - (9) represent the ceteris paribus effects. Contribution (10) is the two-way interaction

effect between factor one and factor two. Contributions (11), (12) are the corresponding two-way

interaction effects between factors one and three, and between factors two and three, respectively.

Everything that cannot be accounted for by the ceteris paribus and the two-way interaction effects

has to be due to a three-way interaction effect between all the three factors. The three-way

interaction effect is therefore given by (13).

Note that the three-way interaction effect int3 is defined as

int3 = total3 −

3∑

i=1

cpi −
∑

k∈P2

int2k, (14)

where total3 denotes the total change when all the three factors are changed, cpi the ceteris

paribus effect of factor i, and int2k the two-way interaction effects (over the set P2 of all possible

combinations of two factors out of the three).

2.3 The m factor case

The decomposition presented in the previous section easily generalizes to an arbitrary number of

factors m. For this, note that in the case of m = 4 factors, the four-way interaction effect results

as

int4 = total4 −

4∑

i=1

cpi −
∑

k∈P2

int2k −
∑

k∈P3

int3k, (15)

where the last term stands for all possible three-way interaction effects between three factors

chosen out of the four.

In the general case,

intj = totalj −

j∑

i=1

cpi −
∑

k∈P2

int2k −
∑

k∈P3

int3k − . . .−
∑

k∈Pj−1

int
j−1
k , (16)

which implies for j = m

intm = totalm −

m∑

i=1

cpi −
∑

k∈P2

int2k −
∑

k∈P3

int3k − . . .−
∑

k∈Pm−1

intm−1
k . (17)
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This yields the general decomposition for m factors

totalm =

m∑

i=1

cpi +
∑

k∈P2

int2k +
∑

k∈P3

int3k + . . .+
∑

k∈Pm−1

intm−1
k + intm. (18)

Decomposition (18) has number of advantages over other decomposition schemes used in the

literature such as the sequential decompositions described in the next section. The first advantage

is that the decomposition is path-independent because all factors are treated symmetrically. In

general, a decomposition is called path-independent if the contribution of a factor does not

depend on the order in which the different factors are introduced. A second advantage is that

the decomposition not only contains the ceteris paribus effects of changing one factor in isolation

but also the ceteris paribus effects of changing any subset of factors at the same time. For

example, the ceteris paribus effect of changing factors 1 and 2 at the same time is given by

cp1+ cp2+ int2{1,2}. In general, the ceteris paribus effect of changing a subset S of factors at the

same time is given by the sum of all individual ceteris paribus effects and all possible interaction

effects between the factors in S. This also means that the decompositions of the joint influence

of a subset of factors appear as a part of the larger decomposition involving all factors (this

property may be called subdecomposability). A third advantage of decomposition (18) is that

it is comprehensive in the sense that it involves all counterfactual states of the world. This is

not true, for example, of the sequential decompositions discussed below which are insensitive to

changes in counterfactuals that do not appear in the decomposition.3

3 Sequential decompositions

This section reviews the sequential decomposition schemes that are widely used in the literature

and establishes the relationship between sequential decompositions and the interaction effects

defined above.

3The property of comprehensiveness is proved as follows. A decomposition with two factors involves all

possible counterfactuals for these two factors (see equations (1) to (3)). The decomposition involving three

factors implicitly contains all possible two factor decompositions (i.e. all possible counterfactuals for any pair of

factors) and adds as a last step the state of the world in which all the three factors are present (see equation

(13)). The decomposition involving four factors implicitly contains all lower order decompositions and adds as a

last step the state of the world in which all four factors are present, and so on.

6



3.1 The two factor case

In the two factor case, a possible sequential decomposition of the total change is

f11 − f00 = (f10 − f00) (19)

+ (f11 − f10). (20)

Here, (19) measures the contribution of factor one, while (20) measures that of factor two. A

severe drawback of sequential decompositions is that they are path-dependent. The result of the

decomposition depends on the order in which the two factors are introduced. The sequential

decomposition in which the two factors are treated in the reverse order is given by

f11 − f00 = (f01 − f00) (21)

+ (f11 − f01). (22)

Here, the contribution of factor two (21) is measured first, while that of factor one (22) is

measured second.

3.2 The three factor case

In the three factor case, a possible sequential decomposition is

f111 − f000 = (f100 − f000) (23)

+ (f110 − f100) (24)

+ (f111 − f110). (25)

An alternative sequential decomposition is given by

f111 − f000 = (f001 − f000) (26)

+ (f101 − f001) (27)

+ (f111 − f101). (28)

The latter decomposition first measures the contribution of factor three, then that of factor one,

and finally, that of factor two.

In the three factor case, there are 3 · 2 · 1 = 6 possible sequential decompositions.
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3.3 The m factor case

In the m factor case, the simplest sequential decomposition is defined by

f11111...1 − f00000...0 = (f10000...0 − f00000...0) (29)

+ (f11000...0 − f10000...0) (30)

+ (f11100...0 − f11000...0) (31)

+ (f11110...0 − f11100...0) (32)

+ . . . (33)

+ (f11111...1 − f11111...0). (34)

In the m factor case, there are m · (m− 1) · . . . 2 · 1 = m! possible sequential decompositions.

3.4 Sequential decompositions and interaction effects

The following two propositions show that sequential decomposition schemes are very restrictive

in how they treat interaction effects.

Proposition 1. The contributions of a sequential decomposition scheme are path-independent

if and only if they are equal to the ceteris paribus effects for all possible decomposition orders.

Proof. If the contributions of the sequential decomposition scheme are path-independent, then

they are equal to the ceteris paribus effects because there is always a sequential decomposition

in which a given factor appears first, implying that its contribution is equal to the ceteris paribus

effect. On the other hand, if the contributions of a sequential decomposition scheme are equal

to the ceteris paribus effects for all possible decomposition orders, then they are independent of

the decomposition order and thus path-independent.

Proposition 2. The contributions of a sequential decomposition scheme are path-independent

if and only if all interaction effects are zero.

Proof. If the contributions of a sequential decomposition scheme are path-independent, then

they are equal to the ceteris paribus effects (see Proposition 1). Then, all two-way interactions

have to be zero because, if the decomposition is path-independent, it does not make a difference
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whether a given factor appears in the first or the second position of the corresponding sequential

decomposition, i.e.

f1,1,(0,...,0) − f0,1,(0,...0) = f1,0,(0,...,0) − f0,0,(0,...0) (35)

(here the first position of the subscript refers to the given factor, the second position to another

factor, and the rest to all remaining factors). Equation (35) means that the two-way interactions

between the given factor and any other factor are equal to zero (see (5)). This holds for all

factors and all two-way interactions. Then, for any three-way interaction

int3 = total3 −

3∑

i=1

cpi −
∑

k∈P2

int2k = total3 −

3∑

i=1

cpi = 0 (36)

because, if the sequential decomposition of the m factors is path-independent, also the sequen-

tial decomposition involving only the three factors under consideration is path-independent, i.e.

total3 =
∑3

i=1 cpi (in any path-independent sequential decomposition with three factors, the

contributions are equal to the ceteris paribus effects, see Proposition 1). Using this argument

recursively,

intj = totalj −

j∑

i=1

cpi −
∑

k∈P2

int2k −
∑

k∈P3

int3k − . . .−
∑

k∈Pj−1

int
j−1
k = 0 (37)

for all remaining j = 4, . . . , m (because all preceding (j−1)-way interactions are zero and totalj =
∑j

i=1 cpi because of path-independence). This establishes that if the sequential decomposition

scheme is path-independent, all interaction effects have to be zero.

On the other hand, if all the interaction effects are zero, then for any number of factors j ≤ m

totalj =

j∑

i=1

cpi + interactions =

j∑

i=1

cpi. (38)

Consider the case of m factors and take any sequential decomposition with order O. We will

show that the contributions in this decomposition are equal to the ceteris paribus effects of the

corresponding factors. The contribution of the first factor in O is equal to the ceteris paribus

effect of this factor by definition. Now consider the second factor. Its contribution in the

sequential decomposition is f1,1,(0,...,0) − f1,0,(0,...0) (the first subscript refers to the first factor

in O, the second to the second factor, and the rest to all other factors). But this contribution

is equal to f0,1,(0,...,0) − f0,0,(0,...0) = cp2, i.e. the ceteris paribus effect of factor two because

there are no two-way interactions (see (6)). Now consider again sequential decomposition O

but only the sequential sub-decomposition in O that involves the first three steps. Because all
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interaction effects are zero, in this three factor sequential decomposition it also holds that total3

is equal to the sum of the ceteris paribus effects of the the three factors, i.e. total3 =
∑3

i=1 cpi

(see (38)). This means that in sequential decomposition O (which shares the first three steps

with the sub-decomposition), the contribution of the third factor is equal to cp3 (because the

contributions of the first two factors were cp1 and cp2). The same argument applies recursively

to the contributions of factors 4, 5, . . . , m in O. This means that if all interaction effects are

zero, in any sequential decomposition O the contribution of each factor is equal to its ceteris

paribus effect. This is equivalent to the sequential decomposition scheme being path-independent

according to Proposition 1.

Note that Proposition 2 is a rather strong statement as it requires that all interaction effects (i.e.

also the ones of a higher order) have to be zero for path independence. A possible conclusion

from Proposition 2 is that the larger interaction effects are, the more path-dependent the result

of a sequential decomposition will be. This justifies the practice of trying out different factor

orderings when computing sequential decompositions, see, for example, DiNardo et al. (1996)

and Hyslop/Mare (2005). Examples where the contribution of individual factors may be quite

dependent on the order in which the different factors are introduced in a sequential decomposi-

tion can be found in Biewen/Juhasz (2012) and Biewen (2001). Propositions 1 and 2 also make

clear that computing a sequential decomposition is not better than computing ceteris paribus

effects. If the results of the sequential decomposition are not identical (or similar to) the ce-

teris paribus effects, the sequential decomposition is necessarily path-dependent and therefore

potentially questionable.

4 Two examples

The purpose of this section is to apply the above framework to two examples in order to highlight

some of the issues discussed above.

4.1 The Oaxaca-Blinder decomposition

Starting with the seminal papers by Oaxaca (1973) and Blinder (1973), economists have been

asking the question of how to decompose differences between groups or over time into a ‘char-
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acteristics’ and a ‘returns’ effects.4 Oaxaca and Blinder’s decomposition has been applied and

generalized to a variety of different settings (see Gomoulka/Stern (1990), Fairlie (2005), Yun

(2004), Machado/Mata (2005), Biewen/Jenkins (2005), Bauer/Sinnig (2007), among many oth-

ers). The following remarks also apply to these variants of their idea.

In the Oaxaca-Blinder setup,

f11 = xMβM , f10 = xMβF , f01 = xFβM , f00 = xFβF , (39)

where xM , xF denote the vector of average characteristics of men and women, and βM , βF the

regression coefficients of male and female wage regressions.

There are two standard variants of the Oaxaca-Blinder decomposition which correspond to the

two possible sequential decompositions shown in (19) to (22):

f11 − f00 = (f10 − f00) + (f11 − f10)

= xMβM − xFβF = (xM − xF )βF + xM(βM − βF ) (40)

f11 − f00 = (f01 − f00) + (f11 − f01)

= xMβM − xFβF = xF (βM − βF ) + (xM − xF )βM (41)

In the original context considered by Oaxaca and Blinder, the term involving the differences in

coefficients was attributed to ‘discrimination’.

The corresponding decomposition with interaction effect (equations (1) to (3)) is given by

f11 − f00 = (f10 − f00) + (f01 − f00) + [(f11 − f00)− (f10 − f00)− (f01 − f00)]

= (xM − xF )βF + xF (βM − βF ) + (xM − xF )(βM − βF ) (42)

= ∆xβF + xF∆β +∆x∆β. (43)

Decomposition (42) was introduced at around the same time as the Oaxaca-Blinder decomposition

by Winsborough/Dickenson (1971). Surprisingly, this decomposition involving the interaction

effect of differences in characteristics and differences in coefficients is rarely used in economics.5

The validity of this decomposition is obvious from figure 1.

— Figure 1 about here —

4See Fortin et al. (2011) for a comprehensive overview.

5An exception is Daymont/Andrisani (1984).
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Decomposition (42) asks why area ACGI = xMβM is larger than area DEGH = xFβF . It

is easily seen that the difference between the two is composed of ABDE = ∆xβF , EFHI =

xF∆β, and BCEF = ∆x∆β. Why do women have lower average wages than men? One part

of the difference is due to their less favorable characteristics (= ∆xβF ), another one due to their

lower returns (= xF∆β), and a third part can only explained by both of these factors together

(= ∆x∆β). This latter part would be zero if either ∆x = 0 or ∆β = 0. It therefore appears

questionable to assign this interaction term to either the ‘characteristics’ or the ‘returns’ effect

as it is done in sequential decompositions (40) and (41) (see Jones/Kelley (1984)). In (40), the

interaction term is assigned to the ‘returns’ effect (compare (40) with (42)), while in (41), it is

assigned to the ‘characteristics’ effect (compare (41) with (42)).

Jones/Kelley (1984) have pointed out that, in the context of measuring discrimination, using (40)

to calculate the ‘discrimination’ (= ‘returns’) effect corresponds to the thought experiment in

which discrimination is ended by raising womens’ returns to those of men, while (41) corresponds

to the reverse experiment in which discrimination is ended by reducing mens’ returns to those

of women. Both cases are extreme and it appears hard to justify the choice of either of them.

There is also an intermediate form of the Oaxaca-Blinder decomposition

xMβM − xFβF = (xM − xF )β
∗ + [xM(βM − β∗) + xF (β

∗ − βF )] (44)

(see, e.g., Jann (2008), eq. (6)) in which mens’ and womens’ returns are compared to ‘appro-

priate’ returns β∗. This however seems to confuse the question of discrimination with that of

appropriate remuneration. Discrimination appears to be exclusively about making a difference,

no matter what the appropriate level of remuneration is. For example, it could be that both

men and women receive less than their appropriate remuneration (in (44), this would in many

cases lead to an implausible negative discrimination term), still there would be discrimination if,

for example, men were less underpaid than women. Taken together, it is hard to find reasons

to allocate the interaction effect either in whole or in part to either the ‘characteristics’ or the

‘returns’ effect. Instead, it seems to make more sense to report it separately as the part of the

difference that only arises if both factors change together.

Figure 1 also shows that the complications created by the interaction effect are the smaller,

the smaller the differences ∆x and ∆β are. This is the reason why in infinitesimal settings

(where ∆x,∆β → 0), interaction effects are small of a higher order and therefore vanish (with

the consequence that the decomposition is only valid locally). This is true, for example, of

decompositions such as those underlying the growth accounting approach (Solow (1957)). In a
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more discrete setting in which changes are large in relation to levels, interaction effects may also

become relevant for these kind of decompositions.

Note that decomposition (43) can also be seen as a general way to decompose changes in

aggregate value (= prices × quantities) into price changes, quantity changes and an interaction

term involving both price and quantity changes. In this context, it also does not make sense to

ask what percentage of the overall change is due to price and what percentage due to quantity

changes because there is a third component that cannot be exclusively assigned to either price

or quantity changes. This argument is relevant to the concept of constructing price indices.

Finally, note that the decision to use one particular form of decompositions (40), (41) and (42)

is unrelated to the questions involved in identifying the components in (39). For example, Fortin

et al. (2011) provide an in-depth analysis of the conditions needed to identify the components

in decomposition (40) but their arguments can easily be used to identify the components of

decomposition (42). This can be seen by writing the interaction effect as (xM −xF )(βM −βF ) =

xM(βM − βF )− xF (βM − βF ) (which involves similar terms as in (40) or (41)).

4.2 An example with three-way interactions

The aim of this section is to provide further motivation for the general decomposition formula

(18) and to discuss some further issues. As a further motivation for decomposition (18), look at

figure 2. Why is block x1y1z1 larger than block x0y0z0? The difference between the two blocks

can be written as

x1y1z1 − x0y0z0 = [(x1y0z0 − x0y0z0)] (45)

+ [(x0y1z0 − x0y0z0)] (46)

+ [(x0y0z1 − x0y0z0)] (47)

+ [(x1y1z0 − x0y0z0)− (x1y0z0 − x0y0z0)− (x0y1z0 − x0y0z0)] (48)

+ [(x1y0z1 − x0y0z0)− (x1y0z0 − x0y0z0)− (x0y0z1 − x0y0z0)] (49)

+ [(x0y1z1 − x0y0z0)− (x0y1z0 − x0y0z0)− (x0y0z1 − x0y0z0)] (50)

+ [(x1y1z1 − x0y0z0)− (45)− (46)− (47)− (48)− (49)− (50)] , (51)

which is just decomposition (7) to (13). Figure 2 nicely illustrates that the difference between

blocks x1y1z1 and x0y0z0 is composed of a number of smaller blocks that represent the different

two-way and the three-way interaction effects. It also illustrates that any sequential decomposition
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would involve a probably arbitrary assignment of these interaction effects to one of the ceteris

paribus effects (x1y0z0 − x0y0z0), (x0y1z0 − x0y0z0), and (x0y0z1 − x0y0z0).

— Figure 2 about here —

Note that the decomposition formula (18) is more general than the example given in figure

2. Formula (18) applies to any mechanism generating counterfactual outcomes. The specific

mechanism xyz is restrictive in the sense that necessarily all two-way and three-way interactions

have to be present (provided that ∆x,∆y,∆z 6= 0). In a general mechanism, any kind of

interaction effect could be present or absent. For example, there could be three-way interactions

but no two-way interactions, it could be a mechanism without interaction effects at all, or one

with negative interaction effects (see the examples given in the introduction).

5 Empirical illustrations

5.1 Oaxaca-Blinder decomposition

In the first illustration, we decompose differences between wages paid in the services sector and

those paid in other sectors of the economy into a characteristics, a coefficient, and an interaction

effect (see decomposition (42)). The data for this exercise (and also for the one in the next

section) are taken from the German Socio-Economic Panel (GSOEP). The Oaxaca-Blinder type

decomposition considered is based on a standard wage regression explaining log hourly wages by

years of education, experience, experience squared, tenure, and a female dummy. According to

the results shown in table 1, the difference of mean log wages between the services sector and

other sectors of the economy (= 0.1454) is accounted for by differences in the endowment with

wage relevant characteristics (resulting in a contribution of 0.0834), by differences in returns

to characteristics (contributing 0.0830 of the difference), and a negative interaction effect of

characteristics and returns (contributing -0.211 of the difference).

— Tables 1 and 2 about here —

A closer look at the more detailed results in table 2 reveals that the negative interaction effect

is driven by the fact that female workers earn less in the services sector but their share there is
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higher than in the other sectors, and by the fact that the return to tenure is higher in the services

sector but the average tenure there is lower than in other sectors. As argued above it would be

wrong to attribute these effects to either the characteristics or the returns effect as they only

materialize because both coefficients and characteristics differ between the sectors.

5.2 Decomposition of distributional change

The next example considers three factors explaining possible changes in the distribution of equiv-

alized incomes in Germany between 1999/2000 (= period 0) and 2005/2006 (= period 1). The

example focuses on changes due to shifts in the labor market returns to household characteristics

(= factor 1), changes in the tax system (= factor 2), and other changes (= factor 3). The de-

pendent variable of the analysis is personal equivalized disposable income, i.e. household income

from all sources minus taxes and social security contributions, divided by an equivalence scale in

order to arrive at a measure of personal income for each household member.6

Changes in labor market returns are modeled by regressions of (log) household labor market

income ylab on household characteristics z which include information on household employment

outcomes and the composition of the household with respect to variables such as age, gender,

educational qualifications, disability status, marital status, region, and nationality.7 All regressions

are carried out separately for six different household types (single and multi-adult pensioner

households, single and multi-adult households with or without children). From the perspective of

period 0, the expected change in household labor income that results if labor market returns are

counterfactually set to their period 1 level but household characteristics are kept at their period

0 level is given by

∆̂y01lab = z0
′β̂1 − z0

′β̂0 (52)

where β̂0, β̂1 are the labor market returns to household characteristics in periods 0 and 1, respec-

tively, and z0 are the characteristics of the household in period 0. From the perspective of period

1, the expected shift that results if labor market returns are counterfactually set to their period

0 levels is defined by

∆̂y10lab = z1
′β̂0 − z1

′β̂1. (53)

The tax system tax(·) is modeled as described in Biewen/Juhasz (2012).

6The setup for this example is taken from Biewen/Juhasz (2012). See the more detailed descriptions there.

7Again, see Biewen/Juhasz (2012) for more details.
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As an example, the counterfactual household income y110 of period 0 that would result if labor

market returns and the tax system were set to their period 1 level but everything else was kept

as in period 0 is given by

y110 = ygross,0 + ∆̂y01lab + ytransf,0 − ysscontr,0 − tax1(ygross,0 + ∆̂y01lab), (54)

where ygross,0 are period 0 market incomes from all sources, ytransf,0 period 0 government trans-

fers, ysscontr,0 period 0 household social security contributions, and tax1(·) is the counterfactual

tax system of period 1. In the notation y110, the first subscript refers to labor market returns,

the second to the tax system, and the third to all other factors.

Using this notation, all remaining factual or counterfactual incomes are given by

y000 = ygross,0 + ytransf,0 − ysscontr,0 − tax0(ygross,0) (55)

y001 = ygross,1 + ∆̂y10lab + ytransf,1 − ysscontr,1 − tax0(ygross,1 + ∆̂y10lab) (56)

y010 = ygross,0 + ytransf,0 − ysscontr,0 − tax1(ygross,0) (57)

y011 = ygross,1 + ∆̂y10lab + ytransf,1 − ysscontr,1 − tax1(ygross,1 + ∆̂y10lab) (58)

y100 = ygross,0 + ∆̂y01lab + ytransf,0 − ysscontr,0 − tax0(ygross,0 + ∆̂y01lab) (59)

y101 = ygross,1 + ytransf,1 − ysscontr,1 − tax0(ygross,1) (60)

y111 = ygross,1 + ytransf,1 − ysscontr,1 − tax1(ygross,1). (61)

We are interested in decomposing the change in inequality in equivalized income between periods

0 and 1, i.e. I(y111) − I(y000), into the contributions by the three different factors and their

interactions. The results for this exercise are shown in table 3.8 According to these results,

changing the labor market returns to their period 1 levels but keeping everything else constant

accounts for around 35 percent of the overall inequality change. Changing the tax system in

isolation accounts for around 25 percent of the overall change. Changing all other factors (but

keeping returns and the tax system at their period 0 level) accounts for around 49 percent of

the overall change. There is a substantial negative interaction effect between the changes in

labor market returns and the changes in the tax system, amounting to some minus 12 percent

of the overall inequality change. This means that, although the isolated contribution of changes

in returns and changes in the tax system add up to some 35 + 25 = 60 percent of the overall

change, their combined effect is only 35 + 25 - 12 = 48 percent. All other interaction effects

(including the three-way interaction) are economically and statistically insignificant.

8The results are shown for the Theil coefficient. Results for other inequality indices are very similar.
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— Table 3 about here —

The source of the negative interaction effect between changes in labor market returns and changes

in the tax system becomes evident from figures 3 and 4. Figure 3 shows that the ceteris paribus

effect of changes in labor market returns was inequality increasing because these changes implied

a shift of distributional mass from the upper half to the lower half of the (log) income distribution.

On the other hand, figure 4 confirms that the ceteris paribus effect of the changes in the German

tax system between 1999/2000 and 2005/2006 was also inequality increasing as it stretched the

middle and the top of the distribution to the right.9 The bottom of the distribution was unaffected

by changes in the tax system. Individuals in the bottom of the distribution usually do not pay

taxes at all because their pre-tax income is below the basic tax allowances for their household.

The fact that changes in labor market returns increased the share of individuals in the bottom

of the distribution then implies a negative interaction effect: the scope for effects coming from

changes in the tax system is smaller after changes in labor market returns have been accounted

for because, after these changes, fewer individuals are affected by the tax system. The effect of

changing labor market returns and the tax system together is smaller than the sum of the effects

from changing them individually. As argued above, it would be wrong to ascribe this interaction

effect to either one of the two factors because it is a genuine product of the simultaneous presence

of the two of them.

— Figures 3 and 4 about here —

For comparison, table 4 shows all possible sequential decompositions for the given case. First

of all, note that the results for any sequential decomposition can be in principle be computed

from the entries in table 3, i.e. from the results for the decomposition with interaction effects.

This implies that the latter decomposition is always more informative than the first. The reason

why the sequential decomposition can be computed from the results of the decomposition with

interaction effects is that the latter allows one to compute ceteris paribus effects of changing

any subset of factors together (see above), and the entries of the sequential decomposition are

generated by comparing situations where j factors are present with situations where j+1 factors

are present (see equations (29 to (34)). According to the results shown in table 4, the sequential

9The changes in the German tax system between 1999/2000 and 2005/2006 consisted of a series of reforms

that reduced marginal tax rates across the whole range of pre-tax incomes with reductions being somewhat higher

at the top (see Biewen/Juhasz (2012) for more details).
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decomposition results are quite path-dependent for the given case. The effect of the changes in

labor market returns on increasing inequality vary between 22.24 and 35.09 percent, while the

effect of changes in the tax system vary between 13.02 and 28.33 percent. As explained above,

this variability comes from the presence of the interaction effect between two of the factors

which is arbitrarily assigned to one of the factors depending on the ordering chosen. Moreover,

the question of splitting up the overall effect into three separate parts contributed by the three

factors is ill-posed because part of the overall effect comes from the simultaneous presence of

more than one factor.

— Table 4 about here —

6 Conclusion

This paper has explored the challenges posed to sequential decomposition schemes by the exis-

tence of interaction effects. It has been argued that, instead of attributing interaction effects in

an arbitrary manner to individual factors considered in the decomposition, they should be con-

sidered and reported separately and receive their own contribution in an additive decomposition.

The paper has proposed a general additive and path-independent decomposition formula that

decomposes any difference between two objects into ceteris paribus effects of individual factors

and all possible interaction effects. The proposed decomposition has the additional advantage

of being comprehensive in the sense that it uses information on all possible counterfactual situ-

ations of the problem under consideration. The empirical illustrations have shown that, in many

contexts, interaction effects are a feature of reality that should not be ignored.

The proposed decomposition formula may either be used as a descriptive tool to decompose

differences between objects into the parts contributed by different factors and their interactions,

or as a way to summarize the causal effects of a number of factors that possibly interact with

each other. If all counterfactual outcomes involved are correctly identified, the decomposition

formula may be viewed as an anatomy of causal effects. Starting with the reference situation

in which all factors are unchanged, one first asks how far one can get in explaining the target

situation by changing each factor individually. Then it is asked what one can explain in addition

by taking into account interaction effects by any subset of two factors. After that, it is asked

what can be further explained by taking into account interactions of any subset of three factors,

and so on.
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8 Figures

Figure 1 – Illustration of Winsborough/Dickenson (1971) decomposition
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Notation: xM , xF represent mens’ and womens’ average characteristics,

βM , βF represent their regression coefficients

Figure 2 – Illustration of general decomposition with three factors
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Notation: x0y0z0 = reference situation, x1y1z1 = target situation
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Figure 3 – Counterfactual income distribution if only labor market returns are changed (dashed

line) vs. factual distribution (bold line).
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Source: GSOEP, own calculations. The graph shows the density of log equivalized incomes.

Figure 4 – Counterfactual income distribution if only the tax system is changed (dashed line) vs.

factual distribution (bold line).
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Source: GSOEP, own calculations. The graph shows the density of log equivalized incomes.
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9 Tables

Table 1 – Oaxaca-Blinder decomposition of wage differentials between the services

sector and other sectors of the economy

Average wage other sectors 2.7258 (0.0072)

Average wage services sector 2.5803 (0.0115)

Difference 0.1454 (0.0136)

Characteristics effect 0.0834 (0.0086)

Coefficients effect 0.0830 (0.0115)

Interaction effect -0.0210 (0.0040)

Source: German Socio-Economic Panel, 2005. Standard errors shown in parentheses.

Standard errors and point estimates were computed as described in Jann (2008).
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Table 2 – Coefficients and endowments in wage example

Coefficient Average endowment

Other sectors

Education 0.0721 (0.0022) 12.8174 (0.0417)

Experience 0.0321 (0.0029) 16.6536 (0.1280)

Experience squared -0.0007 (0.0000) 349.715 (4.5973)

Tenure 0.0131 (0.0008) 11.114 (0.1319)

Female -0.1689 (0.0126) 0.4489 (0.0074)

Constant 1.4666 (0.0390) - -

Observations 4356 - - -

Services sector

Education 0.0783 (0.0036) 12.6519 (0.0535)

Experience 0.0314 (0.0045) 15.3221 (0.1652)

Experience squared -0.0007 (0.0001) 303.473 (5.7538)

Tenure 0.0185 (0.0014) 8.8625 (0.1584)

Female -0.2643 (0.0198) 0.5252 (0.0099)

Constant 1.3103 (0.0613) - -

Observations 2519 - - -

Source: German Socio-Economic Panel, 2005. Standard errors shown in parentheses.
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Table 3 – Decomposition with interaction effects

Absolute Percentage of

overall change

total .0298 100 -

cp1 (Returns) .0105 35.09 (6.50)

cp2 (Tax system) .0075 25.10 (3.93)

cp3 (Other factors) .0147 49.41 (12.38)

int12 -.0036 -12.08 (3.31)

int13 .0005 1.75 (5.53)

int23 .0009 3.22 (10.67)

int123 -.0007 -2.51 (5.07)

Source: German Socio-Economic Panel, 2005. The decomposition decomposes the change in income inequality

between 1999/2000 and 2005/2006 as measured by the Theil coefficient, Theil2005/2006 − Theil1999/2000 =

.1303 − .1005 = .0298, into different components. The bootstrap standard errors shown in parentheses cor-

rectly take into account the longitudinal sample design, the clustering of observations within households, and

stratification.
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Table 4 – All possible sequential decompositions

1,2,3 1,3,2 2,1,3

Returns 35.09 (6.50) 35.09 (6.50) 23.00 (5.85)

Tax system 13.02 (4.22) 13.73 (10.75) 25.10 (3.93)

Other factors 51.88 (7.48) 51.17 (11.27) 51.88 (7.48)

2,3,1 3,1,2 3,1,2

Returns 22.24 (7.35) 36.84 (6.18) 22.24 (7.35)

Tax system 25.10 (3.93) 13.73 (10.75) 28.33 (11.58)

Other factors 52.64 (8.66) 49.41 (12.38) 49.41 (12.38)

Source: German Socio-Economic Panel, 2005. The entries of the table represent percentages of the overall change

Theil2005/2006 − Theil1999/2000 = .1303 − .1005 = .0298. Each ordering represents one possible sequential

decomposition. For example, the sequence ‘3,1,2’ means that factor 3 (= all other factors) are changed first,

then factor 1 (= labor market returns), and then factor 2 (= tax system). The bootstrap standard errors shown

in parentheses correctly take into account the longitudinal sample design, the clustering of observations within

households, and stratification.
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