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ABSTRACT 
 

The Role of Education in Technology Use and Adoption: 
Evidence from the Canadian Workplace and Employee Survey* 
 
Adoption of innovations by firms and workers is an important part of the process of 
technological change. Many prior studies find that highly educated workers tend to adopt new 
technologies faster than those with less education. Such positive correlations between the 
level of education and the rate of technology adoption, however, do not necessarily reflect 
the true causal effect of education on technology adoption. Relying on data from the 
Workplace and Employee Survey, this study assesses the causal effects of education on 
technology use and adoption by using instrumental variables for schooling derived from 
Canadian compulsory school attendance laws. We find that education increases the 
probability of using computers in the job and that employees with more education have 
longer work experiences in using computers than those with less education. However, 
education does not influence the use of computer-controlled and computer-assisted devices 
or other technological devices such as cash registers and sales terminals. Our estimates are 
consistent with the view that formal education increases the use of technologies that require 
or enable workers to carry out higher order tasks, but not those that routinize workplace 
tasks. 
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1 Introduction 
The creation and diffusion of new and more advanced knowledge and technologies has 

long been recognized as a major contributor to productivity and economic growth. As 

developed countries shift more toward economic activities that are knowledge-based, 

information, technology, and learning play an increasingly important role. The adoption 

of new technologies by firms and workers constitutes an important part of the process of 

technological diffusion and advancement. Thus, investigation of employer and employee 

characteristics that influence decisions to adopt new technologies is an important area of 

research. The purpose of this study is to assess the causal effects of workers’ educational 

attainment on their use and adoption of new technologies, using an employer-employee 

linked dataset, the Canadian Workplace and Employee Survey (WES).  

 A large body of prior research has shown that highly educated workers tend to 

adopt new technologies faster than those with less education (Welch, 1970; Wozniak, 

1984, 1987; Krueger, 1993; Lleras-Muney and Lichtenberg, 2002). Generally, a new 

technology is associated with uncertain returns and up-front costs of adoption. How 

quickly producers and employees can adapt to a changing set of production possibilities 

partly depends on their human capital and their knowledge of the new technology. 

Wozniak (1987) concludes that education and information reduce adoption costs and 

uncertainty, and thereby raise the probability of early adoption. Krueger (1993) finds that 

more highly educated workers were more likely to use computers on the job in the 1980s, 

a period of rapid growth in the adoption of computers in the workplace.  

 Technology adoption can also be viewed as a reallocation decision made in 

response to changing economic circumstances, allowing consumers and producers to take 

advantage of the opportunities provided by the introduction of innovative inputs. Since 

the development of the concept of human capital in the 1960s, scholars have argued that 

highly educated workers have a comparative advantage in dealing with economic change 

and in implementing new technology (Shultz, 1964, 1975; Nelson and Phelps, 1966; 

Welch, 1970, 1973; Khaldi, 1975; Wozniak, 1984; Bartel and Lichtenberg, 1987). For 

example, Wozniak (1984) found that farm operators with more education are more likely 

to be adopters of innovations than operators with less education, although education did 

not affect the utilization of an innovative input several periods after its introduction.  
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The positive correlations between the level of education and technology use and 

adoption found in previous studies, however, are likely to be confounded by the 

endogeneity of education, and thus do not necessarily reflect the true causal effects of 

education on technology use and adoption. In particular, positive associations between 

education and technology use and adoption could arise because of unobserved factors that 

are correlated with both variables. For example, individuals with higher innate ability and 

stronger motivation may be more likely to be early adopters of new technologies at the 

workplace and also more likely to acquire more schooling. Therefore, positive 

correlations between education and technology use and adoption based on ordinary least 

squares (OLS) estimates may overestimate the effects of education on technology use and 

adoption and fail to reveal the true causal link between the two.1

In addition, our study extends previous research in this area by making use of the 

rich information provided by WES data. As a joint decision made by workers and their 

firm, technology use and adoption is affected by the characteristics of both the workplace 

and the workers. However, due to data limitations, most previous studies on the 

determinants of technology adoption focus on either employer characteristics or 

employee characteristics, but not both (Hannan and McDowell, 1984; Levin, Levin, and 

Meisel, 1987; Stoneman and Kwon, 1996).

  

To our knowledge, no prior research has established a causal link between 

education and technology use or adoption. To overcome the endogeneity of education 

problem, we make use of historical changes in compulsory schooling laws in Canada to 

create instrumental variables for education, which allows us to draw causal inferences 

about the effects of education on technology use and adoption. Moreover, we partially 

control for the unobserved ability of individual workers by controlling for the average 

observed skills of coworkers in the same firm and same occupation in our empirical 

analyses, which is possible due to the linked employer-employee feature of WES. 

2

                                                 
1 Card (1999, 2001) and Griliches (1977) discuss the endogeneity of education and the potential biases of 
OLS estimates in the context of estimating the return to schooling. 
2 Hannan and McDowell (1984) examine the determinants of adoption of automatic teller machines by 
banks and find that larger banks and banks operating in more concentrated local banking markets register a 
higher conditional probability of adopting automatic teller machines.  

 WES, an employer-employee linked dataset, 

Levin, Levin, and Meisel (1987) investigate the role of market structure in the time path of adoptions of a 
new technology (optical scanners) in the U.S. food store industry. They find that during the early stage 
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enables us to take into account the characteristics of both employers and employees that 

may affect technology use and adoption. Another key advantage of WES is the rich 

information it contains on technology use and recent adoptions of new technology, which 

enables us to analyze a variety of measures of technology use and adoption. We are thus 

able to gain more insights into the role of education because the way that education 

affects technology adoption and use may depend on the type of technology, as found by 

Dunne and Troske (2005).  

The WES survey provides information on two principal types of technology use 

in the workplace. The first group of questions relates to computer use, and asks workers 

whether they use a computer on the job and asks about their accumulated experience in 

computer use in the workplace. This type of activity is often associated with “knowledge 

workers” since computers allow workers to carry out a wide variety of higher order tasks 

and productive activities. The second set of questions relates to the use of computer-

controlled and computer-assisted technologies such as retail scanning devices and 

industrial robots, as well as technological devices such as cash registers, sales terminals 

and industrial machinery. These types of technology use are less likely to be associated 

with knowledge workers, and are more likely to involve routine tasks. An interesting 

question is whether the role played by educational attainment differs between these two 

forms of technology use in the workplace.   

Based on WES data for the period 1999-2005, we find that education increases 

the probability of using computers on the job. We also find that employees with more 

education possess longer work experiences in using computers than those with less 

education. However, the instrumental variable (IV) estimates indicate that education does 

not exert causal effects on the use of computer-controlled or computer-assisted 

technology, or the use of technological devices. The OLS estimates, in contrast, suggest a 

small positive impact. Thus, for some measures of technology use and adoption, OLS 

estimates are misleading in suggesting effects that are not causal, whereas in the case of 

                                                                                                                                                 
leading firms with larger store size who are not members of chains and who operate in less concentrated 
markets with higher incomes and wage rates tend to adopt the scanners sooner. 
Stoneman and Kwon (1996) examine the relationship between firm profitability and technology adoption. 
They find that non-adopters experience reduced profits as other firms adopt new technologies and that the 
gross profit gains to adopters of new technology are related to firm and industry characteristics, the number 
of other users of new technologies, and the cost of acquisition. 
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computer use the positive partial correlations estimated by OLS do reflect an underlying 

causal relationship. Overall, our results provide empirical support for the hypothesis that 

there exists a causal link between education and certain measures of technology use and 

adoption, and that one needs to be careful in drawing conclusions about causal impacts 

based on OLS estimates. 

Findings from this study not only shed light on the role of education in technology 

use and adoption, but also contribute to the literature on the non-market impacts of 

education (Grossman, 2006; Oreopoulos and Salvanes, 2011). To the extent that 

education increases the probability of technology use and adoption, the private and social 

benefits of education may be understated by standard outcome measures (e.g., individual 

earnings). This will especially be the case if an individual employee’s education and the 

associated technology use also influence employer and coworker outcomes.3

Further, this study contributes to the literature on the relationship between 

education and economic growth. Following work by Barro (1991, 1997) and Mankiw, 

Romer, and Weil (1992), a large literature based on cross-country growth regressions 

finds positive associations between quantity of schooling and economic growth (see 

Topel (1999), Krueger and Lindahl (2001), and Pritchett (2006) for extensive literature 

reviews). Hanushek and Woessmann (2009) further provide evidence of a causal link 

between cognitive skills/quality of schooling and economic growth. Our study extends 

this line of research by providing empirical evidence that supports education as an 

effective means to enhance technology adoption and diffusion and hence technological 

advancement and productivity growth. It thus illuminates one specific channel through 

which education may enhance economic growth.

 In contrast, 

studies of the non-market effects of education often focus on outcomes such as health and 

longevity, impacts that are experienced by the individual receiving the education.  

4

The remainder of the paper is organized as follows. We describe the WES data in 

Section 2, and explain the empirical framework used in our data analyses in Section 3. In 

 

                                                 
3 Moretti (2004) examines human capital externalities in U.S. manufacturing and estimates that human 
capital externalities are responsible for an average of 0.1 percent increase in output per year during the 
1980’s.  
4 There are various mechanisms through which education may affect economic growth. The mechanism in 
our study is close to that in Nelson and Phelps (1966), Welch (1970), and Benhabib and Spiegel (2005), 
who argue that education may facilitate the diffusion and transmission of knowledge needed for the 
implementation of new technologies. 
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Sections 4 and 5, we report and discuss empirical results about the effects of education on 

alternative measures of technology use and adoption. Section 6 concludes the paper. 

2 Data  

2.1 The Workplace and Employee Survey 

The data used in this study include all panels of the annual Canadian Workplace and 

Employee Survey (WES) from 1999 to 2005. WES is designed to explore a broad range 

of issues relating to employers and their employees. Employers and employees are linked 

at the micro data level; employees are selected from within sampled workplaces.  

The target population of employers for WES is defined as all business locations 

operating in Canada that have paid employees in March of the survey year.5

2.2 Measures of Technology Use and Adoption 

 WES draws 

its sample from the Business Register, a list of all businesses in Canada, and thus 

provides a representative sample of Canadian employers. The initial sample of 6,322 

workplaces selected in 1999 is followed over time and supplemented at two-year 

intervals with a sample of births selected from units added to the Business Register since 

the last survey. For the 2005 survey, the sample size of employers is 6,693. 

The employee data and the workplace data are collected separately. The frame of 

the employee component of WES is based on lists of employees made available by the 

selected workplaces. A maximum of 24 employees are sampled from each workplace. In 

workplaces with fewer than four employees, all employees are selected. Employees are 

followed for two years. Fresh samples of employees are drawn on every other survey 

occasion (i.e., first, third, fifth, and seventh). Therefore, data at the employee level are 

two-year panels while the data at the workplace level constitute a seven-year panel from 

1999 to 2005. The sample size of employees is 23,540 in 1999 and 24,197 in 2005. 

Four types of data are available in WES on technology use and adoption at the employee 

level: use of computer; use of computer-controlled or computer-assisted technology; use 

of other machine or technical device; and change in technological complexity. Our study 

focuses on technology use and adoption at the employee level, which is captured by four 

measures. These measures and the relevant survey questions are listed below. 

                                                 
5  There are a few exceptions: employers in Yukon, Nunavut and Northwest Territories; and  
employers operating in crop production and animal production; fishing, hunting and trapping; private 
households, religious organizations and public administration. 
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• Computer use in the job: Do you use a computer in your job? Please exclude sales 

terminal, scanners, machine monitors, etc. By a computer we mean a microcomputer, 

mini-computer, personal computer, mainframe computer or laptop that can be 

programmed to perform a variety of operations. 

• Computer use experience: Considering all jobs you have held, how many years have 

you used a computer in a work environment? 

• Use of computer-controlled or computer-assisted technology: Do you use a computer-

controlled or computer-assisted technology in the course of your normal duties? For 

example, industrial robots, retail scanning systems, etc. 

• Use of technological device: Do you use any other machine or technological device for 

at least one hour a day in the course of your normal duties? This question is meant to 

be inclusive and would include, for example, cash registers, sales terminals, typewriters, 

vehicles and industrial machinery. Do not include the car that you drive for work 

unless it requires a special permit. 

2.3 Educational Attainment and Compulsory Schooling Laws in Canada 

“Educational attainment” is a key variable in our empirical analyses. In the WES survey, 

employees who are surveyed for the first time, i.e., in odd survey years, are first asked 

about the highest grade of elementary or high school (secondary school) that they have 

completed. Employees are then asked whether they graduated from high school 

(secondary school) and whether they have received any additional education. Conditional 

on having received post-secondary education, respondents are asked to report the type of 

the additional education received.6

                                                 
6  This may include trade or vocational diploma or certificate; some college, CEGEP (post-secondary 
education institutions exclusive to the province of Quebec), institute of technology or nursing school; 
completed college, CEGEP, institute of technology or nursing school; some university; teachers' college; 
university certificate or diploma below the bachelor level; bachelor or undergraduate degree or teachers' 
college (e.g. B.A., B.Sc., B.A.Sc., or four-year B.Ed.); university certificate or diploma above the bachelor 
level; Master's degree (M.A., M.Sc., M.Ed., MBA, MPA or  equivalent); earned doctorate; degree in 
medicine, dentistry, veterinary medicine, law, optometry or theology (M.D., D.D.S., D.M.D., D.V.M., 
LL.B., O.D., or M.DIV.) or one-year B.Ed. after another bachelor's degree; industry certified training or 
certification courses; or other. 

 We assign to each employee a total number of years 

of schooling based on the number of years of elementary and secondary schooling 

completed and the normal duration of any post-secondary education.  
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 Because each sample of employees is followed for two consecutive years, in 

even-year surveys WES only asks about any additional education obtained during the 

past 12 months. Conditional on having received additional education during the past 12 

months, WES further asks about the type of education received using the same categories 

of education as in the odd-year surveys. Because such additional education is likely to be 

part-time, we assign 0.5 years of education rather than 1 year for those who received 

additional education during the past 12 months. The only exception is that we do not treat 

“Industry certified training or certification courses” as additional education because those 

are more like adult and continuing training than formal education. Based on the above 

decision rules, we created a variable for the total number of years of schooling for all 

employees in all survey years.7

Using the compulsory schooling laws data compiled by Oreopoulos (2006a, 2007), 

we first created three indicator variables to indicate whether the youngest school leaving 

age is 14, 15, or 16, and then created another three indicator variables to indicate whether 

the oldest school entry age is 6, 7, or 8.  The linkage between the WES data and data on 

compulsory schooling laws is established based on the current province of residence of 

each individual and the year when the individual turned 14 for matching school leaving 

age or 6 for matching school entry age. Schmidt (1996) finds that the effects of 

compulsory schooling laws in the U.S. are largest when matched to individuals at age 14. 

The same procedure is used by Acemoglu and Angrist (2000), Lleras-Muney and 

Lichtenberg (2002), Schmidt (1996), and Goldin and Katz (2003) in their analyses of the 

U.S. data, and by Oreopoulos (2006a, 2007) in his analyses of Canadian data. Because 

WES does not report the birthplace of the respondents or the province of residence when 

  

To address the endogeneity of education, we use changes in compulsory 

schooling laws over time to instrument for schooling. Changes in these laws have been 

shown to have significant effects on educational attainment, and have been a commonly-

used instrument for education (see, for example, Acemoglu and Angrist, 2000; Lochner 

and Moretti, 2004; Milligan, Moretti and Oreopoulos, 2004; and Oreopoulos, 2006a, 

2007).  

                                                 
7 We have also checked the sensitivity of our results to the following variation: the number of years of 
schooling increases by one if an employee received additional education during the past 12 months. There 
was little change, if any, in our results. 
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the respondents turned 6 or 14, we have to rely on the respondents’ current province of 

residence at the time of the survey in linking WES data with data on compulsory 

schooling laws. 8

2.4 Sample Selection and Descriptive Statistics 

 Although this might introduce some measurement error into our 

instrumental variables, previous studies suggest that such measurement error is not likely 

to seriously bias the IV estimates (Milligan, Moretti and Oreopoulos, 2004).   

Relying on the instrumental variables thus created, we estimate the causal effects 

of high-school graduation and years of schooling on individuals’ technology use and 

adoption. Identification of the causal effects of education is based on changes over time 

in the youngest school leaving age and oldest school entry age in a given province as well 

as variations in compulsory schooling laws across provinces. The identifying assumption 

is that conditional on province of residence, cohort of birth, and survey year, the timing 

of the changes in compulsory schooling laws within each province is orthogonal to 

unobserved characteristics that affect schooling choices, such as ability and family 

background. 

Ideally, we would like to estimate a general model where the effect of education 

on technology use and adoption varies across years of schooling. Doing so, however, is 

not empirically feasible because the instruments we use are limited in both the range of 

schooling years affected and the amount of actual variation. Therefore, for the 

instrumental variable analyses, we use years of schooling or a dummy for high-school 

graduation as the main independent variables. 

In the analyses of each measure of technology use and adoption, we drop from the sample 

employees who have missing values on the dependent variable. Because WES does not 

report the specific provinces within the Atlantic region, we cannot link the compulsory 

schooling laws, that vary by province, with WES data for employees from the Atlantic 

region. These employees are therefore also dropped from the sample. We further exclude 

immigrants since their formal education was not influenced by Canadian compulsory 

schooling laws. These exclusions result in a final sample size of 101,612.  

                                                 
8 Individuals having moved across provinces before age 6 were mismatched for both the school leaving age 
and school entry age, while individuals having moved across provinces between age 6 and age 14 were 
mismatched for school leaving age. Because changes in compulsory schooling laws were unlikely to cause 
people to move across provinces, this should not cause significant bias in our estimates for the full sample. 
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As shown in Table 1, the average number of years of schooling completed by 

employees in our sample is 13.9, and the percentage of employees who graduated from 

high school is 84%. Table 1 also shows that the average years of work experience is 17.1 

among employees in the sample. One thing to note is that we use actual work experience, 

not Mincer experience. WES provides information on actual work experience based on 

the following survey question: “Considering all jobs you have held, how many years of 

full-time working experience do you have?” 

The mean of each of the four measures of technology use and adoption can be 

found in Tables 2 to 5. About two-thirds of employees used a computer in the job. 

Considering all jobs held, employees had used a computer in a work environment for an 

average of 7.4 years at the time of the survey. Fourteen percent of employees use a 

computer-controlled or computer-assisted technology in the course of normal duties 

while 26% of employees use any other machine or technological device, except 

computers, or computer-controlled or computer-assisted technology, for at least one hour 

a day. 

There are substantial variations in technology use and adoption across industries 

and occupations. In the finance and insurance industry, for instance, 97% of the 

employees use a computer in the job, compared with only 43% for the construction 

industry. Wide variations are also evident in computer use across occupations, with the 

percentage of employees reporting computer use in the job ranging from 19% for 

production workers to 88% for professionals.9

3 Empirical Framework 

 Given such large variations in technology 

use and adoption across industries and occupations, we decide to focus on the impact of 

education on technology use and adoption within industries and occupations. Therefore, 

we control for industry and occupation in the empirical analyses. 

In order to quantify the effects of education on technology use and adoption, we pool 

cross-sectional data for employees linked with the workplace data from 1999 to 2005 and 

conduct OLS and IV estimations for each measure of technology use and adoption 

                                                 
9 Given space limitations, the summary statistics of the four measures of technology use and adoption by 
industries and by occupations are not reported here, but are available on request. 
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separately. The advantage of analyzing the pooled cross-sectional data is the large sample 

size, which is particularly important for IV estimation.10

ijijjijij ZYXAdoptTech εηγβα ++++=_

  

 Given that our aim is to determine whether education has any causal role in 

technology use and adoption, rather than to determine the magnitude of its effect relative 

to the effects of other factors, we restrict our empirical model to a simple, reduced form 

specification as follows: 

                                ,                                       (1) 

where ijAdoptTech _  is one of the four measures of technology use and adoption for  

worker i at workplace j; α  is a constant; ijX  is a vector of explanatory variables for 

worker i at workplace j, including education, age, work experience, gender, marital status, 

union status, industry, occupation, province, and survey year; jY  is a vector of workplace 

characteristics, including the three dummy variables for the size of the workplace; ijZ  is 

a vector of average observed skills of coworkers in the same firm and same occupation 

group, including education, experience, proportion under 30, proportion over 50, and 

proportion female; and ijε  is a stochastic error component.  

 The reason for including ijZ , the average observed skills of coworkers, in our 

empirical analyses is to partially control for unobserved ability of the individual worker. 

Under plausible assumptions about hiring and retention, workers with higher unobserved 

ability will tend to have coworkers with stronger average skills, which implies that some 

of the effects of unobserved ability can be eliminated by controlling for coworker skills.11

ijZ

 

This is possible in this study because WES is an employer-employee linked data set and 

provides information on the characteristics of coworkers. For those without any co-

worker from the same firm and same occupation group, we replace their missing values 

on  with the mean of the non-missing observations.12

                                                 
10 Although WES has a panel-data structure, we are not able to exploit it. Random effects estimates are not 
appropriate because the unobserved person-specific effects are likely to be correlated with educational 
attainment. Fixed effects (FE) estimates are appropriate in our setting, but the identification comes only 
from those individuals who changed their educational attainment during the past year. Due to the small 
variation in educational attainment across the two years in our sample, FE estimates are very imprecise. 
11 Card and de la Rica (2006) use a similar approach in their analyses of firm-level contracting and wage 
structure. 
12 Including an indicator variable for missing observations yields almost identical results. 
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 When estimating Equation (1), we use the employee survey final weights 

provided by WES. The calculations of t-statistics and all inferences are based on robust 

standard errors. Calculation of standard errors takes into account potential correlations 

among employees within the same workplace by clustering by workplaces. Because the 

error terms in two adjacent years may be serially correlated due to the two-year panel 

feature of WES, we also cluster by employees to take into account the correlation 

between two observations on the same employee. 13

Since the distribution of years of schooling is concentrated around 12 to 13 years, with a 

very small percentage of individuals having 8 years of schooling or less, we use 8 years 

of schooling or less as the base category and regress the probability of using a computer 

in the job on a complete set of years of schooling dummies.

 In addition, standard errors are 

clustered by province of residence and year of birth in all estimations. 

4 Results 

This section presents empirical evidence on the causal effects of education on the four 

measures of technology use and adoption based on data from WES (1999-2005).  

4.1 The Effects of Education on Computer Use in the Job 

In this subsection, we present and discuss our findings on the effects of education on a 

commonly-used measure of technology use and adoption—the probability of using a 

computer in the job. We begin by reporting the OLS estimates, and then the IV estimates. 

4.1.1 OLS Estimates 

14

Based on the OLS coefficient estimates on the complete set of schooling dummies, 

Figure 1 displays the association between education and the probability of using a 

computer in the job, controlling for other influences. The intercept applies to the base 

 The regression also 

controls for survey year, province, a quartic in age, five experience groups (years of 

experience 1-9, 10-19, 20-29, 30-39, and 40 or above), gender, marital status, union 

coverage, industry, occupation, size of the firm, and average characteristics of coworkers 

in the same firm and same occupation group, including education, experience, proportion 

under 30, proportion over 50, and proportion female.  

                                                 
13 We use both observations on the same employee over two years based on the following grounds: some 
covariates may differ across two years; and the outcomes can differ from one year to another even if 
covariates do not differ or do not differ much. 
14 Because the percentage of the sample reporting more than 18 years of schooling was only 0.6%, we used 
the dummy variable for 19 years of schooling to cover all of those having more than 18 years of schooling. 
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category – average-age married males surveyed in 1999 who have 8 years of schooling or 

less, have 10 to 19 years of work experience, live in the province of Ontario, work in a 

primary product manufacturing industry as production workers, work in a firm of size 20-

99 without union coverage, and have coworkers with average observed skills. The figure 

shows a steady increase in the probability of using a computer as schooling increases 

from 10 to 17 years, with a modest degree of concavity (suggesting diminishing returns 

to additional schooling).  

In addition to the analyses where schooling is represented as a set of dummy 

variables, we also conduct analyses where the main independent variable is a dummy for 

high-school graduation or the number of years of schooling. OLS results from these 

regressions are presented in Columns (2) and (5) in Table 2 respectively. As shown in 

Column (2), graduating from high school is associated with a 13.8-percentage-point 

increase in the probability of using a computer in the job. Column (5) reveals that an 

additional year of schooling is associated with a 3.4-percentage-point increase in the 

probability of using a computer in the job. The coefficient estimates for the set of average 

observed skills of coworkers are consistent with our expectation. For example, both the 

average schooling and experience of coworkers have positive effects on computer use in 

the job. 

Estimation results not reported in Table 2 further indicate that females, married 

people, workers not covered by unions, older workers, and individuals with more work 

experience are more likely to use a computer in the job than others. Conditional on all the 

other explanatory variables included in our analyses, employees from the following three 

industries are most likely to use a computer in the job: finance and insurance; information 

and cultural industries; and real estate, rental and leasing operations. Employees from the 

following three industries, on the other hand, have the lowest probability of using a 

computer in the job: construction; retail trade and consumer services; and forestry, 

mining, oil, and gas extraction. The probability of using a computer is located somewhere 

in between for the other industries. As for the impacts of occupation on the probability of 

computer use in the job, we find that clerical/administrative workers, managers, and 

professionals are most likely to use a computer in the job, whereas production workers 

are least likely to use a computer. Technical/trades workers and marketing/sales workers 
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are somewhere in between. Consistent with findings from Wozniak (1987), we also find 

that the larger the size of the firm, the more likely that employees use a computer in the 

job. 

For the purpose of comparison, we also conduct analyses without controlling for 

the average observed skills of coworkers. As shown in Columns (1) and (4) in Table 2, 

controlling for the average observed skills of coworkers results in a 6% decrease in the 

estimated effects of education. This could reflect the presence of unobserved variables 

that are correlated with both education and computer use in the job. 

4.1.2 Instrumental Variable Estimates 

The OLS estimates presented above are consistent with the hypothesis that education 

increases the probability of using a computer in the job. These estimates, however, may 

reflect the effects of unobserved individual characteristics that influence both the 

probability of computer use and schooling choices. Therefore, the positive correlations 

between the probability of computer use and education as shown by the OLS estimates 

may be biased and may not reveal the true causal link between the two.15

                                                 
15 It is also possible that the OLS estimates underestimate the effect of education on computer use due to, 
for instance, the existence of measurement error in educational attainment. 

 By controlling 

for the average observed skills of coworkers, we may partially control for the unobserved 

ability of individual workers. This, however, is unlikely to fully address the endogeneity 

of education problem.  

To deal with these potential biases, we use changes in compulsory schooling laws 

over time to instrument for schooling, as explained previously. Columns (3) and (6) in 

Table 2 presents the 2SLS estimates of the impact of education on computer use in the 

job with specifications identical to those used to obtain the OLS estimates when the 

endogenous variable is high-school graduation and years of schooling respectively. The 

upper panel of the two columns reports the first-stage results, i.e., coefficient estimates 

for the effects of different school leaving ages and school entry ages on educational 

attainment. The base categories are those with school leaving age of 14 and those with 

school entry age of 8. The second-stage results are presented in the lower panel of the 

table. 
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The first-stage results indicate that, in general, the more stringent the compulsory 

schooling legislation, the higher the probability of high-school graduation and the more 

years of schooling completed. Column (3) in Table 2 shows, for example, individuals 

who lived in provinces requiring the youngest school leaving age to be 15 when they 

were 14 were 9.2 percentage points more likely to have completed high school by the 

time of the survey compared with individuals living in provinces requiring the youngest 

school leaving age to be 14 when they were 14 years of age (the excluded category). 

Individuals who lived in provinces requiring the oldest school entry age to be six when 

they were six years of age were 6 percentage points more likely to have completed high 

school by the time of the survey compared with individuals who lived in provinces 

requiring the oldest school entry age to be eight when they were six (the excluded 

category). In addition, results in Column (6) indicate that the average years of schooling 

completed was 0.7 years higher for a youngest school leaving age of 15 than for a 

youngest school leaving age of 14, and 0.5 years higher for an oldest school entry age of 

7 than for an oldest school entry age of 8. These results are similar to those obtained in 

Oreopoulos (2006a). 

To assess the adequacy of the instrumental variables, we perform F-tests for 

exclusion of instruments in the first-stage regression. As shown in Columns (3) and (6) in 

the upper panel of Table 2, the F-statistic for exclusion of instruments is 5.7 with high-

school graduation as the endogenous variable and 11.6 with years of schooling as the 

endogenous variable, which suggests significant positive correlations between the 

instruments and schooling.  

Columns (3) and (6) in the bottom panel of Table 2 present instrumental variable 

estimates of the effects of high-school graduation and years of schooling on the 

probability of using a computer in the job. The IV coefficient for high-school graduation 

is 0.37 and is significant at the .10 level, indicating that graduating from high school 

increases the probability of using a computer in the job by 37 percentage points. The IV 

coefficient for years of schooling is 0.07 and significant at the .01 level, indicating that an 

additional year of schooling increases this probability by 7 percentage points. One thing 

to note is that the IV estimates are consistently higher than the OLS estimates. We 

discuss the differences between the IV and OLS estimates later in the paper. 
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4.2 The Effects of Education on Computer Use Experience 

In this subsection, we present the empirical results on the effects of education on 

computer use experience based on analyses similar to those on computer use in the job as 

explained in detail in the previous section. Figure 2 displays regression-adjusted 

computer use experience by years of schooling based on the OLS estimates on the 

complete set of schooling dummies and additional controls. It shows a steady increase in 

the total number of years of experience in using a computer in a work environment as 

schooling increases from 10 to 19 years. The partial relationship also displays a modest 

degree of diminishing returns to additional education in the range 10 to 18 years of 

schooling. 

Columns (1)-(2) and (4)-(5) in Table 3 present OLS estimates of the effects of 

high-school graduation and years of schooling respectively on the total number of years 

of experience in using a computer in a work environment based on two specifications. As 

shown in Column (2), conditional on all other explanatory variables including the 

average observed skills of coworkers, high-school graduates tend to have 2.8 more years 

of experience in computer use than those without a high-school degree. Column (5) 

reveals that an additional year of schooling is associated with an increase of 0.6 years in 

computer use experience. Comparisons of the specifications with and without the 

coworker variables indicate that the addition of these controls leads to a 3% decrease in 

the estimated effects of education. 

Columns (3) and (6) in Table 3 present 2SLS estimates of the causal effects of 

high-school graduation and years of schooling on computer use experience. The first-

stage results are exactly the same as those from the analysis of the probability of 

computer use in the job reported in Table 2, and thus not reported here. The second-stage  

IV coefficient is 6.2 for high-school graduation (P-value < .10) and 1.2 for years of 

schooling (P-value < .01), which indicates graduating from high school increases 

computer use experience by 6.2 years and an additional year of schooling increases 

computer use experience by 1.2 years. Employees with more education are not only more 

likely to use computers on the job at a point in time, but also start to use computers 

earlier in their working lives. 
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4.3 The Effects of Education on the Use of Computer-controlled or Computer-

assisted Technology 

Use of computer-controlled or computer-assisted technology also reflects a form of 

technology use in the workplace. OLS results reported in Columns (2) and (5) of Table 4 

reveal that graduating from high school is associated with a 2.2-percentage-point increase 

in the probability of using computer-controlled or computer-assisted technology and that 

an additional year of schooling is associated with a 0.4-percentage-point increase in this 

probability. Both estimates are much smaller in magnitude than their counterparts for 

computer use, but are statistically significant at the .01 level. 

 The IV estimations, however, yield different inferences. As shown in Columns (3) 

and (6) of Table 4, the IV estimates are not significantly different from zero, suggesting 

that education does not exert a causal impact on the use of computer-controlled or 

computer-assisted technology. The OLS estimates thus appear to be misleading as they 

reflect correlations rather than causal impacts. We will discuss later in the paper why 

education may have a causal impact on some measures of technology use and adoption 

but not on others.  

4.4 The Effects of Education on the Use of Technological Devices 

As is the case with the analysis of the effects of education on the use of computer-

controlled or computer-assisted technology, OLS and IV estimations yield different 

results on the effects of education on an employee’s use of technological devices such as 

retail scanners and industrial machinery. According to the OLS estimates reported in 

Columns (2) and (5) in Table 5, education has a small negative impact on an employee’s 

use of technological devices. Similar to the case of computer-controlled and computer-

assisted devices, the IV estimates presented in Columns (3) and (6) in Table 5 are not 

significantly different from zero and suggest no causal impact of education on the use of 

technological devices. These results are discussed further in next section. 

5 Discussions 

5.1 Why Are Significant IV Estimates Higher than OLS Estimates? 

The empirical results in this study based on the WES data indicate that the IV estimates 

are consistently higher than the corresponding OLS estimates when education exerts 

significant and positive impacts on technology use and adoption based on IV estimates. 
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Thus our results indicate that the causal effects of education on computer use and 

computer use experience are at least as large as, and perhaps larger than, would be 

suggested by standard OLS estimation. Many recent studies of the causal impacts of 

education on earnings have obtained similar results (e.g., Card, 2001). There are several 

potential explanations for this result.  

One explanation is the existence of measurement error in educational attainment, 

which results in a downward bias in the OLS estimates (Griliches, 1977; Card, 2001).16

To illustrate the above point, we re-estimate the OLS estimates reported in 

Column (5) of Tables 2 and 3 using different sub-samples based on years of schooling. In 

 

An alternative explanation is that, in the presence of heterogeneity across individuals in 

the impacts of additional education, the OLS and IV estimates measure different 

treatment effects. OLS applied to a sample representative of the population estimates the 

average treatment effect (ATE), which corresponds to the expected impact of additional 

education for an individual chosen at random from the population. In contrast, IV 

generally estimates a local average treatment effect (LATE), which corresponds to the 

expected impact of additional education for the subset of the population whose behavior 

was altered by the instrument (Imbens and Angrist, 1994). In the case of instruments 

based on compulsory schooling laws, IV estimates the impact of additional education 

among those who obtained more schooling than they otherwise would have chosen to 

obtain as a consequence of changes in the laws.  

 A closely related explanation for the differences between the OLS and IV 

estimates is that there are non-linearities in the impacts of schooling on technology use 

and adoption. These non-linearities are evident from Figures 1 and 2, which indicate 

diminishing returns to additional education in the range 10 to 18 years of schooling, as 

well as above-average returns to education in the range 10-12 years of schooling. The 

instruments used in this study thus primarily influence educational attainment in the part 

of the educational distribution with above-average impacts of additional schooling. In the 

presence of these heterogeneous impacts, we expect the IV/LATE estimates to exceed the 

OLS/ATE estimates that pertain to the entire range of educational attainment.  

                                                 
16 If, as is likely, the measurement error in educational attainment is non-classical in nature, the OLS 
estimates and IV estimates may both be inconsistent estimates of the returns to schooling (Kane, Rouse and 
Staiger, 1999). 
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both cases, the OLS point estimates based on the sub-sample with 10-12 years of 

schooling are very similar to the IV estimates reported in Column (6) of Tables 2 and 3. 

For example, when the outcome is computer use in the job, the OLS estimate using a 

sample restricted to those with 10-12 years of schooling is 0.061, which is much closer to 

the IV estimate of 0.068 than the original estimate based on the full sample (0.034). 

Similarly, for the analyses of computer use experience, restricting the sample to those 

with 10-12 years of schooling yields an OLS estimate of 0.885 (compared with 0.619 

based on the full sample), which is closer to the IV estimate of 1.211 (see Column (6) of 

Table 3).17

Studies of technological change and economic growth typically conclude that 

technological advances raise skill requirements in some occupations and jobs, but lead to 

de-skilling in others.

 Thus it does not appear to be necessary to appeal to arguments that those 

affected by compulsory attendance laws were unusual in terms of the impacts of 

additional education relative to others with similar levels of completed schooling.  

According to the above interpretation, any intervention that raises educational 

attainment in the neighborhood of high-school completion would yield above-average 

benefits in the form of more or earlier computer use on the job. Such non-linearities in 

the impacts of education on technology use and adoption are also consistent with the 

presence of “sheepskin effects” associated with the completion of a high-school diploma 

(12 years of schooling). Sheepskin effects have also been found in the impacts of 

education on earnings (Jaeger and Page, 1996; Ferrer and Riddell, 2002) and on crime 

(Lochner and Moretti, 2004).     

5.2 The Relationship between Education and Technology Use in the Workplace 

18

                                                 
17 In his study of compulsory schooling in Great Britain and Ireland, Oreopoulos (2006b) also finds that the 
gap between the OLS and IV estimates can be attributed to non-linearities in the returns to schooling. 
Riddell and Song (forthcoming) obtain similar results in their analysis of the impacts of education on re-
employment success among job losers. 
18 See, for example, Allen (1986) on the industrial revolution and Globerman (1986) on the automation 
period in the late 1950s and early 1960s.  

 The relationship between formal education and the use of new 

technologies in the workplace likewise appears to be heterogeneous. Our IV estimates 

indicate that education exerts a positive influence on computer use in the workplace, but 

does not influence the use of computer-controlled and computer-assisted devices or other 

technological devices such as cash registers and sales terminals. In the context of the 
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current “information and communication technology” era, these results are consistent 

with the view that education increases the use of technologies that require or enable 

workers to carry out higher order tasks, whereas schooling does not affect the use of 

technologies that routinize workplace tasks. Case studies of the use of computers in the 

workplace are consistent with this conclusion (e.g. Levy and Murnane, 1996). 

The finding that education has a causal impact on some measures of technology 

use and adoption but not others is consistent with the results in Dunne and Troske (2005). 

Dunne and Troske find that the correlation between the use and adoption of technologies 

and workforce skill at the plant level differs systematically by the task the technology 

performs. Specifically, they find that the likelihood of adopting a computer-aided design 

(CAD) machine used for design and engineering tasks is highly correlated with the 

proportion of skilled labor in the manufacturing facility whereas the use of CAD output 

to control manufacturing machines is uncorrelated with the plant-level skill mix. They 

also find similar results for networks. 

Our finding is also consistent with findings from previous studies that technology 

is heterogeneous. Doms, Dunne, and Troske (1997), for instance, find that the 

relationship between skill upgrading and technology differs by the type of technology. In 

his extensive study of manufacturing firms on Long Island, Siegel (1999) separates 

technologies into two broad classes and finds that the magnitude of the effects of 

advanced technologies differs by the type of technology adopted. 

6 Conclusions 

In an environment characterized by rapid technological change as is the case today, 

studies on whether and how education promotes technology use and adoption and 

subsequently technology diffusion have become especially relevant. Relying on data 

from the Workplace and Employee Survey over the period 1999-2005, this study assesses 

the causal effects of education on technology use and adoption by using instrumental 

variables for schooling derived from Canadian compulsory school attendance laws.  

 We find that employees with more education are more likely to use computers on 

the job. Graduating from high school increases the probability of using a computer in the 

workplace by 37 percentage points and an additional year of schooling increases such 

probability by 7 percentage points, impacts that are large in size and statistically 
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significant. We also find that employees with more education possess longer work 

experiences in using a computer. High-school graduates, for instance, have 6.2 more 

years of experience on average in using a computer at work than those without a high-

school degree.  

 The impact of education on technology use in the workplace, however, differs by 

the type of technology. Our IV estimates imply that the hypothesis that education 

influences the use of computer-controlled or computer-assisted technology or the use of 

technological devices such as retail scanners or industrial machinery is rejected. 

Education has a causal impact on measures of technology use associated with higher 

order tasks undertaken by “knowledge workers” but does not influence the use of 

technologies associated with more routine tasks. Heterogeneity in the factors that 

influence technology use appears to be a feature of the modern workplace. 

We also find evidence of heterogeneity in the impacts of education on computer 

use and computer use experience in the workplace. Impacts of additional schooling are 

largest in the range of 9 to 13 years of schooling, and somewhat lower above 13 years. 

The presence of heterogeneous effects helps to reconcile differences between OLS and 

IV estimates.  

We conclude that the positive correlation between formal education and computer 

use in the workplace cannot be easily explained away by unobserved factors that are 

correlated with both variables. Findings from this study not only shed light on the causal 

relationships between education and individuals’ technology use and adoption, but also 

contribute to the literature on the non-market effects of education. Further, this study 

provides empirical evidence that supports education as a means to enhance technology 

adoption and diffusion, an important channel for technological advancement and 

economic growth. It also provides evidence of one possible mechanism by which changes 

in formal education can influence economic growth. 
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Figure 1  
OLS-Regression-Adjusted Probability of Computer Use in the Job by Years of  
Schooling 
Data source: Workplace and Employee Survey (1999-2005) 
Number of observations: 101,612 

OLS-Regression-Adjusted Probability of Computer Use in the 
Job by Years of Schooling

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

9 10 11 12 13 14 15 16 17 18 19

Years of Schooling

Pr
ob

ab
ili

ty
 o

f C
om

pu
te

r U
se

 
Note: The OLS-regression-adjusted probability of computer use in the job is obtained by 
conditioning on survey year, province, a quartic in age, five experience groups (years of 
experience 1-9, 10-19, 20-29, 30-39, and 40 or above), gender, marital status, union 
coverage, industry, occupation, size of the firm, and average characteristics of coworkers 
in the same firm and same occupation group including education, experience, proportion 
under 30, proportion over 50, and proportion female.  
 
Figure 2  
OLS-Regression-Adjusted Computer Use Experience by Years of Schooling 
Data source: Workplace and Employee Survey (1999-2005) 
Number of observations: 101,612 
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Note: The OLS-regression-adjusted probability of computer use in the job is obtained by 
conditioning on survey year, province, a quartic in age, five experience groups (years of 
experience 1-9, 10-19, 20-29, 30-39, and 40 or above), gender, marital status, union 
coverage, industry, occupation, size of the firm, and average characteristics of coworkers 
in the same firm and same occupation group including education, experience, proportion 
under 30, proportion over 50, and proportion female.  
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Table 1  
Descriptive Statistics for Analyses Based on Workplace and Employee Survey 
(1999-2005)  
Number of observations: 101,612 

Variable Mean Std. dev. 
Years of schooling 
High-school graduation 
Age 
Female 
Unmarried 
Years of work experience 
Union 
Firm size: 1-19 
Firm size: 20-99 
Firm size: 100-499 
Firm size: 500 or more 
Forestry, mining, oil, and gas extraction 
Labor intensive tertiary manufacturing 
Primary product manufacturing 
Secondary product manufacturing 
Capital intensive tertiary manufacturing 
Construction 
Transportation, warehousing and wholesale trade 
Communication and other utilities 
Retail trade and consumer services 
Finance and insurance 
Real estate, rental, leasing operations 
Business services 
Education and health services 
Information and cultural industries 
Managers 
Professionals 
Technical or trades 
Marketing or sales 
Clerical or administrative 
Production workers 
Average schooling of coworkers 
Average experience of coworkers 
Proportion under 30 among coworkers 
Proportion over 50 among coworkers 
Proportion female among coworkers 
School leaving age = 14 
School leaving age = 15 
School leaving age = 16 
School entry age = 6 
School entry age = 7 
School entry age = 8 

13.933 
0.842 

39.750 
0.520 
0.481 

17.062 
0.284 
0.299 
0.303 
0.192 
0.206 
0.018 
0.040 
0.036 
0.034 
0.049 
0.048 
0.108 
0.023 
0.237 
0.048 
0.019 
0.090 
0.216 
0.034 
0.130 
0.164 
0.417 
0.080 
0.143 
0.065 

13.933 
17.849 
0.185 
0.197 
0.486 
0.037 
0.346 
0.617 
0.694 
0.263 
0.040 

2.279 
0.365 

11.330 
0.500 
0.500 

11.010 
0.451 
0.458 
0.460 
0.394 
0.404 
0.133 
0.197 
0.186 
0.181 
0.215 
0.214 
0.311 
0.148 
0.425 
0.214 
0.136 
0.287 
0.412 
0.181 
0.337 
0.370 
0.493 
0.272 
0.350 
0.246 
1.718 
7.255 
0.266 
0.247 
0.366 
0.188 
0.476 
0.486 
0.461 
0.440 
0.195 

Note: Calculations are weighted by the final employee weights. 
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Table 2  
Estimates of the Effects of High-school Graduation and Years of Schooling on 
Computer Use in the Job 
Data source: Workplace and Employee Survey (1999-2005) 
Number of observations: 101,612 

 Endogenous variable is high-
school graduation 

 Endogenous variable is years of 
schooling 

OLS 
(1) 

OLS 
(2) 

IV 
(3) 

OLS 
(4) 

OLS 
(5) 

IV 
(6) 

First stage        
School leaving age=15 
 
School leaving age=16 
 
School entry age=6 
 
School entry age=7 
 
F-statistic for exclusion 

of instruments 
p-value 

  0.092*** 
(0.026) 

0.122*** 
(0.028) 
0.060** 
(0.024) 
0.065** 
(0.027) 

5.66 
 

0.000 

   0.746*** 
(0.143) 

0.865*** 
(0.151) 
0.230* 
(0.126) 

0.461*** 
(0.137) 
11.59 

 
0.000 

Second stage: Dependent variable is an indicator variable for whether the employee uses computer in 
the job. 

Mean of dependent variable: 0.647 
High-school graduation 
 
Years of schooling 
 
Average schooling of 

coworkers 
Average experience of 

coworkers 
Proportion under 30 
 
Proportion over 50 
 
Proportion female 
 

0.146*** 
(0.012) 

0.138*** 
(0.012) 

 
 

0.023*** 
(0.003) 

0.003*** 
(0.001) 
0.009 

(0.016) 
-0.046*** 

(0.015) 
-0.029*** 

(0.011) 

0.370* 
(0.202) 

 
 

0.018*** 
(0.005) 

0.003*** 
(0.001) 
0.017 

(0.018) 
-0.042*** 

(0.015) 
-0.030*** 

(0.012) 

  
 

0.036*** 
(0.002) 

 

 
 

0.034*** 
(0.002) 

0.020*** 
(0.003) 

0.003*** 
(0.001) 
0.005 

(0.016) 
-0.048*** 

(0.015) 
-0.028** 
(0.011) 

 
 

0.068*** 
(0.025) 
0.013** 
(0.006) 

0.003*** 
(0.001) 
0.005 

(0.016) 
-0.048*** 

(0.015) 
-0.027** 
(0.011) 

Note: All regressions control for survey year, province, a quartic in age, five experience 
groups (years of experience 1-9, 10-19, 20-29, 30-39, and 40 or above), gender, marital 
status, union coverage, industry, occupation, and size of the firm. Robust standard errors 
are reported in parentheses. All estimations correct for clustering by employee, 
workplace, province of residence, and year of birth, and are weighted by the final 
employee weights. 
*Significant at the 10% level. 
**Significant at the 5% level. 
***Significant at the 1% level. 
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Table 3 
Estimates of the Effects of High-school Graduation and Years of Schooling on 
Computer Use Experience 
Data source: Workplace and Employee Survey (1999-2005) 
Number of observations: 101,612 

 Endogenous variable is high-
school graduation 

 Endogenous variable is years of 
schooling 

OLS 
(1) 

OLS 
(2) 

IV 
(3) 

OLS 
(4) 

OLS 
(5) 

IV 
(6) 

Second stage: Dependent variable is number of years using a computer at work. 
Mean of dependent variable: 7.362 
High-school graduation 
 
Years of schooling 
 
Average schooling of 

coworkers 
Average experience of 

coworkers 
Proportion under 30 
 
Proportion over 50 
 
Proportion female 
 

2.834*** 
(0.150) 

2.750*** 
(0.150) 

 
 

0.257*** 
(0.037) 

0.029*** 
(0.009) 
0.072 

(0.214) 
-0.426** 
(0.211) 

-0.662*** 
(0.159) 

6.164* 
(3.202) 

 
 

0.177** 
(0.085) 

0.030*** 
(0.009) 
0.186 

(0.257) 
-0.372* 
(0.219) 

-0.677*** 
(0.164) 

  
 

0.636*** 
(0.029) 

 

 
 

0.619*** 
(0.029) 

0.201*** 
(0.036) 

0.025*** 
(0.009) 
-0.023 
(0.212) 

-0.468** 
(0.213) 

-0.635*** 
(0.158) 

 
 

1.211*** 
(0.399) 
0.085 

(0.086) 
0.023** 
(0.009) 
-0.026 
(0.218) 

-0.467** 
(0.220) 

-0.620*** 
(0.163) 

Note: All regressions control for survey year, province, a quartic in age, five experience 
groups (years of experience 1-9, 10-19, 20-29, 30-39, and 40 or above), gender, marital 
status, union coverage, industry, occupation, and size of the firm. Robust standard errors 
are reported in parentheses. All estimations correct for clustering by employee, 
workplace, province of residence, and year of birth, and are weighted by the final 
employee weights. 
*Significant at the 10% level. 
**Significant at the 5% level. 
***Significant at the 1% level. 
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Table 4 
Estimates of the Effects of High-school Graduation and Years of Schooling on the 
Use of Computer-controlled or Computer-assisted Technology 
Data source: Workplace and Employee Survey (1999-2005) 
Number of observations: 101,612 

 Endogenous variable is high-
school graduation 

 Endogenous variable is years of 
schooling 

OLS 
(1) 

OLS 
(2) 

IV 
(3) 

OLS 
(4) 

OLS 
(5) 

IV 
(6) 

Second stage: Dependent variable is an indicator variable for the use of computer-controlled or 
computer-assisted technology. 

Mean of dependent variable: 0.135 
High-school graduation 
 
Years of schooling 
 
Average schooling of 

coworkers 
Average experience of 

coworkers 
Proportion under 30 
 
Proportion over 50 
 
Proportion female 
 

0.020*** 
(0.008) 

0.022*** 
(0.008) 

 
 

-0.005** 
(0.002) 
-0.001 
(0.000) 
0.021 

(0.013) 
-0.007 
(0.010) 
0.005 

(0.008) 

0.038 
(0.123) 

 
 

-0.005 
(0.004) 
-0.001 
(0.000) 
0.021 

(0.013) 
-0.007 
(0.010) 
0.005 

(0.008) 

  
 

0.004*** 
(0.001) 

 

 
 

0.004*** 
(0.001) 

-0.005** 
(0.002) 
-0.001 
(0.000) 
0.020 

(0.013) 
-0.008 
(0.010) 
0.005 

(0.008) 

 
 

0.002 
(0.016) 
-0.005 
(0.004) 
-0.001 
(0.000) 
0.020 

(0.013) 
-0.008 
(0.010) 
0.005 

(0.008) 
Note: All regressions control for survey year, province, a quartic in age, five experience 
groups (years of experience 1-9, 10-19, 20-29, 30-39, and 40 or above), gender, marital 
status, union coverage, industry, occupation, and size of the firm. Robust standard errors 
are reported in parentheses. All estimations correct for clustering by employee, 
workplace, province of residence, and year of birth, and are weighted by the final 
employee weights. 
*Significant at the 10% level. 
**Significant at the 5% level. 
***Significant at the 1% level. 
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Table 5 
Estimates of the Effects of High-school Graduation and Years of Schooling on the 
Use of Technological Device 
Data source: Workplace and Employee Survey (1999-2005) 
Number of observations: 101,612 

 Endogenous variable is high-
school graduation 

 Endogenous variable is years of 
schooling 

OLS 
(1) 

OLS 
(2) 

IV 
(3) 

OLS 
(4) 

OLS 
(5) 

IV 
(6) 

Second stage: Dependent variable is an indicator variable for the use of any other machine or 
technological device for at least one hour a day, except computers, or computer-
controlled or computer-assisted technology. 

Mean of dependent variable: 0.255 
High-school graduation 
 
Years of schooling 
 
Average schooling of 

coworkers 
Average experience of 

coworkers 
Proportion under 30 
 
Proportion over 50 
 
Proportion female 
 

-0.028*** 
(0.010) 

-0.026*** 
(0.010) 

 
 

-0.005** 
(0.002) 
0.000 

(0.001) 
-0.007 
(0.015) 
-0.015 
(0.014) 
0.011 

(0.010) 

0.205 
(0.163) 

 
 

-0.010** 
(0.004) 
0.000 

(0.001) 
0.000 

(0.016) 
-0.012 
(0.014) 
0.010 

(0.011) 

  
 

-0.005*** 
(0.002) 

 

 
 

-0.004** 
(0.002) 

-0.005** 
(0.002) 
0.000 

(0.001) 
-0.006 
(0.015) 
-0.015 
(0.014) 
0.011 

(0.011) 

 
 

0.000 
(0.022) 
-0.005 
(0.005) 
0.000 

(0.001) 
-0.006 
(0.015) 
-0.015 
(0.014) 
0.011 

(0.011) 
Note: All regressions control for survey year, province, a quartic in age, five experience 
groups (years of experience 1-9, 10-19, 20-29, 30-39, and 40 or above), gender, marital 
status, union coverage, industry, occupation, and size of the firm. Robust standard errors 
are reported in parentheses. All estimations correct for clustering by employee, 
workplace, province of residence, and year of birth, and are weighted by the final 
employee weights. 
*Significant at the 10% level. 
**Significant at the 5% level. 
***Significant at the 1% level. 
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Table 6 
OLS Estimates of the Effects of Years of Schooling on Computer Use in the Job and 
Computer Use Experience based on Restricted Samples 
Data source: Workplace and Employee Survey (1999-2005) 

 
 

Sample 

Coefficient estimate  
 

No. of ob. 
Outcome is computer 

use in the job  
Outcome is computer 

use experience 
Full Sample 0.034*** 

(0.002) 
0.619*** 
(0.029) 

101,612 

Schooling < 16 0.033*** 
(0.003) 

0.601*** 
(0.037) 

79,868 

Schooling < 13 0.021*** 
(0.005) 

0.414*** 
(0.054) 

30,454 

9 < Schooling < 16 0.041*** 
(0.003) 

0.718*** 
(0.051) 

75,988 

9 < Schooling < 13 0.061*** 
(0.011) 

0.885*** 
(0.127) 

26,574 

Note: All regressions control for survey year, province, a quartic in age, five experience 
groups (years of experience 1-9, 10-19, 20-29, 30-39, and 40 or above), gender, marital 
status, union coverage, industry, occupation, size of the firm, and average characteristics 
of co-workers in the same firm and same occupation group. Robust standard errors are 
reported in parentheses. All estimations correct for clustering by employee, workplace, 
province of residence, and year of birth, and are weighted by the final employee weights. 
*Significant at the 10% level. 
**Significant at the 5% level. 
***Significant at the 1% level. 
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