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ABSTRACT 
 

Goals and Psychological Accounting* 
 
We model how people formulate and evaluate goals to overcome self-control problems. 
People often attempt to regulate their behavior by evaluating goal-related outcomes 
separately (in narrow psychological accounts) rather than jointly (in a broad account). To 
explain this evidence, our theory of endogenous narrow or broad psychological accounts 
combines insights from the literatures on goals and mental accounting with models of 
expectations-based reference-dependent preferences. By formulating goals the individual 
creates expectations that induce reference points for task outcomes. These goal-induced 
reference points make substandard performance psychologically painful and motivate the 
individual to stick to his goals. How strong the commitment to goals is depends on the type of 
psychological account. We provide conditions when it is optimal to evaluate goals in narrow 
accounts. The key intuition is that broad accounts make decisions or risks in different tasks 
substitutes and thereby create incentives to deviate from goals. Model extensions explore the 
robustness of our results to different timing assumptions and goal and account revision. 
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1 Introduction

Many people find it difficult to resist tempting choices that go against their long-run interest. Failure
to overcome such self-control problems leads, for example, to overindulgence, or to underprovision
of useful but unpleasant activities. Much of the literature focuses on external commitment devices
as tools for overcoming self-control problems, such as investing in illiquid assets to protect savings
(for surveys see Elster 2000, Bryan et al. 2010). Yet most instances of self-control in everyday
life do not rely on external commitment (cf. Rachlin 1995). We study how people achieve internal
commitment by formulating and evaluating goals. The central question we ask is whether an
individual should evaluate goals from different tasks together, in one broad psychological account,
or if he should evaluate them separately in narrow psychological accounts.
Many examples suggest that people adopt narrow accounts, or using popular language, “narrow
goals”. People often track expenditures in mental accounts for narrowly defined categories, such
as entertainment, clothing, or food (e.g., Heath and Soll 1996). Many diet programs recommend
daily nutrition goals. For instance, the Weight Watchers PointsPlusTM system assigns points to
food based on their nutritional content and sets a personalized, daily goal. At the same time,
not all goals are narrow. People do not have an account for every item they buy, or for every
possible consumption category. And diet programs typically combine daily nutrition goals with the
recommendation to weigh yourself only at weekly intervals.1

There has been some discussion that narrow accounts help to overcome self-control problems. She-
frin and Thaler (1988) model how assigning wealth to distinct, narrow accounts allows consumers
to control their short-run urge to overspend. But they assume that consumers have a low marginal
propensity to spend out of some exogenously given accounts.2 Camerer et al. (1997) and Read et
al. (1999) informally discuss that narrowly evaluated goals (such as daily work goals) may provide
better self-control. A broad goal would allow the individual to slack off and tell himself that he will
make up for today’s shortfall by working harder tomorrow. But the generality and the robustness
of this mechanism are not clear.
In sum, there is a need to formalize the driving forces of how people structure their accounts and
explore the robustness of narrow accounting. Our contribution is to develop a theory of endogenous
formation of narrow or broad accounts in a self-control setting. We build on and formalize ideas
from the mental accounting literature and combine them with insights from the literature on goal-
setting. Mental accounting is typically associated with how people organize, evaluate, and keep
track of their financial activities (Thaler 1980, 1985, 1990, 1999). We apply the logic of a mental
account to goals and to motivational problems that go beyond financial activities. To make this
distinction clear, we adopt the concept of a psychological account from Tversky and Kahneman
(1981, p.456), defined as “an outcome frame which specifies (i) the set of elementary outcomes that

1For weekly weighing and daily calorie targets see, e.g., the recommendations of the British NHS: http://www.

nhs.uk/Livewell/Newyear/Pages/NYdiettips.aspx (last accessed May 2011).

2Indeed a large body of evidence in the mental accounting literature suggests that people do not treat money as

fully fungible when a label is attached to a part of their budget (e.g., Heath and Soll 1996). However, the underlying

theoretical mechanisms are not well understood.
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are evaluated jointly and the manner in which they are combined and (ii) a reference outcome that
is considered neutral or normal.”3

What distinguishes our approach from the previous literature is that we explicitly model the pro-
cesses through which psychological accounts impose constraints on future behavior, and how these
constraints change with the breadth of accounts. By asking what goals are self-enforcing under a
certain type of account, we derive boundary conditions for self-regulation. These show that nar-
rowly evaluated goals allow people to fully overcome mild self-control problems and help alleviate
more severe self-control problems. By asking whether and when the individual can achieve the
same, better, or worse outcomes with a broad account, we obtain conditions for the optimality of
narrow or broad accounts in various settings (such as when a person faces risky or riskless choices,
sequential or simultaneous choices). To address the question why people do not borrow from other
accounts (i.e., transform their narrow accounts into a broad account), we consider in an extension
of our model an individual who has the opportunity to revise his goals or accounts.
Our paper also contributes to the choice bracketing literature that asks why people often focus on a
single choice in isolation from other related choices. Read et al. (1999) discuss that narrow brack-
eting may arise because of cognitive capacity limitations, cognitive inertia, pre-existing heuristics,
or for motivational reasons. We provide a model for the last aspect – showing that evaluating
outcomes from a decision in isolation from other related decisions can be a commitment device for
a time-inconsistent agent. However, our aim is not to provide a general theory of narrow bracket-
ing. In particular, our model does not explain the kind of bracketing in lottery choices famously
illustrated by the ABCD example of Tversky and Kahneman (1981). The example illustrates a ten-
dency to make each choice in isolation when people face several choices over pairs of lotteries. Such
narrow bracketing leads to dominated choices (Tversky and Kahneman 1981, Thaler et al. 1997,
Rabin and Weizsäcker 2009). Moreover, in contrast to, for example,Rabin and Weizsäcker (2009)
we assume that the individual is able to consider all decisions. In our model, he may deliberately
choose narrow accounts. Our findings thus suggest that instances of narrow bracketing need not
always reflect choice errors. Similar in spirit, Kőszegi and Rabin (2009) show that a person may
rationally behave “as if” he brackets narrowly. Their focus however is not on self-control problems.
They consider a person who faces sequential risky choices and derives anticipatory gain-loss utility
from changes in beliefs.

We consider an individual who at some future date(s) makes two decisions. These decisions may be,
for instance, how hard to work in two different tasks or how much to consume of two different goods.
The individual has a present bias which we model using quasi-hyperbolic discounting (Strotz 1955,
Phelps and Pollak 1968, Laibson 1997). The present bias creates a self-control problem. Before
facing the choice problem the individual prefers a different decision than he does, all else equal, at
the time when he actually makes his choice.
To motivate his future self, the individual sets goals. A goal is a plan, such as “I want to study 8
hours on Monday for the exam”. Goals give rise to expectations about outcomes, such as “I will get

3Furthermore, Thaler (1999, p.186) uses “the term ‘mental accounting’ to describe the entire process of coding,

categorizing, and evaluating events”, while a psychological account just describes a frame for evaluation.
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a good grade”. Because the individual has loss-averse, reference-dependent preferences (Kahneman
and Tversky 1979) such expectations matter. Following Kőszegi and Rabin (2006, 2007), past
expectations serve as reference points for future selves (for experimental evidence see Abeler et
al. 2011). If expectations are exceeded, the individual feels a gain (getting a B feels good if one
expected to fail the exam). If expectations fail to materialize, the individual feels a loss (getting a B
is disappointing if one expected an A). The justification for reference-dependent preferences in this
setting stems from two sources. The first is Tversky and Kahneman’s (1981) above definition of a
psychological account. The second is the psychology literature on goal setting, which emphasizes the
idea that goals induce reference points and that people are loss averse regarding goal achievement
(for a survey see Locke and Latham 1990). Heath et al. (1999) explicitly point out the similarity
to the value function in Kahneman and Tversky’s (1979) Prospect Theory.
For goals to induce expectations, the individual must believe that they can be accomplished. And
indeed one of the findings in the psychology literature is that goals must be “realistic” and “at-
tainable” (e.g., Hollenbeck et al. 1989). Similarly, popular self-help guides stress that goals should
be “SMART” – specific, measurable, attainable, realistic, and timely.4 We capture these ideas
by assuming that goals and the expectations they induce are rational in the sense of a personal
equilibrium (Kőszegi and Rabin 2006, Kőszegi 2010). If the individual expects to work 8 hours, it
must indeed be optimal to do so given the induced reference points for related costs and benefits.

In section 3, we consider a model where task outcomes are deterministic. Our analysis starts
with asking how and when goals in combination with narrow accounts can help the individual to
overcome his self-control problem. The goal to make a certain decision creates an “attachment” to
the associated outcomes. This attachment increases the individual’s willingness to actually make
the desired decision. Specifically, if the individual deviates from his goal, say he works less than
desired, he will face a psychological loss. And the fear of a loss from falling short of the goal pushes
the individual to stick to the goal. As we show, a narrowly evaluated goal can help people overcome
self-control problems that are not too severe, and alleviate more severe self-control problems. This
result confirms Loewenstein’s (1999) conjecture that goal setting can explain why many people
with time-inconsistent preferences often behave in a time-consistent fashion.
Next, we endogenize the choice of accounts. With deterministic task outcomes, broad and narrow
accounts yield the same utility for the same decision levels. However, broad accounts create incen-
tives to deviate from goals by substituting decision levels between tasks (“decision substitution”).
An individual who adopts narrow accounts focuses on the health benefits and costs of a particular
meal, or of a work-out activity on a particular day. In contrast, an individual with broad accounts
evaluates outcomes from various meals, or various activities together. Thereby, broad accounts
allow the individual to find excuses to substitute away from unpleasant activities such as “if I stop
studying today, I can make up with a better grade on the next exam, for which I’ll study harder”.
Narrow accounts preclude such excuses: “if I stop studying today, I’ll be unhappy because I’ll get
a bad grade in the exam”. This ability to substitute between decisions decreases the set of imple-

4Typing “SMART goals” into a search engine brings up hundreds of hits. The acronym’s first appearance in print

is in Doran (1981), but it seems to have been in use earlier.
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mentable goals relative to what can be achieved with narrow accounts. As a consequence, optimal
self-regulation may call for narrowly evaluated goals. We give conditions when broad accounts are
strictly dominated.
First, we clarify that the mere presence of a self-control problem is not sufficient to cause decision
substitution. What matters is whether there is a relative bias between tasks. Such a bias arises,
for example, if the consumption set involves not only “mundane” goods, but also so-called virtue
goods (goods that provide benefits in the future) or vice goods (goods that have future costs).
This result helps understand the categories that people adopt when forming mental budgets, such
as “entertainment” versus “household expenses”. A relative bias also arises in sequential settings,
because the present bias makes costs in a future task feel less painful than costs incurred now.
With broad accounts, the decision-making self has an incentive to slack off a bit now and rely on
his future self to make up for the short fall. This helps to understand why many diet programs
advocate narrow, daily goals for calorie intake. Or why people are more prone to choose vice goods
if tasks are repeated than in an isolated choice situation (for experimental evidence see Khan and
Dhar 2007). Our analysis however also highlights that decision substitution only arises in sequential
task settings if the individual is prone to considering sunk costs. Only if the individual takes into
account past outcomes, i.e., only if he is able to leave his broad account open over time, is he willing
to compensate for yesterday’s shortfall.
Second, we show that the not so severe self-control problems are the ones for which decision
substitution undermines self-regulation, because in these cases there is motivational slack for the
future self. In contrast, goals set to deal with a severe self-control problem effectively commit the
future self not to go “over target” to compensate for a short fall in the other task. For that reason
decision substitution does not arise.
In section 4, we extend the deterministic model and show that our results are robust to goal and
account revision. To model how reference points adjust if the individual changes his mind about
goals we apply the anticipatory utility approach of Kőszegi and Rabin (2009). In further extensions,
we explore different assumptions regarding the point in time when the individual evaluates accounts,
and we discuss different forms of accounting. For example, in relation to mental accounting, our
qualitative results are unchanged or even strengthened if the individual only has accounts for
expenditures.
In section 5, we introduce stochastic task outcomes and stochastic reference points. This helps
complete the picture. Our above results tell us that narrow psychological accounts often facilitate
self-regulation, but also that a person does not always need to make psychological accounts as
narrow as possible. And indeed, people do not seem to set accounts for every single item they
buy or for every minute they work. Outcome uncertainty provides a counterbalancing rationale
for evaluating decisions together. The choice of psychological accounts now has a direct impact on
the individual’s utility – not just an indirect effect through the decision level as with deterministic
outcomes. If one holds decision levels constant, broad accounts provide strictly higher utility than
narrow accounts. The reason is that broad accounts allow to pool risks (Gneezy and Potters 1997,
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Thaler et al. 1997).5 Think of a student who, despite much studying, does poorly on an exam
because of a “bad” day. This causes a psychological loss under narrow accounts. Under broad
accounts bad luck in one exam does not always cause a loss, because good luck in another exam
can sometimes compensate for this. This risk-pooling effect extends to stochastic reference points,
as shown by Kőszegi and Rabin (2007).
In the absence of time-inconsistent preferences, the individual strictly prefers broad accounts be-
cause of the risk-pooling effect. However, in the presence of motivational problems, narrow accounts
can be strictly optimal because accounting affects incentives. As we show, broad accounts make
risks in different tasks substitutes, which may weaken incentives (risk-incentive effects). To es-
tablish these effects, we turn off the potential driving forces for the inferiority of broad accounts
considered before: there is no relative bias and our main result is driven by unilateral deviations (so
decision substitution, which stems from joint deviations that pay off under a relative bias, cannot
play a role).6 We show that if there is not too much uncertainty about the impact that a decision
will have on outcomes, narrow accounts are optimal because they have greater motivating force
than broad accounts. Thus, we predict that people facing tasks with little uncertainty, such as
routine work, should adopt narrow accounts (e.g., specify a daily work goal). People facing con-
siderable uncertainty (researchers, writers) should instead adopt broad accounts (e.g., a monthly
target). Similarly, the result can explain the advice that dieters should not weigh daily: day-to-day
weight is subject to considerable fluctuations that are outside the control of the individual.
In section 6, we bring together the ideas of sections 3, 4, and 5. We consider a setting with
sequential tasks (i.e., a relative bias arises), outcome uncertainty, and adaptation of reference
points. Specifically, we allow the reference distribution to adapt not only to changes of mind but
also to the arrival of new information about the state of the world. For example, an individual may
learn before he provides effort, how productive his effort will be. This can capture in a stylized
way the problem of a cab driver, for whom the effective wage varies with demand shifters such as
weather and conventions. He learns at the start of the day whether it is a busy or a not so busy
day and then decides how many hours to drive – inducing reference points for income and effort
costs.
We show that risk pooling opportunities, the key advantage of broad accounts, disappear. In con-
trast, the key disadvantage of broad accounts, decision substitution can arise. Decision substitution
is central to the argument put forward by Camerer et al. (1997) why individuals who can choose
their working hours, such as cab drivers, often appear to adopt narrow, daily income targets.7 Read

5Thaler et al. (1997) illustrate the benefits of risk pooling with a gamble that Paul Samuelson proposed to one

of his colleagues: (0.5 ◦ −$200; 0.5 ◦ $100). The colleague rejected the proposal, saying that the $100 loss would

hurt him more than he would enjoy the $200. But he was willing to accept several independent repetitions of the

gamble. Assuming a reference point of zero and a coefficient of loss aversion λ = 2.5, the utility from the one-shot

gamble is 1/2 (200) + 1/2 (−250) < 0. In contrast, it pays to accept two independent gambles, because the utility is

1/4 (400) + 1/2 (100) + 1/4 (−500) > 0. Risk pooling allows a gain of 200 in one gamble to offset a loss of 100 in the

other gamble, reducing the chances of falling into the loss domain.

6Adding a relative bias and considering decision substitution would only strengthen our result that broad accounts

are sometimes worse than narrow accounts.

7Camerer et al. (1997) triggered a lively debate about the estimation of wage elasticities of labor supply (Götte
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et al. (1999, p.189) explain: “If [cab drivers] had, for example, picked a weekly target they might
have been tempted to quit early on any given day, while assuring themselves that they could make
up the deficiency later in the week.”
Without such an explanation daily income targets seem puzzling because they lead to negative
income elasticities. A broader goal would allow a time-consistent agent to increase earnings and
leisure by working fewer hours on days with low wages and compensating with extra hours on
days with high wages. By endogenizing the reference point, Kőszegi and Rabin (2006) are able to
reconcile several puzzling empirical findings from labor supply data on cab drivers, stadium vendors
and bicycle messengers – explaining why there can be both a negative relationship between effort
and wages and a positive relationship between the decision to show up for work and expected
wages. Yet all of this literature fixes the evaluation horizon to derive empirical implications (see
DellaVigna 2009, p.326). Our model endogenizes the evaluation horizon and shows that adopting
a narrow account, such as considering a single day, is not an error, but indeed can be optimal.

Related literature

Our paper contributes to the research on goals which has been carried out mainly by psychologists
(for an overview see Locke and Latham 1990). Most of these studies investigate the effect of given
goals (exogenously assigned by an experimenter) on performance in various tasks. We analyze
how individuals design and evaluate goals, contributing to the small economics literature on self-
regulation through goal setting. The narrow accounting part of our model relates to previous work
on goals or promises as reference points in single-task settings by Carrillo and Dewatripont (2008),
Suvorov and van de Ven (2008), and Koch and Nafziger (2011). It extends that work, in particular,
by analyzing continuous decisions in stochastic environments and allowing for stochastic reference
points. Moreover, we are the first to consider goal and account revision. Our main contribution
is to develop a theory of endogenous formation of narrow or broad accounts. This goes beyond
the previous literature by explaining the aforementioned phenomena of how people psychologically
structure their goals in different accounts. Most closely related is Hsiaw (2010b), who – in parallel
and independent work – extends her single-task model (Hsiaw 2010a) to study goal bracketing
with two sequential, continuous-time optimal stopping problems. The environment and intuitions
developed are different from those in our paper. The self-control problem arises from the tension
between terminating a project at its current value versus the option value of waiting for a potentially
higher payoff. Goals help counter the tendency of the present-biased individual to stop projects too
early. Because the decision whether or not to stop a project does not directly influence costs and
benefits, decision substitution plays no role in Hsiaw’s setting. Moreover, she assumes that a narrow
goal is evaluated as soon as a project stops, whereas broad goals postpone the evaluation until the
second project is stopped. Because of discounting, postponing the evaluation makes deviations
from the goal in the first task less painful and thus weakens incentives under broad goals. Her
comparative static results relating to risk arise from these differences in evaluation horizons. The
driving forces in our analysis are different, as we deliberately turn off this timing effect (in section

et al. 2004, Farber 2005, 2008, Fehr and Götte 2007, Crawford and Meng 2011).
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4, we discuss what happens if we add it in our model).
Our paper also contributes to the theoretical literature dealing with the question of how present-
biased individuals cope with self-control problems (for an overview see Brocas et al. 2004). Much of
this literature focuses on the role of external commitment technologies for achieving pre-commitment
(Elster 2000). Only a few contributions deal with intra-personal strategies. Related to the afore-
mentioned papers on goal setting, Suvorov and van de Ven (2008) and Koch and Nafziger (2009b)
model the use of self-rewards. Most assume the presence of an internal commitment device. Bisin
and Hyndman (2009) and Herweg and Müller (2011) show how the ability to set deadlines helps
individuals with time-inconsistent preferences to regulate behavior. Benhabib and Bisin (2005)
model the use of neural control processes to inhibit automatic processes that are prone to tempta-
tion. Bénabou and Tirole (2004) explain why internal commitment devices can actually work if an
individual has imperfect knowledge about his willpower. Our approach applies to different infor-
mational environments (perfect vs. imperfect self-knowledge) and relies on different mechanisms
(expectations-based reference points vs. self-signaling).

2 The Model

The decisions. The individual faces two decisions xi ∈ [0,∞), i = 1, 2, at some date(s) t ≥ 1.
Each decision i involves immediate costs −ci(xi) and benefits bi(xi), as well as delayed costs or
benefits hi(xi). For instance, a decision may be about consumption of a vice good, such as eating
potato chips. The individual decides what quantity xi of chips to consume, for which he pays
ci(xi) = pi xi, letting p be the per-unit price of chips. Chips are tasty when consumed (bi(xi) > 0)
but unhealthy in the long run (hi(xi) < 0). Or a decision may be about a virtue activity that
requires immediate costs (ci(xi) > 0) to achieve long-run benefits (hi(xi) > 0). Examples are
taking an unpleasant medicine (such as self-injecting insulin) and tasks with costly effort (such
as studying for an exam, dieting, and working out in the gym). All outcomes are deterministic
(we consider stochastic task outcomes in section 5). We allow for the possibility that either bi(xi),
ci(xi), or hi(xi) is always zero. But to guarantee a meaningful problem, we require that each
decision involves some costs and benefits. For those we assume:

Assumption 1 Costs and benefits are strictly increasing and continuously differentiable, with
bi(0) = ci(0) = hi(0) = 0, b′i(xi) > 0, c′i(xi) > 0 for xi > 0, b′′i (xi) ≤ 0 and c′′i (xi) ≥ 0 (at least one
strict inequality); and corresponding conditions on hi(xi), depending on whether these are delayed
costs or benefits. Furthermore, b′i(0) + h′i(0)− c′i(0) > 0 and limxi→∞ [b′i(xi) + h′i(xi)− c′i(xi)] < 0.

Goal design. Before the individual makes the actual decisions at date(s) t ≥ 1, self 0 (the date-0
incarnation of the individual) sets goals for these decisions and plans how their outcomes shall be
evaluated: in a broad psychological account, or in narrow psychological accounts.
The goals x̂1 and x̂2 induce expectations about future costs and benefits. The individual expects
that he will experience the cost ci(x̂i), the benefit bi(x̂i) and, at a later date, the benefit or cost
hi(x̂i). For example, the individual may have the goal of studying 8 hours on Monday for an exam.
With this goal he expects that his future self on Monday will not go out, watch TV, . . . (the

8



opportunity costs of studying); and he expects to obtain a good grade on the exam (the delayed
benefits). These goal-induced expectations become reference points against which the individual
evaluates actual task outcomes.
The type of psychological account determines how the individual evaluates outcomes from the two
decisions. If self 0 designs narrow accounts, the individual will compare the actual cost of a decision
ci(xi) with the expected cost ci(x̂i); the actual benefit bi(xi) with the expected benefit bi(x̂i); and
the actual cost or benefit hi(xi) with the expected outcome hi(x̂i). On the other hand, if the
individual sets a broad account, he will compare the joint costs of the two decisions c1(x1) + c2(x2)
with the expected joint costs c1(x̂2) + c2(x̂2); the actual benefits b1(x1) + b2(x2) with the expected
joint benefit b1(x̂2) + b2(x̂2); and h1(x1) +h2(x2) with the expected joint outcome h1(x̂2) +h2(x̂2).
Note that psychological accounts allow the individual to evaluate narrowly or broadly outcomes
from different tasks that fall within the same category. Across outcome dimensions we assume
separability, following Kőszegi and Rabin (2006). That is, there are separate accounts for costs and
benefits. For example, having to give up more leisure time than expected for studying feels like a
loss – even though it may yield a better grade than expected, which feels like a separate gain. We
discuss this assumption in section 4.2.

Reference-dependent instantaneous utility. Following Kőszegi and Rabin (2006), the instan-
taneous utility is composed of two components. The first component is consumption utility which
comprises costs and benefits that accrue during the period. It corresponds to the outcome-based
utility traditionally studied in economics. The second component is psychological gain-loss utility.
It arises from the comparison of the realized outcome in a psychological account with its reference
point. The individual experiences a psychological gain if an outcome exceeds the goal-induced ref-
erence point and a psychological loss if it falls short of the reference point. Gain-loss utility takes
the form of Kahneman and Tversky’s (1979) value function. Losses loom larger than gains. For
tractability we assume linear loss aversion, as is common in applications (Tversky and Kahneman
1991; see DellaVigna 2009 for applications). Gain-loss utility is defined over outcomes and not over
actions, analogous to the traditional outcome-based utility. If an outcome differs from its reference
point (measured in consumption-utility units) by z, the corresponding gain-loss utility is µ(z) = η z

for z ≥ 0 and µ(z) = η λ z for z < 0.8 The parameter η ≥ 0 measures the weight of gain-loss utility
in the utility function, and λ > 1 is the coefficient of loss aversion.

Present bias. The individual has a present bias which we model using (β, δ)-preferences. The
first parameter, δ, corresponds to the standard exponential discount factor (for simplicity, δ ≡ 1).
The second parameter, β ∈ (0, 1), captures the extent to which the individual overemphasizes
immediate utility flows relative to more distant utility flows. The utility of the individual at date

8This ensures that the individual feels more pain if he falls short of the reference point in a dimension that he

values (e.g., failing the last try on an examination) than if he falls short of the reference point in a dimension that

he does not value (e.g., not hitting the waste paper basket when throwing a ball of crumpled paper).
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t ∈ {0, 1, . . . , T}, T ≥ 2, is given by

Ut = ut + β

[
T∑

τ=t+1

uτ

]
,

where ut is the instantaneous utility (specified above). For instance, self 0 weighs future utility
flows u1 and u2 equally; but self 1 puts a larger relative weight on u1 because he discounts u2

with β < 1, reflecting his present bias. As we are interested in modeling deliberate self-regulation
through goal design, we assume that the individual knows about his present-biased preferences,
i.e., he is sophisticated in the sense of O’Donoghue and Rabin (1999).

Timing. Self 0 designs goals by setting a goal x̂i for each decision and by deciding how to evaluate
outcomes (in narrow or broad accounts). No payoff-relevant events occur otherwise. Self 1 then
chooses xi, i ∈ {1, 2}, and experiences immediate benefits bi(xi) as well as immediate costs ci(xi).
The delayed benefits or costs hi(xi) realize at date 2. We also study a sequential decision scenario
where self 1 chooses x1, self 2 chooses x2, and delayed outcomes realize at date 3. Gain-loss utility
accrues at date 2, i.e., after all the decisions are completed (at date 3 with sequential decisions).
That is, we focus on the effects that goal evaluation has if the point at which the individual per-
ceives gain-loss utility does not change with the type of psychological account. We discuss the
implications of alternative timing assumptions in section 4.2.

Intra-personal conflicts of interest and absolute bias. While self 0 designs goals, the actual
decisions are made by a future self. If self 0 had the choice he would prefer the decision to equate
marginal costs and benefits from his perspective. That is, the preferred decision of self 0 for task
i, x∗0,i, satisfies

b′i(x
∗
0,i)− c′i(x∗0,i) + h′i(x

∗
0,i) = 0. (1)

On the other hand, if he was given the choice, the self who carries out decision i would prefer as
goal the decision which equates marginal benefits to marginal costs from his perspective. That is,
the preferred goal of the decision-making self for task i, x∗i , satisfies

b′i(x
∗
i )− c′i(x∗i ) + β h′i(x

∗
i ) = 0. (2)

The decision-making self discounts delayed outcomes with β < 1 relative to the other outcomes,
whereas self 0 weights all outcomes equally. As a consequence, x∗0,i > x∗i with delayed benefits
(hi(xi) > 0 for xi > 0) and x∗0,i < x∗i with delayed costs (hi(xi) < 0 for xi > 0). Hence, an
intra-personal conflict of interest arises whenever a decision involves delayed outcomes, and we say
the decision-making self has an absolute bias.

Definition 1 (Absolute bias) The decision-making self has an absolute bias in decision i if the
decision involves delayed outcomes, i.e., if hi(xi) 6= 0 for xi > 0.

Implementable decisions and goals. We assume that the individual has the capacity to set
goals and accounts that remain meaningful over time. The goals of self 0 induce expectations. These
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expectations serve as reference points for future incarnations of the individual. That is, reference
points do not adjust instantaneously if the individual deviates from his goals or revises his goals
before a decision. This captures the evidence from the psychology literature that people translate
their noncommittal desires into goals which then give a sense of commitment (cf. Gollwitzer and
Sheeran 2006). In section 4.1, we extend our model to analyze adjustment of goals and psychological
accounts.
Goals, the expectations that they induce, and the individual’s decisions must constitute a personal
equilibrium. In each continuation game, given the expectations induced by the goal x̂i, the actual
decision xi must be consistent with the goal. That is, xi = x̂i in equilibrium. For example, if
self 0 sets the goal of studying 8 hours for an exam, then he expects his future self to incur the
costs ci(8) for 8 hours of studying and looks forward to the benefits hi(8) resulting from the exam
grade. Given these reference points for study costs and study success, it must indeed be optimal
for the future self to study 8 hours. The equilibrium concept captures the idea from the psychology
literature that goals have to be realistic.9

Any decision or goal that can arise in a personal equilibrium under a narrow account is said to be
narrow-accounting implementable. Similarly, for broad accounts we call decisions and goals that
can arise in a personal equilibrium broad-accounting implementable. Among these implementable
goals, self 0 picks his preferred personal equilibrium, i.e., the combination of goals and accounts
that maximizes his utility.10

Notation. From the perspective of self 0, decision i ∈ {1, 2} with delayed benefits hi(xi) ≥ 0
involves overall benefits B0,i(xi) = β (bi(xi) + hi(xi)) and overall costs C0,i(xi) = β ci(xi). Overall
benefits and costs from the perspective of self t > 0 are denoted in a similar fashion. In the case
of simultaneous decisions, self 1 makes decisions i ∈ {1, 2} and receives B1,i(xi) = bi(xi) + β hi(xi)
and C1,i(xi) = ci(xi) if there are delayed benefits. Analogous definitions apply for delayed costs
and for sequential decisions.

3 Analysis

Faced with his intra-personal conflicts of interest, self 0 attempts to influence the decisions of his
future self through the goals that he designs. For the problem to be interesting, we assume that the
decision-making self has an absolute bias in at least one of the two decisions. The cases of delayed
benefits and delayed costs are symmetric. Hence, we focus our discussion, propositions, and proofs
on the case of delayed benefits (hi(xi) ≥ 0 for all xi > 0, with strict inequality for at least one

9It also rules out that the individual can make himself arbitrarily happy by lowering his reference point. Being

unable to fool himself about his future behavior, the individual cannot systematically generate pleasant surprises.

For example, a student who is well prepared for an exam cannot tell himself that he will fail the exam to get a bigger

kick out of a good grade.

10Note the distinction from the preferred decision of self 0 determined above. The latter solves for a choice-

acclimating personal equilibrium (CPE, Kőszegi and Rabin 2007) where the expectations adapt to a committed

decision. In the absence of a present-bias and with deterministic outcomes, self 0 can always implement his preferred

decision in an (unacclimating) personal equilibrium.
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task). Where relevant we address the mixed case where one task involves delayed benefits and the
other involves delayed costs.

3.1 Goal setting with narrow psychological accounts

Which decisions can self 0 implement if he sets narrowly evaluated goals? A goal x̂i for task i

induces a cost reference point ci(x̂i), output reference point bi(x̂i), and a reference point for the
delayed benefits hi(x̂i). Solving backward, we ask when the decision-making self t has an incentive
to deviate from the goal x̂i given these reference points. Decision xi does not affect the utility from
the other task and we suppress it.
If the decision-making self t sticks to the goal (xi = x̂i), he meets expectations in that task. So
there will be no psychological gain or loss when outcomes are evaluated. That is, the utility for
self t from task i is Bt,i(x̂i) − Ct,i(x̂i). In contrast, falling short of the goal (xi < x̂i) creates a
psychological gain because costs are lower than expected. But it also leads to a psychological loss
from falling short of the expected benefits. Gain-loss utility is discounted by β, because outcomes
are evaluated in the last period. Hence, the utility for self t in task i if he deviates to xi < x̂i is:

Bt,i(xi)− Ct,i(xi) + η β (ci(x̂i)− ci(xi))− η β λ (bi(x̂i)− bi(xi))− η β λ (hi(x̂i)− hi(xi)).

For goal x̂i to be implementable, self t should have no incentive to lower his decision. The utility
from sticking to the goal has to exceed the utility from falling short of it, or equivalently,

(1 + η β λ) bi(x̂i) + β (1 + η λ)hi(x̂i)− (1 + η β) ci(x̂i)

≥ (1 + η β λ) bi(xi) + β (1 + η λ)hi(xi)− (1 + η β) ci(xi). (3)

Inequality (3) holds for any goal x̂i that is not “too high”: x̂i ≤ xNmax,i, where xNmax,i is defined by

(1 + η β λ) b′i(x
N
max,i) + β (1 + η λ)h′i(x

N
max,i) = (1 + η β) c′i(x

N
max,i). (4)

What motivates self t is the fear of facing a loss in the benefit dimension should he fall short of the
goal. Because of loss aversion, these losses in the benefit dimensions count more than gains in the
cost dimensions – as long as the goal does not exceed xNmax,i. Similarly, the decision-making self
has no incentive to deviate and surpass the goal if it is not “too low”: x̂i ≥ xNmin,i, where xNmin,i is
defined by

(1 + η β) b′i(x
N
min,i) + β (1 + η)h′i(x

N
min,i) = (1 + η β λ) c′i(x

N
min,i). (5)

Hence, there exists a continuum of narrow-accounting implementable goals [xNmin,i, x
N
max,i]. Among

these, self 0 picks as his goal the narrow-accounting implementable goal that maximizes his utility:

x̂i = argmax
xi∈[xNmin,i,x

N
max,i]

B0,i(xi)− C0,i(xi). (6)

For a task without an absolute bias, there is no intra-personal conflict of interest. So self 0 sets the
goal equal to his preferred decision x∗0,i. For a task with an absolute bias, self 0 can implement his
preferred decision x∗0,i whenever x∗0,i ∈ [xNmin,i, x

N
max,i]. When does this arise? Note that xNmin,i < x∗0,i
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always holds. So self 0 can fully overcome his self-control problem whenever x∗0,i ≤ xNmax,i. The
larger β, the more the selves agree on perceived delayed costs and benefits. And the more they
agree, the more likely it is that self 0 can implement his preferred decision. This is best illustrated
with the special case where all benefits are delayed. While the preferred decision of self 0 solves
h′i(x

∗
i0) = c′i(x

∗
i0), the maximal implementable goal solves β 1+η λ

1+η β h
′
i(x

N
max,i) = c′i(x

N
max,i). Hence, for

values of β that satisfy η (λ− 1) ≥ (1− β)/β, we have xNmax,i ≥ x∗0,i. Then self-regulation through
goal setting is successful.
Self-regulation is constrained if the individual faces a more severe self-control problem – because
β is so small that xNmax,i < x∗0,i. In this case, the best self 0 can do is to set goal x̂i = xNmax,i.
Nevertheless, self 0 can nudge his future self to a more ambitious decision than self 1 would want
on his own. The maximal implementable goal exceeds the preferred goal of the decision-making
self, x∗i , defined by equation (2).11 The reason is that having a goal creates an “attachment” to the
outcomes that the goal implies. This attachment can push self 1 to choose a decision that exceeds
x∗i .

Proposition 1

1. There exists a range of narrow-accounting implementable goals [xNmin,i, x
N
max,i].

2. The preferred goal of the decision-making self for task i satisfies x∗i < xNmax,i. The preferred
decision of self 0 for task i satisfies x∗0,i > xNmin,i and there exists a cut-off β̃ ∈ (0, 1) such
that x∗0,i ≤ xNmax,i for β ≥ β̃. Self 0 chooses as his goal x̂i = min{x∗0,i, xNmax,i}.

3.2 Broad versus narrow accounts

This section develops one of the main themes of the paper, namely that the possibility of decision
substitution is a key disadvantage of goal setting with broad accounts. First, we illustrate this in
a simple, repeated work task setting in which effort costs in the future task feel less painful than
effort costs now. As we show next, more generally, problems of decision substitution arise whenever
a relative bias exists between the decisions.

3.2.1 Sequential effort decisions: The problem of effort substitution

Working life is full of tasks that require costly effort on different dates to achieve future benefits.
Examples are studying for exams, working on long-term projects, or working as a freelancer (as
authors, journalists, and cabdrivers often do). Similarly, it takes repeated investments in the form
of physical exercise and good dietary choices to maintain a healthy life-style.
We capture these aspects in a stylized setting, where the individual faces a twice repeated task that
requires costly effort to produce some future output. Self 1 works at date 1 and incurs immediate
effort costs c(x1). Self 2 works at date 2 and incurs immediate effort costs c(x2). There are no

11Note that xNmin,i > x∗i can arise for λβ < 1. Redefining the the preferred goal of self 1 as max{x∗i , xNmin,i} would

not affect the presence of an intra-personal conflict of interest, and would not change our analysis.
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- x1

x2

xcm2 (x′1)

xhm2 (x′1)

x′1 x∗0

x∗0

h(x1) + h(x2) = h(x∗0) + h(x∗0)

c(x1) + c(x2) = c(x∗0) + c(x∗0)

Figure 1: Illustration of effort substitution

immediate benefits. At date 3, delayed benefits h(x1) and h(x2) realize, and the individual expe-
riences gain-loss utility from the evaluation of outcomes. Because tasks are symmetric, we drop
subscripts whenever possible.

The range of narrow-accounting implementable goals is the same as in section 3.1. Because out-
comes for different efforts are evaluated in isolation from each other, it does not matter whether
effort decisons are made sequentially or simultaneously. Can the same goals be implemented with
broad accounts? To analyze this question, we solve backward – starting with self 2 who faces the
second task.

Self 2. Suppose the individual has the goal of exerting xNmin < x∗0 < xNmax in each task. Consider
first how self 2 chooses after self 1 sticks to the goal for task 1. The actual costs and benefits from
task 1 match their reference levels and cancel out from gain-loss utility. So the problem of self 2
looks exactly like that under narrow accounting. Thus, self 2 sticks to his goal for task 2.
Suppose that self 1 works less hard than he was supposed to and deviates to x′1 < x∗0. If self
2 sticks to his goal by exerting x2 = x∗0, he suffers a psychological loss from falling short of the
reference point in the benefit dimension; and he perceives a gain in the cost dimension. His utility is:
β [h(x1) + b(x∗0)]−c(x∗0)+η β [c(x∗0)− c(x1)]+η β λ [h(x1)− b(x∗0)] . Because the loss in the benefit
dimension weighs more heavily on the margin than the psychological gain in the cost dimension,
it pays off for self 2 to substitute at least partially for the shortfall created by self 1 and provide
x2 > x∗0.
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However, self 2 does not make up fully for the shortfall in benefits. Compensating for the loss
in the benefit dimension requires that self 2 puts in such an amount of effort that overall costs
exceed expected costs. The reason is that the benefit-matching effort decision xhm(x′1) – defined by
h(x′1)+h(xhm(x′1)) = h(x∗0)+h(x∗0) – exceeds the cost-matching effort decision xcm(x′1) – defined by
c(x′1) + c(xcm(x′1)) = c(x∗0) + c(x∗0). This follows because benefits are concave and costs are convex
in effort (see figure 1). Increasing effort beyond the cost-matching level does not pay off because
self 2 would fight a marginal loss in the benefit dimension at the expense of a bigger marginal loss
in the cost dimension.
One way to avoid effort substitution is to set a goal that pushes self 2 as much as possible. It follows
directly from our single-task analysis that self 2 will never provide more effort than the maximal
narrow-accounting implementable goal xNmax. If self 2 faces goal xNmax under broad accounts, he is
credibly committed not to exceed this goal – even if self 1 deviates.

Lemma 1 Consider a twice repeated task with immediate costs and delayed benefits. Suppose self
1 deviates from his goal and provides x1 < x̂1.

1. Suppose xNmax ≤ x∗0. Faced with goal xNmax under broad accounts, self 2 does not respond to
the deviation of self 1.

2. Suppose xNmax > x∗0. Faced with goal x∗0 under broad accounts, self 2 responds to the deviation
of self 1 with x2 = min{xcm(x′1), xNmax} > x∗0. Effort substitution is partial: x2 never fully
compensates for the lost benefits from task 1.

Self 1. Does it pay off for self 1 to deviate from the goal x∗0 ∈ (xNmin, x
N
max) and rely on self 2

to partially make up for the shortfall? The answer is yes. To provide some intuition, consider a
marginal downward deviation x′1 = x∗0 − ε, to which self 2 responds by matching costs. Because of
this response, the deviation causes no gain-loss utility in the cost dimension. However, self 1 can
reduce the costs that he incurs. He can save c′(x∗0) on the margin by “borrowing” effort from his
future self at “price” β c′(x∗0). The fact that self 2 only partially compensates for the shortfall in
benefits does not stop self 1 from deviating. The loss in the benefit dimension is only of second
order. Therefore, self 1 will deviate at least a little bit from x∗0 to achieve first-order savings on his
effort costs.

Proposition 2 Consider a twice repeated task with immediate costs and delayed benefits, and
suppose that xNmin < x∗0 < xNmax. Because x∗0 is narrow-accounting implementable but not broad-
accounting implementable for both tasks, goal setting with narrow accounts is strictly optimal.

3.2.2 Simultaneous decisions: Relative bias as cause for decision substitution

The sequential-decision setting illustrates how self 1’s biased view of the relative benefits and costs
in the two tasks may create opportunities for decision substitution with broad accounts. We now
show that a relative bias between tasks is the key driving force for broad accounts to do strictly
worse than narrow accounts.
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Broad accounts cannot do better than narrow accounts

The marginal incentives for deviations from the goal in a single task (unilateral deviations), are
the same under broad and narrow accounts. But with broad accounts, self 0 additionally has to
make sure that the decision-making self does not have a profitable joint deviation. For instance,
our sequential-decision setting shows that it may pay off to lower one decision relative to the
goal and compensate by increasing the other decision. The additional constraint to prevent joint
deviations weakly reduces the range of implementable goals. Broad accounts thus cannot improve
self-regulation in settings with deterministic outcomes.

Lemma 2 A necessary condition for goals (x1, x2) to be broad-accounting implementable is that x1

and x2 are narrow-accounting implementable.

In the following, we ask when broadly evaluated goals can replicate successful self-regulation with
narrow accounts, and under what circumstances broad accounts perform strictly worse. That is,
we focus on the case xNmin,i < x∗0,i < xNmax,i. If x∗0,i is not implementable, self 0 sets goal xNmax,i. For
sequential tasks, narrow and broad accounts then do equally well. For simultaneous tasks, matters
are more complicated. In appendix A.5, we provide a sufficient condition for broad accounts to
perform equally well as narrow accounts in settings where x∗0,i > xNmax,i.

When do narrow and broad accounts perform equally well?

Narrowly evaluated goals x∗0,i ∈ (xNmin,i, x
N
max,i) allow the individual to overcome his self-control

problem. Self 0 can implement the same decisions under broad accounts if self 1 and self 0 perceive
in the same way the trade-off between overall costs and overall benefits in the two decisions. That
is, if

B′0,1(x1)
B′0,2(x2)

=
B′1,1(x1)
B′1,2(x2)

and
C ′0,1(x1)
C ′0,2(x2)

=
C ′1,1(x1)
C ′1,2(x2)

for all (x1, x2). (7)

In geometric terms, condition 7 means that the (overall) iso-benefit and iso-cost curves for self 0
and self 1 overlap. This happens, for example, when both decisions involve only delayed benefits
and immediate costs. We use this case to illustrate why there is no profitable joint deviation under
broad accounts if condition 7 holds.
Self 1 has no incentive to change both decisions in the same direction. Certainly, jointly reducing
both decisions would increase the consumption utility of self 1 – because of the intra-personal
conflict of interest. But the effect on gain-loss utility is the same as that of two unilateral deviations,
because the individual is not compensating for the shortfall in benefits in one task through higher
benefits in the other task. Such a joint deviation does not pay off, because a goal x∗0,i < xNmax,i
deters unilateral deviations.
Self 1 has no incentive to increase one decision and decrease the other decision. At (x∗0,1, x

∗
0,2), the

iso-cost and iso-benefit curves of both self 0 and self 1 are tangent. This implies that any joint
deviation globally lowers consumption utility of self 1. Either it lowers benefits by more than the
saved costs, or it increases costs by more than the benefits. Why any joint deviation also globally
lowers gain-loss utility is not straightforward. To build intuition consider one particular deviation,
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- x1

x2

x∗0,1

x∗0,2

x′1

x′2

A

B

IB1 : {(x1, x2) : B1,1(x∗0,1) +B1,2(x∗0,2) = B1,1(x1) +B1,2(x2)}

IB0 : {(x1, x2) : B0,1(x∗0,1) +B0,2(x∗0,2) = B0,1(x1) +B0,2(x2)}

IC1 : {(x1, x2) : C1,1(x∗0,1) + C1,2(x∗0,2) = C1,1(x1) + C1,2(x2)}
IC0 : {(x1, x2) : C0,1(x∗0,1) + C0,2(x∗0,2) = C0,1(x1) + C0,2(x2)}

Figure 2: Decisions with a relative bias: Deviations can increase self 1’s consumption utility

namely a move along the iso-cost curve in figure 1, to x′1 < x∗0,1. While such a move ensures that
goal-induced expectations in the cost dimension are met, it leads to lower benefits. To match the
shortfall decision 1 causes in the benefit dimension, self 2 has to provide x2 = xhm(x′1). That is,
self 2 has to increase costs beyond the cost-matching level, reached at xcm(x′1).

Successful self-regulation cannot always be replicated with broad accounts

While narrowly evaluated goals x∗0,i ∈ (xNmin,i, x
N
max,i) allow for successful self-regulation, it may be

impossible to replicate these goals with broad accounts if condition (7) fails to hold at (x∗0,1, x
∗
0,2).

Definition 2 (Relative bias) There is a relative bias between decisions if

B′1,1(x∗0,1)
B′1,2(x∗0,2)

6=
C ′1,1(x∗0,1)
C ′1,2(x∗0,2)

.

A relative bias means that, from the perspective of self 1, the marginal rates of substitution between
costs and benefits are not equalized at the preferred decisions of self 0. A necessary condition for
a relative bias to arise is that there are some delayed outcomes and that there is some asymmetry
between the two tasks. Examples are situations where only one of the tasks involves delayed
outcomes (either costs or benefits); or where task occur sequentially (such as in section 3.2.1).
Figure 2 illustrates how a relative bias can give rise to a profitable joint deviation. Point A, where
the iso-cost (IC0 ) and iso-benefit (IB0 ) curves of self 0 are tangent, describes the preferred decisions
of self 0. Self 0 and self 1 agree on the trade-off between the two decisions in the cost dimension:
their iso-cost curves, IC0 and IC1 , overlap. However, the selves disagree on the trade-off in the
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- x1

x2

x∗0,1

x∗0,2

x′1

x′2

b1(x1) + b2(x2)

= b1(x∗0,1) + b2(x∗0,2)

b1(x1) + b2(x2) > b1(x∗0,1) + b2(x∗0,2)

h2(x2) = h2(x∗0,2)

h2(x2) < h2(x∗0,2)

c1(x1) + c2(x2) = c1(x∗0,1) + c2(x∗0,1)

A
B

Figure 3: Decisions with a relative bias: Gains/losses in cost and benefit dimensions

benefit dimension. Because of the relative bias, the iso-benefit curve from the perspective of self
1 (IB1 ) intersects with his iso-cost curve in point A. Self 1 thus can increase his consumption
utility by favoring the decision toward which he is relatively biased. In geometric terms, this means
moving south-east from (x∗0,1, x

∗
0,2) into the lens spanned by the iso-benefit and iso-cost curves. For

example, self 1 can increase his total benefits while keeping costs constant by moving along the
iso-cost curve to point B.
Gains in consumption utility however are accompanied by some psychological losses. Any increase
in overall benefits results from a loss in one benefit dimension (say immediate benefits) and a gain
in the other, separately evaluated benefit dimension (delayed benefits). This can most easily be
seen for the case where only one of the decisions involves a delayed outcome, say a delayed benefit
in decision 2. As figure 3 illustrates, moving along the iso-cost curve from point A to B allows to
increase immediate benefits, but only at the cost of lower delayed benefits. More generally, starting
from (x∗0,1, x

∗
0,2) it is impossible to increase one type of benefit without raising costs or decreasing

the other type of benefit.
Overall, the positive effect a deviation has on consumption utility dominates if the loss in one of
the benefit dimensions is not felt too heavily, i.e., if λ is not too high. In this case, a deviation
pays off and (x∗0,1, x

∗
0,2) cannot be implemented under broad accounts. The next result provides a

sufficient condition.

Proposition 3 Suppose xNmin,i < x∗0,i < xNmax,i, i.e., x∗0,i is narrow-accounting implementable.

1. A sufficient condition for (x∗0,1, x
∗
0,2) to be broad-accounting implementable is that condition

(7) holds, i.e., that selves 0 and 1 trade-off the two decisions in the same way. Then narrow
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and broad accounts are both optimal.

2. A sufficient condition for (x∗0,1, x
∗
0,2) not to be broad-accounting implementable is that decisions

involve a relative bias and that (1 − β)/β > η (λ − 1). Then narrow accounts are strictly
optimal.

3.3 Discussion

Broad accounts make decision levels in different periods substitutes. This undermines self-regulation.
The temptation not to work today is exacerbated by the consideration that not working today will
induce the future self to work more and at least partially make up for the short fall. Experimental
evidence by Khan and Dhar (2007) illustrates such substitution. They confront subjects with a
virtue-vice consumption decision: subjects have to choose between an unhealthy and a healthy
snack as “compensation” for filling in a survey. Subjects choose the vice good more often in a re-
peated choice treatment than in an isolated choice treatment (70 percent vs. 48 percent, p < 0.05).
In the former, they have the opportunity to make up for choosing the vice good today by choos-
ing the virtue good next time. In treatments where the next reward is fixed, even more subjects
choose vice in the virtue-next condition (90 percent, p < 0.05), while the fraction of vice choices in
the vice-next condition is not significantly different from that in the isolated choice treatment (43
percent). Khan and Dhar (2007) conclude that the repeated choice scenario – which one can think
of as inducing a broad account – is detrimental to self-control (they examine different explanations
such as variety seeking and show that these are not the driving forces). In a similar vein, Fishbach
et al. (2006) observe that anticipated progress toward a fitness goal increases the likelihood of
indulgence in unhealthy food – consistent with decision substitution. These observations cannot
be explained with willpower depletion models, because the effect comes from thinking about future
choices rather than from having resisted a current temptation.
The phenomenon of decision substitution – caused by a relative bias – helps to understand how
people structure their accounts. When deciding on what decisions to evaluate jointly, proposition
3 suggests that a person should ask himself whether he is relatively biased toward one of the
decisions. For example, he should not group vice and virtue goods together. This would lead to
overconsumption of vice goods and underconsumption of virtue goods. But he might well group
several vice goods, or several virtue goods together.
How narrowly defined the specific categories need to be depends on the consumption preferences
of the person and the relative trade-offs that these preferences imply. For example, a generic
psychological account for food might work well for people who are not tempted to overeat on
unhealthy food (because, despite their present bias, they quickly reach a point of satiation). But it
will be a disaster for a person struggling with a diet. Such a person is better off adopting narrower
categories such as “fruits and vegetables” and “sweets”, or “main meals” and “snacks”.12 The
idea of preventing substitution toward some categories of food, or over time, is also reflected in
many diet programs. For example, Weight Watchers’ PointsPlusTM system assigns points to food

12A goal could be to follow the American Cancer Society’s advice to eat 5 servings of fruits and vegetables a day.
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based on their nutritional content. It aims to support a balanced diet through a personalized, daily
points goal. A similar intuition applies for spending on food and drinks. At a restaurant dinner it
is easier for most people to get carried away on drinks than on food. And indeed consumers appear
to adopt distinct accounts for food and drinks and hence do not treat them as substitutes (see the
field experiment by Abeler and Marklein 2010).
Whether decision substitution arises also depends on the characteristics of the decisions. It is quite
natural that a person can substitute in his head “similar” outcomes (e.g., money spent on different
items while grocery shopping). A series of experiments by Khan and Dhar (2007) confirms this
and, at the same time, suggests that substitution does not work for distinct outcome categories.
The separability assumption of Kőszegi and Rabin (2006) captures this idea. To illustrate the
consequences of this assumption, suppose one decision involves a delayed health benefit only (say
taking fluoride tablets to prevent future tooth decay) and the other decision involves an immediate
benefit only (say going to see a movie). While immediate monetary outlays can be measured in
the same account, the health benefit and the joy of watching the movie are perceived as distinct
dimensions. So the individual effectively has narrow accounts in the two benefit dimensions. And
these narrow accounts in the benefit dimension already prevent decision substitution as our results
shows. To see this consider the sufficient condition for decision substitution in proposition 3. It
requires, in addition to a relative bias, that

(1− β)/β > η (λ− 1). (8)

This condition always fails if one of the decisions involves no current benefit (i.e., b′i(xi) = 0 for one
i). To see this suppose x∗0,i ∈ (xNmin,i, x

N
max,i), i.e., goals x∗0,i are narrow-accounting implementable.

Using h′i(x
∗
0,i) = c′i(x

∗
0,i), equation (4) together with x∗0,i < xNmax,i implies (1 − β)/β ≤ η (λ − 1).

In contrast, if both decisions involve immediate and delayed benefits, condition (8) holds for an
individual with a strong present-bias (i.e., low β). In this case, the goals are not broad-accounting
implementable.
The above examples illustrate the role of the separability assumption for different kinds of benefits.
If benefits are perceived as distinct categories, decision substitution does not arise even though
the individual has a broad account for monetary outlays. A similar argument holds for benefits
that occur at different points in time: Whether decision substitution arises over time depends on
whether or not the individual can choose to integrate immediate and delayed outcomes. We assume
integrability over time in section 3.2.1 and return to a discussion of this issues in section 4.2.
Finally, our analysis reveals that grouping decisions with a relative bias together does not auto-
matically create a problem of decision substitution. The condition x∗0,i < xmax,i shows that it is the
not so severe self-control problem for which decision substitution undermines incentives, because
in these cases there is motivational slack for the future self. In contrast, goals set to deal with a
severe self-control problem effectively commit the future self not to go “over target” to compensate
for a short fall in the other task. Hence, decision substitution does not arise.
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4 Extensions of the no-uncertainty model and robustness

In this section, we discuss different forms of accounting, alternative assumptions on when gain-loss
utility is felt, and how our results are affected by possibilities to adjust goal design.

4.1 Goal revision

A premise of our analysis is that people have the capacity to set goals for themselves which remain
meaningful over time. To model this we assumed that reference points do not adjust if an individual
revises his goals before a decision. We now explore the robustness of our results if goal revisions
have an effect on reference points.13 The following extension of our model, based on Kőszegi and
Rabin (2009), considers simultaneous decisions. Section 6 covers sequential decisions and reference
point adjustment in response to the resolution of uncertainty.

4.1.1 Adjusting goal levels

To allow for goal adjustment, we split a decision-making period t into two subperiods, where the
individual feels the same way about task benefits and costs.14 Self 0 designs goals x̂0,i. At date t.I,
the individual can adjust goals. Revised goals x̂t,i become anchored in the individual’s head and
induce new reference points in future evaluation of outcomes. At date t.II, the individual makes
the decisions. All delayed outcomes occur at some future date τ . Goals and goal revisions have to
be rational, i.e., they must be consistent with personal equilibrium.
Changes in beliefs are carriers of utility according to the evidence reviewed by Kőszegi and Rabin
(2009). Applying their modeling approach, we assume that the individual derives “anticipatory”
gain-loss utility from changes in goals (in addition to consumption utility and “contemporaneous”
gain-loss utility). Specifically, the individual compares future outcomes that arise under the new
goal x̂t,i with the outcomes that would occur under the past goal x̂0,i. This causes anticipatory
gain-loss utility γt,t µ(b(x̂t,i) − b(x̂0,i)) + γτ,t µ(h(x̂t,i) − h(x̂0,i)) + γt,t µ(c(x̂0,i) − c(x̂t,i)). The pa-
rameter γt,t ≤ 1 is the weight self t.I attaches to anticipatory gain-loss utility from outcomes that
occur at date t.II; and γτ,t ≤ 1 is the weight attached to anticipatory gain-loss utility for outcomes
that occur at date τ > t.15

13How fast reference points adjust to revised goals is an open question. There is some mixed evidence on adjustment

to new information. Bettors who accumulate losses tend to make riskier bets at the end of the day to erase these

losses, suggesting that their reference points do not adapt to losses from previous bets (see Camerer 2003, p.296).

With time, reference states seem to adjust, as reflected by the phenomenon of hedonic adaptation (see Frederick and

Loewenstein 2003). Experimental evidence on short-term responses is inconclusive: Matthey and Dwenger’s (2008)

findings suggest no short-term adjustment of reference states, Gill and Prowse’s (2011) suggest quick adjustment.

14The β − δ model approximates the property of the hyperbolic discount function (e.g., Ainslie 2001, Loewenstein

and Prelec 1992) that discount rates decline over time. But it does not capture the fact that close to the decision

date the individual agrees more with the decision-making self’s point of view than with that of self 0. The extension

mimics the latter property.

15It seems plausible to assume that a worsening of expectations about a date far away in the future is less painful

than a worsening of expectations about a closer date, i.e., that γτ,t decreases in τ − t (cf. Kőszegi and Rabin 2009).

It is a matter of interpretation of γt,t whether any discounting occurs between dates t.I and t.II, i.e., whether the
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Consider an individual who faces narrow accounts. For self t.II our results from section 3.1 on
what (possibly revised) goals are implementable continue to hold. With similar arguments applied
to the anticipatory gain-loss utility, self t.I has no incentive to revise the inherited goal for task i
downward if it does not exceed x̃Nmax,i, defined by

(1 + η γt,t λ) b′i(x̃
N
max,i) + (β + η γτ,t λ)h′i(x̃

N
max,i) = (1 + η γt,t) c′i(x̃

N
max,i). (9)

What changes compared to xNmax,i defined in equation (4) are the factors by which different gain-loss
utility components are weighted. Gain-loss utility from immediate outcomes receives weight γt,t
and that from delayed outcomes receives weight γτ,t. To derive xNmax,i we assume that the individual
evaluates all outcomes in the last period and hence discounts by β these future experiences of then
contemporaneous gain-loss utility. Depending on whether γt,t and γτ,t are smaller or larger than
β, xNmax,i may be smaller or larger than x̃Nmax,i. To deter downward goal adjustments and decisions
that deviate from the goal, self 0 therefore cannot set a goal that exceeds min{xNmax,i, x̃Nmax,i}.
Similarly, the goal cannot fall below max{xNmin,i, x̃Nmin,i}.16

Overall, we see that the possibility of goal adjustment does not necessarily restrict goal setting
by self 0. The larger γt,t and γτ,t, the larger x̃Nmax,i. Intuitively, the worse the individual feels
after revising his goals, the less likely is it that goal revision hampers self-regulation. In contrast,
if γt,t = γτ,t = 0, the individual has no anticipatory feelings from changing his goals and goal
adjustment is without cost. In this case, goals are not effective in overcoming self-control problems
and the choice of psychological accounts does not matter.
In the presence of anticipatory gain-loss utility, we still find that narrow accounts can be strictly
optimal for simultaneous decisions. Only the sufficient condition in proposition 3, part 2 needs to
be adjusted. If contemporaneous gain-loss utility is experienced at the time when the corresponding
payoffs are experienced, the condition becomes

(1− β) > η (λ γτ,t − γt,t). (10)

4.1.2 Adjusting accounts

Suppose that the preferred decisions of self 0 are implementable under narrow accounts but not
under a broad account. If he inherits narrow accounts, self t.I may want to shift to broad accounts
so that these become anchored in the individual’s head by date t.II and make decision substitution
possible for self t.II. Anticipating these behavioral consequences self t.I must also revise goals.17

Revision of goals and accounts by self t.I immediately triggers anticipatory feelings from comparing
outcomes under his new goals with those that would occur under the past goals. Because the
individual only just started thinking about his new accounts, he feels anticipatory gain-loss utility
in the old, narrow accounts. The only way to avoid the (negative) anticipatory feelings is not to

feelings are anticipatory or contemporaneous.

16The cutoff x̃Nmin,i is defined by (1 + η γt,t) b
′
i(x̃

N
min,i) + (β + η γτ,t)h

′
i(x̃

N
min,i) = (1 + η γt,t λ) c′i(x̃

N
min,i).

17Decisions and beliefs must constitute a personal equilibrium in every contingency, i.e., they must do so on and

off the equilibrium path.
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revise accounts. Specifically, because expectations will be met in the continuation game starting
at date t.II, there is only anticipatory gain-loss utility. The account revision problem of self t.I
therefore boils down to the goal adjustment problem under narrow accounts. Above we showed
that the individual has no incentive to revise goals as long as these fall within a certain range.

Corollary 1 Suppose revisions of goals and accounts trigger anticipatory utility.

1. There exists a range of narrow-accounting implementable goals[
max{xNmin,i, x̃Nmin,i},min{xNmax,i, x̃Nmax,i}

]
.

2. Suppose the preferred decisions of self 0 are narrow-accounting implementable. A sufficient
condition for them not to be broad-accounting implementable is that decisions involve a relative
bias and that inequality (10) holds. Then narrow accounts are strictly optimal.

4.2 Evaluating and closing accounts

4.2.1 Timing of gain-loss utility

To facilitate the exposition and comparison across cases, we use as lead scenario that the individual
closes all accounts at the last date, i.e., he experiences gain-loss utility once outcomes from all
tasks are settled. Depending on the application, alternative assumptions may be more realistic. To
model situations where the reference points adjust after deviations by the decision-making self, one
can apply our extension from section 4.1 and assume that the individual feels anticipatory gain-
loss utility from such adjustments. Similarly, the extension allows us to capture situations where
the individual feels gain-loss utility at the time he experiences the relevant consumption-utility
component. For this, set γt,τ = β and γt,t = 1 in equations (9) and (10). Compared with our main
model, where γt,τ = γt,t = β, these changes affect xNmax,i and the sufficient condition in part 2 of
proposition 3. Still there is a range of implementable goals, and decision substitution can arise.
For sequential decisions two additional effects kick in. First, a broad account implicitly means
that the individual is able to leave the account open until all information relevant for the account
arrives: the earliest date when the broad account can be closed is when self 2 makes his decision.
We discuss this assumption in the next subsection. Second, different timing assumptions affect
the best response of self 1 and 2 under broad accounts if the respective other self sticks to his
goal. While the maximal implementable goal for self 2 is equal to the one under narrow accounts
(xBmax,2 = xNmax,2), it can be shown that for self 1 xBmax,1 can be higher or lower than xNmax,1. In the
absence of decision substitution, and depending on the specific timing assumption, this can make
narrow accounts strictly worse or strictly better than broad accounts for a certain parameter range.
When broad accounts push the evaluation of outcomes further into the future, discounting makes
deviations in the first task feel less painful than under narrow accounts. This incentive-decreasing
effect of broadly evaluated goals is a key driving force in the analysis of Hsiaw (2010b). While
interesting, the effects of timing do not invalidate our previous insights: decision substitution can
arise, and once it arises, broad accounts do strictly worse than narrow accounts.
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4.2.2 Leaving accounts open over time: sunk cost effects

Because of its intuitive appeal, decision substitution has been advanced as a plausible explanation
for narrow bracketing in a range of settings were tasks occur sequentially (see Read et al. 1999). Our
model shows that for such decision substitution to arise with sequential tasks and broad accounts,
the individual must be either prone to sunk costs, or neglect the cost dimension entirely. Such
tight links between mental accounting and sunk costs have previously been noted. Thaler (1999,
p.202), for instance, writes “My own thinking about mental accounting began with an attempt
to understand why people pay attention to sunk costs.” A common illustration of the connection
between sunk costs and accounting due to Kahneman and Tversky is that of a family that drives
through a blizzard to a basketball game, which they only do because they already paid for the
tickets.
In our model, an individual with a broad account evaluates outcomes only after all relevant infor-
mation for the account becomes available. Hence, when deciding on his effort in the second task,
the individual considers whether the overall cost account for both tasks is balanced. That is, he
pays attention to the sunk cost from the first task. With the alternative assumption that gain-loss
utility is experienced as soon as a task-related payoff occurs, accounts would follow the exogenous
timing of outcomes. In our sequential task setting, this would imply that the individual always
narrowly evaluates costs, and that decision substitution does not arise.18

Is it reasonable to assume that people can leave psychological accounts open over time? Thaler
(1999) discusses that the arrival of information often goes hand in hand with the closure of an
account.19 However, other evidence suggests that people are able to leave their accounts open even
after payoff information arrives: people have mental accounts for categories of expenses accumulated
over a week or a month rather than for individual purchases (e.g., Heath and Soll 1996); private
investors tend to evaluate sales transactions relative to historic purchase prices rather than the
current market value of their assets, as evidenced by the disposition effect (Odean 1998); and
bettors take riskier gambles after losses (see footnote 13).

4.2.3 Other types of accounts

If the individual only had expenditure accounts, as is often assumed in the mental accounting
literature, our results would be unchanged or even strengthened. Consider, for instance, two con-
sumption decisions with immediate monetary costs. One involves only delayed benefits and the
other involves only immediate benefits. In our main model, broad accounts need not be domi-
nated. For example, the sufficient condition for decision substitution from proposition 3 fails to
hold for goals x∗0,i < xNmax,i (see section 3.3). But if the individual only tracks expenditures in a

18Decision substitution still arises in a setting where the individual feels some gain-loss utility once a payoff occurs

but also evaluates outcomes in a broad account that can be left open until all relevant payoffs occur.

19Referring to the “Samuelson lottery” (cf. footnote 5), Thaler writes: “Samuelson’s colleague should accept any

number of trials of this bet strictly greater than one as long as he does not have to watch”. This suggests that

watching the single tosses induces a narrow account for each lottery. For related evidence on how the frequency of

feedback affects the evaluation of financial decisions, see Gneezy et al. (2003).
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broad mental account, decision substitution always arises. As long as he keeps total expenditures
fixed, the individual can freely substitute consumption. Substituting away from the decision with
delayed benefits always increases the utility of self 1 because of the relative bias. This insight helps
understand why having a mental account for food expenditures might be a good idea to control
expenditures for food (vis-a-vis other categories) but a bad idea to control one’s diet.
Similarly, our results carry over if a person only considers benefits (e.g., a student who only cares
about the grade and does not feel gain-loss utility regarding time spent studying); or if there is
gain-loss utility over decisions and not over outcomes (e.g., a student feels anger or guilt if he works
less than prescribed by his goal).
The concept of a topical account (Tversky and Kahneman 1981, Kahneman and Tversky 1984)
is similar to a narrow psychological account because it relates to one specific activity or decision.
But it differs from our approach by requiring the individual to integrate costs and benefits in one
account. The separability assumption in our setting is crucial for reference dependence to have any
impact. Indeed, as Kőszegi and Rabin (2006, p.1138) write, “In combination with loss aversion,
this separability is at the crux of many implications of reference-dependent utility, including the
endowment effect.” Note also that the individual would never choose to create a topical account –
if he could design his gain-loss utility in this way – because integrating costs and benefits in one
account makes goal setting ineffective.

5 Goals for tasks with stochastic outcomes

The following extension of our model allows for stochastic task outcomes. What changes is that
the choice of psychological accounts has a direct impact on the individual’s gain-loss utility. If one
holds decision levels constant, broad accounts provide strictly higher gain-loss utility than narrow
accounts because broad accounts allow to pool risks. In the absence of time-inconsistent prefer-
ences, the individual therefore strictly prefers broad accounts. But, in the presence of motivational
problems, narrowly evaluated goals may be optimal. To isolate the additional driving forces with
stochastic outcomes, we consider a setting where selves 0 and 1 trade off the two decisions in
the same way. That is, broad and narrow accounts would perform equally well if outcomes were
deterministic (cf. proposition 3).

5.1 The model with outcome uncertainty

The decisions. We consider two symmetric, simultaneous decisions with immediate costs and
delayed benefits and extend the setting from section 2 as follows. A decision may either have
a strong or a weak impact on the delayed outcome. With probability π ∈ (0, 1] the (marginal)
impact is high and the delayed benefit in task i is hH(xi). With probability 1 − π the impact is
low and the delayed benefit is hL(xi), where hH(xi) > hL(xi) ≥ 0, h′H(xi) > h′L(xi) ≥ 0, and
h′′H(xi) < h′′L(xi) ≤ 0 for all xi. Note that the model nests the no-uncertainty case (π ∈ {0, 1}).
To facilitate exposition and make effects more transparent, we explain the intuition for the results
with a special case. We set hL(xi) = 0 for all xi (“a failure”), and denote h(xi) ≡ hH(xi) ≥ 0 (“a
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success”). Details for the more general case and proofs are relegated to the appendix. As before,
we assume that accounts are closed and evaluated after all outcomes realize (our results do not rely
on this specific assumption).

Stochastic reference points. The modeling follows Kőszegi and Rabin (2006, 2007). We assume
that the individual has stochastic reference points. With narrow accounts, a goal x̂i induces refer-
ence point c(x̂i) in the cost dimension and a reference lottery for the benefit of (π◦h(x̂i); (1−π)◦0).
With broad accounts, goals (x̂1, x̂2) induce reference point c(x̂1) + c(x̂2) in the cost dimension and
a reference lottery for the joint benefit of (π2 ◦ [h(x̂1)+h(x̂2)];π (1−π)◦h(x̂1);π (1−π)◦h(x̂2); (1−
π)2◦0). The individual evaluates a stochastic outcome according to its expected utility. The utility
of a particular outcome is the average of how this outcome feels relative to each possible realization
of the reference lottery. This is best illustrated with an example. Suppose that the individual
has goal x̂i, makes decision xi = x̂i, and evaluates outcomes narrowly. The gain-loss utility in the
benefit dimension for decision i is given by

π {π µ(h(x̂i)− h(x̂i)) + (1− π)µ(h(x̂i)− 0)}+ (1− π) {π µ(0− h(x̂i)) + (1− π)µ(0− 0)} .

The individual expects to achieve benefit h(x̂i) with probability π. This outcome gives rise to
the “mixed feelings” captured within the first curly brackets. Partially it feels like meeting the
reference state h(x̂i) (to which the reference lottery assigns weight π). And partially it feels like
a gain compared to the reference state 0 (to which the reference lottery assigns weight 1 − π).
Analogously, the individual expects benefit 0 with probability 1 − π. As captured within the
second curly brackets, this outcome feels like a loss relative to the probability-π reference state
h(x̂i). And it feels like meeting the probability-(1− π) reference state 0.

5.2 The preferred decisions of self 0 and the risk-pooling effect

The individual knows that – even if he sticks to his goals – he only meets his outcome targets on
average. In expectation, the individual hence suffers a loss. How large the loss is differs for narrow
and broad accounts and, therefore, the preferred decisions differ. Denote the preferred decisions of
self 0 for the two symmetric tasks under narrow accounts by xN0 and those under broad accounts by
xB0 . Self 0 takes into account that his expectations adapt to his committed decisions. Technically,
the equilibrium concept for the preferred decisions is that of choice-acclimating personal equilibrium
(Kőszegi and Rabin 2007). To study goal design, we ask in section 5.3 whether self 0 can implement
his preferred decisions in an (unacclimating) personal equilibrium.20

20In the model with deterministic outcomes, the present bias is the only source of a conflict of interest. With

stochastic outcomes, there is an externality of the decision on future beliefs. Even in the absence a present bias,

this externality may cause a conflict of interest in the sense that the preferred decision cannot be implemented in a

personal equilibrium (cf. Kőszegi and Rabin 2007). Because this effect is not the driving force of our main results,

we postpone discussion of it to section 5.4.2.
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5.2.1 Narrow psychological accounts

We start by deriving the utility of self 0 for a committed decision xi > 0. The stochastic benefit
for a decision i is compared to its reference lottery (π ◦ h(xi); (1− π) ◦ 0). With probability 1− π,
benefit 0 realizes. This partially feels like a loss, because with probability π the individual expected
the benefit h(xi). Only with probability 1 − π expectations are met. With probability π, benefit
h(xi) realizes. This partially feels like a gain, because the individual expected a benefit realization
of 0 with probability 1−π. The probability of a gain hence is the same as that of a loss: π (1−π).
As losses loom larger than gains (λ > 1), the individual expects a net psychological loss. There is
no gain-loss utility in the cost dimension, because cost expectations are always met. In sum, the
utility of self 0 for a committed decision xi in task i is:

β
{
π h(xi) [1− η (λ− 1) (1− π)]− c(xi)

}
.

Maximizing yields the first-order condition for the preferred decision of self 0,

π h′(xN0 ) [1− η (λ− 1) (1− π)] ≤ c′(xN0 ), (11)

which holds with equality for xN0 > 0. A choice-acclimating personal equilibrium implies a strong
notion of risk aversion, in the sense that the individual may choose stochastically dominated options
(Kőszegi and Rabin 2007). Decision xi > 0 causes positive expected consumption utility but it
exposes the individual to the risk of falling short of his expectations. To avoid psychological losses,
the individual can choose xi = 0. That way he is sure that his expectations are always met – he
expects to fail and will fail. To exclude the dominated choice xi = 0, we assume that gain-loss
utility does not swamp concerns for consumption utility (cf. Herweg et al. 2010). The following
assumption implies that the preferred decision of self 0 is positive and increasing in π:

Assumption 2 (No dominance of gain-loss utility) 1− η (λ− 1) (1− π) > 0.

5.2.2 Broad psychological accounts

With broad psychological accounts, decisions x1 and x2 induce reference lottery (π2 ◦ [h(x1) +
h(x2)];π (1 − π) ◦ h(x1);π (1 − π) ◦ h(x2); (1 − π)2 ◦ 0) in the benefit dimension. How does the
gain-loss utility differ from that under narrow accounts? As above, self 0 expects a net loss. With
narrow accounts a loss occurs in, say, task 1 when the individual expects to succeed but actually
fails. This happens with probability π (1 − π). The event “the individual expects to succeed in
task 1, but fails” however need not result in a loss under broad accounts, because task 2 creates
a buffer against a failure in task 1. With probability π (1 − π), self 0 expects that he will fail in
task 2 but actually succeeds. This success in task 2 makes up for the shortfall in task 1. Such
risk pooling reduces the per-task probability of a net loss from π (1− π) under narrow accounts to
π (1− π) [1− π (1− π)] under broad accounts. Hence, the utility of self 0 for symmetric decisions
x1 and x2 under broad accounts is:21

β
{

(h(x1) + h(x2)) π
[
1− η (λ− 1)(1− π) (1− π (1− π))

]
− (c(x1) + c(x2))

}
. (12)

21In appendix B.1, we show that the preferred decisions of self 0 are indeed symmetric.
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Maximizing with respect to x1 and x2 yields the symmetric first-order conditions:

π h′(xB0 ) [1− η (λ− 1) (1− π) (1− π (1− π))] ≤ c′(xB0 ), (13)

holding with equality for xB0 > 0. Assumption 2 ensures an interior solution. Comparison with
equation (11) shows that self 0 is willing to “risk more” on each individual decision, i.e., xB0 > xN0 .

Proposition 4 (Kőszegi and Rabin 2007)

1. Holding decision levels constant, the utility of self 0 is higher with broad accounts than with
narrow accounts for all π ∈ (0, 1).

2. The preferred decision of self 0 is higher with broad accounts than with narrow accounts:
xB0 > xN0 for all π ∈ (0, 1).

It is a well known property that loss averse individuals benefit from pooling risks. Furthermore,
risk pooling makes such individuals less risk averse. Proposition 4 is a variant of that result
for stochastic reference points. It goes back to Kőszegi and Rabin (2007, proposition 5).22 For
experimental evidence see, for example, Gneezy and Potters (1997, 2003).

5.3 The goal design problem

We turn to the goal design problem of self 0. Solving backward, we ask what conditions guarantee
that self 1 will not lower his decision in one task relative to the goal set for that task under
broad or narrow accounts, respectively. Considering such unilateral deviations provides us with the
maximal implementable goal under narrow accounts xNmax, and an upper bound on implementable
goals under broad accounts, which, with slight abuse of notation, we denote by xBmax. Considering,
in addition, joint deviations would pinpoint exactly the maximal broad-accounting implementable
goal. But as discussed below, for our main purpose it suffices to consider unilateral deviations.
The first-order conditions defining xNmax and xBmax, respectively, have the same structure. At xAmax,
A ∈ {B,N}, self 1 is just indifferent between sticking to this goal and deviating to a lower decision:

β [π + η {π + (λ− 1) Pr(lossA)}]h′(xAmax) = (1 + β η) c′(xAmax), (14)

where Pr(lossA) denotes the probability of a loss caused by a decision that falls short of the goal
xAmax. The higher Pr(lossA), the higher is xAmax – because self 1 has stronger incentives not to lower
his effort.

5.3.1 Narrow psychological accounts

For narrow accounts, Pr(lossN ) = π2. A deviation to x1 < x̂ only matters if it actually has an
impact on the outcome, i.e., if the outcome is a success. This happens with probability π. The

22They show that U(F |F ) +U(G|G) ≤ U(F +G|F +G) for any distribution functions F and G. In our case, with

symmetric decisions x1 = x2 = x, we have F = G = (π ◦ h(x); (1− π) ◦ 0) and F +G = (π2 ◦ h(x) + h(x);π (1− π) ◦
h(x);π (1− π) ◦ h(x); (1− π)2 ◦ 0).
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outcome h(x1) then feels like a loss compared to reference standard h(x̂). With stochastic reference
points, the reference lottery assigns probability π to h(x̂). Hence, xNmax is defined by

β π {1 + η [1 + (λ− 1)π]}h′(xNmax) = (1 + β η) c′(xNmax). (15)

Outcome uncertainty decreases incentives. The maximal narrow-accounting implementable goal
is lower than it would be with deterministic outcomes. There are two reasons for this. The first
is a standard consumption-utility effect. The less likely it is that the decision “matters”, i.e.,
the lower π is, the smaller the marginal impact of the decision on expected consumption utility,
π h′(xi). The second reason is linked to gain-loss utility. A goal is successful if the fear of falling
short of expectations prevents the individual from lowering his decision relative to the goal. With
deterministic outcomes, a marginal deviation results in a loss with probability one. With stochastic
outcomes, a marginal deviation is less painful because it only increases the probability of a loss by
π2.
In the absence of a present bias (β = 1), the maximal implementable goal always exceeds the
preferred decision of self 0 (compare equations 11 and 15). With a present bias, successful self-
regulation is possible if β is sufficiently high, so that xN0 ≤ xNmax. For lower β, we have xNmax < xN0
and self-regulation is constrained by the maximal implementable goal xNmax.

5.3.2 Broad psychological accounts

What are the incentives of self 1 under broad accounts to marginally lower his decision in one
task, say task 1, relative to the goal? To derive Pr(lossB) induced by such a unilateral deviation,
suppose that self 1 faces symmetric goals (in appendix B.2.2, we show that setting symmetric goals
is indeed optimal). The effects are easiest to explain by distinguishing the probability of success
for the two decisions. Denote them by π1 and π2 (we still assume π1 = π2).
Risk-pooling allows the individual to offset a lower than expected outcome in one task with a higher
than expected outcome in the other. This has a positive and a negative effect on Pr(lossB), and
thereby on how incentives under a broad account compare with incentives under narrow accounts
(risk incentive effects). Let us first consider the negative effect. Under narrow accounts, the
probability of a shirking-induced loss in task 1 is π2

1. With probability π2
1, the individual expects

to succeed in task 1 and the decision actually matters. In contrast, under broad accounts, the
individual does not always suffer a loss in this case. With probability π2 (1 − π2), the individual
expects to fail in task 2 but actually succeeds. So even if self 1 deviates in task 1, he can meet the
reference state h(x̂) + 0 by succeeding in task 2. That is, the deviation does not always lead to a
loss where it would have done so under narrow accounts. Thus, broad accounts additively reduce
the probability of a shirking-induced loss by

π2
1 × π2 (1− π2). (16)

In sum, the individual fears less to fall short of his reference standard if he deviates under broad
accounts than under narrow accounts. This dampens incentives.
Let us next consider the positive effect on incentives. Decision x1 not only affects losses in task 1
but it can also provide a buffer against losses in task 2. With probability π1 (1−π1), the individual
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expects to fail in task 1 but the outcome actually is h(x1). In this case, a deviation to x1 < x̂ does
not cause a loss under narrow accounts. The reason is that h(x1) beats the failure reference state of
0. But with broad accounts such a deviation causes a loss if, in addition, the individual expects to
succeed in task 2 but is unlucky. That is, with probability π2 (1− π2), the joint outcome h(x1) + 0
falls short of the joint reference state h(x̂) + 0 as soon as x1 < x̂. Compared to narrow accounts,
the probability of a shirking-induced loss thus additively increases by

π1 (1− π1)× π2 (1− π2). (17)

The positive incentive effect reflects “raised expectations” from adopting broad accounts. The
individual knows that if he sticks to the goals, risk pooling will eliminate some losses that would
occur with narrow accounts. Faced with this tougher reference lottery, he has more to lose from
shirking because a low outcome feels more painful with broad accounts than it does with narrow
accounts.23

Overall, the negative effect in (16) exceeds the positive effect in (17) if and only if π ≥ 1
2 ≡ π.

Then shirking hurts the individual more with narrow accounts than with broad accounts. In the
more general setting, where the decision affects the failure-outcome (i.e., h′L(x) > 0), the threshold
π can be lower than 1/2.
Adding (16) and (17) to π2 gives Pr(lossB). Plugging this into equation (14) yields an upper bound
on broad-accounting implementable goals, xBmax:

β π [1 + η {1 + π (λ− 1) (1 + (1− π) (1− 2π))}] h′(xBmax) = (1 + β η) c′(xBmax). (18)

As for narrow accounts, xBmax can be smaller or larger than xB0 depending on β.

Lemma 3 The maximal implementable goal under narrow accounts, xNmax, is strictly greater than
the upper bound for implementable goals under broad accounts xBmax if and only if π > π, where
π ∈ (0, 1

2 ]. In the special case where hL(x) = 0 for all x, π = 1/2.

The risk-incentive effect extends to more than two tasks as we show in appendix B.4.

5.3.3 Goal design by self 0: When are narrow accounts optimal?

The risk-pooling effect causes the utility of self 0 to be higher with a broad account than with
narrow accounts, holding the decision levels constant (cf. proposition 4). Hence, there is no reason
to adopt narrow accounts if successful self-regulation is feasible with broad accounts. If however the
individual has a relatively strong present bias (i.e., low β), such that xBmax < xB0 , the motivational
force of broadly evaluated goals is too weak to overcome the self-control problems. Nevertheless,
the individual may be able to implement his preferred decision – or at least a decision closer to

23In a model with deterministic reference points, risk pooling does not change the reference points under broad

accounts. Hence, the positive incentive effect cannot arise. In contrast, the negative incentive effect arises whenever

the reference point with broad accounts is smaller than the expected benefit in a single task. Because then, in

expectation, part of the outcome in one task is available and can be used to make up for a shortfall in the other task.

For a model along these lines, see Koch and Nafziger (2009a).
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his preferred decision – with narrow accounts. Because of the risk-incentive effect, xBmax < xNmax if
π > π.
Does the risk-pooling or risk-incentive effect dominate for π > π? Broad and narrow accounts do
equally well for π = 1, because then xBmax = xNmax and risk pooling plays no role. Introducing a
bit of uncertainty, by marginally reducing π, leads to a larger drop in utility under broad accounts
than under narrow accounts. That is, narrow accounts are optimal when there is little uncertainty
that the decision has a strong impact on the task outcome. For large π the risk-pooling effect is
of second order. Intuitively, if the individual lives up to his goals, there is only a small probability
of suffering a loss with narrow accounts that could have been avoided with a broad account. The
risk-incentive effect, however, is of first order: xBmax drops faster than xNmax does if one lowers π.

Proposition 5 Suppose xBmax < xB0 . There exists a cutoff π̂ ∈ (π, 1), such that for π̂ < π < 1
narrow accounts are strictly optimal.

The result shows that even if the individual has no relative bias between tasks and the decision
substitution effect outlined in section 3 is not present, narrow accounts can be strictly optimal.
Outcome uncertainty gives rise to additional risk-incentive effects. For high values of π, narrow
accounts are optimal for a present-biased individual because their greater motivational force com-
pensates for the lack of risk-pooling opportunities.

5.3.4 Discussion

Proposition 5 suggests that an individual should adopt narrow accounts if he faces little uncertainty
that the decision will have a strong impact on the task outcome. If there is substantial risk that
effort has no or only a low impact, broad accounts are better. Think of teaching preparation
versus research. The former involves tasks where there is a close relationship between effort and
outcomes. Hence, our model says that it is a good idea to set tight goals for teaching preparation,
such as “every day, spend one hour preparing”, or “prepare x slides on a given day”. In comparison,
research involves tasks where success on a given day might be uncertain – despite best efforts (think
of writing up a proof). So our model suggests that researchers should not look at the quality of a
days’ work but evaluate their research outcomes over a longer period.
Advice in popular guides on goal setting is consistent with our results. For example, a blog for
freelance journalists notes the need to balance between those days when you are “in the spirit”
and highly productive and those days when you “labor just to get one article going”, concluding:24

“Setting weekly goals for your article writing could prove more useful than daily goals. The thing
is that no matter how noble our business goals may be, life gets in the way sometimes [. . . ]”.
Similarly, individuals on a diet face daily fluctuations that they cannot control. Weight loss pro-
grams, such as Jenny Craig R© therefore often recommend to weigh oneself weekly rather than daily.
On the other hand, as discussed before, such programs also recommend daily calorie targets or daily
point goals for healthy and unhealthy food. That is, these programs recommend narrow accounts
for immediate costs and benefits but a broad, weekly account for the uncertain weight outcome.

24 http://EzineArticles.com/4204813 (last accessed May 2011).
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Our results suggests why. Narrow accounts help prevent decision substitution (if there is a relative
bias), while the broad outcome account allows for risk pooling.25

5.4 Extensions and robustness

5.4.1 Joint deviations

To derive the sufficient conditions for optimality of narrow accounts, it is enough to determine
the bounds xBmax and xBmin for which self 1 has no incentive to deviate from the goal in a single
task. Allowing for the possibility of joint deviations may further shrink the set of broad-accounting
implementable goals. Checking for joint deviations in the general case is extremely tedious and not
very illuminating. This exercise can only strengthen the result on the optimality of narrow accounts
in proposition 5.26 For the special case where hL(x) = 0 for all x, it is however relatively easy to
show that xBmin and xBmax are tight bounds for the broad-accounting implementable decisions. This
yields the following corollary to proposition 5.

Corollary 2 Suppose hL(x) = 0 for all x.

1. The bounds xBmin and xBmax are tight.

2. Suppose xBmax < xB0 . There exists a cutoff π̂ ∈ (1/2, 1), such that for π ∈ (π̂, 1) narrow
accounts are strictly optimal and for π ∈ (0, π̂] broad accounts are strictly optimal.

5.4.2 Time consistency in the absence of a present bias

The present-bias is the driving force for the suboptimality of a broad account in proposition 5 as
it can cause xB0 > xBmax. In the absence of a present-bias, we have xB0 < xBmax and xN0 < xNmax (and
corollary 2 tells us that the bound xBmax is tight for hL(x) = 0 for all x). That is, these bounds do not
prevent self 0 from implementing his preferred decision. However, the minimal implementable goal
may prevent self 0 from implementing his preferred decision because the individual’s preferences
may be time inconsistent even in the absence of a present bias.
As carefully laid out in Kőszegi and Rabin (2007), a loss averse individual with stochastic reference
points is more risk averse when a decision is committed to well in advance than when the decision is
made for given expectations. The same happens in our model. Self 1 takes expectations as given in
the preferred personal equilibrium (PPE). In contrast, the preferred decision of self 0 accounts for
the externality that a committed choice has on expectations: xB0 is a choice-acclimating personal
equilibrium (CPE). Because self 0 is more risk averse than self 1, it is possible that self 0 prefers a
decision xB0 that is lower than the minimal implementable goal xBmin. That is, the set of CPE need
not coincide with the set of PPE – even though there is no present bias. The choice of accounts

25Note that the risk-pooling and risk-incentive effects go though unchanged if a broad benefit account goes in hand

with a narrow cost account. In contrast, with sequential tasks decision substitution occurs only if the individual has

a broad cost account (see section 4.2.2).

26The only additional insight from such an exercise is whether the unilateral deviations alone pin down the precise

cutoff π ∈ (0, 1
2
] in lemma 3 or whether the cutoff actually is lower.
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then may matter because xNmin < xBmin, as stated in the result below. Replacing assumption 2 with
the following assumption excludes this form of time inconsistency for an individual with no present
bias:27

Assumption 2’ 1− η (λ− 1) (1− π) ≥ 1+η
1+η λ .

The following corollary shows that the inferiority of broad accounting in proposition 5 is driven by
the individual’s present bias and that it is not an artefact of other types of time inconsistency that
may arise with reference dependent preferences.

Corollary 3

1. The lower bound on the minimal implementable goal under broad accounts exceeds the minimal
implementable goal under narrow accounts: xNmin < xBmin.

2. If assumption 2’ holds then xNmin < xN0 and xBmin < xB0 for all β ≤ 1.

3. Suppose hL(x) = 0 for all x and assumption 2’ holds. In the absence of a present-bias (i.e.,
β = 1), broad accounts are strictly optimal, because xBmin < xB0 < xBmax and these bounds are
tight.

6 Adaptation of reference points to information

Sometimes people learn about the performance in a past task before they start with a new task.
For example, a student may get to know his grade in one exam before he studies for the next exam.
And sometimes people receive information before working on a task about how productive their
effort will be. For example, a cab driver may discover from observing the weather at the start of
his shift whether it will be a busy or a slow day.
The following extension of our model shows that the risk-pooling effect, the key advantage of broad
accounts, disappears in settings with interim or pre-task information.28 That is, for fixed decision
levels, broad and narrow accounts do equally well. Nevertheless, in the presence of a relative bias,
narrow accounts may help achieve better self-regulation. Decision substitution continues to be a
problem and prevents the individual from implementing the same decisions under broad accounts
than under narrow accounts.
Decision substitution is central to the (controversial) discussion, summarized in the introduction,
that many cab drivers appear to adopt narrow, daily income targets. Our results contribute to
the theoretical underpinning of that debate in two ways. First, we show that decision substitution
is a robust phenomenon. Second, by endogenizing the evaluation horizon we show that a narrow
account, such as considering a daily income target, need not be an error but can indeed be optimal.

27While assumption 2 already rules out that self 0 would like to implement stochastically dominated choices, it

does not rule out that self 0 would prefer a lower decision level than the minimal implementable goal.

28This is related to the effects discussed in Kőszegi and Rabin (2009, section 3). They argue that under certain

circumstances an individual may behave “as if” he is a narrow bracketer.
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6.1 The model extension

The decisions. Two symmetric decisions occur sequentially. With probability π, a task is in a
productive state where the delayed benefit is h(xi) ≡ hH(xi) ≥ 0. And with probability 1− π, it is
in an unproductive state, yielding a delayed benefit of zero.

Anticipatory utility. We extend the approach of section 4.1 to stochastic outcomes and allow
the reference distribution to adapt not only to changes of mind but also to new information or de-
viations from goals. Such adaptations trigger anticipatory utility, because the individual contrasts
the old reference distribution with the new reference distribution. As in Kőszegi and Rabin (2009),
the individual compares the worst percentile of outcomes under the new distribution with the worst
percentile of outcomes under the old distribution, then the second worst percentile of outcomes,
and so on (see below for specific examples of how one calculates anticipatory utility).29

Timing. We consider the following pre-task information scenario. Self 1.I learns the productivity
in task 1, updates the reference distribution and possibly revises his goals for tasks 1 and 2. Given
the (revised) goals and reference distribution, self 1.II makes the decision for task 1. In period 2,
self 2.I learns the productivity in task 2, updates the reference distribution and possibly revises
the goal for task 2. Self 2.II makes the decision for task 2. Costs occur when decisions are made,
and the delayed benefits from both tasks realize in period τ ≥ 3.
Proposition 6, derived below, holds also for the case with interim-information. In this scenario,
self 2.I learns about the performance in task 1, updates the reference distribution and possibly
revises his goals for task 2. Self 2.II makes the decision for task 2. Because the main driving
forces are essentially the same as in the pre-task information scenario, we state this without proof
(derivations are available from the authors).
To focus on how updating of the reference distribution affects risk pooling and decision substitu-
tion, we assume that all outcomes are evaluated in the final period τ in the chosen type of accounts.
Anticipatory utility compares how an account will be evaluated under the revised reference distribu-
tion to how it would have been evaluated under the old reference distribution. Hence, anticipatory
utility at date t assigns weight γτ,t ≤ 1 to outcomes that are affected by a revision of reference
distributions.30 We assume that γτ,t is weakly decreasing in τ − t (cf. footnote 15). Denote the
equilibrium decision that the individual makes in task i = t if it is in the productive state by x̂t.
In the unproductive state, the individual chooses a zero decision.

29Note that in contrast to Kőszegi and Rabin (2009), a broad account allows anticipatory feelings to relate to

outcomes from different periods. They assume that each account only comprises outcomes from a single period.

30The additional insights from allowing the choice of accounts to shift the timing of (anticipatory) gain-loss-utility

are related to those discussed in section 4.2.1 (results are available from the authors). In the absence of decision

substitution, broad accounting might bring a small advantage, because updating of expected costs occurs later than

under narrow accounting.
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6.2 The risk-pooling effect disappears

Under narrow accounts, self t.I inherits from self 0 the reference distribution [π ◦ h(x̂t); (1− π) ◦ 0]
for the delayed benefit and [π ◦ c(x̂t); (1 − π) ◦ 0] for the cost. He then observes the state and
updates the reference distributions. If he observes that the state is productive, he knows that
he will incur benefit h(x̂t) and cost c(x̂t) with probability 1. However, he previously expected
that with probability 1 − π the unproductive state occurs, i.e., costs and benefits of zero. The
comparison of the new reference distribution with past expectations triggers anticipatory utility
η (1− π) [γτ,t h(x̂t)− γτ,t λ c(x̂t)]. Similarly, if self t.I observes that the state is unproductive, this
triggers anticipatory utility −η π [γτ,t λh(x̂t)−γτ,t c(x̂t)]. Taking expectations over the anticipatory
utility in the possible states for the two tasks and adding consumption utility, the utility of self 0
under narrow accounts is

β π
2∑
t=1

{h(x̂t)− c(x̂t)− η (1− π) (λ− 1) γτ,t (h(x̂t) + c(x̂t))} . (19)

Under broad accounts, self 1.I inherits from self 0 the reference distribution for the delayed benefits
[π2 ◦ (h(x̂1) + h(x̂2));π (1 − π) ◦ h(x̂1);π (1 − π) ◦ h(x̂2); (1 − π)2 ◦ 0]. He learns the productivity
for task 1 and updates the reference distribution to [π ◦ (h(x1) + h(x̂2)); (1 − π) ◦ (h(x1) + 0)],
where x1 ∈ {0, x̂1}, depending on the realized state. Self 2.I learns the productivity for task 2 and
updates the reference distribution to h(x1) + h(x2), x2 ∈ {0, x̂2}. Similarly, for the costs. Each
revision of expectations triggers anticipatory utility. For example, if self 1.I learns that the state
is unproductive, this triggers anticipatory utility

−η γτ,1
[
λπ2 (h(x̂1) + h(x̂2)− 0− h(x̂2)) + λπ (1− π) (h(x̂1) + 0− 0− 0)

+π (1− π) (0 + h(x̂2)− 0− h(x̂2)) + (1− π)2 (0 + 0− 0− 0)
]

+ η γτ,1 π c(x̂t)

= −η π [γτ,1 λh(x̂t)− γτ,t c(x̂t)].

Proceeding in this fashion for the other states and dates, one obtains exactly the same utility of
self 0 as under narrow accounts, given in equation (19). Thus, the risk-pooling effect vanishes. As
a consequence, self 0 has the same preferred decisions under broad and narrow accounting. For
the unproductive state it is zero. For the productive state in task t the preferred decision x∗0,t
maximizes the utility in equation (19) and is defined by

1− η γτ,t (1− π) (λ− 1)
1 + η γτ,t (1− π) (λ− 1)

h′(x∗0,t) = c′(x∗0,t). (20)

Assumption 2 guarantees an interior solution. The assumption that γτ,t is weakly decreasing in
τ − t implies that x∗0,1 ≥ x∗0,2.

6.3 Narrow-accounting implementable goals

Because goals can be revised, there are several constraints on implementable goals. Self t.I observes
the state and may revise his goal for task t. If the state is unproductive, he has no incentive to
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do so. So suppose he observes the productive state. This information, and the possible downward
revision of his goal for task t, trigger anticipatory utility. Following similar steps as in our analysis
above shows that self t has no incentive to revise his goal downward as long as it does not exceed
some threshold x̃Nmax,t (all thresholds are derived in appendix C). An additional constraint is that
self 1.I does not revise the goal for the productive state of task 2, giving another upper bound on
the goal for task 2, x̌Nmax,2.
Self t.II faces no uncertainty about the task outcome. Hence, he has no incentive to deviate from
the (possibly already revised) goal, if it does not exceed xNmax,t, as defined for b′i(·) = 0 in equation
(9).
Overall, the maximal implementable goal for task 1 hence is min{xNmax,1, x̃Nmax,1}, and for task
2 it is min{xNmax,2, x̃Nmax,2, x̌Nmax,2}. The additional bound for task 2, x̌Nmax,2, is not binding if
current anticipatory utility weighs at least as strongly as discounted future anticipatory utility
(i.e., γτ,1 ≥ β γτ,2).

6.4 Decision substitution under broad accounts

Suppose goals (x∗0,1, x
∗
0,2) are narrow-accounting implementable.31 Are they broad-accounting im-

plementable? Solving backwards, self 2.I inherits a reference point that already takes into account
the actual decision x1. Thus, the outcomes related to task 1 cancel out from any anticipatory
utility. So for self 2.I the same maximal decision is implementable as under narrow accounts.
However, by arguments similar to those outlined in section 3, decision substitution at date 1
may prevent the narrow-accounting implementable decisions from being broad-accounting imple-
mentable. At date 1 the individual prefers to shift costs to the future. Therefore, self 1.I may lower
his goal for task 1 and revise upward his goal for task 2 to compensate.32

To see this consider a small deviation along the iso-cost curve for which c(x1) + c(x2) = c(x∗0,1) +
c(x∗0,2) and h(x∗0,2) ≤ h(x∗0,1) < h(x1) +h(x2) < h(x∗0,1) +h(x∗0,2). What are the marginal incentives
for such a deviation from goals x∗0,t? Upon observing the productive state and revising goals in this
way, self 1.I has utility (dropping arguments)

β h1 − c1 + β π (h2 − c2) + η γτ,1 × [anticipatory utility: learn state in task 1 & goal revision]

+β η γτ,2 × [future anticipatory utility: learn state in task 2]. (21)

In appendix C, we show that such a deviation leads to a gain in utility for π near 1 and a drop in
utility for π near 0. The intermediate value theorem implies that there exists a threshold π̂ ∈ (0, 1),
such that decision substitution pays off if π > π̂. That is, for π > π̂ the preferred decisions of self
0 are not broad-accounting implementable and narrow accounting is optimal. With our findings,
summarized in the following proposition, we establish the robustness of our earlier results on the
optimality of narrow accounts.

31While the possibility of goal revision adds the above constraints on narrow-accounting implementable decisions,

one can show that there exist parameter ranges were narrow goals allow to fully overcome the self-control problems

in both tasks for all π ∈ (0, 1).

32Preventing self 1.I from only revising the goal for task 2 gives the already defined upper bound x̌Nmax,2.

36



Proposition 6 Suppose the individual receives either pre-task or interim information and that
revisions of the reference distribution trigger anticipatory utility.

1. The risk-pooling effect disappears: Holding decision levels constant, the utility and preferred
decisions of self 0 are equal under broad and narrow accounts.

2. Suppose the preferred decisions of self 0 are narrow-accounting implementable. There exists
a cutoff π̂ ∈ (0, 1), such that for all π > π̂ the preferred decisions of self 0 are not broad-
accounting implementable and narrow accounts are strictly optimal.

7 Conclusion

As pointed out by Brocas et al. (2004), one can transfer many of the insights from how people deal
with intra-personal conflicts of interest (arising from time-inconsistent preferences) to principal-
agent settings with inter -personal conflicts of interest (arising, e.g., from moral hazard and limits
of contracting). For example, and corresponding to our setting, employers can use goal setting as
an intrinsic motivator to alleviate possible moral hazard problems. A large number of experiments
by psychologists show that goals set by another party can increase the motivation of an individual
(for a survey, see Locke and Latham 1990). In a review of research on goal setting in organizations,
Latham and Yukl (1975) conclude that many of the insights from those experiments carry over to
firms.
What lessons can one draw for firms from our theory of psychological accounting? One way for an
organization to influence its employees’ psychological accounts is by framing performance appraisals
appropriately. The firm can conduct appraisals more or less frequently, and it can provide general
performance feedback or feedback tailored to a specific task. Another, more direct way is through
the assignment of agents to tasks. A firm can either assign the same agent to perform two tasks,
or a different agent to each task.
In settings with a close relationship between effort and output (where incentive problems might
be caused by an incomplete contract), our model suggests that firms should tailor performance
appraisals to the task, or employ different agents for each task if agents have a relative bias between
the tasks. Such a relative bias can arise because agents are more intrinsically motivated to carry
out one of the tasks. For instance, many nurses are attracted to the profession because they
derive satisfaction from patient care. To them other duties, such as administration, supervision,
and teaching, often are less attractive (e.g., Shields and Ward 2001; for further discussion and
arguments related to biases for tasks and task specialization see Prendergast 2007).
In settings with a stochastic relationship between effort and output, our model suggests that an
agent performing routine work should be evaluated more frequently against shorter-term targets
than an agent performing more creative and more uncertain tasks such as in R&D. Similarly, our
model suggests that agents in routine tasks specialize or have narrow performance goals, but that
for tasks with more outcome uncertainty we should observe broader goals and more diversification.
Another area to which ideas from our paper can be applied are labeling effects. Category or
product labels chosen by policy makers and firms often influence decisions. By naming in-kind
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benefits “housing benefits” or “child benefits” policy makers may be evoking narrow accounts for
these categories. Such narrow accounts prevent substitution away from the targeted category and
thereby increase consumption in the targeted category (for a recent discussion of such labeling effects
and experimental evidence see Abeler and Marklein 2010). Bertrand et al. (2006) discuss that bank
accounts could be designed specifically to conform to people’s mental-accounting schemes. They
suggest that earmarks such as a “fridge account”, an “education account”, or a “car account” could
help the poor manage their spending and savings. Our modeling approach can help understand in
what circumstances imposing narrow categories can have a beneficial effect on decisions (from the
perspective of the policy maker).
Similarly, our ideas can contribute to the analysis of advertising and pricing decisions by firms. An
interesting application is how supermarkets bundle products together to evoke certain psychological
accounts, and thereby influence consumers’ purchase decisions. Package size also plays a role for
how purchases are bracketed. Wertenbroch (1998), for instance, documents that consumers often
purchase “sinful” products like cigarettes in small packages at higher per-unit price, presumably
to limit consumption. In line with our narrow accounting story, they find evidence that demand
is rationed because consumers’ demand for vice goods increases relatively less in response to price
reductions than that for virtue goods.
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Appendix

A Goal setting with deterministic task outcomes

We repeatedly use the following concepts. For the pair of goals (x̂1, x̂2) and a deviation to x1 < x̂1

define the cost-matching decision xcm(x1) by c1(x̂1) + c2(x̂2) = c1(x1) + c2(xcm(x1)), the delayed-
benefit-matching decision xhm(x1) by h1(x̂1) + h2(x̂2) = h1(x1) + h2(xhm(x1)), and the immediate-
benefit-matching decision xbm(x1) by b1(x̂1) + b2(x̂2) = b1(x1) + b2(xbm(x1)).

A.1 Proof of Proposition 1

Part 1: see the main text. Part 2 repeatedly uses assumption 1 and λ > 1. Rearranging equation
(4) gives

c′i(x
N
max,i) =

1 + η β λ

1 + η β
b′i(x

N
max,i) + β

1 + η λ

1 + η β
h′i(x

N
max,i) > b′i(x

N
max,i) + β h′i(x

N
max,i). (22)

Because b′i(x
∗
i ) + β h′i(x

∗
i ) = c′i(x

∗
i ) this implies x∗i < xNmax,i. Similarly, because b′i(x

∗
0,i) + h′i(x

∗
0,i) =

c′i(x
∗
0,i), equation (5) implies x∗0,i > xNmin,i. For β = 1 equation (22) implies x∗0,i < xNmax,i, and for

β = 0 it implies x∗0,i > xNmax,i. Because 1+η β λ
1+η β and β 1+η λ

1+η β are strictly increasing in β, the existence
of a cut-off β̃ ∈ (0, 1) follows from the intermediate value theorem. Finally, self 0 implements
x̂i = min{x∗0,i, xNmax,i} because his utility is increasing in xi for xNmin,i < xi < x∗0,i and decreasing
for xi > x∗0,i.

A.2 Proof of Lemma 1

In a preliminary step, we show that the cost-matching decision is lower than the benefit-matching
one: xhm(x1) > xcm(x1) > x̂2. Note that the iso-cost and iso-benefit curves are tangent at x̂1 = x̂2.
For joint deviations from the goals x1 < x̂1 and x2 > x̂2, we have c′1(x1) ≤ c′(x̂1) and c′(x2) ≥ c′(x̂2)
as well as h′(x1) ≥ h′(x̂1) and h′(x2) ≤ h′(x̂2). Hence∣∣∣∣∣ d x2

d x1

∣∣∣∣∑
i c(xi)=

∑
i c(x̂i)

∣∣∣∣∣ =
c′(x1)
c′(x2)

≤ c′(x̂1)
c′(x̂2)

=
h′(x̂1)
h′(x̂2)

= 1 ≤

∣∣∣∣∣ d x2

d x1

∣∣∣∣∑
i h(xi)=

∑
i h(x̂i)

∣∣∣∣∣ =
h′1(x1)
h′2(x2)

.

At least one of the inequalities above is strict (assumption 1).

Next, we show that the utility of self 2 is strictly increasing for x2 < min{xcm(x1), xNmax} and
strictly decreasing for x2 > min{xcm(x1), xNmax}. Following a deviation of self 1 to x1 < x̂1,
there is a loss in the benefit dimension and a gain in the cost dimension for responses of self 2
x̂2 ≤ x2 < min{xcm(x1), xNmax}. For such values of x2 the derivative of the utility of self 2 is

U ′2 = β (1 + η λ)h′(x2)− (1 + η β) c′(x2) > β (1 + η λ)h′(xNmax)− (1 + η β) c′(xNmax) = 0.

For x2 > xNmax the utility of self 2 is always strictly decreasing. Part 1 follows because the goal is
set to x̂2 = xNmax. To show the remainder of part 2, suppose xcm(x1) ≤ xNmax and consider goal
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x̂2 = x∗0. Taking the right-derivative of the utility of self 2 at x2 = xcm(x1):

U ′2
∣∣
x2↓xcm(x1)

= β (1 + η λ)h′(xcm(x1))− (1 + β η λ) c′(xcm(x1))

< (1 + η β λ)
[
h′(xcm(x1))− c′(xcm(x1))

]
< 0,

because h′2(x2) − c′2(x2) < 0 for x2 > x∗0. Thus, the utility of self 2 is strictly decreasing for
xcm(x1) < x2 < xhm(x1). Similarly, at xhm(x1) the left-derivative of the utility of self 2 is
β h′2(xcm(x1)) − (1 + β η λ) c′2(xcm(x1)) < 0 and the right-derivative is β (1 + η)h′2(xcm(x1)) −
(1 + β η λ) c′2(xcm(x1)) < 0, because x2 > xNmin (cf. equation 5). Hence, the utility of self 2 is
maximized at x2 = min{xcm(x1), xNmax}.

A.3 Proof of Proposition 2

By way of contradiction, suppose that x∗0 is broad-accounting implementable in both periods. We
first show that there exist small deviations x1 = x∗0 − ε, ε > 0, such that xcm(x1) < xNmax. As
xNmax > x∗0, we have c(xNmax) + c(x∗0) > c(x∗0) + c(x∗0). By continuity, there exists an ε > 0 such that
c(xNmax)+ c(x∗0− ε) > c(x∗0)+ c(x∗0). By construction, c(xcm(x1))+ c(x∗0− ε) = c(x∗0)+ c(x∗0). Hence,
c(xNmax) + c1(x∗0 − ε) > c(xcm) + c(x∗0 − ε), which implies xcm(x1) < xNmax.
Self 2 responds with cost-matching to such a small deviation (cf. lemma 1). Furthermore, we
know from the proof of lemma 1 that xhm(x1) > xcm(x1) > x∗0, i.e., there is a loss in the benefit
dimension. Hence, the left-derivative of the utility of self 1 at decision x1 = x∗0 is

U ′1
∣∣
ε↓0 = β (1 + η λ)h′(x∗0) + β (1 + η λ)h′(x∗0)

d x2

d x1
−
[
c′(x∗0) + β c′(x∗0)

d x2

d x1

]
.

Substituting in for d x2
d x1

= − c′(x1)
c′(x2) gives

U ′1
∣∣
ε↓0 = β (1 + η λ)

[
h′(x∗0)− h′(x∗0)

c′(x∗0)
c′(x∗0)

]
−
[
c′(x∗0)− β c′(x∗0)

c′(x∗0)
c′(x∗0)

]
= −(1− β) c′(x∗0) < 0.

Hence, deviating from x∗0 increases the utility of self 1. Thus, x∗0 is not broad-accounting imple-
mentable.

A.4 Proof of Proposition 3

For both parts note that x∗0,i, i = 1, 2 being narrow-accounting implementable rules out unilateral
deviations (cf. lemma 2). Furthermore, it rules out joint deviations in which self 1 either increases
both decisions or decreases both decisions (changing both decisions in the same way results in the
same gains and losses as a unilateral deviation). So we only need to consider joint deviations in
which self 1 increases one decision and decreases the other.

Part 1

Without loss of generality, suppose that self 1 deviates to x′1 < x∗0,1 and x′2 > x∗0,2. We are interested
in the utility difference U1(x′1, x

′
2|x∗0,1, x∗0,2) − U1(x∗0,1, x

∗
0,2|x∗0,1, x∗0,2). By the gradient theorem, we
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can express this change in utility as a line integral along a curve with endpoints (x∗0,1, x
∗
0,2) and

(x′1, x
′
2). That is, denoting U1(·) ≡ U1(·|x∗0,1, x∗0,2),

U1(x′1, z(x
′
1))− U1(x∗0,1, z(x

∗
0,1)) = −

∫ x∗0,1

x′1

[
∂

∂ x1
U1(x1, z(x1)) +

∂

∂ x2
U1(x1, z(x1))

d z(x1)
d x1

]
︸ ︷︷ ︸

≡φ′(x1)

d x1,(23)

where z : [x′1, x
∗
0,1]→ [x∗0,2, x

′
2] is an arbitrary bijective function with z(x′1) = x′2 and z(x∗0,1) = x∗0,2.

Further, the gradient theorem implies that the line integral does not depend on the path z(x1)
between the two endpoints, which will turn out to be useful for our purposes. We show that the
integrand φ′(x1) > 0 for any x1 ∈ [x′1, x

∗
0,1], which implies that the utility difference in (23) is

negative. That is, any deviation (x′1, x
′
2) causes a drop in overall utility.

We start with a few useful observations on the relevant cases to consider. If there are both immediate
and delayed benefits, condition (7) implies that the delayed and immediate iso-benefit curves lie
on top of each other. Specifically, condition (7) holds if and only if

b′1(x1) + β h′1(x1)
b′2(x2) + β h′2(x2)

− b′1(x1) + h′1(x1)
b′2(x2) + h′2(x2)

∝ (1− β) [b′1(x1)h′2(x2)− h′1(x1) b′2(x2)] = 0 ∀ (x1, x2).

There are five cases where this holds: (i) β = 1, (ii) h′1(x1) = h′2(x2) = 0∀(x1, x2), (iii) b′1(x2) =
b′2(x2) = 0 ∀(x1, x2), (iv) h′i(xi) = b′i(xi) = 0 ∀xi for one task i ∈ {1, 2}, and (v) h′1(x1)

h′2(x2)
=

b′1(x1)
b′2(x2)

∀(x1, x2). Cases (i) and (ii) each imply that x∗0,i globally maximizes the utility of self 1,
and hence he has no incentive to deviate from the goals. We excluded case (iv) by assumption.
This leaves cases (iii) and (v) to consider in the proof.
There are three possible types of deviations (x′1, x

′
2): (a) x∗0,2 < z(x′1) < xcm(x1), (b) xcm(x1) ≤

z(x′1) < xbm(x1) = xhm(x1), (c) xbm(x1) ≤ z(x′1). Figure 4 illustrates these.

(a) Because (x′1, x
′
2) lies below the iso-cost curve that goes through (x∗0,1, x

∗
0,2), there exists a path

connecting the two points for which at every point the slope is less steep than the slope of the
iso-cost curve, which in turn is less steep than the slope of the two iso-benefit curves. That is,

0 < −d z(x1)
d x1

<
c′1(x1)
c′2(x2)

<
b′1(x1)
b′2(x2)

=
h′1(x1)
h′2(x2)

. (24)

Hence, at every point along this path the individual would experience a gain in the cost dimension
and a loss in both benefit dimensions. Exploiting path-independence, we can fix a feasible path by
imposing conditions (24), and write the integrand for a given x1 as follows:

φ′(x1) = κ

[
b′1(x1) + b′2(z(x1))

d z(x1)
d x1

]
+ ρ

[
h′1(x1) + h′2(z(x1))

d z(x1)
d x1

]
−γ

[
c′1(x1) + c′2(z(x1))

d z(x1)
d x1

]
= κ b′1(x1)

[
1− b′2(z(x1))

b′1(x1)

(
−d z(x1)

d x1

)]
+ ρ h′1(x1)

[
1− h′2(z(x1))

h′1(x1)

(
−d z(x1)

d x1

)]
−γ c′1(x1)

[
1− c′2(z(x1))

c′1(x1)

(
−d z(x1)

d x1

)]
, (25)
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- x1

x∗0,1x′1

x2

x∗0,2

s(a)
xcm(x′1)

s(b)
xhm(x′1) = xbm(x′1)

s(c)

z(x1)

b1(x1) + b2(x2) = b1(x∗0,1) + b2(x∗0,2)
h1(x1) + h2(x2) = h1(x∗0,1) + h2(x∗0,2)

c1(x1) + c2(x2) = c1(x∗0,1) + c2(x∗0,2)

Figure 4: Illustration of possible deviations

where κ = 1 + η β λ, ρ = β (1 + η λ), and γ = 1 + η β. Conditions (24) give

0 <
c′2(z(x1))
c′1(x1)

(
−d z(x1)

d x1

)
< 1 and

c′2(z(x1))
c′1(x1)

>
b′2(z(x1))
b′1(x1)

=
h′2(z(x1))
h′1(x1)

,

which implies that

1− b′2(z(x1))
b′1(x1)

(
−d z(x1)

d x1

)
> 1− c′2(z(x1))

c′1(x1)

(
−d z(x1)

d x1

)
> 0. (26)

Hence,

φ′(x1) >
[
κ b′1(x1) + ρ h′1(x1)− γ c′1(x1)

]︸ ︷︷ ︸
>0 for x1<x∗0,1≤xNmax,1; see eq. (4)

[
1− c′2(z(x1))

c′1(x1)

(
−d z(x1)

d x1

)]
︸ ︷︷ ︸

>0; see eq. (26)

> 0.

(b) Here (x′1, x
′
2) lies between the iso-cost and iso-benefit curves, so there exists a path with

0 <
c′1(x1)
c′2(z(x1))

≤ −d z(x1)
d x1

<
b′1(x1)
b′2(z(x1))

=
h′1(x1)
h′2(z(x1))

. (27)

At every point along the path the individual would experience a loss in the cost and benefit dimen-
sions. So we replace in equation (25) κ = 1 +η β λ, ρ = β (1 +η λ), and γ = 1 +η β λ. The first two
terms remain positive, but conditions (27) now imply 1− c′2(z(x1))

c′1(x1)

(
−d z(x1)

d x1

)
≤ 0. Hence, φ′(x1) > 0.

(c) Here (x′1, x
′
2) lies above the iso-cost and iso-benefit curves, so there exists a path with

0 <
c′1(x1)
c′2(z(x1))

<
b′1(x1)
b′2(z(x1))

=
h′1(x1)
h′2(z(x1))

≤ −d z(x1)
d x1

. (28)
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At every point along the path the individual would experience a gain in the benefit dimensions
and a loss in the cost dimension. So we replace in equation (25) κ = 1 + η β, ρ = β (1 + η), and
γ = 1 + η β λ. Rearranging terms gives

φ′(x1) = γ c′2(z(x1))
[(
−d z(x1)

d x1

)
− c′1(x1)
c′2(z(x1))

]
− κ b′2(z(x1))

[(
−d z(x1)

d x1

)
− b′1(x1)
b′2(z(x1))

]
−ρ h′2(z(x1))

[(
−d z(x1)

d x1

)
− h′1(x1)
h′2(z(x1))

]
>

[
γ c′2(z(x1))− κ b′2(z(x1))− ρ h′2(z(x1))

]︸ ︷︷ ︸
>0 for x2>x∗0,2≥xNmin,2; see eq. (5)

[(
−d z(x1)

d x1

)
− b′1(x1)
b′2(z(x1))

]
︸ ︷︷ ︸

≥0; see eq. (28)

≥ 0.

The second-to-last inequality exploits conditions (28).

Part 2

We prove sufficiency by showing that a profitable deviation along the iso-cost curve or the iso-benefit
curve exists. Without loss of generality, suppose that decisions involve the following relative bias
(the other case is symmetric):

B′1,1(x∗0,1)
B′1,2(x∗0,2)

>
C ′1,1(x∗0,1)
C ′1,2(x∗0,2)

. (29)

We show that if decisions involve a relative bias then 1+η β−β (1 + η λ) > 0⇔ (1−β)/β > η (λ−1)
is sufficient for a profitable joint deviation to exist.

Case 1: Decisions involve immediate and delayed benefits. Related to the observations
in part 1 when condition (7) can hold, one can show that condition (29) admits cases where for
(x1, x2) >> 0 we have b1(x1) > 0, h1(x1) ≥ 0, b2(x2) ≥ 0, h2(x2) > 0, c1(x1) > 0, c2(x2) > 0.
We argue that self 1 has a profitable joint deviation along the iso-cost curve. To show this, we
have to determine whether such a deviation results in losses or gains in the two benefit dimensions,
which depends on the shape of the iso-benefit and iso-cost curves at x∗0,i. We claim that

b′1(x∗0,1)
b′2(x∗0,2)

>
c′1(x∗0,1)
c′2(x∗0,2)

>
h′1(x∗0,1)
h′2(x∗0,2)

. (30)

Condition (29) and equation (1) imply that
b′1(x∗0,1)+β h′1(x∗0,1)

b′2(x∗0,2)+β h′2(x∗0,2)
>

c′1(x∗0,1)

c′2(x∗0,2)
=

b′1(x∗0,1)+h′1(x∗0,1)

b′2(x∗0,2)+h′2(x∗0,2)
. From this

it follows that
b′1(x∗0,1)

b′2(x∗0,2)
>

h′1(x∗0,1)

h′2(x∗0,2)
, because

b′1(x∗0,1) + β h′1(x∗0,1)
b′2(x∗0,2) + β h′2(x∗0,2)

−
b′1(x∗0,1) + h′1(x∗0,1)
b′2(x∗0,2) + h′2(x∗0,2)

∝ (1− β) [b′1(x∗0,1)h′2(x∗0,2)− h′1(x∗0,1) b′2(x∗0,2)].

Now
b′1(x∗0,1)

b′2(x∗0,2)
>

h′1(x∗0,1)

h′2(x∗0,2)
together with

b′1(x∗0,1)+h′1(x∗0,1)

b′2(x∗0,2)+h′2(x∗0,2)
=

c′1(x∗0,1)

c′2(x∗0,2)
implies that

b′1(x∗0,1)

b′2(x∗0,2)
>

c′1(x∗0,1)

c′2(x∗0,2)
, because

b′1(x∗0,1)
b′2(x∗0,2)

−
c′1(x∗0,1)
c′2(x∗0,2)

=
b′1(x∗0,1)
b′2(x∗0,2)

−
b′1(x∗0,1) + h′1(x∗0,1)
b′2(x∗0,2) + h′2(x∗0,2)

∝ b′1(x∗0,1)h′2(x∗0,2)− h′1(x∗0,1) b′2(x∗0,2).
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Condition (30) implies that a move along the iso-cost curve to x′1 > x∗0,1 and xcm(x1) < x∗0,2 causes
a gain in the immediate benefit dimension and a loss in the delayed benefit dimension relative to
sticking with the goals. The utility of self 1 from such a deviation is:

b1(x′1) + β h1(x′1) + b2(xcm(x1)) + β h2(xcm(x1))−
[
c1(x′1) + c2(xcm(x1))

]
+β µ

(
b1(x′1) + b2(xcm(x1))− b1(x∗0,1)− b2(x∗0,2)

)︸ ︷︷ ︸
>0

+β µ
(
h1(x′1) + h2(xcm(x1))− h1(x∗0,1)− h2(x∗0,2)

)︸ ︷︷ ︸
<0

.

Evaluating the impact on the utility of self 1 of a marginal deviation along the iso-cost curve at
point (x∗0,1, x

∗
0,2), we obtain (omitting arguments):

(1 + η β)

[
b′1 + b′2

d x2

d x1

∣∣∣∣∑
ci=

∑
ĉi

]
+ β (1 + η λ)

[
h′1 + h′2

d x2

d x1

∣∣∣∣∑
ci=

∑
ĉi

]

= (1 + η β)
[
b′1 − b′2

c′1
c′2

]
+ β (1 + η λ)

[
h′1 − h′2

c′1
c′2

]
(31)

= (1 + η β) c′1

[
b′1
c′1
− b′2
c′2

]
+ β (1 + η λ) c′1

[
h′1
c′1
− h′2
c′2

]
= [1 + η β − β (1 + η λ)] c′1

[
b′1
c′1
− b′2
c′2

]
, (32)

where the last line uses c′i(x
∗
0,i) = b′i(x

∗
0,i) + h′i(x

∗
0,i) to substitute for h′i

c′i
= 1 − b′i

c′i
. Condition (30)

implies that b′1
c′1
− b′2

c′2
> 0. Hence, a joint deviation along the iso-cost curve increases the utility of

self 1 if 1 + η β > β (1 + η λ).

Case 2: One decision involves delayed benefits, the other delayed costs (in addition
to immediate costs and benefits). Consider a deviation to x′1 > x∗0,1 and xcm(x′1) < x∗0,2, i.e.,
a deviation that holds immediate costs constant. By similar arguments as for case 1, there is a
loss in the delayed outcome dimension, µ

(
h1(x′1) + h2(xcm(x′1))− h1(x∗0,1)− h2(x∗0,1)

)
< 0, and a

gain in the immediate benefit dimension, µ
(
b1(x′1) + b2(xcm(x′1))− b1(x∗0,1)− b2(x∗0,1)

)
> 0. The

reason is that for the immediate outcomes on their own, the iso-benefit curve has a steeper slope
than the iso-cost curve:

b′1(x∗0,1)

b′2(x∗0,2)
>

c′1(x∗0,1)

c′2(x∗0,2)
. To see this, note that the definition of x∗0,i, namely

b′i(x
∗
0,i) + h′i(x

∗
0,i) = c′i(x

∗
0,i), implies b′1(x∗0,1) > c′1(x∗0,1) (because h′1(·) < 0) and b′2(x∗0,2) < c′2(x∗0,2)

(because h′2(·) > 0). Evaluating the impact on the utility of self 1 of a marginal deviation along
the iso-cost curve at point (x∗0,1, x

∗
0,2), and rearranging using c′i(x

∗
0,i) = b′i(x

∗
0,i) + h′i(x

∗
0,i), we again

obtain equation (32). As just argued,
b′1(x∗0,1)

c′1(x∗0,1)
− b′2(x∗0,2)

c′2(x∗0,2)
> 0. Hence, a joint deviation along the

iso-cost curve increases the utility of self 1 if 1 + η β > β (1 + η λ).
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A.5 A sufficient condition for broad accounts to do as well as narrow accounts

in the case where x∗0,i > xNmax,i

Matching goal levels xNmax,i locally maximizes the utility of self 1 under broad accounts. Checking
that this is a global maximum however is complicated by a large number of case distinctions. But
one can rule out profitable joint deviations for particular orderings of the iso-cost and the two
iso-benefit curves, which gives a sufficient condition for broad and narrow accounts to do equally
well.

Proposition 7 Suppose either one or both tasks involve delayed benefits. Suppose x∗0,i > xNmax,i,
so that self 0 sets goals (xNmax,1, x

N
max,2) under narrow accounts. If for xi ≤ xmax,i and xj ≥ xmax,j,

c′i(xi)
c′j(xj)

≤ min
{
b′i(xi)
b′j(xj)

,
h′i(xi)
h′j(xj)

}
, then (xNmax,1, x

N
max,2) is broad-accounting implementable.

Proof. We show that no profitable global joint deviation exists if c′1(x1)
c′2(x2)

<
b′1(x1)
b′2(x2)

≤ h′1(x1)
h′2(x2)

(the

case where c′1(x1)
c′2(x2)

<
h′1(x1)
h′2(x2)

<
b′1(x1)
b′2(x2)

is analogous). For deviations (x1, x2) with z(x1) < xcm(x1),
or xcm(x1) ≤ z(x1) < xbm(x1), or z(x1) > xhm(x1) the analysis is analogous to part 1 (a)-(c) of
the proof of proposition 3. To consider the remaining case xbm(x1) ≤ z(x1) ≤ xhm(x1), rearrange
equation (25):

φ′(x1) = κ b′(z(x1))
[
b′1(x1)
b′2(x2)

−
(
−d z(x1)

x1

)]
+ ρ h′(z(x1))

[
h′1(x1)
h′2(x2)

−
(
−d z(x1)

x1

)]
− γ c′(z(x1))

[
c′1(x1)
c′2(x2)

−
(
−d z(x1)

x1

)]
.

Similar to the proof of proposition 3, h
′
1(x1)
h′2(x2)

−
(
−d z(x1)

x1

)
≥ 0. Furthermore, c

′
1(x1)
c′2(x2)

< −d z(x1)
x1
≤ b′1(x1)

b′2(x2)

implies

κ b′(z(x1))
[
b′1(x1)
b′2(x2)

−
(
−d z(x1)

x1

)]
− γ c′(z(x1))

[
c′1(x1)
c′2(x2)

−
(
−d z(x1)

x1

)]
>
[
κ b′(z(x1)) − γ c′(z(x1))

] [c′1(x1)
c′2(x2)

−
(
−d z(x1)

x1

)]
> 0,

where κ b′(z(x1)) − γ c′(z(x1)) < 0 follows from κ = 1 + β η and γ = 1 + β λ η and z(x1) > xmax,2.

B Goal setting with stochastic task outcomes

B.1 Proof of Proposition 4

Narrow accounts: The utility of self 0 under narrow accounts is given by

β
{
hL(xi) + π [1− η (λ− 1) (1− π)] [hH(xi)− hL(xi)] .− c(xi)

}
(33)

The preferred decision of self 0 under narrow accounts is characterized by the first-order condition

h′L(xN0 ) + π [1− η (λ− 1) (1− π)]
[
h′H(xN0 )− h′L(xN0 )

]
. = c′(xN0 ). (34)
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Assumption 2 and h′H(xi) > h′L(xi) imply that xN0 > 0 and that xN0 is strictly increasing in π. In
addition, h′′H(xi)− h′′L(xi) < 0 implies that the second-order condition is satisfied.

Broad accounts: The utility of self 0 from (x1, x2) is

β

{∑
i

[
hL(xi) + π [1− η (λ− 1) (1− π) {1− π (1− π)}] [hH(xi)− hL(xi)]− c(xi)

]}
(35)

+ β η π2 (1− π)2
[
µ (hH(x2)− hH(x1) + hL(x1)− hL(x2)) + µ (hH(x1)− hH(x2) + hL(x2)− hL(x1))

]
.

We first argue that the preferred decisions of self 0 under broad accounts are symmetric. Note that
for x1 6= x2, µ(hH(x2) − hH(x1) + hL(x1) − hL(x2)) is a gain if and only if µ(hH(x1) − hH(x2) +
hL(x2) − hL(x1)) is a loss. Asymmetric decisions therefor reduce utility, because the last line of
equation (35) is negative for x1 6= x2 and equal to zero for x1 = x2. Hence, the preferred decision
of self 0 under broad accounts is characterized by the following first-order condition

h′L(xB0 ) + π
[
1− η (λ− 1) (1− π) {1− π (1− π)}

] [
h′H(xB0 )− h′L(xB0 )

]
= c′(xB0 ). (36)

Assumption 2 and h′H(xi) > h′L(xi) imply that xB0 > 0 and xB0 is strictly increasing in π. In
addition, h′′H(xi)− h′′L(xi) < 0 implies that the second-order conditions are satisfied.

Comparison: Note that [1− η (λ− 1) (1− π) {1− π (1− π)}] > [1− η (λ− 1) (1− π)]. From
equations (33) - (36) it hence follows that xB0 > xN0 and that the utility of self 0 under broad
accounts is always strictly larger than the utility of self 0 under narrow accounts.

B.2 Derivation of implementable goals

We show the results from the text for the more general case hL(xi) > 0.

B.2.1 Narrow accounts

Lemma 4 The maximal narrow-accounting implementable goal is defined by

β
{
π [1 + η (1 + π (λ− 1))]h′H(xNmax) + (1− π) (1 + η λ)h′L(xNmax)

}
= (1 + β η) c′(xNmax). (37)

The minimal narrow-accounting implementable is defined by

β
{
π (1 + η)h′H(xNmin) + (1− π) [1 + η (1 + π (λ− 1))] h′L(xNmin)

}
= (1 + β η λ) c′(xNmin). (38)

Furthermore, xNmax > xN0 for β = 1.

Proof.
Utility of self 1: The consumption utility of self 1 in task i given decision xi is

β {π hH(xi) + (1− π)hL(xi)} − c(xi).

The gain-loss utility for a deviation to xi > x̂i
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• in the cost dimension is β η λ (c(x̂i)− c(xi));

• in the benefit dimension for hL(xi) < hH(x̂i) is

β η {π hH(xi) + (1− π) [1 + π (λ − 1)]hL(xi)− π [π + λ (1− π)]hH(x̂i)− (1− π)hL(x̂i)} ;

• in the benefit dimension for hL(xi) ≥ hH(x̂i) is

β η {π hH(xi) + (1− π)hL(xi)− π hH(x̂i)− (1− π)hL(x̂i)} .

The gain-loss utility for a deviation to xi < x̂i

• in the cost dimension is β η (c(x̂i)− c(xi));

• in the benefit dimension for hH(xi) ≥ hL(x̂i) is

β η {π [1 + π (λ− 1)]hH(xi) + λ (1− π)hL(xi)− λπ hH(x̂i)− (1− π) [π + λ (1− π)]hL(x̂i)} ;

• in the benefit dimension for hH(xi) < hL(x̂i) is

β η {λπ [1 + π (λ− 1)]hH(xi) + λ (1− π)hL(xi)− λπ hH(x̂i)− λ (1− π)hL(x̂i)} .

Adding up consumption and gain-loss utility and differentiating, yields the minimal and maximal
implementable goal, respectively. We go through the case distinctions.

Maximal implementable goal: Self 1 has no incentive to deviate and lower his decision level
such that hH(xi) ≥ hL(x̂i), as long as the goal does not exceed xNmax, defined by

β
{
π [1 + η (1− π + π λ)]h′H(xNmax) + (1− π) (1 + η λ)h′L(xNmax)

}
= (1 + β η) c′(xNmax).

Self 1 has no incentive to deviate and lower his decision level such that hH(xi) < hL(x̂i), as long
as the goal does not exceed xNmax,2, defined by

β
{
π (1 + η λ)h′H(xNmax,2) + (1− π) (1 + η λ)h′L(xNmax,2)

}
= (1 + β η) c′(xNmax,2).

Note that xNmax,2 > xNmax for π < 1 (with equality for π = 1). Hence, xNmax is the maximal imple-
mentable goal. For β = 1, xNmax > xN0 . For small β, xNmax < xN0 can arise.

Minimal implementable goal: Self 1 has no incentive to deviate and increase his decision such
that hL(xi) < hH(x̂i), as long as the goal does not fall below xNmin, defined by

β
{
π (1 + η)h′H(xNmin) + (1− π) [1 + η (1− π + λπ)] h′L(xNmin)

}
= (1 + β η λ) c′(xNmin).

Self 1 has no incentive to deviate and increase his decision level such that hL(xi) ≥ hH(x̂i), as long
as the goal does not fall below xNmin,2, defined by

β (1 + η
{
π h′H(xNmin,2) + (1− π)h′L(xNmin,2)

}
= (1 + β η λ) c′(xNmin,2).

Note that xNmin,2 < xNmin for π < 1 (with equality for π = 1). Hence, xNmin is the minimal
implementable goal.
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B.2.2 Unilateral deviations under broad accounts

We determine the upper (lower) bound for the goal, such that self 1 has no incentive to decrease
(increase) his decision in one task. Without loss of generality, we consider deviations in task 2 and
fix the decision in task 1. The following result shows that the range of potentially implementable
goals is larger with symmetric goals (x̂1 = x̂2) than with increasing goals (x̂1 < x̂2) or decreasing
goals (x̂1 > x̂2). Together with the fact that self 0 has symmetric preferred decisions, this implies
that asymmetric goals are never optimal.

Lemma 5 The upper bound on implementable goals for task 1 or 2, respectively, under broad
accounts is greatest with symmetric goals, x̂1 = x̂2, and satisfies

β

{
π (1 + η [1 + (λ− 1)π (1 + (1− π) (1− 2π))]) h′H(xBmax) (39)

+(1− π)
(
1 + η

[
1 + (λ− 1) (1− π (1− π)2)

])
h′L(xBmax)

}
= (1 + β η) c′(xBmax).

The lower bound on implementable goals for task 1 or 2, respectively, under broad accounts is lowest
with symmetric goals and satisfies

β

{
π
(
1 + η

[
1 + (λ− 1)π2 (1− π)

])
h′H(xBmin) (40)

+(1− π)
(

1 + η
[
1 + (λ− 1)π (1 + (1− π) (1− 2π))

])
h′L(xBmin)

}
= (1 + β η λ) c′(xBmin).

Furthermore, xBmax > xB0 for β = 1.

Proof.
Utility of self 1: The consumption utility of self 1 from decisions x2 and x1 = x̂1 is

β {π hH(x2) + (1− π)hL(x2) + π hH(x̂1) + (1− π)hL(x̂1)} − c(x̂1)− c(x2).

The gain-loss utility in the cost dimension

• for x2 > x̂2 is β η λ (c(x̂2)− c(x2));

• for x2 < x̂2 is β η (c(x̂2)− c(x2)).

The only difference between the cases of symmetric, increasing, and decreasing goals is the gain-loss
utility in the benefit dimension after a deviation of self 1 in task 2. To save space, we use κ to
summarize the constant terms in the gain loss utility, such as factor× hH(x̂i) and factor× hL(x̂i);
and we drop the proportionality factor β η. Further, we refer to the bound xBmax (xBmin) simply as
maximal (minimal) implementable goal.
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Symmetric goals (x̂1 = x̂2)

Maximal implementable goal: Consider first deviations to x2 < x̂2, where x̂2 − x2 is small
in the sense that hH(x2) ≥ hL(x̂2) (condition A), hH(x̂1) + hL(x2) ≥ hL(x̂1) + hL(x̂2) (condition
B), and hH(x̂1) + hH(x2) ≥ hL(x̂1) + hL(x̂2) (condition C). The gain-loss utility in the benefit
dimension is given by

(1− π)2

π2 hH(x2)︸ ︷︷ ︸
c

+π (1− π)hH(x2)︸ ︷︷ ︸
a

+π (1− π)hL(x2)︸ ︷︷ ︸
b

+λ (1− π)2 hL(x2)


+2 (1− π)π

π2 hH(x2)︸ ︷︷ ︸
a

+

I︷ ︸︸ ︷
λπ (1− π) [hH(x2) + hL(x2)] +λ (1− π)2 hL(x2)]


+λπ2

{
π2 hH(x2) + π (1− π) [hH(x2) + hL(x2)] + (1− π)2 hL(x2)]

}
+ κ

= π {1 + (λ− 1)π [1 + (1− π) (1− 2π)]} hH(x2)
+(1− π)

{
1 + (λ− 1) [1− π (1− π)2]

}
hL(x2) + κ.

(41)

The terms underbraced by a - c are gains (i.e., not multiplied by λ), because conditions A - C hold.
Adding up the gain-loss utility in the benefit and cost dimensions as well as consumption utility,
and differentiating yields the definition of xBmax in equation (39).
For larger deviations, self 1 is more likely to suffer a loss compared to the case above. For example,
if condition A is violated, the terms underbraced by a in equation (41) are multiplied by λ. Hence,
this case gives a bound on implementable goals that is larger than xBmax. A similar argument applies
for deviations such that conditions B and C fail. Overall, xBmax is the lowest of these bounds and,
hence, the maximal implementable goal.

Minimal implementable goal: Consider deviations to x2 > x̂2, where x2 − x̂2 is small in the
sense that hL(x2) < hH(x̂2) (condition J), hL(x̂1) +hH(x2) < hH(x̂1) +hH(x̂2) (condition K), and
hL(x̂1) + hL(x2) < hH(x̂1) + hH(x̂2) (condition L). The gain-loss utility in the benefit dimension
is given by:

(1− π)2
{
π2 hH(x2) + π (1− π)hH(x2) + π (1− π)hL(x2) + (1− π)2 hL(x2)

}
+2 (1− π)π

π2 hH(x2) +

IV︷ ︸︸ ︷
π (1− π)hH(x2) + π (1− π)hL(x2) +λ (1− π)2 hL(x2)︸ ︷︷ ︸

j


+π2

π2 hH(x2) + λπ (1− π)hH(x2)︸ ︷︷ ︸
k

+λπ (1− π)hL(x2)︸ ︷︷ ︸
j

+λ (1− π)2 hL(x2)︸ ︷︷ ︸
l

+ κ

= π
{

1 + (λ− 1)π2 (1− π)]
}
hH(x2)

+(1− π) {1 + (λ− 1)π [1 + (1− π) (1− 2π)]} hL(x2) + κ.

(42)

The terms underbraced by j - l are losses (i.e., multiplied by λ), because conditions K - L hold.
Adding up the gain-loss utility in the benefit and cost dimensions as well as consumption utility,
and differentiating yields the definition of xBmin in equation (40).
For larger deviations, self 1 is more likely to experience a gain compared to the case above. For
example, if condition J is violated, the terms underbraced by j in equation are multiplied by 1
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instead of λ. Hence, this case gives a bound on implementable goals that is smaller than xBmin.
A similar argument applies for deviations such that conditions K and L fail. Overall, xBmin is the
highest of these bounds and, hence, the minimal implementable goal.

Increasing goals (x̂1 < x̂2)

Maximal implementable goal: Consider deviations to x2 < x̂2, where x̂2 − x2 is small in the
sense that conditions A - C from above hold and, in addition, hH(x̂1) +hH(x2) > hL(x̂1) +hH(x̂2)
(condition D), and hL(x̂1) + hH(x2) > hH(x̂1) + hL(x̂2) (condition E) or hH(x̂1) + hL(x2) >

hL(x̂1) + hH(x̂2) (condition F ). Note that at most one of the conditions (E) and (F ) can hold for
small deviations, because either hL(x̂1) + hH(x̂2) is greater, equal, or less than hH(x̂1) + hL(x̂2).
Start from the following expression:

(1− π)2

π2 hH(x2)︸ ︷︷ ︸
c

+π (1− π)hH(x2)︸ ︷︷ ︸
a

+π (1− π)hL(x2)︸ ︷︷ ︸
b

+λ (1− π)2 hL(x2)


+ (1− π)π

π2 hH(x2)︸ ︷︷ ︸
a

+

II︷ ︸︸ ︷
λπ (1− π)hL(x2) + π (1− π)hH(x2)︸ ︷︷ ︸

e

+λ (1− π)2 hL(x2)


+ (1− π)π

π2 hH(x2)︸ ︷︷ ︸
d

+

III︷ ︸︸ ︷
π (1− π)hL(x2)︸ ︷︷ ︸

f

+λπ (1− π)hH(x2) +λ (1− π)2 hL(x2)


+ λπ2

{
π2 hH(x2) + π (1− π) [hH(x2) + hL(x2)] + (1− π)2 hL(x2)

}
+ κ.

(43)

Similar to above, some of the gains in the terms underbraced by a - f turn into losses if some of the
conditions A - F fail. Compared to the case with symmetric goals, losses are less likely. To see this,
note first that condition D is weaker than condition A. Next, compare term I in equation (41) with
terms II and III in equation (43). Because conditions E and F cannot both hold, 2 × I ≥ II+III
in all cases. All other terms in equations (41) and (43) coincide. Hence, xBmax ≥ xBmax,incr.

Minimal implementable goal: Consider deviations to x2 > x̂2, where x2 − x̂2 is small in the
sense that conditions J - L from above hold and, in addition, hL(x̂1) + hH(x2) < hH(x̂1) + hL(x̂2)
(condition M) or hH(x̂1) + hL(x2) < hL(x̂1) + hH(x̂2) (condition N). Note that conditions M and
N cannot both hold. Start from the following expression:

(1− π)2
{
π2 hH(x2) + π (1− π)hH(x2) + π (1− π)hL(x2) + (1− π)2 hL(x2)

}
+ (1− π)π

π2 hH(x2) +

V︷ ︸︸ ︷
λπ (1− π)hH(x2)︸ ︷︷ ︸

m

+π (1− π)hL(x2) +λ (1− π)2 hL(x2)︸ ︷︷ ︸
j


+ (1− π)π

π2 hH(x2) +

V I︷ ︸︸ ︷
π (1− π)hH(x2) + λπ (1− π)hL(x2)︸ ︷︷ ︸

n

+λ (1− π)2 hL(x2)︸ ︷︷ ︸
j


+ π2

π2 hH(x2) + λπ (1− π)hH(x2)︸ ︷︷ ︸
k

+λπ (1− π)hL(x2)︸ ︷︷ ︸
j

+λ (1− π)2 hL(x2)︸ ︷︷ ︸
l

+ κ.

(44)

50



Similar to above, some of the losses in the terms underbraced by j - n turn into gains if some
of the conditions J - N fail. Compared to the case with symmetric goals, losses are more likely.
To see this, compare term IV in equation (42) with terms V and V I in equation (44). Because
conditions M and N cannot both hold, and all other terms in equations (42) and (44) coincide,
xBmin ≤ xBmin,incr.

Decreasing goals x̂1 > x̂2

By analogous arguments as for increasing goals, xBmin < xBmin,decr and xBmax > xBmax,decr. To see this
note that nowhere in the derivations for increasing goals did we use x̂2 > x̂1.

B.3 Comparison of narrow and broad accounting

B.3.1 Proof of Lemma 3

Subtracting the term attached to h′H(xi) in equation (39) from the corresponding term in equation
(37) yields A ≡ −β η (λ− 1)π2 (1− π) (1− 2π). A < 0 if and only if π < 1/2. This gives π = 1/2
for the special case where hL(xi) = 0 for all xi. The difference between the terms attached to
h′L(xi) is B ≡ β η (1 − π)

[
1 + (λ− 1)π (1− π)2

]
. B > 0 for π ∈ (0, 1) and B = 0 for π ∈ {0, 1}.

Recall that h′H(xi) > h′L(xi) for xi > 0 and that A > 0 for π > 1/2. Hence, for π > 1/2 we have
Ah′H(xi) +B h′L(xi) > (A+B)h′L(xi) > 0, which implies xNmax > xBmax. Thus, by the intermediate
value theorem, the cutoff π ∈ (0, 1/2].

B.3.2 Proof of Proposition 5

Overview: If broad and narrow accounts allow to implement the same decisions, then self 0 strictly
prefers broad accounts (proposition 4). For π ≤ π we have xNmax ≤ xBmax (lemma 3). So for π ≤ π

a broad account does strictly better than narrow accounts (if no profitable joint deviation exists
under broad accounts; see section 5.4.1). For π = 1, broad and narrow accounts do equally well,
because xBmax = xNmax and risk pooling plays no role. The proof consists of showing that, starting
from π = 1, a marginal decrease in π leads to a larger drop in utility under broad than under
narrow accounts. That is, for π close to 1, narrow accounts yield strictly larger utility than broad
accounts. The intermediate value theorem then implies the existence of a cutoff π̂ ∈ (π, 1), such
that for π̂ < π < 1 narrow accounting is strictly optimal.

Broad accounts: Note that for xBmax < xB0 , self 0 implements xBmax (or possibly an even lower deci-
sion). Hence, the maximized utility of self 0 under broad accounts cannot exceed UB0 (xBmax, x

B
max|·).33

33The utility of self 0 is bounded above by UB0 (xBmax, x
B
max|xBmax, xBmax) because utility is strictly increasing for

decision levels xi < xB0 . For our purpose of deriving conditions when narrow accounts dominate broad accounts, it

does not matter whether or not this bound is tight. While xBmax only rules out unilateral deviations by self 1, any

possibilities for profitable joint deviations would only reduce the maximized utility by further restricting the set of

decisions that self 0 can implement (see also section 5.4.1).
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Our goal is to derive a formula for how this maximized utility of self 0 varies with π, at π = 1. For
this we use the following interim results.

UB0 (xBmax, x
B
max|xBmax, xBmax) = 2β

{
hL(xBmax) + [hH(xBmax)− hL(xBmax)]B(π)− c(xBmax)

}
,

d UB0 (·)
d π

= 2β [hH(xBmax)− hL(xBmax)]B′(π)

+ 2β
{

[h′H(xBmax)− h′L(xBmax)]B(π) + h′L(xBmax)− c′(xBmax)
} d xBmax

d π
,

whereB(π) = π [1− η (1− π) (1− π (1− π)) (λ− 1)] andB′(π) = 1−η (1−2π) [1− 2π (1− π)] (λ−
1). Next we derive d xBmax

d π . Based on equation (39), ΦB(x, π) = 0 implicitly defines xBmax(π), where34

ΦB(x, π) ≡ β

{
π h′H(x)

(
1 + η

[
1 + (λ− 1)π (2− 3π + 2π2)

] )
+(1− π)h′L(x)

(
1 + η

[
1 + (λ− 1) (1− π (1− π)2)

] )}
− (1 + β η) c′(x).

Implicit differentiation gives d xBmax
d π = −ΦB

π (x, π)/ΦB
x (x, π), where

ΦB
π (x, π) = β

{
h′H(x)

[
1 + η (1 + (λ− 1)π (4− 9π + 8π2))

]
− h′L(x)

[
1 + η

(
1 + (λ− 1)

{
1 + (1− π)3 − 3π (1− π)2

}) ]}
,

ΦB
x (x, π) = β

{
π h′′H(x)

[
1 + η

[
1 + (λ− 1)π (2− 3π + 2π2)

] ]
+ (1− π)h′′L(x)

[
1 + η

[
1 + (λ− 1) (1− π (1− π)2)

] ]}
− (1 + β η) c′′(x).

To show our result, we need to derive dUB0 (xBmax,x
B
max|xBmax,xBmax)
d π

∣∣∣
π=1

. Using our above derivations,
B(1) = 1, B′(1) = 1 + η (λ− 1), and

d xBmax
d π

∣∣∣∣
π=1

= β
h′H(xBmax) [1 + η (1 + 3 (λ− 1))]− h′L(xBmax) (1 + η λ)

(1 + β η) c′′(xBmax)− β (1 + η λ)h′′H(xBmax)
.

Hence, the impact of a marginal change in π on the utility of self 0 at xBmax, at π = 1, is

dUB0 (·)
d π

∣∣∣∣
π=1

= β

{
2

≡κB(xB
max)︷ ︸︸ ︷

[hH(xBmax)− hL(xBmax)] [1 + η (λ− 1)] (45)

+ 2

ψB(xB
max)︷ ︸︸ ︷

β [h′H(xBmax)− c′(xBmax)]
h′H(xBmax) [1 + η (1 + 3 (λ− 1))]− h′L(xBmax) (1 + η λ)

(1 + β η) c′′(xBmax)− β (1 + η λ)h′′H(xBmax)

}
.

34Note that 2− 3π + 2π2 = 1 + (1− π) (1− 2π). The former representation is easier to work with here.
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Narrow accounts: Note that UN0 (xN0 |xN0 ) ≥ UN0 (xNmax|xNmax). So if
UN0 (xNmax|xNmax) > UB0 (xBmax, x

B
max|xBmax, xBmax), then also UN0 (xN0 |xN0 ) > UB0 (xBmax, x

B
max|xBmax, xBmax).

Hence, it is sufficient to show the former inequality. The following interim results allow us to con-
sider below how UN0 (xNmax|xNmax) varies with π, at π = 1.

UN0 (xNmax|xNmax) = β {π [hH(x)− hL(x)] [1− η (1− π) (λ− 1)] + hL(x)− c(x)} ,
d UN0 (xNmax|xNmax)

d π
= β [hH(x)− hL(x)] [1− η (λ− 1) (1− 2π)]

+ β

{
[h′H(x)− h′L(x)]π [1− η (1− π) (λ− 1)] + h′L(x)− c′(x)

}
d xNmax
d π

.

Based on equation (37), ΦN (x, π) = 0 implicitly defines xNmax(π), where

ΦN (x, π) ≡ β
{
π h′H(x) [1 + η (1 + (λ− 1)π)] + (1− π)h′L(x) (1 + η λ)

}
− (1 + β η) c′(x).

Implicit differentiation gives d xNmax
d π = −ΦN

π (x, π)/ΦN
x (x, π), where

ΦN
π (x, π) = β

{
h′H(x) [1 + η (1 + 2 (λ− 1)π)]− h′L(x) (1 + η λ)

}
,

ΦN
x (x, π) = β

{
π h′′H(x) [1 + η (1 + (λ− 1)π)] + (1− π)h′′L(x) (1 + η λ)

}
− (1 + β η) c′′(x).

To derive dUN0 (xNmax|xNmax)
d π |π=1, use our above results to obtain

d xNmax

d π

∣∣∣∣
π=1

= β
h′H(xNmax) [1 + η (1 + 2 (λ− 1))]− h′L(xNmax) (1 + η λ)

(1 + β η) c′′(xNmax)− β (1 + η λ) h′′H(xNmax)
.

Hence, the impact of a marginal change in π on the utility of self 0 at xNmax, at π = 1, is

dUN0 (·)
d π

∣∣∣∣
π=1

= β

{ ≡κN (xN
max)︷ ︸︸ ︷

[hH(xNmax)− hL(xNmax)] [1 + η (λ− 1)] (46)

+

ψN (xN
max)︷ ︸︸ ︷

β [h′H(xNmax)− c′(xNmax)]
h′H(xNmax) [1 + η (1 + 2 (λ− 1))]− h′L(xNmax) (1 + η λ)

(1 + β η) c′′(xNmax)− β (1 + η λ)h′′H(xNmax)

}
.

Comparison: For π = 1, xNmax = xBmax ≡ xmax and 2UN0 (xmax|·) = UB0 (xmax, xmax|·). Introducing
a little bit of uncertainty, narrow accounts thus do strictly better than broad accounts if utility
drops by less under narrow accounts, i.e., if

2
dUN0 (xNmax|·)

d π

∣∣∣∣
π=1

<
d UB0 (xBmax, x

B
max|·)

d π

∣∣∣∣
π=1

. (47)

Comparing equations (45) and (46), note that κN (xmax) = κB(xmax) and that all terms in
ψB(xmax) and ψN (xmax) coincide, except for η (1 + 3 (λ − 1)) in ψB(xmax) and η (1 + 2 (λ − 1))
in ψN (xmax). Note further that at π = 1, xNmax = xBmax ≡ xmax < xB0 = xN0 , and therefore
h′H(xmax)− c′(xmax) > 0. Finally, η (1 + 3 (λ− 1)) > η (1 + 2 (λ− 1)) implies that inequality (47)
holds.
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B.3.3 Proof of Corollary 2

Part 2 follows from part 1 and proposition 5. For part 1, we need to show that there exists no
profitable joint deviation if the individual sets goals x̂ = xB0 and xBmin ≤ xB0 ≤ xBmax. By the same
arguments as in the proof of proposition 3, we can restrict attention to deviations (x′1, x

′
2) of the

kind x′2 < xB0 < x′1 and write the utility change from the deviation as a line integral
∫ x′1
xB0

φ′(x1) dx1.

Hence, the aim is to show that φ′(x1) < 0 for every point (x1, z(x1)) on the path along which we
are integrating. We abbreviate h1 ≡ h(x1), h2 ≡ h(z(x1)), etc., and use short-hands for the slopes
of the path as well as the iso-benefit and iso-cost curves, respectively: −d z(x1)

d x1
≡ rz,

h′1
h′2
≡ rh, and

c′1
c′2
≡ rc. Taking the derivative of the utility of self 1 yields

φ′(x1) = β π
[
(1 + η κ1)h′1 − (1 + η κ2)h′2 rz

]
− (1 + β η κ3)

[
c′1 − c′2 rz

]
, (48)

where the parameters κj ∈ {1, 2, 3} depend on the kind of deviation (see below).

a) z(x′1) < xcm(x′1).

We exploit path-independence of the line integral. There exists a path from (xB0 , x
B
0 ) to

(x′1, x
′
2) for which at every point 0 < rh < rc < rz. The parameters for the benefit dimension

are κ1 = 1 + (λ− 1)π2 and κ2 = 1 + (λ− 1)π [1 + (1− π) (1− 2π)]. And κ3 = 1 because self
1 feels a gain in the cost dimension. Hence,

φ′(x1) = β π h′2 [(1 + η κ1) rh − (1 + η κ2) rz] + (1 + β η) c′2 [rz − rc]

< β π h′2 [(1 + η κ1) rh − (1 + η κ2) rz] + β π h′2 (1 + η κ2) [rz − rc]

∝ (1 + η κ1) rh − (1 + η κ2) rc < (1 + η κ1) rh − (1 + η κ2) rh

∝ (κ1 − κ2) = −2π (1− π)2 (λ− 1) < 0.

The second line exploits that z(x1) < xB0 ≤ xBmax implies β π [1 + η κ2] h′2 > (1 + β η) c′2 (cf.
lemma 4, setting h′L(x) = 0) and that rz > rc. The third line uses rc > rh.

b) xcm(x′1) ≤ z(x′1) < xhm(x′1).

Along the path 0 < rh < rz ≤ rc, self 1 feels a loss in the cost-dimension, i.e. κ3 = λ. Hence,

φ′(x1) = β π h′2 [(1 + η κ1) rh − (1 + η κ2) rz] + (1 + β η λ) c′2 [rz − rc]

≤ β π h′2 [(1 + η κ1) rh − (1 + η κ2) rz] < 0,

because κ2 > κ1, where κ1 and κ2 are the same as in case a).

c) xhm(x′1) ≤ z(x′1) < xB0 .

Along path 0 < rz ≤ rh < rc, we have κ1 = 1+(λ−1)π2 (1−π), κ2 = 1+(λ−1)π (1−π) (2−π),
and κ3 = λ. Hence,

φ′(x1) = β π h′1

[
(1 + η κ1)− (1 + η κ2)

rz
rh

]
− (1 + β η λ) c′1

[
1− rz

rc

]
< β π (1 + η κ1)h′1

[
1− rz

rh

]
− (1 + β η λ) c′1

[
1− rz

rc

]
<

[
β π (1 + η κ1)h′1 − (1 + β η λ) c′1

] [
1− rz

rc

]
< 0.
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The second line exploits κ2 > κ1; the third uses 1 − rz/rc > 1 − rz/rh ≥ 0 and that x1 >

xB0 ≥ xBmin implies β π [1 + η κ1] h′1 < (1 + β η λ) c′1 (cf. lemma 4, setting h′L(x) = 0).

B.3.4 Proof of Corollary 3

Part 1. Subtract the term attached to h′H(xi) in equation (40) from the corresponding term in
equation (38), yielding A ≡ −β η (λ− 1)π3 (1− π). The difference between the terms attached to
h′L(xi) is B ≡ −β η (λ − 1)π (1 − π)2 (1 − 2π). Recall that h′H(xi) > h′L(xi) for xi > 0. Hence,
Ah′H(xi) +B h′L(xi) < (A+B)h′L(xi) < 0, which implies xNmin < xBmin.

Part 2. Rewrite equations (34) and (36) in the form c′(xA0 ) = ρAL h
′
L(xA0 )+ρAH h

′
H(xA0 ) and equations

(38) and (40) in the form c′(xAmin) = κAL h
′
L(xAmin) + κAH h

′
H(xAmin), where A ∈ {B,N} and

ρNL = (1− π) [1 + η (λ− 1)π], ρNH = π [1− η (λ− 1) (1− π)] ,

κNL = β (1−π) [1+η (1+(λ−1)π)]
1+β η λ , κNH = β π (1+η)

1+β η λ ,

ρBL = (1− π) [1 + η (λ− 1) {1− π (1− π)}] , ρBH = π [1− η (λ− 1) (1− π) {1− π (1− π)}] ,

κBL = β (1−π) (1+η [1+(λ−1)π (1+(1−π) (1−2π))])
1+β η λ , κBH =

β π (1+η [1+(λ−1)π2 (1−π)])
1+β η λ .

All κAj -terms, j ∈ {L,H}, A ∈ {B,N}, are increasing in β. So it is enough to show that ρAj > κAj
at β = 1. For narrow accounts, ρNL − κNL = η (1− π) (λ− 1) (1 + η λπ)/(1 + η λ) > 0. Assumption
2’ directly gives ρNH > κNH . For broad accounts,

ρBL − κBL =
η (1− π) (λ− 1)

1 + η λ

[
1 + (1− π) (1− 2π) + 2π2 (1− π) + η λ (1− π (1− π))

]
> 0,

ρBH − κBH =
η (1− π) (λ− 1)π

1 + η λ
[π (1 + (1− π) (1− 2π))− η λ (1− π) (1− π (1− π))] .

Note that
ρBH − κBH > 0 ⇔ π (1 + (1− π) (1− 2π))

(1− π) (1− π (1− π))
> η λ.

Assumption 2’ implies that π
1−π ≥ η λ. To complete the proof, observe that for π ∈ (0, 1)

π (1 + (1− π) (1− 2π))
(1− π) (1− π (1− π))

>
π

1− π
.

Part 3. Follows from parts 1 and 2 together with proposition 4, because xB0 < xBmax at β = 1.

B.4 The risk-incentive effect with N > 2 tasks

To extend the model to N > 2 tasks, assume for simplicity that tasks are symmetric and that
hL(x) = 0 for all x. Consider broad accounts with symmetric goals x̂1 = · · · = x̂n = x̂ for tasks
n = 1, . . . , N . Suppose the individual sticks to his goal in all tasks, except for task 1. What impact
would a deviation to x1 < x̂ in task 1 have? Again, broad accounts have both a positive and
negative effect on incentives, compared to narrow accounts.
The positive incentive effect. The individual expects that he will sometimes fail in task 1 but
still succeeds. The outcome in task 1 then can help reduce a loss stemming from an expectation
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to succeed in other tasks. Such “cross-subsidization” occurs in all events where (i) the individual
expects to fail in task 1, (ii) actually succeeds in task 1, and (iii) the combined realized benefit from
the other n − 1 tasks, k · h(x̂) (where k is the number of successes in the n − 1 remaining tasks)
falls short of the reference point for the other n − 1 tasks, m · h(x̂) (where m is the number of
expected successes in the n− 1 remaining tasks). That is, the probability that cross-subsidization
occurs is π2 times the probability that m > k, given by

y ≡ Pr(m > k) =
N−1∑
m=1

[(
N − 1
m

)
πm (1− π)N−1−m

︸ ︷︷ ︸
probability of event m

×
m−1∑
k=0

((
N − 1
k

)
πk (1− π)N−1−k

)
︸ ︷︷ ︸

probability of k < m for fixed m

]
.

The negative incentive effect. Successes in tasks n 6= 1 may already allow to avoid a loss
stemming for the expectation to succeed in task 1. This occurs in all events where (i) the individual
expects to succeed in task 1, (ii) actually fails in task 1, and (iii) the k successes in the n−1 remaining
tasks allow to meet the reference point (m + 1) h(x̂). That is, the probability that such an event
occurs is π (1− π) times the probability that m < k, or π (1− π) (1− z − y), where

z ≡ Pr(m = k) =
N−1∑
m=0

[(
N − 1
m

)
πm (1− π)N−1−m

]2

.

Putting the two effects together, we obtain an expression that corresponds to Pr(lossB) in equation
(14). Given an expectation to succeed in task 1 (which occurs with probability π), a success in
task 1 is only needed with probability 1 − (1 − y − z) to prevent a loss. Given an expectation to
fail in task 1 (which occurs with probability 1− π), a success in task 1 can prevent a loss in other
tasks with probability y. That is, the probability of a loss caused by unilateral deviation x1 < x̂ is

Pr(lossB) = π2 [1− (1− y − z)] + π (1− π) y = π (y + π z).

Note that this formula nests the special case N = 2, where Pr(lossB) = π2 [1 + (1 − π) (1 − 2π)]
(cf. equation 18). For narrow accounts nothing changes relative to our analysis in section 5.3,
Pr(lossN ) = π2. One can check numerically that broad accounts are less motivating than narrow
accounts for π > 1

2 , because then Pr(lossN ) > Pr(lossB). Further, such a numerical exercise shows
that |xBmax − xBmin| grows with the number of tasks N that are jointly evaluated. In this sense,
increasing the breadth of an account translates into stronger (weaker) incentives for π < 1

2 (π > 1
2).

C Proof of Proposition 6

We provide the proof only for the pre-task information scenario. The main driving forces are
essentially the same in the interim-information scenario (derivations are available from the authors).
Part 1: see the main text. To show part 2, we first derive the bounds to determine the max-
imal implementable goals under narrow accounting.35 Next, we ask whether narrow-accounting
implementable goals are also broad-accounting implementable, or if decision substitution prevents
this.

35Our focus is on the maximal implementable goals because we are interested whether goals can help to overcome

the individual’s self-control problem. The arguments for the minimal implementable goals are analogous.
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Narrow-accounting implementable goals

Self t.I, who observes the productive state and revises the inherited goal x̂t to xt < x̂t, has utility

β h(x̂t)− c(xt) + η γτ,t [π λ (h(xt)− h(x̂t)) + (1− π) (h(xt)− 0)]

−η γτ,t [π (c(xt)− c(x̂t)) + (1− π)λ (c(xt)− 0)]

The first order condition implicitly defines x̃Nmax,t:

(β + η γτ,t [1 + (λ− 1)π]) h′(x̃Nmax,t) = (1 + η γτ,t [λ− (λ− 1)π]) c′(x̃Nmax,t). (49)

If self 1.I maintains the goal for task 1 but revises the goal for the productive state of task 2
to x2 < x̂2, he experiences anticipatory utility from comparing the new reference distributions
with the inherited reference distribution. That is, for the benefits he compares h(x̂1) with (π ◦
h(x̂1); (1 − π) ◦ 0) and (π ◦ h(x2); (1 − π) ◦ 0) with (π ◦ h(x̂2); (1 − π) ◦ 0). Similarly for the
costs. Moreover, he anticipates that the goal revision will affect the anticipatory utility that
self 2.I feels after receiving pre-task information. The expected anticipatory gain-loss utility is
−η γτ,2 π (1 − π) (λ − 1) (h(x2) + c(x2)). It results from comparisons in each state with the then
inherited reference distributions (π ◦ h(x2); (1 − π) ◦ 0) and (π ◦ c(x2); (1 − π) ◦ 0). The utility of
self 1.I hence is given by

β h(x̂1)− c(x̂1) + β π h(x2)− β π c(x2) + η γτ,1 (1− π) [h(x̂1)− λ c(x̂1)]

+η γτ,1 [π λ (h(x2)− h(x̂2))− π (c(x2)− c(x̂2))]− η β γτ,2 π (1− π) (λ− 1) (h(x2) + c(x2))

The first order condition implicitly defines x̌max,2:

(β + η γτ,1 λ− η β γτ,2 (1− π) (λ− 1)) h′(x̌Nmax,2)

= (β + η γτ,1 + η β γτ,2 (1− π) (λ− 1)) c′(x̌Nmax,2). (50)

The same bound applies if self 1.I is in the unproductive state. Comparing equations (49) and
(50), note that γτ,1 ≥ β γτ,2 implies x̌Nmax,2 ≥ x̃Nmax,2. That is, the additional bound is not binding
if anticipatory utility weighs at least as strongly as discounted future anticipatory utility.
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Are narrow-accounting implementable goals broad-accounting implementable?

Taking the derivative of the utility of self 1 in equation (21) with respect to x1, dividing by c′1, and
using the fact that cost matching implies d x2

d x1
= − c′1

c′2
, we obtain

β
h′1
c′1
− 1 + β π

(
h′2
c′2
− 1
)
c′2
c′1

d x2

d x1
− β η γτ,2 π (1− π) (λ− 1)

(
h′2
c′2

+ 1
)
c′2
c′1

d x2

d x1

+ η γτ,1

[
[1 + (λ− 1)π]

(
h′1
c′1

+ π
h′2
c′2

c′2
c′1

d x2

d x1

)
− (1− π) [1 + (λ− 1) (1− π)]

]
∝ β

h′1
c′1
− 1− β π

(
h′2
c′2
− 1
)

+ β η γτ,2 π (1− π) (λ− 1)
(
h′2
c′2

+ 1
)

+ η γτ,1

[
[1 + (λ− 1)π]

(
h′1
c′1
− π h

′
2

c′2

)
− (1− π) [1 + (λ− 1) (1− π)]

]
(51)

≤ β (1− π)
h′2
c′2
− (1− β π) + η γτ,1 (1− π)

{
[1 + (λ− 1)π]

h′2
c′2
− [1 + (λ− 1) (1− π)]

+ β π (λ− 1)
(
h′2
c′2

+ 1
)}
≡ Ψ(π).

The last step uses γτ,2 ≥ γτ,1, and that h′2
c′2
≥ h′1

c′1
> 1 at (x1 = x∗0,1, x2 = x∗0,2) because x∗0,1 ≥ x∗0,2.

Note that Ψ(1) = −(1 − β) < 0. Further, for π = 0, the expression in equation (51) becomes
h′1
c′1

(β + η γτ,1) − (1 + η λ γτ,1) > 0, where the inequality follows from applying the definition of
x̃Nmax,t in equation (49) and the fact that x∗0,t < x̃Nmax,t. Hence, by the intermediate value theorem,
there exists a π̂ ∈ (0, 1), such that for all π ≥ π̂ decision substitution pays off. In this case,
the preferred decisions of self 0 are not broad-accounting implementable and narrow accounting is
optimal.
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