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ABSTRACT 
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The identification of average causal effects of a treatment in observational studies is typically 
based either on the unconfoundedness assumption or on the availability of an instrument. 
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quasi-instrument is defined as an instrument except for that its relation to the treatment is 
allowed to be confounded by unobservables, thereby resulting in a wider range of potential 
applications. We propose a test for the unconfoundedness assumption based on a quasi-
instrument, and give conditions under which the test has power. We perform a simulation 
study and apply the results to a case study where the interest lies in evaluating the effect of 
job practice on employment. 
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1 Introduction

Identification of the causal effect of a treatment T on an outcome Y in observa-

tional studies is typically based either on the unconfoundedness assumption (also

called selection on observables, exogeneity, ignorability, see, e.g., de Luna and Jo-

hansson, 2006, and the references therein) or on the availability of an instrument.

The unconfoundedness assumption says loosely that all the variables affecting both

the treatment T and the outcome Y are observed (we call them covariates) and

can be controlled for. An instrument is usually defined as a variable affecting the

treatment T , and which is related to the outcome Y only through T (and possi-

bly the observed covariates). When available, instruments can be used to identify

causal effects in parametric situations and hence also to test the unconfounded-

ness assumption. Such a test is typically performed by comparing the estimates of

the causal effects obtained both under the unconfoundedness assumption, and by

using the instrument (classical Durbin-Wu-Hausman test). Nonparametric iden-

tification is also possible with the help of instruments and, for instance, Angrist

et al. (1996) develop a theory for the nonparametric identification and estimation

of local average causal effects. Based on these results, Donald et al. (2011) propose

a test of the unconfoundedness assumption. Abadie (2003) and Frölich (2007) ex-

tended Angrist et al. (1996) results to the situation where the observed covariates

are related to the instrument. Non-parametric identification can also be obtained

with the related concept of (fuzzy) regression discontinuity designs; see Hahn et al.

(2001), Battistin and Retore (2008), Dias et al. (2008) and Lee (2005, Sec. 5.5.3).

In this paper, we define quasi-instruments, i.e. variables with the properties

of an instrument except that their effect on the treatment T is allowed to be con-

founded by unobserved variables. Therefore, in general, quasi-instruments will not

yield identification of a causal effect when the the unconfoundedness assumption

does not hold. An exception to this is the case of parametric linear systems where

quasi-instruments yield identification (Pearl, 2009, p. 248). On the other hand,

we show that quasi-instruments (which are based on weaker assumptions than

instruments) can be used to obtain test statistics for the unconfoundedness hy-

pothesis. The proposed test is related to the use of two control groups to test the

unconfoundedness assumption, an idea previously used, e.g., in Rosenbaum (1987),

de Luna and Johansson (2006) and Dias et al. (2008). Rosenbaum (1987) was prob-

ably first to formalize the idea that two control groups provide information on the

unconfoundedness assumption and described actual observational studies where

different controls groups where available. One of our contributions in this context

is the introduction of mild assumptions (defining quasi-instruments) under which
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an available control group may be split into two to test the unconfoundedness

assumption non-parametrically, although the test statistic we eventually propose

does not actually require the split to be done. The nonparametric identification

of local average causal effects with instruments and the related test proposed by

Donald et al. (2011) require not only the instrument to be uncounfounded, as

mentioned above, but also that it affects treatment in a monotone fashion as de-

fined, e.g., in Imbens and Angrist (1994), Angrist et al. (1996) and Angrist and

Fernandez-Val (2010). We, thus, contribute to this literature because the test

we introduce is based on an instrument for which the untestable monotonicity

assumption does not need to hold.

In Section 4 we present a motivating example where Swedish register data is

used to study the causal effect of job practice on employment. We have access to

a rich set of background characteristics on unemployed individuals, although the

question remains whether the effect of job practice on employment is confounded

by unobserved heterogeneity. In this study, unemployed have access to job practice

through their participation into a labor market program. During 1998 there were

two such labor market programs available in Sweden offering job practice with dif-

ferent probabilities. Because we have evidence that the two programs differ mainly

only with respect to their propensity to offer job practice, the participation into the

two programs may be assumed to affect employment differently only through job

practice. We, thus, consider program participation to be a quasi-instrument. In

contrast with usual instrumental assumptions this allows unobserved heterogeneity

to confound the effect of program participation on the probability to be offered job

practice. Finally, we apply the proposed test using the quasi-instrument to check

whether the effect of job practice on employment is confounded by unobservables.

Before treating this motivating example in more details in Section 4, Section 2

presents the model, defines quasi-instruments, and develops the theoretical results

which allow us to then introduce a test of the unconfoundedness assumption. Sec-

tion 3 presents a simulation study of finite sample performances of the proposed

test. In particular, one of the design used illustrates the situation where the mono-

tonicity assumption mentioned above does not hold. The paper is concluded in

Section 5.
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2 Theory and method

2.1 Model

We use the Neyman-Rubin model (Neyman, 1923; Rubin, 1974) for causal inference

when the interest lies in the causal effect of a binary treatment T , taking values

in T = {0, 1}, on an outcome. Let us thus define Y (t), t ∈ T , called potential

outcomes. The latter are interpreted as the outcomes resulting from the assignment

T = t, t ∈ T , respectively. We then observe Y = TY (1)+(T −1)Y (0). Let us also

assume that we observe a set of variables which are not affected by the treatment

assignment. We will need to distinguish in particular X and Z two vectors of such

variables, the latter of dimension one.

For t ∈ T , we consider (X, Z, T, Y (t)) as a random vector variable with a given

joint distribution, from which a random sample is drawn. Population parameters

that are often of interest in this context are the average causal effect E(Y (1)−Y (0))

and the average causal effect on the treated E(Y (1)− Y (0) | T = 1).

In observational studies, where the treatment assignment T is not random-

ized by definition, an identifying assumption (e.g., Rosenbaum and Rubin, 1983;

Imbens, 2004) for the average causal effect is the following.

(A.1) For t ∈ T ,

T ⊥⊥ Y (t)|X (unconfoundedness),
Pr(T = t | X) > 0 (common support).

The common support assumption can be investigated by looking at the data.

The unconfoundedness assumption may be considered as realistic in situations

where the set of characteristics X is rich enough, and when there is subject-

matter theory to support the assumption. However, this identifiably assumption

is untestable without further assumptions and/or information.

2.2 Quasi-instrument, test and power

Let us now consider situations where the variable Z takes values in T (if not, it

may be made dichotomous using a threshold) and fulfills the following assumption.

(A.2) For t ∈ T ,
Z ⊥⊥ Y (t)|X,
Pr(Z = t | X) > 0.
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Assumption (A.2) prohibits, e.g., a direct effect from Z to Y , i.e. an effect not

going through T , or unobserved variables affecting both Z and Y . We also need

the following regularity condition.

(A.3) Assume that if (A.1) and (A.2) hold for t ∈ T , then (Z, T ) ⊥⊥ Y (t)|X , for

t ∈ T respectively.

Note that assumption (A.3) is not equivalent to assuming (Z, T ) ⊥⊥ Y (t)|X,

and the subtle distinction is necessary in Proposition 2 below. We have also that

because (Z, T ) ⊥⊥ Y (t)|X implies (A.1) and (A.2), (A.3) says that (A.1-2) holds if

and only if (Z, T ) ⊥⊥ Y (t)|X holds. That joint independence, (Z, T ) ⊥⊥ Y (t)|X, is

implied by the marginal independencies, (A.1) and (A.2), does not hold necessarily.

On the other hand, a sufficient condition for assumption (A.3) to hold is, for

instance, that T ⊥⊥ Y (t)|Z,X by the contraction property (Pearl, 2009, p. 11,

and Dawid, 1979). In other words, (A.3) holds if the treatment assignment is

independent of each potential outcomes when conditioning not only on X but also

on Z. Example 1 provides a situation where (A.3) does not hold.

Example 1 Let us assume that the vector (Z∗, T ∗, Y (0), U, V ) has joint normal

distribution, where U and V are two unobserved covariates and the set of observed

covariates X is empty. Assume now that the following model generates the data:

Z∗ = ψ0 + ψ1U + ψ2V + εZ ,

T ∗ = ν0 + ν1V + εT , (1)

Y (0) = ξ0 + ξ1Z
∗ + ξ2U + εY .

where U, V, εZ , εT , εY are jointly normal and independently distributed. Let Z =

I(Z∗ > 0) and T = I(T ∗ > 0), where I(·) is the indicator function. Figure 1 gives

T ∗ Y (0)

V

6
Z∗

U

I

	 Rj

Figure 1: Graph illustrating model (1) in Example 1.
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a graphical representation of the model, where εZ , εT , εY are omitted. We can write

the conditional expectations

E(Y (0) | Z∗, U) = αZ∗ + βU,

E(U | Z∗) = γZ∗,

where the parameters in the latter are function of the parameters of the joint normal

distribution.

In Example 1, (A.1) holds irrespective of the parametrization. In contrast, (A.2)

will typically be violated, unless we assume that α = −βγ, in which case Z∗ ⊥⊥

Y (0) by joint normality, and hence Z ⊥⊥ Y (0). The constrained parametrization

α = −βγ, yields thus an example where (A.3) is violated since (A.1) and (A.2)

hold while (Z, T ) ⊥⊥ Y (0) does not necessarily hold. This type of example are

called unstable (Pearl, 2000, Sec. 2.4) in the sense that (A.2) will ceased to hold

as soon as the parameter values do not fulfill the constraint α = −βγ.1 Examples

where (A.3) does not hold are typically unstable in this sense. Note that stability

of the conditional independence statements is also necessary for model (1) to be

identifiable. Stability assumptions are typically implicit in structural models.

Let us now state a first result.

Proposition 1 Assume (A.1-3), then

Z ⊥⊥ Y (t)|T,X, t ∈ T . (2)

Proof. Under (A.1-3) we have that (Z, T ) ⊥⊥ Y (t)|X, t ∈ T , hold. Then, the

result of the proposition is a direct consequence of the weak union property (Pearl,

2009, p. 11, and Dawid, 1979)

The conditional independence statement obtained in Proposition 1 is testable

from the data when conditioning on T = t (see next section). Finding evidence

in the data against (2) yields evidence against the assumptions of the proposition.

1Directed acyclic graphs, e.g. Figure 1, together with a stable (also called faithful) distribu-
tion for the variables are used to describe conditional independence relations between variables;
see Lauritzen (1996) for a general account on graphical models and de Luna et al. (2011) for
their use together with potential outcomes. Briefly, a distribution over the variables in a directed
acyclic graph is stable for the graph if there is a one-to-one mapping between the conditional in-
dependence statements holding for the distribution and the conditional independence statements
that can be read from the graph. Conditional independence statements are read from a graph
as follows: T ⊥⊥ Y (0)|V holds for the graph if all the connected paths between T and Y (t) go
through V , and V is not a collider on one of the paths, where V is a collider if A −→ V ←− B

with A and B the two neighbours of V on the path.
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Thus, evidence against (2) can be interpreted as evidence against the unconfound-

edness assumption (A.1) if (A.2-3) are known to hold from subject-matter consider-

ations. One application is a random experiment (where Z is a random assignment)

with restricted compliance and detailed information in the data on the individuals

participating. In such a case the instrument could be used to test whether the

information on participants contains all potential confounding heterogeneity. If

this happen to be the case one may obtain identification without randomization in

full scaled observational studies where the same baseline information is available.

Another example of application is treated in detail in Section 4.

For a test based on (2) to have power against (A.1) we further need to assume:

(A.4) Z and T are dependent conditional on X.

This assumption is typically made for instrumental variables to be useful for iden-

tification. The following result shows that (A.4) is a necessary condition for a test

based on (2) to have power against the alternative hypothesis to (A.1): T and Y (t)

are dependent conditional on X.

Proposition 2 Assume (A.2-3). Then,

{(2) =⇒ (A.1)} =⇒ (A.4).

Proof. Let us show the contrapositive and assume that (A.4) does not hold,

i.e. Z and T are independent given X. Then, there exists situations where (2)

holds and yet (A.1) does not hold; see Figure 2, where such a case is described

with a directed acyclic graph. Hence, we have ¬{(2) =⇒ (A.1)}, where ¬A is

the negation of statement A, thereby showing the proposition.

T Y (t)

V

6 �
Z

X

? R j

Figure 2: This figure displays a directed acyclic graph which together with a stable
distribution for the variables (see Footnote 1) give an example where (2) holds and
yet (A.1) does not hold. This is used in the proof of Proposition 2.
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a) b)

T Y (t)

U

6 �
Z

X

? R j
- T Y (t)

U

6 �
Z

X

? R j

c) d)

T Y (t)Z

X

? R j
- T Y (t)Z

X

? R j
�

Figure 3: All four directed acyclic graphs together with a respective stable joint
distribution for the variables included are examples where (A.4) holds. However,
only cases a), b) and c) are such that the test based on (2) has power, i.e. if (A.1)
does not hold, e.g. through the introduction of a variable V with arrows pointing
towards T and Y (t), then Y (t) ⊥⊥ Z | T,X would not hold either.

Sufficient conditions (expressed with directed acyclic graphs; see Footnote 1)

for a test based on (2) to have power against (A.1) are given in Figure 2, panels

a), b) and c), while panel d) shows a case where the test does not have power.

Identification of the effect of T on Y is guaranteed under (A.2) and (A.3-4) with

linear models, see, e.g., Pearl (2009, p. 248). This, however, is not true in general

(even for nonparametric identification of local average causal effects; Angrist et al.,

1996; Frölich, 2007) and we therefore call a variable Z not affected by T and for

which (A.2-4) hold a quasi -instrument.

2.3 Method

For the sake of simplicity, we consider the situation where the parameter of interest

is the average causal effect on the treated, θ = E(Y (1)−Y (0)|T = 1). The results

are symmetric when the interest lies on the average causal effect on the non treated.

Here, assumptions (A.1-3) need to hold only for t = 0. Different strategies may

be adopted to test the null hypothesis defined by the conditional independence

statement of Proposition 1 with t = 0, i.e.

H0 : Z ⊥⊥ Y (0)|T = 0,X.
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One strategy could be to use the concept of two independent control groups (Rosen-

baum, 1987). Under H0 we can use Z to obtain two independent control groups

(one defined by Z = 1 and one by Z = 0) for estimating θ, yielding θ̂
z=0

and θ̂
z=1

.

Under H0 the difference θ̂
z=0
− θ̂

z=1
should have mean zero and this is the base for

a test statistic. However, since we need to compute two non-parametric estimators

of θ, the resulting statistic has poor finite sample properties, for instance, when

the covariates have different support in the two control groups created.2

In this paper we propose a testing strategy based on the fact that under H0 we

have δ(X) = 0, for all X, where

δ(X) = E(Y (0) | T = 0,X, Z = 1)− E(Y (0) | T = 0,X, Z = 0).

Consider a non-parametric estimator for δ = E(δ(X)),

δ̂ =
∑

i:Z=1

[Yi(0)− Ŷi(0)] +
∑

i:Z=0

[Yi(0)− Ỹi(0)],

where Ŷi(0) is a non-parametric estimator of E(Yi(0) | Ti = 0,Xi, Zi = 0) and

Ỹi(0) is a non-parametric estimator of E(Yi(0) | Ti = 0,Xi, Zi = 1). The two latter

estimates may be obtained by nearest neighbour matching, or any other smoothing

technique. Since δ = 0 under H0, the test statistic

C =
δ̂

s
(3)

will, under the necessary regularity conditions, be normally distributed with mean

zero and variance one, where s is the standard error of δ̂. For instance, if nearest

neighbour matching estimators are used, then s was given in Abadie and Imbens

(2006, Theorems 6 and 7). A subsampling estimator is also available in this case

in de Luna et al. (2010).

3 Monte Carlo study

We use a Monte Carlo study to investigate the finite sample properties (empirical

size and power) of the test (3) where nearest neighbour matching (on common

support) is used as non-parametric estimator of Ŷi(0) and Ỹi(0). As a benchmark

we also implement a parametric Durbin-Wu-Hausman (DWH) test, where we first

regress T on X and Z and then add the residuals from this fit as a covariate

into the outcome equation for Y . The test for the unconfoundedness assumption

2This has been confirmed in simulation experiments not presented here.
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is then a Wald test on the parameter for the included residual covariate (see,

e.g., Wooldridge, 2002, Chap. 6, and Rivers and Vuong, 1988). We use a robust

covariance matrix (White, 1982).

3.1 Design

We consider a data generating process (DGP) which mimics a situation with a

randomized assignment to a treatment (Z) with non-perfect compliance, where T

denotes the actual treatment assignment, as well as more general situations where

the effect of Z on Y is allowed to be confounded by unobservables. For unit i, let

Zi = I(δ0U0i + εZi > 0),

Ti = I(Xi + δ1U0i + (0.5 + δ2U1i)Zi + U2i + εT i > 0),

and

Yi = 1 +Xi + θiTi + δ3U2i + εY i

or

Yi = I(1 +Xi + θiTi + δ3U2i + εY i > 0).

We let εY i, εZi, εTi(0), εTi(1), U1i and U2i be independently distributed as N(0, 0.25).

Moreover, we also let Xi ∼ N(0, 2), and consider two cases for θi: θi = 1 (ho-

mogeneous treatment effect) and θi = 1 + Xi (heterogeneous treatment effect).

Moreover, we also let Xi ∼ N(0, 2), and consider two cases for θi: θi = 1 and

θi = 1 + Xi. Parameters are varied in the study in order to study the empirical

size and power of test (3) in different situations. Five designs, denoted D.1 to

D.5, are considered and described in Table 1. Thus, for the situation where we

set δ2 = 8 (Design D.2), the instrumental variable Z is non-monotone, i.e. there

exists individuals j for which Tj(Zj = 0) = 1 and Tj(Zj = 1) = 0 (called defiers),

where Tj(Zj = k), k = 0, 1, are potential treatment values for individual j when

switching Zj to (everything else equal) k equal 0 or 1. The proportion of defiers

when δ2 = 8 is 8.4% instead of zero for the monotone case.

The two tests mentioned above −(3) and DWH− are evaluated in testing the

null hypothesis δ3 = 0, and empirical size and power of the tests are obtained

by letting δ3 ∈ {0, 0.1, 0.2, 0.3, 0.6, 0.9, 1.5, 2}. We consider sample sizes N =

500, 1500 and 3000. In the continuous response cases, DWH should have correct

size when θi = 1 irrespective of whether the instrument is monotone or not, or

whether the relation with T is confounded (quasi-instrument) or not. DWH test is

also expected to have correct size (Rivers and Vuong, 1988) in the binary response

case with homogenous causal effect (θi = 1). In contrast, DWH is expected to

10



Table 1: Different designs considered with resulting instrumental property for Z
and whether no n-parametric identification of the (local) average causal effect hold.

DGP
Yi ∈ parameter values Zi identification∗

D.1 R δ0 = δ1 = 0, δ2 = 0 monotone instrument yes
D.2 R δ0 = δ1 = 0, δ2 = 8 non-monotone instrument no
D.3 R δ0 = 1, δ1 = 0.2, δ2 = 0 quasi-instrument no
D.4 {0, 1} δ0 = 1, δ1 = 0, δ2 = 0 monotone instrument yes
D.5 {0, 1} δ0 = 1, δ1 = 0.2, δ2 = 0 quasi-instrument no

*Non-parametric identification of local average causal effects holds with non-confounded

instruments (δ0 × δ1 = 0) which fulfill a monotonicity assumption (Angrist et al., 1996; Frölich,

2007).

breakdown in all heterogeneous cases (θi = 1 + Xi), since the response model is

then misspecified. Up to our knowledge, no non-parametric test has previously

been proposed in the literature for situations in Table 1 where an average causal

effect is not non-parametrically identified. On the other hand, using test (3) is

exepected to give correct size and have power in all situations simulated.

3.2 Results

The results from the Monte Carlo simulations are displayed in Figures 4 and 5. The

empirical sizes are also displayed in Table 2. The non-parametric test (3) behaves

well with all the data generating processes considered, with empirical size close to

5% and power increasing with sample size. On the other hand, the DWH test is not

consistent (too large empirical size) in the heterogeneous cases (θi = 1 + Xi). In

the homogeneous treatment setup (θi = 1) DWH behaves well with respect to its

empirical size. This was expected as noted in the previous section, thereby yielding

an interesting benchmark. In such homogeneous cases, the non-parametric test (3)

has similar power than DWH, except for Designs D.1 and D.3 where DWH is based

on correctly specified models yielding better power, and Design D.2 (non-monotone

instrument) where DWH has markedly lower power.

In summary, the results obtained show that the non-parametric test (3) per-

forms well in situations where DWH is consistent. By making few assumptions, (3)

is also shown to work with non-monotone instruments and quasi-instruments (in-

strument and treatment relation confounded by unobservables), i.e. in situations

where a local average causal effect is not identified.
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Table 2: Empirical sizes (nominal size is 5%) obtained with the nonparametric test
(3), denoted C, and the DWH test for simulated DGPs with a continuous response.

DGP DWH C
Sample size Sample size

Yi ∈ θi δ0 δ1 δ2 500 1500 3000 500 1500 3000

D.1
R 1 0 0 0 5.46 4.55 4.94 5.39 5.10 4.93
R 1 +Xi 0 0 0 5.85 6.15 7.79 5.06 5.37 5.22

D.2
R 1 0 0 8 5.42 5.24 5.21 5.25 5.14 5.24
R 1 +Xi 0 0 8 99.51 1.00 1.00 5.24 5.03 5.36

D.3
R 1 1 0.2 0 5.11 4.72 4.87 5.57 5.08 5.35
R 1 +Xi 1 0.2 0 5.66 6.62 8.18 5.43 5.13 5.25

D.4
{0, 1} 1 1 0 0 3.98 4.81 5.20 5.42 4.76 5.05
{0, 1} 1 +Xi 1 0 0 5.47 6.09 7.43 5.48 5.24 4.88

D.5
{0, 1} 1 1 0.2 0 4.09 4.65 4.98 5.55 4.79 5.05
{0, 1} 1 +Xi 1 0.2 0 5.75 6.99 8.70 4.89 4.92 5.14

Note: 95% confidence intervals for the empirical sizes are: ±1.9% (500 replicates), ±1.1%

(1500) and ±0.8% (3000).

4 Effect of job practice

We consider a case study where the interest lies in estimating the effect of job prac-

tice for unemployed on employment status. Job practice (JP) was offered within

two separate labor market training (LMT) programs in Sweden during 1998. One

program was run by the regular program provider in Sweden; the Swedish National

Labor Market Board (AMV). The other program was offered by the Federation of

Swedish Industries (Swit). To be eligible to the programs the unemployed individu-

als had to be at least 20 years of age and enrolled at the public employment service.

There was no difference in benefits for the two groups of trainees. The fundamental

idea with the Swit program was to increase the contacts between the unemployed

individuals and employers by providing JP. From a survey conducted in June 2000

on 1, 000 program participants from both programs it could be seen that 69.5% of

the Swit participants and 52% of the AMV participants stated that they obtained

access to JP.3 Except for the idea to provide more contacts with employers the

two programs were similar. Both programs tested the individual’s motivation and

ability before recruitment by similar selection procedures (see Johansson, 2008, for

a thorough description of the selection). The types of courses given within the

3A detailed description of the survey can be found in Johansson and Martinson (2000). The
survey contained a total of 19 questions. These concerned i) the individual’s background, ii) the
individual’s labor market training and iii) the individual’s present labor market situation.

12



0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0 δ2

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

Treatment effect: 1 Treatment effect: 1 + X

Treatment effect: 1 Treatment effect: 1 + X

H, N = 500
C, N = 500
H, N = 1500
C, N = 1500
H, N = 3000
C, N = 3000

Figure 4: Empirical size (δ3 = 0) and power for nonparametric test (3), denoted
C, and the DW(H) test (based on robust covariance matrix) for Design D.1 (first
row) and Design D.2 (second row), homogeneous causal effect (first column) and
heterogeneous causal effect (second column). Designs are described in Table 1.

Swit and the AMV programs are displayed in Table 3. The similarities of the two

programs are apparent. Thus, despite the differences in procurement between the

two organizations (Swit and AMV), there do not seem to be any large differences

between the types of labor market training courses offered nor with the selection of

participants. The fact that the programs distinguish themselves only with respect

to job practice availability prompts us that the effect of LMT program choice on

labor market outcome should differ only through the effect of job practice. This

suggests that LMT program choice has the properties of a quasi-instrument as

defined above.

Based on the survey one can see in Table 4 that there is a statistical signifi-

cant 18.1 percentage points difference in employment six months after leaving the

program (the two programs have same average length) when comparing individu-

als having job practice with those without. In the table we have some individual

background variables: (i) education, (ii) work handicap (see disabled), (iii) gender

(1 if man and 0 if women) and (iv) immigration status (1 if immigrant 0 else).

Finally, we have information on the individuals region of residence. Sweden was

divided into four regions: Stockholm, Sk̊ane, Västra Götaland and the rest of the

13
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Figure 5: Empirical size (δ3 = 0) and power for the nonparametric test (3), denoted
C, and the DW(H) test (Rivers and Vuong, 1988) for Design D.3-D.5 (row 1-3),
homogeneous causal effect (first column) and heterogeneous causal effect (second
column). Designs are described in Table 1.

country. Stockholm, Sk̊ane and Västra Götaland are the tree regions with the

largest population and with, in general, the best labor market opportunities.

We can see some average differences between the two samples. Those with

job practice are: (i) less disabled and (ii) less likely to live in Stockholm. The

level of education also differs: they have on average more compulsory and upper

secondary education but also less college education than those with no JP. Based

on these average differences, it is difficult to argue that those with JP have better

labor market prospects than those without JP. The single factor suggesting the JP

population has better labor opportunities without JP is that they are less likely

disabled. In order to further study the selection into JP we used the covariates

from the table and estimated a logistic regression model (a propensity score). The

results from this estimation (not displayed) are that individuals who are: from

Stockholm or Västra Götaland, and disabled, are less likely to receive JP. There is

no statistical significant (5% level) differences in education between the two groups

for instance. Figure 6, left hand panel, displays the propensity scores estimated.

The latter gives evidence for the common support assumption in (A.1). In order

to test the related assumption Pr(Z = t | X) > 0 included in (A.2), we also fit the

14



Table 3: The frequency distribution of the courses within the two programs.

AMV (n = 796) Swit (n = 794)
Programmer 32 27
Computer technician 31 29
Application support 10 16
IT-pedagogue 2 6
IT-entrepreneur 1 3
Other 17 15
Missing 7 4

probability of getting into Swit versus AMV with a logistic regression, and Figure

6, right hand panel, also provides evidence for the latter assumption.

Because there are 969 JP (treated) individuals for only 528 non treated in-

dividuals an estimate of the average causal effect of JP on the treated (ACT)

will typically suffer from severe bias due to difficulties in finding matches to the

treated. Thus, we estimate instead the average causal effect of JP on the non

treated (ACNT), i.e.,

τ = E(y(1)− y(0) | T = 0).

Because we expect positive selection into JP, ACNT yields a lower bound for ACT,

E(Y (1)− Y (0) | T = 1) ≥ τ .

Assumption (A.1) need only to be fulfilled for t = 1 in order for us to estimate

ACNT, in particular the unconfoundedness assumption needed here is

Y (1) ⊥⊥ T |X, (4)

where the covariates are displayed in Table 4.

A one-to-one matching estimator using the minimum Mahalanobis distance

between the covariates of Table 4 is used to estimate the parameter τ , yielding

τ̂ = 17%, with standard error (Abadie and Imbens, 2006, Theorems 6 and 7)

estimated to 3%. Hence, there is quite a strong effect from JP.

4.1 Testing the unconfoundedness assumption

Here we test for the null hypothesis (4). Under this H0 hypothesis we have that

for all X

E(Y (1) | T = 0,X, Z = 1)− E(Y (1) | T = 0,X, Z = 0) = 0.

15



Table 4: Descriptive statistics for outcome employment and background charac-
teristics, and how they differ between JP and non JP individuals.

Job Practice Yes No Diff t-test
Employment 64.9 46.8 18.1 6.82

Compuls. educ. 5.1 7.6 -2.5 -1.9
Upper sec. educ. 67.8 62.1 5.7 2.19
College 27.1 30.3 -3.2 -1.3
Disabled 7.5 11.5 -4.0 -2.5
Man 62.1 61.9 0.2 0.1
Immigrant 5.6 6.4 -0.9 -0.7
Stockholm 21.4 27.8 -6.5 -2.7
Sk̊ane 10.6 8.3 2.3 1.5
Västra Götaland 13.8 16.5 -2.6 -1.3
Rest of the country 54.2 47.3 2.7 2.53
Sample size 969 528

T Z
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40

JP

No JP

0.4 0.5 0.6 0.7 0.8
0
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40

0
10
20
30
40

AMVc

Swit

Figure 6: The distribution (percent) of the estimated probabilities (as function of
the covariates) of (not) having JP (T , left hand panel) and of getting into the two
alternative LMT programs (Z, right hand panel) .
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The corresponding test statistic to (3) is then

∑
i:Z=1[Yi(1)− Ŷi(1)] +

∑
i:Z=0[Yi(1)− Ỹi(1)]

s
,

where Ŷi(1) is a non-parametric estimator of E(Yi(1) | Ti = 0,Xi, Zi = 0) and Ỹi(1)

is a non-parametric estimator of E(Yi(1) | Ti = 0,Xi, Zi = 1). Non-parametric

estimation is obtained with one-to-one matching on the covariates displayed in

Table 4 using the minimum Mahalanobis distance, also for computing the standard

deviation s; see Abadie and Imbens (2006). The resulting value for test statistic

(3) is 1.05. Hence, we cannot reject the unconfoundedness assumption (p-value

of 0.29). We also perform a DWH test by estimating a linear probability model

with the discrete covariates displayed in Table 4, yielding a p-value of 0.09. Thus,

none of the test can reject the null hypothesis that the effect of job practice on

employment is not confounded at the 5% level, although the DWH test by making

stronger assumptions has a p-value under 10%.

5 Conclusion

Identification of the causal effect of a treatment on an outcome in observational

studies is typically based either on the unconfoundedness assumption or on the

availability of an instrument (e.g., Angrist et al., 1996). In this paper, by intro-

ducing the new concept of quasi-instrument we are able to propose an easy to use

non-parametric test for the unconfoundedness assumption. A quasi-instrument is

a variable with the properties of an instrument except that their association with

the treatment is allowed to be confounded by unobservables. Quasi-instruments

fulfill weaker conditions than classical instruments, thereby the wider generality

of the test introduced. We illustrate the framework introduced with a study of

the effect of job practice for unemployed on employment, where we argue that a

quasi-instrument is available through the existence of two labor market training

programs with different degree of accessibility to job practice.

In many applications, non-parametric estimation of causal effects using in-

struments is non-trivial, e.g., when a non-testable monotonicity property for the

instrument must hold (Angrist et al., 1996, Frölich,2007), and/or when a large set

of control variables is needed for the instrument to be valid. Using weaker as-

sumptions (quasi-instrument) one may test for the unconfoundedness assumptions

allowing us to proceed using the unconfoundedness assumption when it cannot be

rejected. Finally, it is worth noting here that for durations outcomes with censored

data, the test proposed herein may be implemented by making use of the matching
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estimators for censored duration responses presented in Fredriksson and Johansson

(2008) and de Luna and Johansson (2010).
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