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ABSTRACT 
 

The Effects of a Universal Child Benefit* 
 
I study the impact of a universal child benefit on fertility and family well-being. I exploit the 
unanticipated introduction of a new, sizeable, unconditional child benefit in Spain in 2007, 
granted to all mothers giving birth on or after July 1, 2007. The regression discontinuity-type 
design allows for a credible identification of the causal effects. I find that the benefit did lead 
to a significant increase in fertility, as intended, part of it coming from an immediate reduction 
in abortions. On the unintended side, I find that families who received the benefit did not 
increase their overall expenditure or their consumption of directly child-related goods and 
services. Instead, eligible mothers stayed out of the labor force significantly longer after 
giving birth, which in turn led to their children spending less time in formal child care and 
more time with their mother during their first year of life. I also find that couples who received 
the benefit were less likely to break up the year after having the child, although this effect 
was only short-term. Taken together, the results suggest that child benefits of this kind may 
successfully increase fertility, as well as affecting family well-being through their impact on 
maternal time at home and family stability. 
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1. Introduction 

Governments in many countries offer cash benefits to families with young children.1 The 

explicit goals of these programs typically include encouraging fertility and/or improving 

the well-being and long-term opportunities of children. However, the success of these 

policies in achieving their goals, as well as any potential side-effects, has been hard to 

evaluate.  

 The main challenge in estimating the effects of a child benefit is, as usual in policy 

evaluation, to come up with a credible “counterfactual”. What would the fertility rate have 

been in country X in the absence of the child benefit? What about average child outcomes? 

The literature has typically followed difference-in-differences strategies, where one 

compares families with children before and after the introduction or expansion of a child 

benefit, and uses other regions or non-eligible families as controls.2  However, both kinds 

of control groups may suffer from comparability issues, and it is hard to rule out other 

sources that may be responsible for the different trajectories of the treated and control 

groups. 

 The ideal “experiment” that these research designs try to replicate would work as 

follows: some families would be randomly selected to receive the benefit, say at the time of 

the birth of a child, and then one would compare the treated and untreated families over 

time along the relevant dimensions.  

 In this paper, I exploit a natural experiment that credibly replicates a randomization of 

the sort described above, where mothers who give birth are “as if” randomly assigned to a 

                                                 
1 As reported in Milligan (2005), families with children received some kind of benefit (through either 
transfers or taxes) in 28 out of the 30 OECD countries in 2002. 
2 See, for example, Milligan and Stabile (2009, 2011) for child outcomes, and Milligan (2005) or Cohen at al. 
(2007) for fertility effects. 

 1



treatment group (who receives a large cash benefit) or a control group (that doesn’t). The 

source of this randomization is the sharp cut-off established for benefit eligibility. Mothers 

were eligible if their child was born after a certain date, and this date was not announced 

beforehand. This setup lends itself naturally to a regression discontinuity analysis, where 

the treatment effect is given by the difference in outcomes between treated and control 

families, arbitrarily close to the cutoff. 

The natural experiment in question was generated by the introduction of a new, 

universal child benefit in Spain in 2007. The cash benefit, to be paid to the mother 

immediately after birth, was announced on July 3rd, and all mothers giving birth from July 

1st on were eligible to receive it. The benefit was a one-time payment of 2,500 Euros (about 

$3,800), or almost 4.5 times the monthly (gross) minimum wage for a full-time worker. 

 The explicit goals of the benefit were to increase fertility as well as to improve the well-

being of families and children. Thus, I first analyze the potential fertility effects, and then 

move on to a range of outcomes related to family well-being, including expenditure 

patterns, labor supply, family stability, and health outcomes. In order to do so, I exploit a 

range of independent data sets with information on the different variables of interest. 

 The identification strategy is quite straightforward for all the family wellbeing-related 

variables. I compare, say, expenditure patterns, for households who had a child right before 

and right after the cutoff date. These families are statistically identical in all observable 

dimensions, except for the fact that some received the benefit and some did not. Thus, any 

“jump” at the cutoff birth date observed after benefit receipt can be attributed to the policy. 

This type of identification strategy is typically referred to as a “regression discontinuity 

design” (RDD).  
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 It has been shown in previous research that there are seasonal changes in the 

characteristics of women giving birth throughout the year (Buckles and Hungerman 2008). 

In order to incorporate these concerns, I also estimate specifications that include multiple 

birth years and control for “seasonality” by including calendar month of birth fixed effects, 

thus supplementing the RDD approach with difference-in-difference (DiD) estimates. 

 Estimating the fertility effects of the policy poses a tougher challenge, since conception 

date is not observed in any available data set (most often, not even to the mother!). I use 

Vital Statistics data, which include date of birth and also weeks of gestation, to construct 

estimated conception dates, and thus look for a discontinuity in the number of conceptions 

after the benefit announcement date.  

 Perhaps even more appealing is the argument that, if the benefit encourages fertility, it 

should also discourage abortions. I collect detailed abortion statistics and analyze the 

incidence of abortions around the date when the benefit was announced. The conceptions 

and abortions analysis also supplements RDD with DiD specifications (with calendar 

month of birth fixed-effects). 

 The results indicate that the child benefit was successful in increasing fertility. I find a 

(positive) jump in the number of conceptions right after the benefit announcement date, as 

well as a discrete drop in the incidence of abortions. The magnitude of the estimated effects 

is sizeable, suggesting that the policy increased the annual number of births by at least 5 

percent. 

Regarding family well-being, I find that families that received the new child benefit did 

not increase their overall expenditure the year following childbirth. Child-specific 

expenditure was also unaffected. However, mothers who received the benefit were 

significantly less likely to be working the year after birth, with the labor supply effect 
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dissipating by the child’s second birthday. I also find that receiving the benefit led to 

significantly lower expenditure on formal day-care and fewer weekly hours of day-care. 

The benefit-driven increase in income thus appears to have led to changes in maternal time 

at home and day-care use during the child’s first year of life. 

I also find that the parents who received the benefit were less likely to separate during 

the first year after childbirth, and eligible mothers reported somewhat better health. I do not 

find any effect on (extreme) health indicators for children. 

There are two main contributions of the paper. First, the regression discontinuity design 

allows for a more credible identification of the underlying causal effects, compared with the 

previous literature on the effects of family or child benefits. Second, I study the (short-

term) effects of the benefit on a broad set of outcomes, including those explicitly targeted 

by the policy as well as others suggested by economic theory and previous literature. This 

paints a richer picture compared with most previous papers, which tend to focus on a single 

outcome of interest (be it fertility, maternal labor supply, child outcomes or expenditure 

patterns).3 It also allows us to think about the potential channels that may be at play in 

generating any long-term effects on child outcomes. Finally, the analysis is also valuable 

given the virtual absence of empirical studies addressing the effects of changes in income 

on parental investments in children (Ginja, 2010). 

The paper also contributes to a broader literature that addresses the effect of exogenous 

increases in income on a range of individual and household outcomes. A common source of 

                                                 
3 See, for example, Milligan (2005) and Cohen at al. (2007) for fertility, Dahl and Lochner (2011) and 
Milligan and Stabile (2011) for child outcomes, Lundberg et al. (1997) and Ward-Batts (2008) for household 
expenditure patterns, and Milligan and Stabile (2009) for maternal labor supply. There is also, of course, a 
large literature concerned with the effect of different types of public benefits on female labor supply, and 
some of the papers in that literature also focus on mothers or single mothers. 
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such an exogenous income shock exploited in the literature is lottery winning.4 Those 

studies, however, suffer from the limitations that, first, lottery players may not be 

representative of the overall population, and second, their results may not be typical 

responses to other forms of unearned income (Bagues and Esteve-Volart, 2010).  

The remainder of the paper is organized as follows. Section 2 introduces some 

additional background on the policy change that gives rise to the natural experiment. It also 

details the identification strategy and describes the main data sources. Section 3 discusses 

the results for the different sets of outcomes, and section 4 concludes. 

 

2. Methodology and data 

2.1 Institutional setting 

On July 3rd, 2007, the Spanish President announced during his “State of the Nation” address 

that a new, universal child benefit would be introduced. The new, one-time subsidy would 

pay 2,500 euros (slightly over $3,800)5 to all new mothers, starting with those giving birth 

on or after the announcement date. The eligibility cut-off would subsequently be moved 

(for practical reasons) to July 1st. The proposal became law in November,6 and the first 

“baby-checks”, as they were referred to in the media, were paid in late November 2007. 

The magnitude of the subsidy can be appreciated by comparing it with monthly 

earnings. The monthly gross minimum wage for a full-time job in Spain was 570.6 Euros in 

2007, and about 20% of working women earned the minimum wage or below (2007 Wage 

                                                 
4 Imbens et al. (2001) look at lottery-winning effects on labor supply, earnings, consumption and savings. 
Lindahl (2005) and Apouey and Clark (2011) study the impact on health outcomes. Hankins and Hoekstra 
(2011) focus on marriage and divorce effects. Kuhn (2010) studies consumption, and Hankins et al. (2010), 
individual bankruptcy. 
5 In 2011 US$. Calculated using the US$-euro exchange rate from the 2nd semester of 2007 and the US rate 
of inflation from 2007 to 2011. 
6 Ley 35/2007 (November 15, 2007). 
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Structure Survey). Thus, the benefit was equivalent to 4.4 months of pay for a low-wage 

full-time worker. The child benefit also more than doubled median female gross monthly 

earnings (about 1,190 Euros, 2007 Wage Structure Survey). 

The explicit goal of the new policy was twofold. As stated in the law, the benefit was 

meant to help parents cope with the extra expenditures associated with childbirth, while it 

also intended to encourage fertility, given the low prevailing birth rates in Spain and the 

trends in population ageing. The law also mentioned its aim to facilitate the balancing of 

work and family, and to maintain the living standards of low-income families. 

The new benefit was universal, with no income tests, and the only requirement was to 

have resided legally in Spain for at least two years before giving birth. The information 

made available by the government regarding benefit implementation suggests practically 

full take-up, not surprisingly given the very low cost associated with the application (which 

consisted of filling out a one-page form). In 2008, the tax authorities reported paying 

491,557 “baby-checks”,7 which amounted to 95% of all births taking place in Spain during 

the year (including ineligibles). 

 

2.2 Empirical strategy and data 

The identification strategy relies on the fact that the policy established a sharp cutoff in 

birth-date for benefit elegibility, and the fact that this cutoff was announced unexpectedly. 

Thus, we expect families to react to the introduction of the new policy right after its 

announcement and immediate implementation.  

 There are important differences in the analysis of fertility versus the rest of the 

outcomes. If the policy successfully encouraged fertility, we expect to observe a sudden 

                                                 
7 Memoria 2008, Agencia Tributaria (www.aeat.es). 

 6

http://www.aeat.es/


increase in the number of conceptions (or, rather, couples trying to conceive) right after the 

announcement date. The empirical approach, then, is to analyze the time series of 

conceptions over time and look for a break around July 3, 2007, perhaps controlling for 

seasonality. 

 The second part of the analysis addresses the effect of benefit receipt on a number of 

family outcomes. The identification strategy here relies on comparing the behaviour of 

families who had a child right before versus right after the cutoff, which determined their 

benefit eligibility. Thus, for all outcomes other than fertility, identification is achieved via a 

RDD, supplemented with DiD specifications to account for potential month-of-birth effects. 

 Next I discuss in more detail the empirical specifications for the two sets of outcomes. 

 

2.2.1 Fertility effects 

The child benefit was introduced with the explicit goal of encouraging fertility, in a country 

where birth rates had been very low by international standards since the late 1990’s. 

Because eligibility was conditional on having a child, the policy aimed to induce more 

families to have children (or to have more of them).  

 If the policy was effective, we would expect to see an increase in the number of women 

(couples) trying to conceive right after July 3rd, 2007. While intention to conceive is not 

captured in any publicly available large surveys, more couples trying to conceive should 

lead to a subsequent increase in the number of conceptions.  

 The Spanish National Statistical Institute provides micro-data on all births taking place 

monthly in Spain (which I will refer to as “Vital Statistics”), and these data include 

information on weeks of gestation at birth. Thus, we can estimate with reasonable accuracy 

the date of conception for the population of births in Spain, and analyze whether there was 
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a discrete jump in the number of conceptions shortly after the introduction of the benefit.8 

To this purpose, I estimate the following equation: 

(1)  mmm XpostpostmmC ελβγγα ++⋅+⋅++= )(21 . 

Where C is the (natural log of) the estimated number of conceptions in month m, post is a 

binary indicator taking value 1 in all months starting July 2007, and X is the number of days 

in month m. The month of conception m is normalized to 0 for July 2007, and thus takes 

values -1 for June 2007, 1 for August 2007, etc. 

 Since the exact date of birth is not reported in the Vital Statistics data, but only the 

month, the analysis is performed at the monthly level. The linear term in m accounts for any 

smooth fertility trends, and it is allowed to change after the policy reform.9 I also explore 

the inclusion of higher-order polynomials.  

 Coefficient β would then capture a discrete jump in the monthly number of conceptions 

in July 2007, and it would be positive if the benefit successfully encouraged fertility. The 

identifying assumption is that no other factor affected conception rates discontinuously in 

July 2007. 

 This specification presents several potential problems. First, the fact that Spanish Vital 

Statistics do not report exact date of birth limits our ability to detect a discontinuity right at 

the policy announcement date. Perhaps even more importantly, the broader our bins, the 

harder it becomes to rule out “seasonality effects” (systematic differences in conception 

rates by calendar month). In order to incorporate this concern, I also estimate specifications 

with calendar month of conception dummies, as shown in the next equation. 

                                                 
8 For each individual birth, I estimate its likely date of conception by taking every day of the month of birth, 
subtracting the number of gestation weeks at birth, then adding 14 days (since the most likely date of 
conception is medically estimated as the birth date minus the number of gestation weeks plus 14 days). As a 
robustness check, I also alternatively estimate month of conception as just 9 months before the month of birth.   
9 I also estimate regressions where the trend captured by the polynomial is not allowed to change at the cutoff. 
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(2)   mm
c

cmm monthXpostpostmmC εµλβγγα +++⋅+⋅++= ∑
=

12

2
21 )(

Our coefficient of interest β would now capture any discrete jump in the number of 

conceptions between June and July of 2007, above and beyond the average difference in 

number of conceptions between June and July of the surrounding years. Of course, this 

specification requires that the sample includes multiple years. 

 A second concern is that month of conception is estimated with error. I address this 

issue partially by using several alternative methods for estimating conception date, but any 

remaining measurement error would bias our coefficients toward zero. Moreover, a third 

issue is that we do not expect conceptions to react immediately. The medical literature 

suggests that a healthy, fertile couple will typically take 3 to 6 months to conceive when 

actively trying. Thus, an increase in the number of couples trying to conceive would only 

result in additional actual conceptions gradually and with some delay. 

 These two concerns can be addressed by alternatively analyzing the monthly incidence 

of abortions, instead of the estimated number of conceptions. Month of abortion is reported 

accurately in the data, and the decision to terminate a pregnancy can potentially react 

immediately to the policy change. 

 The National Statistical Institute only reports the number of abortions annually. In order 

to obtain the data by month, I contacted the health authorities of each of the 17 Spanish 

regions. Nine of them, representing more than 75% of total Spanish population (and 80% of 

national abortions), agreed to provide the data on monthly number of abortions between 

2000 and 2009. I then estimate equations 1 and 2 using the (natural log of) number of 

abortions as the dependent variable. 
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 Both an increase in the number of conceptions and a reduction in the incidence of 

abortions would result in a higher number of births some time after the policy change. I run 

a final regression aimed at capturing this combined effect on fertility. Since the vast 

majority (about 90%) of abortions take place at less than 13 weeks of gestation, a reduction 

in the incidence of abortions right after July 3rd, would lead to an increase in the number of 

births starting as early as January 2008. On the other hand, the vast majority of pregnancies 

resulting in birth last 35 (gestation) weeks or more. This suggests that any additional 

conceptions after July 3, 2007 would lead to an increase in the number of births starting in 

late February of 2008, most likely in March. If we take into account that conceiving may 

take some time, we expect the effect on births to appear starting in January 2008 but 

perhaps increasing until September of 2008, if we assume it may take up to 6 months to 

conceive.10  

 Table 1 reports some summary statistics for the sample of conceptions and abortions by 

month. The full sample includes all births/abortions taking place between 2000 and 2009 

(inclusive). The average national monthly number of conceptions is about 37,500, while 

there are about 6,000 abortions per month in the data.11  

                                                 
10 I illustrate this overall fertility effect by estimating the following equation: 

  
mm

c
cm monthpostpostpostpostmmB εµββββγγα ++++++++= ∑

=
−−−−

12

2
21164151131062501

2
21

Where B is the (natural log of) the number of births in month m, and the four “post” coefficients capture the 
increase in the number of births x months after benefit introduction. We expect the increase to show up 
between months 6 (January 2008) and 15 (September 2008), i.e., we expect β2 and β3 to be significantly 
positive. 
11 The data include about 80% of all abortions at the national level, so this figure needs to be scaled up in 
order to obtain a national estimate. 
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 I estimate several specifications with the full sample of 120 months (10 years), and then 

restrict the sample progressively to include only to the months surrounding the policy 

change. 

 

2.2.2 Family well-being effects 

The analysis of the family well-being effects of the child benefit lends itself naturally to a 

(sharp) regression discontinuity approach, so that we can compare the outcomes of 

households who had a child right before and right after the eligibility cut-off.12 Close 

enough to the threshold, treatment is “as if” randomly assigned (Lee and Lemieux, 2010). 

I estimate regressions of the following form: 

(3) imimim XpostpostmmY εβγγα +Π+⋅+⋅++= )(21 .   

This is very similar to equation (1), except for the individual-level subscript. Y is an 

outcome variable (say, household expenditure or a measure of maternal labor supply) for 

household i who had a child on month m. Month of birth m (the “running” variable) is again 

normalized to zero at the threshold (July 2007).13 The main parameter of interest, β, 

captures any potential discontinuity or “jump” in Y at the cutoff. The vector X includes 

household-level controls, and ε is the residual. 

 The reason for using month of birth as the running variable rather than exact date of 

birth is that we do not observe exact dates of birth in any of the data sets.14 This 

specification is estimated for a range of outcome variables. First I explore whether benefit 

                                                 
12 For recent articles on regression discontinuity design and its applications in economics, see Lee and 
Lemieux (2010), Imbens and Lemieux (2008) and van der Klaauw (2008). 
13 Again, the equation includes a linear term in m that is allowed to change at the cutoff, but I also explore 
higher-order polynomials. 
14 Even if we were able to observe exact dates of birth, the limited number of observations would not allow us 
to look much closer to the threshold. In the largest of the data sets that I use, I observe about 450 births per 
month. 
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receipt translated into changes in household expenditure patterns (section 3.2.1). Then I 

analyze the potential labor supply effects (section 3.2.2). I also explore whether the benefit 

affected child care use (3.2.3), family stability and in particular parental separation (section 

3.2.4), and finally I analyze the impact on maternal and child health (section 3.2.5). 

 In the main specification, Y is observed in 2008, or about 12 months after birth (on 

average) for children born at the cut-off date. The main sample includes households with 

children born between 9 months before and 9 months after the policy change (i.e. between 

October 2006 and March 2008)15, so that the children are between 0 and 2 years of age 

when observed.16 In additional specifications, I vary the number of months around the 

threshold included in the sample, up to only 2 months on either side of the cutoff.  

 The identifying assumption is that no other factor affected families with children born 

after June 30, 2007 discontinuously.17 I do allow for a smooth trend (a polynomial) in 

month of birth, which we expect will be important since all mothers are observed at the 

same point in time (2008), so that earlier births necessarily imply children who are older. 

 There are two checks that should be performed in order to confirm the validity of the 

RDD approach (Lee and Lemieux, 2010). First, we should observe no discontinuity in the 

number of births around the threshold. Since date of birth determined benefit eligibility, the 

program generated an incentive to postpone birth to after the cut-off date. In our setting, 

such shifting is highly unlikely, given that the benefit was announced three days after the 

threshold date. In any case, we run regressions such as (1) and (2) where the dependent 

                                                 
15 The main specification includes only children born up to 9 months after the benefit announcement in order 
to minimize the likelihood of including births induced by the policy change (“selection effect”). 
16 Technically I would need to exclude mothers with less than 2 years of legal residence in Spain from the 
sample (ineligibles). Legal residence status, however, is not observed in the data. Alternative regressions are 
estimated that exclude recent immigrants from the sample. 
17 No other policy changes in 2007 or thereafter applied differentially to children born before and after July 1, 
2007. Note that the cutoff birthdate that determines the year when a child starts school (or pre-school) in 
Spain is December 31. 
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variable is the total number of births by month, and show that there was no discontinuity in 

number of births around July 1, 2007 (see section 3.2 for results).  

 A second check is to compare household characteristics around the threshold. If the 

treatment is “as if” randomly assigned, we should observe no significant differences 

between treated and control families. I thus estimate regressions such as (4) where the 

dependent variables are a range of household characteristics (age and education level of the 

parents, immigrant status, etc). The results are reported in section 3.2. 

 As in the fertility analysis, and particularly since the running variable is discrete (month 

of birth), there remains a concern that an RDD analysis could capture seasonality effects, 

i.e. any potential systematic differences between June and July births that are unrelated to 

the benefit. I address this concern by additionally running difference-in-difference 

specifications, where I include multiple birth-years in the analysis and include calendar 

month of birth fixed-effects. Thus, a discontinuity observed between June and July 2007 

births would only be interpreted as a treatment effect if it was larger than the average June-

July difference in other surrounding years.  

 I perform two different DiD exercises. In the first, shown in column 7 of tables 4 to 8, 

all households are interviewed in 2008, and the sample is composed of families with 

children born between 2005 and 2008 (both included). Therefore, all families are observed 

at the same point in time, and the children’s ages range between 0 and 3. The second DiD 

specification, shown in column 7 of tables 4 to 7, also includes observations from families 

with children born between 2005 and 2008, but now I merge survey data from 2006 to 

2009, so that families are always interviewed the year following childbirth (in 2008 for 

2007 births, but in 2009 for 2008 births, etc). Thus, in this second specification, the 
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children are observed at approximately the same age (about 12 months), but in different 

calendar years.  

 Different data sets are used for each set of dependent variables. The expenditure 

analysis uses Household Budget Survey (HBS) data. Table 1 shows that households in the 

sample spent on average 30,500 euros in 2008, including almost 5,000 in directly child-

related goods or services. The labor supply and parental separation analysis uses data from 

the larger Labor Force Survey (LFS). When interviewed in 2008, table 1 shows that 42% of 

mothers in the sample reported working the previous week (54% were employed, indicating 

that 12% were on leave from their job). Also, 3.4% of the mothers were separated or 

divorced.  

 

3. Results 

3.1 Fertility 

The fertility results are summarized in table 2 and figure 1. As described in section 2.2.1, 

first I look for a discontinuity in the number of conceptions around the benefit 

announcement date, using Vital Statistics data and estimating month of conception by 

combining information on month of birth and gestation weeks at birth. The first panel of 

figure 1 shows the estimated monthly number of conceptions (that resulted in birth) 

between 2005 and 2009. Lines are fitted separately for months before and after July 2007. 

Visually, it appears as if there might have been an increase in the number of conceptions in 

July 2007. This is confirmed by the regression results, described next. 

Table 2 reports the results from estimating equations (1) and (2), in eight different 

specifications. The dependent variable is the natural log of the (estimated) number of 

conceptions per month. The first column uses the full sample of births between 2000 and 
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2009. It controls for a third-order polynomial in month of birth, as well as the number of 

days in each month. The result suggests that conceptions increased significantly, by about 

5.6 log-points, in July 2007. Columns 2 to 5 restrict the sample to months closer and closer 

to the cutoff. Column 2 includes five years of data (and drops the cubic term on the 

polynomial), and estimates a 7 percent increase in conceptions. Columns 3 to 5 include 

only 12, 9 and 3 months before and after the cutoff, respectively. The estimated effects vary 

between 5 and 8.5 percent. 

Finally, columns 6 to 8 report the results from difference-in-difference specifications 

that include calendar month dummies. These specifications remove any potential 

seasonality effects that are unrelated to the policy change. The estimated effect remains 

significant and around 5-6 percent in magnitude. 

These results suggest that the child benefit may have been successful in encouraging 

fertility via increasing the number of conceptions. I supplement the analysis of conceptions 

with a look into the incidence of abortions, which may potentially have reacted more 

sharply to the introduction of the benefit.  

The bottom panel of figure 1 displays the monthly number of abortions between 2005 

and 2009, with separate linear fits for the periods before and after the benefit. Although 

there is an overall positive trend, there may have been a drop in the incidence of abortions 

around July 2007.  

Regression results from estimating equations (1) and (2) are reported in the second row 

of table 2. The eight specifications are the same as for the number of conceptions, although 

the dependent variable is now the natural log of the monthly number of abortions. The 

RDD specifications (columns 1 to 5) indicate a large drop in the number of abortions 

exactly after the introduction of the benefit. The magnitudes range between 12 and 23 
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percent. However, the results with calendar month dummies (reported in columns 6 to 8) 

suggest that seasonality might be an important driver of the monthly number of abortions. 

Once the month fixed-effects are included, the magnitude is reduced to about 5 percent. 

Combined, the results presented in this section suggest that the child benefit may have 

reduced the incidence of abortions and encouraged new conceptions, both resulting in 

additional births. My estimates indicate that the benefit may have led to an overall increase 

in the number of births of about 6 percent.18 

 

3.2 Family well-being 

Next I report the results from the analysis of the effects of the child benefit on a range of 

outcomes related to family well-being. This section relies on comparing families who had 

children shortly before and after the introduction of the benefit, in a regression-

discontinuity analysis that is also supplemented by difference-in-difference specifications. 

Before the results, it is useful to report a number of validity checks in support of the 

RDD approach. First I confirm that there was no discontinuity in the number of births 

around the cutoff date, as would be the case if families could adjust the date of birth as a 

response to the benefit. In 2007, there were about 41,000 births a month in Spain. There 

were more births in July (42,810) than in June (40,210), but there is on more day in July 

than in June. Thus, I estimate equations (1) and (2) with the natural log of the monthly 

number of births as a dependent variable. The results of eight different specifications (five 

RDD, three DiD) are presented in table A1.19 There is no evidence of a significant jump in 

the number of births around July 1, 2007. The last column, which includes 30 months 

before and 30 after the threshold, a second-order polynomial in m, and calendar month of 

                                                 
18 The results table for the overall effect on number of births is available upon request from the author. 
19 Note that the specifications in table A1 are parallel to those in table 2. 
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birth dummies, suggests a small (0.8 log-points) effect, but the coefficient is far from 

statistically significant.20 

We also need to check that control and treatment groups do not differ in their 

observable covariates, which would cast doubt on the “as if” randomization around the 

threshold. We thus estimate regressions such as (3) with different household characteristics 

as dependent variables:   

(4) imim postpostmmX εβγγα +⋅+⋅++= )(21 ,   

In particular, I check for balance in age, educational attainment, marital status and 

immigrant status of the mother and the father, as well as parity of the child. I do so using all 

available data sets (mainly Vital Statistics, Household Budget Survey and Labor Force 

Survey). Results are reported in figure 2 and table 3. 

 Figure 2 shows monthly averages for four maternal characteristics around the threshold, 

using Vital Statistics data, and thus the population of births in Spain around the 

introduction of the benefit. I also show separate linear fits for the data before and after the 

cutoff. There is little variation in average maternal age by month, with mothers being on 

average 31 years of age in 2007 and no noticeable jump in July 2007. There is a clear 

upward trend in the fraction of mothers who are foreign-born (almost 20% in 2007), but 

again there is no visual evidence of a discontinuity at the threshold. There is also no 

obvious jump at the cutoff date in the fraction of mothers who are married or the proportion 

with a high-skill job. Of course, the visual evidence needs to be complemented with 

regression analysis. 

                                                 
20 The regressions in table A1 can also be thought of as a placebo test for the fertility results in section 3.1. 
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Table 3 reports the results of estimating equation (4) with Household Budget Survey 

and Labor Force Survey data, for ten different covariates. Five different specifications are 

reported. The first one includes births 9 months before and after the cutoff, and later 

columns restrict the data to births closer and closer to the threshold, so that in column 5 I 

only include children born between 2 months before and 2 months after July 1, 2007. 

 Mother characteristics appear to be fairly balanced around the threshold. In the HBS 

regressions (first panel of table 3), none of the coefficients are statistically significant at the 

90% confidence level. There is no significant discontinuity in age, education or immigrant 

status of the mother or father, or in the parity of the child. Control and treated mothers are 

similar in their observable covariates, as expected. In the LFS sample (second panel), 

control and treated families are similar in most of the covariates. However, treated fathers 

appear slightly younger (between 0.6 and 0.9 years), while mothers have lower high school 

graduation rates (between 6 and 10 percentage points). The age jump is not large, but the 

discontinuity in the education level of the mothers, most likely a chance occurrence due to 

sampling since it does not come up in the other data sets, suggests that we should control 

for education in all our LFS specifications. 

 The remainder of this section reports the results for the different sets of outcome 

variables related to family well-being. The results are presented in tables 4 through 7. Note 

that all tables have the same structure, reporting the results from the same eight 

specifications, for the different outcomes and estimated from the different data sources. 

 

3.2.1 Household expenditure 

The first set of results analyzes whether benefit receipt translated into changes in 

expenditure patterns. The permanent income model would predict no effect of an 
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unexpected, transitory increase in income on household consumption. However, this 

prediction could fail to hold if families face liquidity constraints. I compare total annual 

expenditure as reported in 2008 for families who had a child shortly before and after July 1, 

2007. As dependent variables, I look at total expenditure, durable goods expenditure, and 

child-related expenditure.21 The results are summarized in figure 3 and table 4. 

 In brief, I find no evidence that benefit receipt translated into higher average 

expenditure the year following childbirth. This is also true if I look at the subset of goods 

and services that are directly related to the children, and if I restrict attention to durable 

goods (plausibly more affected by potential liquidity constraints).  

 The first panel of figure 3 shows average annual expenditure, by month of birth of the 

child. Average expenditure for families who had a child in 2007 was about 30,000 euros, 

and there is no perceptible discontinuity around July 2007. This is confirmed by the 

regression analysis. The first two rows of table 4 show the results when using total 

expenditure in euros or in logs as the dependent variable, for six RDD specifications and 

two DiD ones (with calendar month of birth dummies). Coefficients are mostly negative 

and never statistically significant. Families who received the benefit did not increase their 

expenditure, on average. 

 The next two rows of table 4 (and the second panel of figure 3) show the results for 

child-related expenditures. The results suggest that families that received the benefit did not 

subsequently spend more on child-related goods or services. The same holds for durable 

goods (final two rows of table 4).22 

                                                 
21 See appendix for the definition of durable goods and child-related expenditure. 
22 I also estimate separate regressions for different subgroups of the population (by marital status of the 
mother, education level of mother and father, and age of the parents). I only find a (borderline) positive 
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 The available evidence suggests that families did not, on average, increase expenditures 

as a result of receiving the benefit.23 There are several explanations for this finding. First, a 

one-time payment does not increase permanent income by much, so the permanent income 

theory would predict a small impact on consumption. But there is a second possible 

explanation: that an increase in unearned income may have reduced other sources of 

household income via a reduction in labor supply, thus compensating the initial increase. 

The next subsection analyzes the labor supply effect of the child benefit. 

 

3.2.2 Maternal labor supply 

Next I analyze whether benefit eligibility affected household labor supply. A static model 

of labor supply would predict that an increase in unearned income leads to a reduction in 

household labor supply, as long as leisure (or, in this case, “home time”) is a normal good. 

On the other hand, a dynamic model would predict a small, if any, contemporaneous effect 

of a one-time transfer. This prediction would however fail to hold in the presence of credit 

constraints, in which case the static model might be a better depiction of reality. 

The main results are presented in figure 4 and table 5. The main dependent variable in 

table 5 (first row) is a binary indicator that takes value 1 if a mother was working when 

interviewed in 2008, when her child was (on average) 12 months of age. A second 

dependent variable takes value 1 if the woman was employed, even if she may have been 

on temporary leave from her job.24 

                                                                                                                                                     
significant effect on overall expenditure for families with low-educated fathers. Results are available upon 
request. 
23 I also run separate regressions for each expenditure item available in the data separately. The results do not 
show significant increases in expenditure on any specific items more than would be expected by chance (since 
there are almost 50 different expenditure categories). 
24 Parallel specifications are estimated for fathers’ labor supply, with no significant effects found. Regression 
results are available upon request. 
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The six different RDD specifications suggest that mothers who received the benefit 

were 4 to 6 percentage points less likely to be working in 2008 compared with ineligible 

mothers. The magnitude remains in the same range in the first of the DiD specifications, 

but is substantially reduced in the second (column 8), although the effect remains 

statistically significant.  

The result is illustrated graphically in figure 4 (first panel). About 48 percent of women 

who had a child in June 2007 were back to work when interviewed in 2008, compared with 

43 percent of July 2007 mothers. The DiD results suggest that this difference cannot be 

explained by seasonality, since the jump is significant even when compared with the same 

calendar months in the surrounding years. 

Parallel regressions are estimated using 2009 LFS data, when the children were on 

average 24 months old (see table A2 in appendix).25 As shown in the second panel of figure 

4, mothers who received the benefit were no less likely to be working two years after 

childbirth, suggesting that the labor supply effect of the benefit was only short-term.  

These results suggest that mothers may have used the benefit to “buy” time at home 

during the first few months of their child’s life.26 If this is true, then we should observe 

differences in childcare use between eligible and ineligible families. We turn to this 

analysis in the next subsection. 

 

3.2.3 Childcare use 

Childcare use by families can be measured with expenditure data from the HBS. In 

addition, the EU-SILC (Survey of Income and Living Conditions) reports hours spent by 

                                                 
25 Note that specification 8 is absent from table A2. The reason is that HBS and LFS data for 2010 were not 
available at the time of writing, so that specification 8 could not be estimated. 
26 I also estimate separate regressions for different subgroups of the population. The labor supply effects are 
more pronounced for single mothers and low-educated mothers. Results are available upon request. 
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children in the household in different forms of childcare. Although this data set contains a 

very low number of observations per month of birth, I use it to supplement the main results. 

Figure 5 and table 6 present the main findings with HBS data. The HBS reports 

separately expenditures in three different forms of external daycare: private daycare 

centers, public infant care centers, and nannies or babysitters. I estimate the same eight 

specifications for each category of expenditure in levels (first three rows of table 6). In 

addition, I create three binary variables that indicate whether a family spent any positive 

amount in each type of childcare during the year (last three rows). 

The regressions suggest that families receiving the benefit may have spent significantly 

less in private daycare during the first year of the child’s life. The regressions in levels 

suggest that the magnitude of this effect was between 100 and 200 euros, for an average of 

300 (although only two of the eight specifications in levels show statistical significance 

above 90%). Perhaps more convincing are the results in the last row, showing that receiving 

the benefit decreased the fraction of families using private daycare by 4 to 12 percentage 

points.  

These results are illustrated in figure 5. We observe a drop in average expenditure in 

private daycare from about 400 to about 200 euros at the benefit cutoff (first panel). The 

second panel shows a drop in the fraction of families with positive expenditure in private 

daycare from about 40 to about 30 percent.  

Receiving the benefit did not appear to affect expenditure on official care centers 

(neither in levels not in the fraction of families that use them at all). This is unsurprising 

since these public institutions are not very flexible and their supply is quite restricted.27 

                                                 
27 Families apply for public daycare, which is heavily subsidized, months in advance. Demand is much higher 
than supply, and part-time hours are usually not offered.  
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Few families use nannies, and again there are no significant changes in levels nor the 

proportion of users, with very unstable coefficients across specifications. 

These results obtained from HBS data are confirmed by the analysis of hours in 

different forms of daycare using EU-SILC data (see appendix table A3). These results 

suggest that families that received the benefit were 4 to 6 percentage points less likely to 

use private daycare during the first year of the child’s life. 

Taken together, the results in the last three sections suggest that families reacted to the 

child benefit by having the mother stay at home longer after childbirth, thus reducing her 

labor supply and earnings the year following birth, and also reducing the use of external 

forms of childcare during that time. 

The following two sections explore additional outcomes that may provide a fuller 

picture of the overall well-being effects of the benefit (in the short term): family stability 

and health.     

 

3.2.4 Family stability 

The literature in child development and sociology suggests that household income may 

affect the level of stress and conflict in the family, which could in turn affect child 

outcomes.28 In particular, an exogenous increase in unearned income just after childbirth 

may result in lower levels of stress for the parents. I test this hypothesis in two ways. First, 

in this section I analyze whether receiving the benefit had an impact on the likelihood of the 

parents separating or divorcing shortly after the birth of the child. In the next section, I 

study potential health effects of the benefit for both mothers and children, which may in 

part result from the same channel of lower family conflict. 

                                                 
28 See, for example, child development paper Yeung, Linver, and Brooks-Gunn (2002). 

 23



Table 7 summarizes the parental separation results. The dependent variable is a binary 

indicator that takes value 1 if the mother was separated or divorced when interviewed in 

2008 (LFS data). The RDD specifications (columns 1 to 6) show that mothers who received 

the benefit were 2 to 5 percentage points less likely to be separated a year after giving birth, 

and the estimated effect is strongly significant. The DiD specifications confirm this finding, 

although the estimated magnitude of the effect drops to between 1 and 2 percentage points 

(still sizeable when compared with the average separation rate of 3.4%). 

Thus, it appears that the benefit may have lowered separation rates for parents. 

However, table A2 in the appendix shows that this effect was only short-term: we observe 

no drop in separation probabilities when parents are interviewed in 2009, when the children 

born at the cutoff were on average 24 months old. This suggests that any effects on family 

conflict of the benefit were only temporary, which is unsurprising given the one-time nature 

of the subsidy. 

 

3.2.5 Health outcomes 

Finally, this section analyzes the potential health consequences of the benefit, both for the 

mother and for the children. The main reason for including health outcomes is that health, 

unlike labor supply or even marital breakup, can be unequivocally linked to well-being. 

However, data availability is much more limited. The only data set that includes health 

variables for the adults in the household is the EU-SILC, but the number of observations is 

very low. Child health variables are not available in any of the available surveys. Thus, for 

children we are limited to studying extreme health outcomes, namely child mortality as 

reported in Vital Statistics (official records of all deaths in Spain). 
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 Table 8 reports the results for child mortality. The main dependent variable is the 

mortality rate (by age 24 months) per 1,000 children born in a given month around the 

cutoff (first row). Since any health effects are unlikely to materialize just after birth (given 

that the benefit was only received a few weeks after birth), I also report results that exclude 

deaths taking place during the first month of the baby’s life (second row), or during the first 

two months (third row).  

 If the subsidy had any positive health consequences, we would expect a drop in 

mortality rates as a result. I do not find any evidence to support this conclusion. 

Coefficients are mostly non-significant, and signs are positive in almost all specifications. 

Thus, I conclude that the benefit had no effect on extreme health outcomes for children, on 

average. 

 Table A4 reports the results on maternal health using data from EU-SILC (2008). There 

are two binary dependent variables. The first takes value 1 if the mother reported bad or 

very bad health. The second indicated mothers who reported that their daily activities had 

been hampered by some health problem during the previous 6 months. The results are very 

imprecise, in part due to the small sample sizes, but there is some evidence that mothers 

who received the benefit were less likely to report poor health the year following childbirth. 

 

4. Conclusions 

This paper analyzes the effects of a 2,500-Euro, universal child benefit introduced in Spain 

in 2007. I find evidence suggesting that the subsidy may have been successful in increasing 

fertility. My estimates indicate that births increased by about 6 percent as a result of the 

new policy. 
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Regarding the effect on recipient families, the results suggest that the benefit induced 

no significant change in overall household expenditure or child-related expenditure the year 

following child birth. I do find a significant effect on maternal labor supply and, most likely 

as a result, child care arrangements during the child’s first year of life. When children born 

at the cutoff date were about 12 months of age, eligible mothers were 2 to 4 percentage 

points less likely to be working, compared with control mothers. Consistent with this labor 

supply response, children born after the threshold were significantly less likely to be in 

formal day care during their first year of life.  

I also find that parents who received the benefit were less likely to separate during the 

first year after childbirth, and eligible mothers reported somewhat better health. I do not 

find any effect on (extreme) health indicators for children. 

 I conclude that the main effect of the child benefit on parental investments in children 

was an increase in maternal care time during the child’s first year, with no significant 

change in the consumption of child-related goods or services. Together with the parental 

separation results, this may well have an impact on child well-being.29 Recent research 

suggests that maternal employment during a child’s first year(s) of life may have 

detrimental effects on cognitive development and health.30 Also, a recent study by Carneiro 

et al. (2010) finds that an extension of maternity leave in Norway had positive long-term 

effects on children’s educational attainment.31 

                                                 
29 Milligan and Stabile (2011) found that increases in child benefits in Canada were associated with higher 
test scores and improved child health. Our results suggest that increased maternal time at home may be one 
factor contributing to these effects. 
30 See Baum (2003), Berger et al. (2005), Bernal (2008), Bernal and Keane (2010), Blau and Grossberg 
(1992), James-Burdumy (2005), Ruhm (2000, 2004). 
31 Although other studies have found no effect of maternity leave expansions on long-term child outcomes in 
other countries (see, for instance, Dustmann and Schonberg, 2009 for Germany). 
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 As an aside, the Spanish child benefit was removed in May 2010 (in effect for births 

starting January 2011), as part of broader budget cuts. It will be interesting to see if the 

repeal of the benefit reverses the effects observed after its introduction. 
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Appendix: Expenditure categories 
 
I construct child-related expenditure by adding up all 4-digit items that are child-specific. 
There are 14 such items: baby food and drinks (1194), children or baby clothes (3123), 
children or baby shoes (3213), large furniture, including cribs, play-pens, high-chairs and 
other baby furniture (5111), kitchen utensils (non-electric) and other household articles, 
including baby bottles (5413), domestic service, including nannies and baby-sitters (5621, 
5622), toys, games, hobbies and small musical instruments (9311), books, excluding 
textbooks (9511), paper and painting products, including pens, crayons, paint, chalk etc 
(9541), official infant education centers (for children ages 0 to 3) (10111), personal hygiene 
non-electric products, including soap, lotion, diapers, etc (12122), other baby products, 
including strollers, baby carriers, car seats, pacifiers, etc (12222), and center-based child 
services excluding schools (day care centers) (12312).  
 
Durable goods are defined to include: furniture, household appliances, silverware, 
glassware and chinaware, tools and accessories, vehicles (cars, motorcycles, bicycles), 
phone and fax equipment, audio and visual equipment and accessories (sound systems, 
photographic equipment, television and video equipment, computers, etc), other durable 
goods related to leisure (boats, horses, musical instruments, sports equipment, etc), books, 
jewellery and watches, bags and suitcases, and other personal products (pipes, umbrellas, 
sunglasses, etc). 
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Table 1. Descriptive statistics 
 

i) Vital Statistics         
Variable Mean Std. Dev. Min Max 
Monthly n. of conceptions 37458 3609 24690 44375 

Post-June 2007 dummy 0,175 0,382 0 1 
Month of conception  -39,5 34,8 -99 20 

 

Note: The sample includes all births in Spain between 2000 and 2009 (both included). The number of 
observations is 120. 
 
ii) Abortions statistics         
Variable Mean Std. Dev. Min Max 
Monthly n. of abortions 6009 1309 3858 8695 

Post-June 2007 dummy 0,2417 0,4299 0 1 
Month of abortion -30,5 34,78 -90 29 

 

Note: The sample includes all abortions in 9 of the 17 Spanish regions between 2000 and 2009 (both 
included). The number of observations is 120. 
  
iii) Household Budget Survey (2008)       
Variable Mean Std. Dev. Min Max 
Total expenditure 30507 17721 3785 182173 
Child-related expenditure 4778 4275 0 28744 
Durable expenditure 5654 8740 0 68091 
Daycare expenditure 306 848 0 6571 

Post-June 2007 dummy 0,487 0,500 0 1 
Month of birth -0,780 5,056 -9 8 
Age of mother 32,62 5,14 16 49 
Mother some secondary 0,234 0,424 0 1 
Mother high school graduate 0,326 0,469 0 1 
Mother college grad. 0,321 0,467 0 1 
Mother immigrant 0,165 0,371 0 1 
Not first-born 0,539 0,499 0 1 

 

Note: The sample includes all households interviewed in 2008 who had a baby between October 2006 and 
March 2008 (both included). The number of observations is 958. 
 
Labor Force Survey (2008)         
Variable Mean Std. Dev. Min Max 
Worked last week 0,422 0,494 0 1 
Currently employed 0,541 0,498 0 1 
Separated or divorced 0,034 0,180 0 1 

Post-June 2007 dummy 0,477 0,500 0 1 
Month of birth -0,815 5 -9 8 
Age of mother 32,38 5,25 16 50 
Mother some secondary 0,236 0,425 0 1 
Mother high school grad. 0,343 0,475 0 1 
Mother college grad. 0,297 0,457 0 1 
Mother immigrant 0,170 0,376 0 1 
Not first-born 0,523 0,500 0 1 

 

Note: The sample includes all households interviewed in 2008 who had a baby between October 2006 and 
March 2008 (both included). The number of observations is 8691. 



Table 2. Fertility results 
 

  
RDD 10 
years                    

RDD 5 
years

RDD 12-
12m

RDD 9-
9m

RDD 3-
3m 

DiD 10 
years

DiD 7 
years

DiD 5 
years  

  1   2   3   4   5   6   7   8  
Conceptions                 0,0558 ** 0,0714 *** 0,0852 ** 0,075 ** 0,0503 0,0489 *** 0,059 *** 0,0555  

 (0,0222)
 

               
     
                

               
     

                

               
                 

               
                 

               

(0,0247)
 

(0,0359)
 

(0,0285)
  

(0,0314)
  

(0,0107)
  

(0,0093)
 

(0,0110)
 

 
 

Abortions
 

-0,150 *** -0,1724 *** -0,2323 ** -0,2125 *** -0,1159 * -0,0549 -0,0503 * -0,0516  
(0,0447)

 
(0,0517)

 
(0,0843)

 
(0,0643)

  
(0,0405)

  
(0,0335)

  
(0,0279)

 
(0,0361)

 
 
 

Years included 2000-09 2005-09 2006-08 2006-08 2007 2000-09 2003-09 2005-09  
N (number of 
months) 120 60 24 18 6 120 96 60  
Linear trend in m Y Y Y Y N Y Y Y  
Quadratic trend in 
m Y Y Y N N Y Y Y  
Cubic term in m Y N N N N Y N N  
N. days of the 
month Y Y Y Y Y Y Y Y  
Calendar month 
dummies N   N   N   N   N   Y   Y   Y  

 

(* p<0.1  ** p<0.05  *** p<0.01) 
 

Notes: The coefficients reported are for the binary indicator taking value 1 for months after June 2007. Each coefficient is from a different regression. Standard 
errors are shown in parentheses. The dependent variable in the first row is the natural log of the monthly number of conceptions in Spain (estimated from Vital 
Statistics on births). The dependent variable in the second row is the natural log of the monthly number of abortions in 9 out of the 17 Spanish regions. 
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Table 3. Balance in covariates 
 

  Household Budget Survey (2008)     Labor Force Survey (2008)   
  1 2 3 4 3 4 55 1 2
Age of the mother 0.359 0.095 -0.024         -0.044 -0.407 -0.307 -0.283 -0.292 -0.692*** -0.164
 (1.029)           

          
           

         
           

          
           

          
           

          
           

        
           

          
           

         
           

            
           

            

(0.814) (0.997) (0.597) (0.708) (0.342) (0.269) (0.332) (0.189) (0.227)

Age of the father 
 

0.117 0.120 -0.415 0.465 -0.324  -0.430 -0.405 -0.728** -0.912*** -0.605***
(1.165) (0.912) (1.129) (0.679) (0.769) (0.353) (0.274) (0.344) (0.191) (0.233)

Mother secondary 
 

0.044 0.045 0.071 -0.010 -0.005  0.009 0.013 0.050* 0.024 0.040**
(0.079) (0.063) (0.077) (0.047) (0.052) (0.028) (0.022) (0.028) (0.015) (0.019)

Mother high school gr. 
 

-0.003 -0.055 -0.043 0.010 0.001  -0.092*** -0.077*** -0.097*** -0.061*** -0.066***
(0.095) (0.074) (0.092) (0.053) (0.063) (0.031) (0.025) (0.031) (0.017) (0.021)

Mother college grad. 
 

-0.026 0.012 0.018 0.011 0.012  0.063** 0.047* 0.062** 0.041** 0.029
(0.093) (0.073) (0.090) (0.052) (0.062) (0.030) (0.024) (0.030) (0.017) (0.020)

Father secondary 
 

0.127 0.084 0.118 0.044 0.041 -0.015 -0.023 0.002 -0.001 -0.012
(0.086) (0.069) (0.085) (0.050) (0.058) (0.029) (0.023) (0.028) (0.016) (0.019)

Father high school gr. 
 

-0.026 -0.032 -0.005 -0.007 0.005 -0.044 -0.006 -0.025 -0.005 -0.006
(0.090) (0.071) (0.088) (0.051) (0.060) (0.031) (0.024) (0.030) (0.017) (0.020)

Father college grad. 
 

-0.107 -0.064 -0.096 -0.024 -0.036 0.044* 0.021 0.015 0.008 0.003
(0.089) (0.070) (0.087) (0.049) (0.059) (0.027) (0.021) (0.026) (0.015) (0.018)

Mother immigrant 
 

-0.038 -0.016 0.013 0.011 0.058 0.022 0.009 0.015 0.009 0.008
(0.073) (0.057) (0.071) (0.044) (0.047) (0.024) (0.019) (0.024) (0.014) (0.016)

Not first-born
 

-0.017 0.003 -0.036 -0.017 -0.045 0.046 0.007 0.045 -0.017 0.018
(0.099) (0.078) (0.096) (0.056) (0.066) (0.033) (0.026) (0.032) (0.018) (0.022)

N. obs. 958 651 446 319 234 8691 5813 4083 3026 2062
Linear trend in m Y Y Y N N  Y Y Y N N 
Quadratic trend in m Y N N N N  Y N N N N 
N. of months  18 12 8 6 4   18 12 8 6 4 

Notes: The coefficients reported are for the binary indicator taking value 1 for months after June 2007. Each coefficient is from a different regression. Standard 
errors are shown in parentheses. The dependent variable is indicated in each row header. (* p<0.1  ** p<0.05  *** p<0.01) 
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Table 4. Expenditure results (Household Budget Survey) 
 

  1        2 3 4 5 6 7 8
Dependent variables 

 
RDD 9m RDD 6m RDD 4m RDD 3m  RDD 2m RDD 2m DiD 1 DiD 2 

Total exp. -3175        -2247 405 -580 -1774 -1084 -1307 -621
 (2838)        
         

      
        

         
         

        
         

       
        

         
         

        
         

       
        

         
         

        
         

(2244) (2885) (1553) (2032) (1832) (2194) (1258)

Total exp. (logs) 
 

-0.142 -0.105 -0.034 -0.041 -0.072 -0.060 -0.049 -0.037
(0.092) (0.074) (0.092) (0.052) (0.067) (0.063) (0.071) (0,036)

Child-related exp.
 

-407 -599 357 -21 -150 10 94 -350
(766) (618) (795) (444) (536) (534) (592) (320)

Child-related exp. (logs) 
 

-0.011 -0.034 0.087 0.018 0.002 -0.001 0.017 -0.097
(0.195) (0.151) (0.194) (0.103) (0.127) (0.128) (0.132) (0,062)

Durable goods exp.
 

-1513 -1849 -1011 -760 -1046 -999 -1721 -380
(1688) (1345) (1704) (927) (1105) (1099) (1137) (645)

Durable goods exp. (logs) 
 

0.157 0.025 0.230 0.089 0.080 0.071 0.022 -0.063
(0.297) (0.239) (0.302) (0.170) (0.200) (0.213) (0.208) (0,097)

N. obs. 941 640 441 315 230 230 2249 2902
Linear trend in m Y Y Y N N N Y Y 
Quadratic trend in m Y N N N N N Y N 
Calendar month of birth 
dummies N N N N N N Y Y
Controls Y Y Y Y N Y Y Y
N. of months  18 12 8 6 4 4 48 48 

 

Notes: The coefficients reported are for the binary indicator taking value 1 for months after June 2007. Each coefficient is from a different regression. Standard 
errors are shown in parentheses. The dependent variable is indicated in each row header. Columns 1 to 7 use HBS data from 2008, col. 8 used merged HBS data for 
2006-2009. The sample in the RDD specifications includes families who had a child between 2 and 9 months before or after July 1, 2007. The DiD specifications 
include all families who had a child between 2005 and 2008, both included. Control variables are: age of the mother, age squared, age cubed, three educational 
attainment dummies, an immigrant status dummy, child parity, and month of interview dummies. See appendix for the exact definition of child-related expenditure 
and durable goods expenditure. (* p<0.1  ** p<0.05  *** p<0.01) 
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Table 5. Maternal labor supply results (at 12 months, Labor Force Survey) 
 
  1        2 3 4 5 6 7 8
Dependent variable RDD 9m RDD 6m RDD 4m RDD 3m  RDD 2m RDD 2m DiD 1 DiD 2  
Working last week -0.0640** -0.0430* -0.0577* -0.0532***     -0.0547** -0.0576*** -0.0435*** -0.0206*
 (0.0316)        
         

      
        

 
         

        
         

(0.0249) (0.0311) (0.0179) (0.0219) (0.0213) (0.0155) (0.0116)

Employed
 

-0.0632** -0.0393 -0.0799*** -0.0535*** -0.0612*** -0.0610*** -0.0200 -0.0186
(0.0309)

 
(0.0243)

 
(0.0304)

 
(0.0174)

 
(0.0219)

 
(0.0208)

 
(0.0166)

 
(0.0114)

 
N 8691 5813 4083 3026 2062 2062 21185 25544
Linear trend in m Y Y Y N N N Y Y 
Quadratic trend in m Y N N N N N Y N 
Calendar month of birth 
dummies N N N N N N Y Y
Controls Y Y Y Y N Y Y Y
N. of months of birth 18 12 8 6 4 4 48 48 

 

Notes: The coefficients reported are for the binary indicator taking value 1 for months after June 2007. Each coefficient is from a different regression. Standard 
errors are shown in parentheses. The dependent variable is indicated in each row header (both are binary). Columns 1 to 7 use LFS data from 2008, col. 8 used 
merged LFS data for 2006-2009. The sample in the RDD specifications includes families who had a child between 2 and 9 months before or after July 1, 2007. The 
DiD specifications include all families who had a child between 2005 and 2008, both included. Control variables are: age of the mother, age squared, age cubed, 
three educational attainment dummies, an immigrant status dummy, child parity, and month of interview dummies. (* p<0.1  ** p<0.05  *** p<0.01) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 36



Table 6. Child care expenditure results (Household Budget Survey) 
 

  1        2 3 4 5 6 7 8
Dependent variables 

 
RDD 9m RDD 6m RDD 4m RDD 3m  RDD 2m RDD 2m DiD 1 DiD 2 

Private daycare -138        -123 -195 -157* -147 -158 -177** -94
 (170)        

     
        

        

     
        

         
        

       
        

         

        
         

(121) (161) (80) (101) (103) (84) (65)

Private daycare (binary) 
 

-0.0795 -0.0985 -0.1041 -0.0943* -0.1096* -0.1248* -0.0364 -0.0627*
(0.0940) (0.0743) (0.0938) (0.0538) (0.0624) (0.0644) (0.0500) (0.0324)

Official infant care center 
 

38 -16 89 -33 -21 32 -14 -6 
(147) (134) (139) (99) (125) (115) (76) (61)

Official infant care center 
(binary) 
 

-0.1135 -0.0471 -0.0538 0.0070 -0.0470 -0.0158 0.0068 -0.0129
(0.0911) (0.0713) (0.0897) (0.0510) (0.0609) (0.0622) (0.0475) (0.0298)

Nanny/ babysitter
 

120 187 424 182 277 411 196 -10
(342) (278) (321) (205) (240) (255) (179) (127)

Nanny/ babysitter (binary) 
 

-0.0384 -0.0038 0.0418 0.0129 0.0002 0.0191 -0.0161 -0.0281
(0.0931) (0.0728) (0.0904) (0.0532) (0.0635) (0.0630) (0.0502) (0.0319)

N 958 651 446 319 234 234 2289 2904
Linear trend in m Y Y Y N N N Y Y 
Quadratic trend in m Y N N N N N Y N 
Calendar month of birth 
dummies N N N N N N Y Y
Controls Y Y Y Y N Y Y Y
N. of months  18 12 8 6 4 4 48 48 

 

Notes: The coefficients reported are for the binary indicator taking value 1 for months after June 2007. Each coefficient is from a different regression. Standard 
errors are shown in parentheses. The dependent variable is indicated in each row header. Columns 1 to 7 use HBS data from 2008, col. 8 used merged HBS data for 
2006-2009. The sample in the RDD specifications includes families who had a child between 2 and 9 months before or after July 1, 2007. The DiD specifications 
include all families who had a child between 2005 and 2008, both included. Control variables are: age of the mother, age squared, age cubed, three educational 
attainment dummies, an immigrant status dummy, child parity, and month of interview dummies. (* p<0.1  ** p<0.05  *** p<0.01) 
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Table 7. Parental separation results (at 12 months, Labor Force Survey) 
 
  1        2 3 4 5 6 7 8
Dependent variable RDD 9m RDD 6m RDD 4m RDD 3m  RDD 2m RDD 2m DiD 1 DiD 2 
Mother separated or divorced -0,036*** -0,0285*** -0,0518***      -0,0204*** -0,0288*** -0,0255*** -0,0158* -0,0115***
 (0,0132)        
         

         

        
         

(0,0099) (0,0126) (0,0062) (0,0083) (0,0081) (0,0084) (0,0042)

N 8691 5813 4083 3026 2062 2062 21185 25544
Linear trend in m Y Y Y N N N Y Y 
Quadratic trend in m Y N N N N N Y N 
Calendar month of birth 
dummies N N N N N N Y Y
Controls Y Y Y Y N Y Y Y
N. of months of birth 18 12 8 6 4 4 48 48 

 
Notes: The coefficients reported are for the binary indicator taking value 1 for months after June 2007. Each coefficient is from a different regression. Standard 
errors are shown in parentheses. The dependent variable is a binary indicator that takes value 1 if the mother is separated or divorced at the time of the interview 
(about 12 months after childbirth). Columns 1 to 7 use LFS data from 2008, col. 8 used merged LFS data for 2006-2009. The sample in the RDD specifications 
includes families who had a child between 2 and 9 months before or after July 1, 2007. The DiD specifications include all families who had a child between 2005 
and 2008, both included. Control variables are: age of the mother, age squared, age cubed, three educational attainment dummies, an immigrant status dummy, child 
parity, and month of interview dummies. (* p<0.1  ** p<0.05  *** p<0.01) 
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Table 8. Child mortality results (Vital Statistics) 
 

  RDD 4y  
RDD 
12m

RDD 
9m  

RDD 
6m

RDD 
4m

RDD 
3m DiD1 DiD2   

  1   2   3   4  5   6   7   8   
Mortality by age 2 0,623 *** 0,532 * 0,565 * 0,424  0,036   -0,602   0,51 * 0,569 ***

 (0,2160)
 

          
  

                
           

  
           

           
  

                

                

 (0,2640)
  

(0,3120)
  

(0,3780)
  

(0,5350)
  

(0,3720)
  

(0,2760)
  

(0,1960)
  

 

Mortality 1m-2y
 

0,291 **
 

0,151 0,173 0,247 0,121 0,146 0,3 * 0,189
(0,1200)

 
(0,1360)

  
(0,1620)

  
(0,1680)

  
(0,2030)

  
(0,2780)

  
(0,1600)

  
(0,1300)

  
Mortality 3m-2y 
 

0,2340 *** 
 

0,1340  0,0730 0,1860 0,0420 0,1740 0,1840 0,1280
(0,0830)

 
(0,1400)

  
(0,1530)

  
(0,1500)

  
(0,1210)

  
(0,1160)

  
(0,1270)

  
(0,1000)

  
Years of birth 
included 

2004-
2007

2005-
2007

2006-
2007

2006-
2007 2007 2007

2004-
2007

2004-
2007

N (number of 
months) 48 18 15 12 8 6 48 48
Linear trend in m Y  Y  Y  Y  N  Y  Y  Y  
Quadratic trend in m Y  Y  Y  N  N  Y  Y  Y  
Cubic term in m Y  N  N  N  N  Y  N  N  
N. days of the month Y  Y  Y  Y  Y  Y  Y  Y  
Calendar month 
dummies N   N   N   N  N   Y   Y   Y   

(* p<0.1  ** p<0.05  *** p<0.01) 
 

Notes: The coefficients reported are for the binary indicator taking value 1 for months after June 2007. Each coefficient is from a different regression. Standard 
errors are shown in parentheses. The dependent variable in the first row is the number of children who died by age 2 by month of birth (times 1,000), divided by the 
monthly number of births. The second row excludes the deaths that occurred during the first month of life of the baby, and the third row excludes deaths during the 
first 2 months. 
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Note: Monthly averages shown, together with separate linear fits on both sides of July 2007 

 

Figure 1. Fertility effect: Conceptions and abortions by month 
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Figure 2. Balance in covariates (Vital Statistics) 

 



Figure 3. Household expenditure (annual) by month of birth (HBS 2008) 
 

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0

-30 -20 -10 0 10 20
month of birth, 1 = July 2007

Total expenditure by month of birth

 
 

0
20

00
40

00
60

00
80

00
10

00
0

-30 -20 -10 0 10 20
month of birth, 1 = July 2007

Child-related expenditure by month of birth

 
Note: Second-order polynomial fits on both sides of July 2007 are shown. 
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Figure 4. Maternal employment in 2008 and 2009 by month of birth 
 

.3
.4

.5
.6

-30 -20 -10 0 10
month of birth (0 = July 2007)

Proportion working by month of birth, LFS 2008

 
 

.3
.4

.5
.6

-30 -20 -10 0 10 20
month of birth (0 = June 2007)

Proportion working by month of birth, LFS 2009

 
 

Note: Second-order polynomial fits on both sides of July 2007 are shown. 
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Figure 5. Daycare expenditure by month of birth (HBS 2008) 
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Note: Bi-monthly averages shown, as well as separate linear fits on both sides of July 2007. 
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Appendix tables 
 
Table A1. Discontinuity in number of births at the threshold 
 

  
RDD 90-

30m RDD 30m RDD 12m RDD 9m RDD 3m DiD1 DiD2 DiD3 
  1 2 3 4 5 6 7 8 

Post 0.0069 0.0274 0.0469 0.0511 0.0416 -0.0349 -0.0163 0.0080 
 (0.0250) (0.0221) (0.0446) (0.0331) (0.0332) (0.0230) (0.0172) (0.0177) 
         
Years included 2000-2009 2005-2009 2006-2008 2006-2008 2007 1990-2009 2000-2009 2005-2009 
N 120 60 24 18 6 240 120 60 
Linear trend in m Y Y Y Y N Y Y Y 
Quadratic trend in m Y Y Y N N Y Y Y 
Cubic term in m Y N N N N Y Y N 
Control days of the month Y Y Y Y Y Y Y Y 
Calendar month of birth 
dummies N N N N N Y Y Y 

(* p<0.1  ** p<0.05  *** p<0.01) 
 
Notes: Vital Statistics data. The coefficients reported are for the binary indicator taking value 1 for births taking place after June 2007. Each coefficient is from a 
different regression. Standard errors are shown in parentheses. The dependent variable is the natural log of the monthly number of births in Spain. 
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Table A2. Long-term effects on expenditure, labor supply and separation 
 

  1 2 3 4 5 6 7
Dependent 
variables 9m RDD 6m RDD 4m 3m  RDD 2m RDD 2m DiD 1 
Total exp. 4 3 8 2309 2736 -756 

RDD 

195
RDD 

223
 

1129 430 
 (2771) (2248) (2897) 559) (1963) (1942) (2015) 

Child-related exp. -855 -806 -371 2 -205 -63 -417 
 (640) (549) (637) ) (483) (436) (525) 

Durable goods exp. 7 1  1077 1193 84 
 (1277) (1009) (1229) ) (926) (895) (918) 

Total exp. (logs) 0.085 0.044 0.154 3 0.086 0.112 0.003 
 (0.104) .082) (0.104) 5) (0.073) (0.070) (0.074) 

Child-related e
(logs) -0.074 -0.105 0.139 1 0.077 0.122 -0.105 
 (0.196) (0.156) (0.201) 6) (0.142) (0.133) (0.141) 

Durable goods exp. 
(logs) 4 0  1 0.203 0.229 0.237 
 (0.268) (0.211) (0.260) 6) (0.176) (0.171) (0.205) 

Private daycare 
expenditure 29 -38 128  45 113 -108 
 (249) (201) (247) ) (171) (166) (169) 

Private daycar
exp. (binary) 9 -0,054 0,039 1 -0,048 -0,016 -0,067 
 (0,099) (0,081) (0,010) 6) (0,066) (0,070) (0,073) 

Working last w 61 -0.0293 -0.0955*** -0.0109 -0.0347 -0.0360 0.0785*** 
 (0.0327 . 79) (0.0250) (0.0239) (0.0244) 

Empl  -0.078 -0.0449* -0.1087*** -0.0273 -0.0495** -0.0488** 0.0137 
 (0.0318) (0.0247) (0.0339) 73) (0.0249) (0.0231) (0.0168) 

Moth p. or
divor 34 . 59 0.0078 0.0062 -0.0111 
 (0.0123) (0.0095) (0.0140) 66) (0.0099) (0.0096) (0.0073) 

Linear trend in m Y Y Y N N Y
Quad tr in  N N N N Y
Cal.   N N N N Y
Cont  N Y Y
N. of h  12 8 4 4 48

(1

-22
(362

872
(746

0.06
(0.05

-0.02
(0.10

0.21
(0.14

-25
(137

-0,02
(0,05

(0.01

(0.01

-0.00
(0.00

N
N
N
Y
6

138 1122 767 

(0

xp. 

0.30  0.247 .410

e 
0,02  

eek -0.05 * 
) (0.0255) (0 0350) 

oyed

er se
ced 

ratic 
month
rols 
 mont

1** 

 
0.00  0.0056 0 0054 

end 
of birth 

s  

Y
N
Y
18

Y Y
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for the rest. The sample in the RDD specificatio d a ho had a child between 2 and 9 months 
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Table A3. Childcare hours resu

1

lts (EU-SILC 2008) 
 

    8 2 3 4 5 6 7  
Depend m  4m RD m  D 2 RDD iD 2
Daycare 87  -0 9 -0. -0.06  -0. 3 040  

ent 
 (bi

variables RDD 9
nary) -0.07

 
 

RD
-0.

D 
05

6m
06

RDD 
.05

 
4 

D 3
039

RD
2* -0.057

m 
7* 

2m 
33*

DiD 1 
015

D
 -0.

 
9

 7)  (0 96) (0. 8) (0.03  (0. 5) 040
        
Official ( 2 0.1257 0.1323 0.0463 -0.0245 -0.0146 0.0312 
 6) (0.117 1  (0.0988) ( 026) 0.0719 (0.0843)
  
Nanny ( 8 0.0386 08 6 0.  1 19 3 
 1) (0.0535) (0.073 (0.0385) (0.0469) (0.0567) (0.0330) (0.0378)
    
Informal (bi 6 11 8 0.  6 26 0  
 4) (0.097 4 0. 6) 7) 63 0
         
N  288 181  96 93 1358 1358 
Linear tren Y  
Quadratic tr N N  
Calendar m
dummies  N N N N N Y Y 
Controls  Y Y   
N. of mont 8 8 

(0.065

ary) 0.197
(0.148

ry) 0.025
(0.069

nary) 0.160
(0.121

441
d in m Y 
end in m Y 
onth of birth 

 N
 Y

hs  18 

 (0.0470) .06 022  (0.0327) 68) 035 (0. 2)
 

0.0147  bin

 bina

5) (0.146

0.

8)

33
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Table A4. Maternal health results 
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