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The economic literature emphasizes strongly the importance of schooling in increasing 

productivity, improving health and nutrition and reducing fertility (see Behrman [1987]). Schooling can 

affect productivity both directly, by improving basic skills, and indirectly, by affecting training. Do the 

better educated receive by firms more or less training? A positive association between education and 

training has two implications. If the more educated also receive more training, both on the job and off the 

job, an increase in the average level of educational attainment leads to even higher human capital and 

productivity. On the other hand, initial individual differences in the level of human capital are bound to 

widen in the labor market. 

The economic literature does not provide a clear-cut answer to the question above. A strand of 

literature going back to the mid 1970s argues in a rather informal way that more education leads to more 

training. According to Thurow [1975] and Rosen [1976], education improves learning skills, thereby 

reducing (marginal) training costs. Since optimal investment in training obtains when marginal costs are 

equal to marginal benefits, a reduction in marginal costs given marginal benefits increases investment. A 

more recent strand does not fully support this view. According to Sicherman [1990] and Hersch [1991], 

over - educated individuals receive less on the job training than individuals with less education. This 

happens because the over - educated are less willing, or less able, to learn, which increases (marginal) 

costs of training, thereby leading to lower training incidence.  

 Clearly, education does not affect only the marginal costs of training. If education and training 

are technical complements in the production of human capital, an increase in attained education  

increases the productivity of training and positively affects marginal benefits. Given marginal costs, 

higher education leads to higher training incidence. 

The purpose of this paper is to investigate in an empirical way the relationship between education 

and training provided by the firm, both on the job and off the job, using a unique dataset based on a 

survey of Thai employees conducted by a team led by one of the authors during the summer of 2001. The 

survey covers 1737 employees belonging to 20 large firms operating in four selected industries in the 

Bangkok area. These employees filled a questionnaire especially designed to elicit information on 

earnings, education, training and family background. The availability of information on the last three 

variables is an important feature of these data. Failure to control for family connections and ability could 

lead to spurious associations between schooling, training and earnings.  
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 We distinguish between two types of training, on the job and off the job, and show that only the 

former type is significantly related to educational attainment. In particular, we find that individuals with 

more education are less likely to receive on the job training. Therefore, our data provide little support to 

the view that more education leads to more training. If anything, we find support for the contrary. We 

also find some evidence that education and training are technical complements, especially  in the case of 

off the job training. In order to explain our empirical  results,  we need to assume that more educated 

individuals have higher, not lower, marginal costs of training, especially when on the job training is 

concerned. Either the better educated have lower learning skills in jobs requiring on the job training or 

they have higher opportunity costs of training, or both.  

The paper is organized as follows. Section 2 introduces two economic models in which to 

highlight the relationship between education and training. Section 3 presents the data and Section 4 

discusses the econometric specification. Empirical results are shown in Section 5 and discussed in 

Section 6, which also concludes. 

 

2. �������

�

 The purpose of this section is to introduce the concept of technical complementarity between 

education and training and to investigate how it relates to the co-movement, across individuals and over 

time, of these two variables. We use two simple models, Model A and Model B. While the first model is 

static, the second model is dynamic. 

�

��������

 

Consider the following production function 

 

�	
 �          [1] 

 

where 
 is output and 	 is the stock of human capital accumulated by each (identical) employee, and let 

this stock be an increasing function of both education � and training �    

   

),( ��	 ��          [2] 
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Technical complementarity between education and training is defined by the additional condition 

 

0�
��

�          [3] 

 

which says that an increase in education raises the marginal productivity of training. With no 

depreciation, the stock of training � in each period of time is simply  

 

1��� �
�          [4] 

 

where 
 is training during the period and 1��  is the stock at the beginning of each period.  

Training is costly both to the employer and to the employee. We ignore the interesting issues 

associated to the allocation of these costs to the parties and define net output per head as  

 

),(),( �����
 �� ��        [5]   

 

where ),( ���  is the cost of training per head, that we assume to vary both with the stock of training � 

and with the level of education �. One possible reason why training costs vary with education is that the 

better educated have higher learning skills, which reduces the cost of training them compared with the 

less educated.  

 Conditional on previous training 1�� , the optimal level of investment is obtained by maximizing 

net output. The solution is the same if the program [5] is replaced by an enforceable efficient contract 

between a firm and a worker, designed to maximize profits subject to a participation constraint. The first 

order condition associated to this problem is simply 

 

 0),(),( �� ����
��

��        [6] 

 

where the subscript indicates the partial derivative with respect to training. Using a double subscript for 

the second partial derivatives, total differentiation of the first order condition yields 

 

����

����

�
�

��
��

�
�

�
�
�

        [7] 
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This condition clarifies that technical complementarity does not necessarily imply that better 

educated individuals receive more training. To see why, notice first that the denominator in [7] is 

negative to fulfil the second order conditions. An increase in education leads to more training only if  

����
�� � <0. If the marginal cost of training increases with education faster than the marginal product of 

training, better educated individuals end up with less training even in the presence of technical 

complementarity1.  

 

��������

�

 One problem with model A is that the relationship between training costs and education is not 

well specified. One could argue, as we have done above, that more education reduces (marginal) training 

costs. While this argument has some natural appeal, one could also argue that too much education 

reduces the willingness to undertake training, especially in jobs that are not well suited to the education 

attained.  

 An alternative way of thinking about how education affects marginal costs is to emphasize the 

opportunity costs of training. By undertaking training, an individual is giving up current production to 

increase future production. In equilibrium, the optimal training policy must balance the marginal costs 

and the marginal benefits of the additional investment. Consider a single (representative) employee and 

assume a working life lasting 	 periods. In each period, the employer and the employee efficiently 

choose how much time to devote to additional training 
, that we normalize to lie in the (0,1) range. 

Current production depends on education and previously accumulated human capital via training, and 

future production depends on the current training investment.  

Define the present discounted value of total net output as  

 

�
�

� ��
�

�

��

� 
�
1

1 )1( ��         [8] 

 

where h is time,  the discount factor,  

 

),( 1��
��

����          [9] 

                                                 
1 The model can be easily extended to include two types of training. 
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is real output per head and 
 
 

���
��� ��

�1�         [10] 

 
 
is accumulated training, with  as the depreciation rate of human capital.  

Clearly, training investment in the final period (��	) is zero, as the cost cannot be recouped. In 

the previous to the last period, however, optimal investment is obtained by maximizing 

 
),(),()1( 1221 ����

���
����

����
 ����      [11] 

 
 
with respect to 1��
 . In this case, the first order condition is  
 

),(),( 122 ���

��
���

���� ����       [12] 

 
where 

 

1

12
12

),(
),(

�

��

�� �
��

��
�

��

�� 


��


��
��

��      [13] 

 
 
Similarly, the first order condition for ��	���is 
 

),(),()1[(),( 122313 ������

�����
������

��
��
�� ��������   [14] 

 
Making use of repeated substitutions in the first order conditions, it can be checked that [14] applies to all 

earlier periods as well. 

Assuming that the real wage � is proportional to output per head2, we can re-write the above 

condition as  

 

 ])1[( 1
1

1 �

�

�
�

�
�

��
�

�

�

��
�



�


� ���       [15] 

 

The left - hand side represents the marginal cost and the right – hand side is the marginal benefit of 

training. An increase in education can affect both marginal costs and marginal benefits. First, there is 

abundant empirical evidence that more education leads to higher wages (see Card [1999]), implying that 
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it is more costly to train an educated worker. Second, higher education increase future marginal benefits 

if education and training are technical complements, that is, if  

 

0
),( 11 �

��
�

�
��

�
��

�

��

�

�

�

�

�

�
�

       [16] 

 

 To further illustrate, consider a two – period version of the above model. Because of the second 

order conditions for a maximum, the marginal benefits schedule must be downward sloping with respect 

to training ��� Since the current wage depends on previous training, the marginal cost schedule is flat. 

Equilibrium investment is shown in Figure 1 below. 

 

 

In the presence of technical complementarity, higher education shifts both the marginal costs and the 

marginal benefits schedule upwards, with a positive effect on wages but uncertain effects on training 

investment and training incidence. A key insight provided by the models in this section is that technical 

complementarity is not sufficient to guarantee a positive relationship between education and training.  

 

 

                                                                                                                                                                        
2 This assumption holds in a Nash bargaining setup where training costs are proportional to output per head. 

MB 

MC 

T 

MB 
MC 

T* 

Figure 1 
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3. �����
�
�

�

� The employee survey on which our data are based covers firms belonging to four industries: food 

processing, auto parts, hard disk drive makers and computer components (mainly IC). The latter two 

industries are high tech and dominated by foreign subsidiaries. Thailand is one of the largest production 

locations for hard disk drives and related components, and this industry is one of the country’s major 

exporters (see Doner and Brimble [1998]). The former two industries use more labor intensive 

production technologies and include a substantial share of domestic firms.  

Despite being hi-tech, HDD and IC/PC firms are also fairly labor intensive, as production gets 

outsourced in Thailand from abroad to take advantage of the favorable price of labor. In the HDD 

industry, production involves mainly head stack and head gimbals assembly, which are very labor 

intensive. Final HDD assembly is usually done in China. 

The selection of these industries provides a reasonable coverage of Thai industry without 

pretending to produce a statistically representative sample. Due to financial constraints, we have 

restricted our attention to firms with plants located in the Greater Bangkok area. Firms in the four 

industries were approached and asked too cooperate to the survey. Overall, 20 firms agreed to cooperate, 

5 in food processing, 5 in auto parts, 6 in personal computers and 4 in the HDD industry. The firms in the 

sample have more than 100 employees (more than 1000 in the HDD industry). After restricting our 

sample to production workers, technicians and engineers, we stratified employment in each firm by age 

and education and randomly sampled employees within each cell, using larger weights for smaller firms. 

Each selected employee was interviewed by trained personnel hired by the Thailand 

Development Research Institute (����), which cooperated to the project. Since the questionnaire is 

rather lengthy (121 questions), individual interviews lasted on average 40 minutes.  The questionnaire 

asks detailed information about family background, education, previous job experience, job allocation,  

training and monthly labor income net of bonuses but gross of overtime. Some of these questions are 

asked not only for the reference period of the survey (year 2001)  but also for the years 1998 to 2000. The 

timing of some of the retrospective questions is framed to generate predetermined variables. To illustrate, 

monthly wages were asked with reference to January of each year, and the questions on the occurrence of 

training referred to the full year. Therefore, training in 1999 could be considered as predetermined with 

respect to wages in 2000, which were measured in January 2000.  

While we acknowledge that recall data are affected by different types of measurement error (see 

Beckett et al [2001]), we stress that many of these questions are qualitative (requiring only a yes or no 



 10 

answer). We also stress that the relative short span of recall is likely to reduce the relative importance of 

these errors. Overall, our sample provides a snapshot of events for an important group of Thai 

employees. It is not, however, a statistically representative sample, both because of the selection of 

industries and because of the endogenous selection associated with the participation of firms to the 

project. These limits, induced mainly by financial constraints, need to be weighted against the 

advantages, which include the collection of detailed current and retrospective information on family 

background, education and different types of training. This information is not readily available from 

nationally representative labor surveys.   

  Compared to the entire Thai labor force, our sample is substantially more educated. Table 1 

shows the distribution of employment by education and industry in the sample (columns 1 to 4) and in the 

total labor force. The share of employees with primary education in our sample is close to zero in three 

industries out of four and significantly different from zero only in the food processing industry. In 

Thailand as a whole, this share is as high as 75 percent3. On the other hand, college graduates are 44 

percent of all employees in the personal computers industry and only 9 percent in the national average.  

 

�
�������������������������������������
��
������ ����
������
�
�����
����

---------------------------------------------------------------- 
       (1)         (2)  (3)    (4)    (5) 
 
primary    0.36        0.00        0.03        0.03       0.75  
 
second.    0.41        0.55        0.62        0.62       0.16  
 
tertiary   0.22        0.44        0.34        0.35       0.09   
 
---------------------------------------------------------------- 

�
Notes: second: lower and upper secondary education. (1): foodstuffs; (2):  
Electronics; (3): auto components; (4): HDD components; (5) national average (OECD). 

    

 

These drastic differences are accounted by the fact that we are selecting industries with more than 100 

employees, where the average age of employees is close to 28 years. Moreover, the national average 

includes agricultural employment, where average educational attainment is very low. 

Table 2 presents the summary statistics of the main variables in the survey for the year 2001, 

separately for males and females. Average age of sampled employees is about 28 years, and average 

tenure in 1998 (
����), the start of the reference period, is about 2 and a half years for males and slightly 
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over 3 years for females. On the other hand, previous labor market experience recorded at the start of the 

period (�����) is close to 2 years for both males and females.  

The survey asks individuals about their highest attained degree. We convert the answers in years 

of education by applying to each degree the required number of years of schooling4. Average years of 

attained education is close to 13 years for males and to 11 years for females. Therefore, females in the 

sample have less education but longer tenure. On the other hand, males have changed more jobs (��� !) 

during their previous labor market experience (1.11 versus 0.92 jobs). 

We collect information both about on the job ("#�) and off the job ("$$#�) training provided by 

the firm. The former includes both formal and informal training carried out on the job, and focuses 

mainly on the performance of daily tasks. The latter is formal training carried out off the job and 

organized by the firm either in or outside the premises, and either during or after standard working hours.  

While OJT is provided mainly by senior workers in the same unit, team leaders and foremen (72% of the 

total), OFFJT is supplied mainly by instructors from professional training centres and from outside the 

company (86% of the total) and concerns both daily tasks, quality standards and safety regulations.  

For each type of training, the survey whether the employee has had any training during the 

reference period (the year), a simple (0,1) dummy, and about training frequency. The latter question is 

framed differently depending on whether we consider OJT or OFFJT. In the former case we ask the  

number of training events per year. In the second case we ask the employee to rank the frequency of 

events in different categories (daily, once a week…). In the final coding we measure OJT frequency as a 

discrete variable taking the values 0 to 3, with zero for no training and three for the highest frequency. 

The difference in the question about frequency can be explained with the fact that OJT includes both 

formal and informal events, and is therefore more difficult to grasp with precision than OFFJT, which 

takes place outside the work premises.  

 Starting with training incidence in 2001 (��
�for on the job and �%% for off the job), we find that 

55% of the males in the sample have undertaken some OJT in 2001, compared to 67% of the females. 

Interestingly, the opposite holds for OFFJT, with 67 % of the males and 58% of the females receiving it. 

When we cumulate training events over the entire period (1998-2001) by summing up the dummies for 

each year5, however, we find that off the job training incidence over the four years (!�%%) is about the 

                                                                                                                                                                        
3Clearly such a high percentage discounts the important role played by agriculture. 
4 We set 0 years for no education, 6 years for primary, 9 years for lower secondary, 12 years for upper secondary and lower 
vocational, 14 years for upper vocational and 16 years for college or more. 
5 We compute !��
�as the sum of ��
, a (0,1) dummy, over the relevant sample period. For instance, sojt in 1999 is the sum of ojt 
in 1998 and 1999, and is equal to 2 is training occurred in both years, to 1 if training occurred in only one year and to zero if 
training never occurred. 
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same for males and females. The difference still remains, however, when we consider cumulated on the 

job training (!��
).  

 

 

�
����!����
���
�
���
�

�
�
���
��������������
����
��
�����������
����!""��
------------------------------------------------------- 
# obs :         690                1047 
               males                females        
------------------------------------------------------- 
wage     14386   (8237)       9347  (5260)             
ten98         2.59   (3.54)    3.29  (3.60) 
exp98        2.17   (3.44)          2.27  (3.72)     
ojt           0.55   (0.49)          0.67  (0.46)       
off    0.67   (0.46)       0.58  (0.48) 
frojt    1.00   (1.14)  1.18  (1.11) 
froff     2.03   (2.91)  1.55  (2.41)           
promo    0.13   (0.34)  0.09  (0.29) 
sojt    1.89   (1.69)  2.41 (1.63) 
soff     2.30   (1.47)  2.33  (1.47) 
sfrojt   3.37   (3.86)  4.23 (3.92)  
sfroff   7.92  (10.68)  6.69  (9.53) 
spromo   0.47   (0.77)  0.31  (0.64)  
edyear  12.90   (2.59)      10.67  (3.05)   
age   28.26   (5.34)      28.09  (6.31)   
njobs    1.11   (1.38)          0.92  (1.09) 
feduc    0.26   (0.43)       0.18  (0.38)   
meduc    0.15   (0.36)  0.09  (0.28)  
seduc    0.72   (0.44)  0.59  (0.49) 
sibli    3.12   (2.18)   3.36  (2.23) 
------------------------------------------------------- 
Notes: wage: nominal monthly wage in baths; ten98 = tenure in 1998; exp98 = previous labor market 
experience in 1998; ojt   = dummy equal to 1 if any OJT training occurred in year h; off= dummy 
equal to 1 if any OFFJT training occurred in year h; frojt = frequency of OJT in year h; froff 
= frequency of OFFJT in year h; promo= dummy equal to 1 if promoted in year h; sojt = sum 
of ojt from 1998 to year h; soff  = sum of off from 1998 to year h; sfrojt = sum of frojt from 
1998 to year h; sfroff = sum of froff from 1998 to year h; spromo = sum of promo from 1998 to 
year h; edyear = years of education; njobs= number of jobs held before current job; feduc= education 
of the father (1: higher than primary; 0: primary or less); meduc = education of the mother (1: 
higher than primary; 0: primary or less); seduc = education of the oldest sibling (from 0 to 3); 
sibli = number of siblings.�

 
 
 
 

Turning to frequencies, we find similar differences by gender and type of training. Males 

experience more frequently off the job training (%&�%%) and less frequently on the job training (%&��
). A 

similar ranking holds for cumulated frequencies (!%&�%%�and !%&��
�respectively). The evidence based on 

simple averages suggests the presence both of a negative correlation between educational attainment and 

OJT and of a positive correlation between education and OFFJT.  

With reference to family background, we have information on the father’s (%��'() and mother’s 

education ()��'(), on the education of the oldest sibling (!��'() (next to oldest if the employee is the 

oldest) and on the number of siblings (!* �*). The information on parental background is recoded to 
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generate two (0,1) dummies, with 0 referring to primary education or less and 1 referring to higher 

education. It turns out that male employees, who have higher educational attainment, have also a “better” 

family background, since both parents and the oldest sibling have higher education and the number of 

siblings is smaller. 

Finally, we notice that males have on average substantially higher wages and a higher incidence 

of promotion, both in the final year of the sample (�&�)�)  and in the entire reference period (!�&�)�). 

Table 3 shows the means of the same variables separately for production workers, team leaders and 

foremen, and for technicians and engineers. As expected, the latter group is better educated than the 

former and receives on average less OJT  and more OFFJT. Given the type of job they are likely to be in, 

engineers are bound to receive more formal OFFJT than shop floor employees.  

 

 

 

�
����#����
���
�
���
�

�
�
���
��������������
����
��
����$����%����!""���
 
------------------------------------------------------- 
# obs :         1465             272 
             production                tech+eng        
------------------------------------------------------- 
wage       10157   (5945)         17755 (8851)             
ten98         3.20   (3.86)    2.01 (2.73) 
exp98        2.35   (3.74)          1.58 (2.76)     
ojt           0.64   (0.48)          0.54 (0.49)       
offjt    0.61   (0.48)       0.68 (0.46) 
frojt    1.13   (1.27)  0.96 (1.12) 
froff    1.71   (2.63)  1.93 (1.67)           
promo    0.11   (0.31)  0.11 (0.32) 
sojt    2.26   (1.66)  1.91 (2.65) 
soff     2.31   (1.48)  2.40 (1.39) 
sfrojt   4.00   (3.94)  3.30 (3.75)  
sfroff   7.09  (10.22)  7.66 (9.06) 
spromo   0.34   (0.66)  0.55 (0.84)  
edyear  11.02   (3.00)      14.44 (1.50)   
age   28.22   (6.22)      27.85 (4.06)   
njobs    0.99   (1.22)          1.02 (1.23) 
feduc    0.19   (0.39)       0.33 (0.47)   
meduc    0.09   (0.29)  0.21 (0.40)  
seduc    0.59   (0.49)  0.82 (0.38) 
sibli    3.36   (2.23)   2.93 (2.06) 

-------------------------------------------------------------------------------------- 
Notes: see Table 2. 
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4. ����	�����������&�������
�����

 The simple models presented in Section 2 of the paper show the relationship between optimal 

investment in training and technical complementarity between education and training. While training in 

these models is a continuous flow variable, our data include both qualitative information on whether 

training has taken place in a given interval of time and measures of training frequency. We treat the 

former as an indicator of training incidence. Since the information on whether there has been any training 

during the reference period (a year) is organized as a (0,1) dummy variable, we use the Probit 

specification. On the other hand, we consider frequency information as count data, because of the large 

number of zeros and small values (see Greene [1993]), and use a Poisson specification.  

 We pool the available data over the period 1999-2001 and estimate the following empirical 

training models  

 

)*,,,,,,,( 
���#�
�$�+
,��-�.&��
 ��     [17] 

)*,,,,,,,( 
���#�
�$�+
,��-�.&�%% ��     [18] 

)*,,,,,,,( 
���#�
�$�+
,��-�.&/%&��
 �     [19] 

)*,,,,,,,( 
���#�
�$�+
,��-�.&/%&�%% �     [20] 

 

where  is for the standard Normal and P for the Poisson distribution, , is a vector of individual 

variables, which includes tenure and experience in 1998,  gender (!��), marital status ().&&-), household 

size (�!*0�)1� the number of previous jobs held, whether the first job was in production (%��&��), and 

whether the first job was quitted because of the prospect of better wages (%�2'*3), Z is a vector including  

lagged training of either type and lagged promotion, and $�, 
�, #��and  ��4
� are vectors of firm, 

year, job and industry by year dummies. For each specification, we experiment with and without the 

lagged variables in vector Z.  

 Since training incidence and frequency depend on individual ability, which is usually not 

observed by the econometrician, we try to capture differences in ability with family background 

variables. The underlying idea is that unobserved ability can be considered “..as the consequence  of the 

genetic and environmental contribution of the family…” (Willis [1986], p.584).  Vector Y therefore 

includes the father’s, the mother’s and the oldest sibling education, the number of siblings, whether the 

employee is the oldest son or daughter and three dummies for the macro-region of birth. These dummies 
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are expected to capture differences in school quality, which also influences the development of 

individual ability, in the three areas outside Greater Bangkok (the omitted area).   

 Training incidence equations tell us whether variations across individuals in educational 

attainment affect the probability of training. Whether this probability increases or decreases depends, in 

equilibrium, on the relative shifts of the marginal benefits and marginal costs schedules. As shown in 

Figure 1, the marginal benefits schedule shifts upwards if there is technical complementarity between 

education and training. Technical complementarity is a propriety of the production function and cannot 

be directly tested unless we observe individual productivity. Since this information is not available, we 

make the standard assumption of proportionality between productivity and wages and estimate the 

following Mincerian equation  

  

)*()*(ln 1111 ����

������ !�%%��-�.&!��
��-�.&!�%%!��
��-�.&� ���	�
  

 
 

)98*()*()*()*( 111111 
����-�.&�&�)�!�%%�&�)�!��
!�%%!��
 ���� ����
������

 

    
��� ����� )*,,,()98exp*( 
���#�
�$�
,��-�.&  [21] 

 

where we ignore the time subscript and !��
 and !�%% are the cumulated training events from the start of 

the reference period (1998) to the selected year6. Following the indications of our simple models, we use 

cumulated events rather than current events (��
 and �%%) because wages are affected by the stock of 

human capital accumulated by training, not just by the most recent flow. Cumulated events can proxy 

accumulated human capital during the window covered by the questionnaire, but do not capture the 

initial stock of human capital before the start of the observation period. We capture this stock with tenure 

and labor market experience at the start of the sample, in 1998. While (21) is specified as a function of 

cumulated training events, we also experiment with cumulated training frequencies (sfrojt and sfroff). 

 We use lagged rather than current cumulated training to exploit the natural sequence of events in 

the data: wages in January 2000 are affected by training during 1998 and 1999, not by training in later 

years. We also add a full set of interactions, between different types of training and education, between 

education, tenure and experience, between training and lagged cumulated promotion and finally between 

on the job and off the job training. As in the training incidence equation, we pool the available 

information (from 1999 to 2001 because of the presence of lags) and use the full set of firm, year, job and 

                                                 
6 For instance, we consider training in 1998 and 1999 for the wage in January 2000 and training in 1998 for the wage in 
January 1999.  
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industry by year dummies. Beside the individual controls in ,, we also include family background 

variables (
), again with the purpose of capturing cross section differences in individual unobserved 

ability. 

Assuming that wages are proportional to output per head, technical complementarity requires that  
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      [22] 

 

where the second term on the right hand side reflects the fact that the Mincerian equation is nonlinear in 

education and training. If human capital increases productivity and wages, and training and education 

contribute positively to the accumulation of human capital, both elements in the second term are positive. 

It follows that a sufficient (but not necessary) condition for technical complementarity is that  

0
ln

����
��

�
���

��
�

 in the case of OJT and 0
ln

����
��

�
���

��
�

 in the case of OFFJT. 

 

5. ������������

.5��&.*�*�6���(*���(���

We start the presentation of our results from training incidence. For each training type (on the job 

or off the job) we estimate a Probit model when the dependent variable is the event of training in each 

year and a Poisson model when the dependent variable is the frequency of training in each year. For each 

model, we estimate two specifications, one with and one without family background variables.  

Consider first OJT (Tables 4 and 5 for training incidence and frequency respectively). We find 

that individuals with higher education have significantly lower training incidence. This finding remains 

even when we include lagged training and promotion among the explanatory variables. There is also 

evidence that individuals with higher previous labor market experience and tenure in the firm have 

significantly lower training incidence. If we interpret these variables as accumulated training before 

1998, this suggests that individuals with a higher initial stock of human capital accumulated in the labor 

market need less OJT. Lagged OJT influences strongly current OJT, which points to persistence. On the 

other hand, having received OFFJT in the previous period reduces the likelihood of currently receiving 

OJT. Finally, we find that the inclusion of family background variables affect only marginally the 

coefficient associated to years of education. 
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(standard errors in parentheses with p<0.05 = ~, p<0.01 = *) 
------------------------------------------------------- 
# obs :     5202        4899        5202        4899    
Depvar:      ojt         ojt         ojt         ojt    
------------------------------------------------------- 
ten98     -0.0088*    -0.0117*    -0.0327*    -0.0325*  
         (0.0063)    (0.0066)    (0.0078)    (0.0083)   
exp98     -0.0155~    -0.0156~    -0.0195~    -0.0195~  
         (0.0066)    (0.0068)    (0.0079)    (0.0081)   
marry      0.0048*     0.0143*    -0.0411     -0.0367   
         (0.0204)    (0.0211)    (0.0249)    (0.0258)   
sex       -0.2344*    -0.2486*    -0.1690*    -0.1862*  
         (0.0515)    (0.0539)    (0.0611)    (0.0636)   
hsize     -0.0414*    -0.0454*    -0.0130~    -0.0145~  
         (0.0090)    (0.0096)    (0.0116)    (0.0124)   
edyear    -0.0578*    -0.0572*    -0.0278*    -0.0284~  
         (0.0089)    (0.0095)    (0.0104)    (0.0112)   
fjprod     0.0295      0.0224      0.0248      0.0235   
         (0.0458)    (0.0470)    (0.0546)    (0.0561)   
njobs     -0.0082~    -0.0093      0.0097      0.0058   
         (0.0197)    (0.0206)    (0.0225)    (0.0231)   
fjquiw      0.130*     0.1412*     0.0542~     0.0567   
         (0.0487)    (0.0506)    (0.0581)    (0.0602)   
feduc                 -0.1366~                -0.1203   
                     (0.0542)                (0.0682)   
meduc                 -0.0823                  0.0092   
                     (0.0696)                (0.0856)   
seduc                  0.0752~                 0.0604   
                     (0.0333)                (0.0407)   
oldest                -0.0349                 -0.0548~  
                     (0.0460)                (0.0567)   
sibli                  0.0003                 -0.0007   
                     (0.0103)                (0.0130)   
ojt(-1)                           2.1689*     2.1927*  
                                 (0.0522)    (0.0548)   
promo(-1)                        -0.1138     -0.1368   
                                 (0.0841)    (0.0852)   
off(-1)                          -0.2216*    -0.2540*  
                                 (0.0562)    (0.0589)   
Reg  Yes         Yes         Yes         Yes     
Firm        Yes         Yes         Yes         Yes     
Job         Yes         Yes         Yes         Yes     
Year        Yes         Yes         Yes         Yes     
YI          Yes         Yes         Yes         Yes     
======================================================= 
Notes: see Table 2. Oldest: whether the employee is the oldest son or daughter; fjprod: whether 
first job was in production; fjquiw: whether first job was quitted because of better wage 
prospects; reg = region of birth dummies; firm: firm dummies; Job: job dummies; Year: year dummies; 
YI: year by industry dummies; sex: gender dummy (1:male); marry: marital status dummy; hsize: 
household size; ten98: tenure in 1998; exp98: labor market experience in 1998. 

 

 

 

 



 18 

Conditional on education and experience, training is less frequent among female employees and among 

individuals who belong to larger households. Since household size is larger on average among female 

workers with poorer family background, this variable could be capturing the joint negative effect of 

gender and family background on training incidence. A possible interpretation of this result is that 

employers statistically discriminate against female employees.  
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(standard errors in parentheses with p<0.05 = ~, p<0.01 = *) 
------------------------------------------------------- 
# obs :     5202        4899        5177        4879    
Depvar:     frojt       frojt       frojt       frojt    
------------------------------------------------------- 
ten98     -0.0062     -0.0104     -0.0148*    -0.0151*  
         (0.0051)    (0.0054)    (0.0034)    (0.0035)   
exp98     -0.0133~    -0.0140~    -0.0113~    -0.0115~  
         (0.0059)    (0.0060)    (0.0050)    (0.0052)   
marry      0.0230      0.0275     -0.0191     -0.0152   
         (0.0162)    (0.0166)    (0.0102)    (0.0104)   
sex       -0.1480*    -0.1743*    -0.0424     -0.0431   
         (0.0442)    (0.0456)    (0.0295)    (0.0301)   
hsize     -0.0590*    -0.0628*    -0.0058     -0.0073   
         (0.0082)    (0.0085)    (0.0052)    (0.0055)   
edyear    -0.0543*    -0.0529*    -0.0154*    -0.0163*  
         (0.0067)    (0.0070)    (0.0048)    (0.0050)   
fjprod      0.030      0.0302      0.0294      0.0284   
         (0.0370)    (0.0371)    (0.0273)    (0.0275)   
njobs     -0.0411~    -0.0430~    -0.0060     -0.0058   
         (0.0169)    (0.0172)    (0.0126)    (0.0128)   
fjquiw     0.0765~     0.0722      0.0365      0.0403   
         (0.0388)    (0.0395)    (0.0266)    (0.0269)   
feduc                 -0.0617                 -0.0328   
                     (0.0446)                (0.0306)   
meduc                 -0.0572                 -0.0278   
                     (0.0610)                (0.0423)   
seduc                  0.0842*                 0.0250   
                     (0.0255)                (0.0170)   
oldest                -0.0811~                -0.0082   
                     (0.0366)                (0.0245)   
sibli                  0.0154                 -0.0006   
                     (0.0084)                (0.0053)   
frojt(-1)                         0.6180*     0.6165*  
                                 (0.0110)    (0.0113)   
promo(-1)                        -0.0136     -0.0172   
                                 (0.0362)    (0.0355)   
froff(-1)                        -0.0008     -0.0033   
                                 (0.0029)    (0.0031)   
Reg  Yes         Yes         Yes         Yes     
Firm        Yes         Yes         Yes         Yes     
Job         Yes         Yes         Yes         Yes     
Year        Yes         Yes         Yes         Yes     
YI          Yes         Yes         Yes         Yes     
======================================================= 
Note: see Table 4. 
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The uncovered negative relation between educational attainment and OJT could simply be driven by the 

fact that we are including different jobs in the same regression. If engineers have higher education and 

lower OJT than production workers, this between – jobs variation could explain our results. To check 

this, we run the same regressions by retaining only production workers. Results in Table 6 below7 show 

that the relation between education and OJT remains negative and significant.  
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(standard errors in parentheses with p<0.05 = ~, p<0.01 = *) 
------------------------------------------------------- 
# obs :     3420        3228        3420        3228    
Depvar:      ojt         ojt         ojt         ojt    
------------------------------------------------------- 
ten98     -0.0097     -0.0165     -0.0415*    -0.0448*  
         (0.0081)    (0.0085)    (0.0098)    (0.0103)   
exp98     -0.0128     -0.0123     -0.0205~    -0.0197~  
         (0.0082)    (0.0084)    (0.0095)    (0.0097)   
marry      0.0271      0.0503     -0.0324     -0.0231   
         (0.0250)    (0.0259)    (0.0296)    (0.0307)   
sex       -0.1723~    -0.1880*    -0.1568~    -0.1811~  
         (0.0674)    (0.0713)    (0.0772)    (0.0818)   
hsize     -0.0477*    -0.0559*    -0.0117     -0.0165   
         (0.0111)    (0.0119)    (0.0138)    (0.0149)   
edyear    -0.0675*    -0.0711*    -0.0333*    -0.0359*  
         (0.0108)    (0.0115)    (0.0123)    (0.0133)   
fjprod     0.0718      0.0424      0.0584      0.0470   
         (0.0550)    (0.0563)    (0.0651)    (0.0670)   
njobs     -0.0168     -0.0289     -0.0019     -0.0141   
         (0.0254)    (0.0261)    (0.0290)    (0.0298)   
fjquiw     0.0495      0.0699      0.0428      0.0570   
         (0.0593)    (0.0614)    (0.0688)    (0.0708)   
feduc                 -0.1776*                -0.1517   
                     (0.0681)                (0.0856)   
meduc                 -0.0171                  0.1034   
                     (0.0932)                (0.1110)   
seduc                  0.0911~                 0.0801   
                     (0.0427)                (0.0511)   
oldest                 0.0095                 -0.0068   
                     (0.0571)                (0.0688)   
sibli                  0.0102                  0.0081   
                     (0.0129)                (0.0158)   
                     (0.0774)                (0.0945)   
ojt(-l)                           2.1009*     2.1170*  
                                 (0.0649)    (0.0680)   
promo(-l)                        -0.1685     -0.1863   
                                 (0.1228)    (0.1244)   
off(-1)                          -0.2421*    -0.2779*  
                                 (0.0664)    (0.0695)   
Reg      Yes         Yes         Yes         Yes     
Firm        Yes         Yes         Yes         Yes     
Job         Yes         Yes         Yes         Yes     
Year        Yes         Yes         Yes         Yes     
YI          Yes         Yes         Yes         Yes     
======================================================= 
Note: see Table 4. 
 

                                                 
7 Results (available upon request) do not change when we use training frequency. 
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Turning to OFFJT (Tables 7 and 8 for training incidence and frequency respectively), we find that 

the relationship between education and training incidence is positive but  not significantly different from 

zero. In contrast to the results for OJT, there is evidence that the incidence of OFFJT increases with 

tenure at the start of the sample period.  
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(standard errors in parentheses with p<0.05 = ~, p<0.01 = *) 
------------------------------------------------------- 
# obs :     5202        4899        5202        4899    
Depvar:      off         off         off         off    
------------------------------------------------------- 
ten98      0.0444*     0.0407*     0.0132      0.0126   
         (0.0072)    (0.0075)    (0.0075)    (0.0079)   
exp98      0.0128      0.0127      0.0065      0.0066   
         (0.0071)    (0.0073)    (0.0077)    (0.0079)   
marry      0.0033      0.0010     -0.0354     -0.0417   
         (0.0209)    (0.0216)    (0.0228)    (0.0236)   
sex       -0.0647     -0.0786     -0.0158     -0.0222   
         (0.0536)    (0.0559)    (0.0573)     (0.060)   
hsize      0.0021      0.0045      0.0097      0.0120   
         (0.0091)    (0.0097)     (0.010)    (0.0106)   
edyear     0.0051      0.0046      0.0110      0.0134   
         (0.0091)    (0.0097)    (0.0097)    (0.0104)   
fjprod     0.0215      0.0075     -0.0026     -0.0033   
         (0.0470)    (0.0481)    (0.0506)    (0.0518)   
njobs     -0.0195     -0.0186     -0.0134     -0.0136   
         (0.0199)    (0.0205)    (0.0217)    (0.0222)   
fjquiw     0.1693*     0.1644*     0.0997      0.0901   
         (0.0495)    (0.0510)    (0.0530)    (0.0546)   
feduc                 -0.0891                 -0.0170   
                     (0.0558)                (0.0591)   
meduc                  0.1419                  0.1035   
                     (0.0750)                (0.0792)   
seduc                 -0.0282                 -0.0430   
                     (0.0342)                (0.0366)   
oldest                -0.1151~                -0.0812   
                     (0.0468)                (0.0504)   
sibli                  0.0020                 -0.0006   
                     (0.0107)                (0.0115)   
ojt(-1)                           0.2394*     0.2363*  
                                 (0.0449)    (0.0467)   
promo(-1)                        -0.0786     -0.0789   
                                 (0.0742)    (0.0766)   
off(-1)                           1.2375*     1.2347*  
                                 (0.0458)    (0.0473)   
Reg  Yes         Yes         Yes         Yes     
Firm        Yes         Yes         Yes         Yes     
Job         Yes         Yes         Yes         Yes     
Year        Yes         Yes         Yes         Yes     
YI          Yes         Yes         Yes         Yes     
======================================================= 
Notes: see Table 4. 
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While we  find that having had OJT in the previous period improves OFFJT incidence in the current 

period, there is no significant evidence that female employees receive less OFFJT than their male 

colleagues.  
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(standard errors in parentheses with p<0.05 = ~, p<0.01 = *) 
------------------------------------------------------- 
# obs :     5190        4889        5175        4877    
Depvar:     froff      froff       froff       froff    
------------------------------------------------------- 
ten98      0.0224*     0.0220*     0.0176*     0.0169*  
         (0.0061)    (0.0062)    (0.0048)    (0.0050)   
exp98     -0.0004      0.0028     -0.0067     -0.0042   
         (0.0079)    (0.0080)    (0.0061)    (0.0063)   
marry      0.0439      0.0389     -0.0293     -0.0350   
         (0.0230)    (0.0234)    (0.0186)    (0.0180)   
sex        0.0589      0.0265     -0.0021     -0.0118   
         (0.0463)    (0.0477)    (0.0411)    (0.0431)   
hsize     -0.0024     -0.0009      0.0141      0.0127   
         (0.0109)    (0.0112)    (0.0078)    (0.0080)   
edyear     0.0329*     0.0177      0.0089      0.0007   
         (0.0109)    (0.0104)    (0.0096)    (0.0090)   
fjprod     0.1656*     0.1349*     0.1098*     0.1034*  
         (0.0451)    (0.0451)    (0.0395)    (0.0386)   
njobs     -0.0210     -0.0180      0.0018      0.0027   
         (0.0282)    (0.0284)    (0.0192)    (0.0197)   
fjquiw     0.0343      0.0665      0.1076*     0.1131*  
         (0.0497)    (0.0515)    (0.0387)    (0.0393)   
feduc                 -0.0097                  0.0622   
                     (0.0535)                (0.0441)   
meduc                  0.0274                  0.0741   
                     (0.0692)                (0.0620)   
seduc                  0.0642                 -0.0394   
                     (0.0351)                (0.0298)   
oldest                -0.0050                  0.0461   
                     (0.0507)                (0.0398)   
sibli                  0.0172                  0.0010   
                     (0.0102)                (0.0076)   
frojt(-1)                         0.0754*     0.0714*  
                                 (0.0155)    (0.0149)   
promo(-1)                         0.0318      0.0270   
                                 (0.0530)    (0.0525)   
foff(-1)                          0.0992*     0.1002*  
                                 (0.0120)    (0.0120)   
Reg  Yes         Yes         Yes         Yes     
Firm        Yes         Yes         Yes         Yes     
Job         Yes         Yes         Yes         Yes     
Year        Yes         Yes         Yes         Yes     
YI          Yes         Yes         Yes         Yes     
======================================================= 
Notes: see Table 4. 
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The finding that the incidence and frequency of training depends both on education and on previous 

training (of either type) implies that, in the long run, higher education affects each type of training both 

directly and indirectly, by influencing the other type as well. We have checked in our data whether the 

overall direction of the relationship between education and training changes in the long run compared to 

the short run, when previous training is given, but found no instance of such an occurrence.  
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Since the standard Mincerian earnings function does not include training and occupational 

dummies, we start by estimating a simplified version of  [21], which excludes cumulated training, 

interaction terms and job dummies. In line with the traditional specification, we retain tenure and 

experience net of tenure and investigate whether the estimated returns to education vary significantly 

with the inclusion of family background controls. Table 9 presents our findings for the full sample and 

two sub-samples, one for production workers (inclusive of team leaders and supervisors) and one for 

technicians and engineers.  

It turns out that the inclusion of family background variables reduces the estimated returns to 

education by close to 9% in the full sample and in the sub – sample of production workers and by close to 

5% in the sub – sample of technicians and engineers. Since the estimated returns to tenure and previous 

labor market experience also fall, the returns to human capital are significantly affected in the expected 

direction by the addition of information on parental education and region of birth.  We  find that the 

marginal returns to education in the full sample are equal to 5.3% per year, much less than 10.4%, the 

value reported for Thailand by Psacharopoulos [1994]. Only technicians and engineers in our sample get 

close to this number, with a marginal return equal to 15%.  

Next, we estimate equation [21] by adding training variables, job dummies and the relevant 

interactions. Table 10 shows the results of four regressions. While in the former two columns we measure 

training as cumulated events over the relevant interval, in the latter two columns we measure it as 

cumulated frequencies. For each measure of training, we estimate a wage regression with and without 

interactions between training, education and promotion. Each specification includes both individual 

characteristics and family background variables. 

We find that monthly earnings are higher for married males with higher tenure and previous 

experience who have quit their first job because of better wage prospects and who have been promoted in 

the interval period. Focusing on columns (1) and (3) of the table, our evidence also shows that, 
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conditional on education, monthly earnings are positively affected by training. These effects are bigger 

for OFFJT when we measure it as the sum of events in the sample period and bigger for OJT when we 

measure it as the frequency of training events. 
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(standard errors in parentheses with p<0.05 = ~, p<0.01 = *) 
------------------------------------------------------------------------------- 
# obs :     4671        4419        3953        3747         718         672    
Depvar:     wage        wage        wage        wage        wage        wage    
------------------------------------------------------------------------------- 
ten98      0.0418*     0.0385*     0.0402*     0.0372*     0.0731*     0.0692*  
         (0.0018)    (0.0019)    (0.0019)    (0.0019)    (0.0059)    (0.0058)   
exp98      0.0151*     0.0134*     0.0141*     0.0130*     0.0449*      0.040*  
         (0.0025)    (0.0025)    (0.0025)    (0.0025)    (0.0067)    (0.0073)   
fjprod    -0.0219     -0.0159     -0.0210     -0.0144      0.0194      0.0386   
         (0.0146)    (0.0146)    (0.0154)    (0.0152)    (0.0307)    (0.0317)   
njobs     -0.0069     -0.0090     -0.0122     -0.0137~     0.0111      0.0121   
         (0.0066)    (0.0066)    (0.0069)    (0.0069)    (0.0117)    (0.0118)   
fjquiw     0.0313~     0.0421*     0.0515*     0.0547*    -0.0875*    -0.0786~  
         (0.0153)    (0.0154)    (0.0166)    (0.0166)    (0.0322)    (0.0329)   
marry      0.0225*     0.0249*     0.0231*     0.0224*     0.0026      0.0123   
         (0.0063)    (0.0064)    (0.0067)    (0.0068)    (0.0139)    (0.0144)   
sex        0.2466*     0.2243*     0.1951*     0.1756*    -0.0102     -0.0360   
         (0.0152)    (0.0152)    (0.0181)    (0.0180)     (0.070)    (0.0776)   
hsize     -0.0040     -0.0079*     0.0010     -0.0027     -0.0162~    -0.0194~  
         (0.0028)    (0.0029)    (0.0029)    (0.0030)    (0.0076)    (0.0082)   
edyear     0.0589*     0.0533*     0.0477*     0.0434*     0.1643*     0.1552*  
         (0.0028)    (0.0030)    (0.0029)    (0.0030)    (0.0122)    (0.0129)   
re1                   -0.0644*                 -0.060*                 0.0000   
                     (0.0167)                (0.0180)                (0.0379)   
re2                   -0.0345                 -0.0346                 -0.0684   
                     (0.0196)                (0.0210)                (0.0413)   
re4                   -0.0459~                -0.0672*                 0.0059   
                     (0.0189)                (0.0207)                (0.0372)   
feduc                 -0.0045                 -0.0093                 -0.0722   
                     (0.0183)                (0.0198)                (0.0422)   
meduc                  0.1233*                 0.1166*                 0.0606   
                     (0.0238)                (0.0267)                (0.0494)   
seduc                  0.0226~                 0.0199                  0.0084   
                     (0.0099)                (0.0108)                (0.0214)   
oldest                 0.0034                 -0.0006                  0.0151   
                     (0.0143)                (0.0151)                (0.0340)   
sibli                  0.0140*                 0.0134*                 0.0078   
                     (0.0031)                (0.0034)                (0.0077)   
Firm        Yes         Yes         Yes         Yes         Yes         Yes     
Year        Yes         Yes         Yes         Yes         Yes         Yes     
YI          Yes         Yes         Yes         Yes         Yes         Yes     
------------------------------------------------------------------------------- 
R-sq        0.443       0.449       0.388       0.398       0.584       0.588   
=============================================================================== 
Note: see Table 4 
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When we consider the interaction terms between training and education, we find that the coefficients 

associated to the interaction between education and training, tenure and labor market experience are 

positive, albeit not always significantly different from zero. We have also checked whether log wages are 

increasing in training and education by evaluating the partial derivatives at the sample means of the 

relevant variables and found that in all circumstances this regularity condition was met.  Therefore, both 

the sufficient conditions and the overall conditions for technical complementarity hold in our data. 
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(standard errors in parentheses with p<0.05 = ~, p<0.01 = *) 
--------------------------------------------------------------- 
# obs :       4419        4419        4419        4419    
Depvar:      wage        wage        wage        wage    
--------------------------------------------------------------- 
ten98        0.0296*     0.0198*     0.0303*     0.0198*  
           (0.0019)    (0.0064)    (0.0019)    (0.0064)   
exp98       0.0118*     0.0089      0.0121*     0.0089   
           (0.0024)    (0.0053)    (0.0024)    (0.0053)   
fjprod      -0.0104     -0.0097     -0.0109     -0.0099   
           (0.0135)    (0.0134)    (0.0135)    (0.0134)   
njobs       -0.0102     -0.0109     -0.0101     -0.0105   
           (0.0057)    (0.0060)    (0.0057)    (0.0059)   
fjquiw             0.0483*     0.0461*     0.0508*     0.0486*  
           (0.0145)    (0.0146)    (0.0146)    (0.0146)   
marry         0.0205*     0.0183*     0.0206*     0.0176*  
           (0.0060)    (0.0061)    (0.0060)    (0.0061)   
sex           0.1292*     0.1260*     0.1278*     0.1231*  
           (0.0158)    (0.0159)    (0.0159)    (0.0158)   
hsize       -0.0058~    -0.0056~    -0.0056~    -0.0050   
           (0.0028)    (0.0028)    (0.0028)    (0.0028)   
edyear        0.0336*     0.0219*     0.0336*     0.0232*  
           (0.0030)    (0.0045)    (0.0030)    (0.0042)   
spromo(-1)       0.0523*     0.0624*     0.0546*     0.0789*  
           (0.0108)    (0.0223)    (0.0109)    (0.0180)   
sojt(-1)        0.0094     -0.0044                           
           (0.0057)    (0.0225)                           
soff(-1)           0.0230*    -0.0217                           
           (0.0062)    (0.0243)                           
sfrojt(-1)                                 0.0046~    -0.0061   
                                   (0.0023)    (0.0086)   
sfroff(-1)                                 0.0023~    -0.0088~  
                                  (0.0010)    (0.0044)   
esojt(-1)               0.0021                           
                    (0.0019)                           
esoff(-1)                    0.0046~                          
                      (0.0020)                           
edten98                    0.0009                  0.0010   
                          (0.0006)                (0.0006)   
edexp98                    0.0003                  0.0003   
                          (0.0005)                (0.0005)   
trint                    -0.0059                           
                     (0.0042)                           
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ojtpro                  -0.0035                           
                       (0.0084)                           
offpro                  -0.0059                           
                       (0.0094)                           
esfrojt                                            0.0012   
                                              (0.0007)   
esfroff                                           0.0011*  
                                                  (0.0003)   
trintf                                          -0.0002   
                                            (0.0002)   
frojtpr                                          -0.0022   
                                               (0.0027)   
froffpr                                          -0.0028~  
                                               (0.0012)   
re1         -0.0487*    -0.0506*    -0.0499*    -0.0538*  
           (0.0156)    (0.0157)    (0.0156)    (0.0156)   
re2         -0.0254     -0.0271     -0.0261     -0.0282   
           (0.0183)    (0.0183)    (0.0183)    (0.0183)   
re4         -0.0662*    -0.0656*    -0.0665*    -0.0664*  
           (0.0173)    (0.0173)    (0.0173)    (0.0173)   
feduc       -0.0108     -0.0105     -0.0126     -0.0126   
           (0.0173)    (0.0172)    (0.0174)    (0.0173)   
meduc              0.0772*     0.0799*     0.0790*     0.0805*  
           (0.0220)    (0.0218)    (0.0221)    (0.0218)   
seduc          0.0114      0.0136      0.0103      0.0112   
           (0.0094)    (0.0094)    (0.0094)    (0.0094)   
oldest         0.0098      0.0102      0.0085      0.0104   
           (0.0134)    (0.0134)    (0.0134)    (0.0134)   
sibli          0.0096*     0.0094*     0.0093*     0.0095*  
           (0.0030)    (0.0030)    (0.0030)    (0.0030)   
 
Firm             Yes         Yes         Yes         Yes     
Job              Yes         Yes         Yes         Yes     
Year             Yes         Yes         Yes         Yes     
YI               Yes         Yes         Yes         Yes     
--------------------------------------------------------------- 
R-sq          0.514       0.516       0.513       0.516   
=============================================================== 
Note: esojt=edyear*sojt; esoff=edyear*soff; edten98=edyear*ten98; edexp=edyear*exp98; trint=soff*sojt; ojtpro=sojt*promo; 

offpro=soff*promo; esfrojt=edyear*sfojt; esfroff= edyear*sfroff; trintf=sfrojt*sfoff; frojtpr=frojt*promo; froffpr=froff*promo. See Table 

4. 
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The evidence from incidence regressions points to a negative correlation between educational 

attainment and OJT and to the absence of a significant correlation between attainment and OFFJT. On 

the other hand, the evidence from wage regressions suggests the presence of technical complementarity 

between education and both types of training. This evidence is somewhat stronger for OFFJT than for 

OJT.  
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In the second section of the paper, we have presented two simple economic models, both 

predicting that optimal training investment is obtained when the marginal costs and the marginal benefits 

of training are equal. Changes in educational attainment could affect optimal investment by affecting 

either marginal costs or marginal benefits or both. Model B in particular suggests that the marginal cost 

of training is proportional to the wage. Since individuals with more education have a higher opportunity 

value of time, they have also higher marginal training costs. Therefore, their marginal costs schedule lies 

to the left of the schedule associated to individuals with less education.   

A shift from lower to higher education also affects marginal benefits, because of the 

complementarity between education and training. This complementarity is empirically stronger for 

OFFJT than for OJT. It follows that individuals with higher education have a marginal benefits schedule 

which lies to the right of the schedule accruing to less educated individuals. Moreover, the outward shift 

is quantitatively larger for OFFJT.  

The overall effect of these shifts on training incidence is illustrated in Figures 2 and 3 below. In 

the case of OJT, the shift in the marginal costs schedule is relatively larger than the shift in the marginal 

benefits schedule and training incidence falls for the better educated. In the case of OFFJT, however, the 

relative shift of the marginal benefits schedule is bigger, so that on balance training incidence does not 

change in a significant way. 

We can strengthen this interpretation by relying on additional factors affecting training costs. For 

instance, we could argue that the more educated have higher learning skills in more general and 

formalized OFFJT than in specific and often narrow OJT, because general education is more akin to 

formal off the job training. If this is the case, the outward shift in the training costs schedule for the more 

educated is smaller in the case of OFFJT than in the case of OJT. The important fact is that, in either 

cases, the marginal costs of training must be higher for the more educated. This is clearly in contrast with 

the literature reviewed in the introduction, which relies on the untested assumption that more education 

reduces marginal training costs. If anything, our data require the opposite to occur.  

 Our findings from wage regressions also suggest that training events increase future wages. Since 

average wages are related to labor productivity, we conclude that an increase in human capital, both via 

education and via training, positively affects labor productivity. Training affects future wages both 

directly and indirectly. The indirect effect occurs via promotion. We have shown that promotion records 

affect current wages. Not reported in the paper, a probit estimate of the probability of promotion shows 
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that this probability is significantly and positively affected by both off the job and on the job training 

events. Therefore, training events can affect wages and productivity by influencing the probability of 

promotion.  

The impact of educational attainment on wage and labor productivity is also both direct and 

indirect. To the direct and familiar effect one should add the indirect effect via training incidence: by 

affecting the investment in training, education influences the additional accumulation of human capital 

and future wages and productivity. An important result of this paper is that the direction of the indirect 

effect is likely to be negative, as OJT falls for the better educated and OFFJT remains more or less 

unchanged.  

 Our results have also implications for the specific case of Thailand. First, we have found that the 

direct returns to education are much smaller than previously found in the literature. This of course could 

depend on the fact that we are using a relatively small sample of large firms in four selected industries. In 

this sample, the returns to one year of additional education is close to 5 percent, close to the average 

return found in OECD developed countries8.  

The negative relationship between educational attainment and OJT suggests that the firms in the 

sample have compensated the relative scarcity of human capital represented by low education with 

higher investment in on the job training. This compensation might have been necessary, given the rapid 

growth of manufacturing in Thailand during the past twenty years, which has by far outpaced the growth 

of educational attainment. In a way, such a policy may have helped reducing the initial differences in 

accumulated human capital, which are significantly related to differences in family background.   

 One fourth of the companies in our sample are Japanese subsidiaries. We conclude this paper by 

asking whether these firms provide significantly more training that domestic and other foreign 

subsidiaries. We investigate empirically this issue by retrieving the estimated coefficients associated to 

the firm dummies and by regressing these coefficients on a #.�.� dummy taking the value of one if the 

firm is a Japanese subsidiary and of zero otherwise. We use weighted least squares, with each weight 

defined as the inverse of the variance of the estimated coefficient. It turns out that Japan dummy is 

positive and significantly different from zero only in the case of OFFJT. This result runs counter the 

standard intuition that Japanese firms provide more intense on the job training (see Koike [1988]). 

 

 

                                                 
8 According to Psacharopoulos [1994], the average rate of return to one year of education in the OECD is 6.8 percent. More 
recent research shows that the average rate of return in Europe is close to 5 percent (see Harmon, Nielsen and Walker [2000]. 



 28 

 

MB 

MC 

T 

MB 
MC 

1��
�
�  

Figure 3. OFFJT 

MB 

MC 

T 

MB 
MC 

�
�  1�

 

Figure 2.  OJT 



 29 

References 
 

Beckett, M. et al [2001], Measurement Errors in Recall Data, Journal of Human Resources, 

3, 36, 593-624. 

 

Berhman, J. [1987], Schooling in Developing Countries: Which Countries are the Over and 

Underachievers and What is the Schooling Impact?, Economics of Education Review, 2, 6, 

111-127. 

 

Card, D., [1999], The Economic Returns to Education, in Ashenfelter, O. and Card, D., 

[1999], Handbook of Labor Economics, Volume 3, North Holland, Amsterdam. 

 

Doner, R. and Brimble, P., [1998], Thainland’s Hard Disk Drive Industry, Report 98-02, 

University of California at San Diego. 

 

Greene, W., [1993], Econometric Analysis, McGraw Hill,New York. 

 

Harmon, C., Nielsen, N. and Walker, I., [2000], The Returns to Education in Europe, Edward 

Elgar. 

 

Hersch, R. [1991], Education Match and Job Match, The Review of Economics and Statistics, 

73, 1, 140.44, 

 

Koike, K. [1988], Understanding Industrial Relations in Japan, MacMillan, London. 

 

Psacharopoulos, G., [1994], Returns to Investment in Education: A Global Update, World 

Development, 22. 9, 1325-1343 

 

Rosen, S. [1976], A Theory of Lifetime Earnings, Journal of Political Economy. 

 

Sicherman, N., [1990], “Overeducation” in the Labor Market, Journal of Labor Economics, 

9, 2, 101-122 

 

Thurow, L [1975],Generating Inequality, New York, Basic Books 

 

Willis, R. [1986], Wage Determinants, in Ashenfelter, O. and Layard, R., Handbook of 

Labor Economics, North Holland, Amsterdam 

 



IZA Discussion Papers 
 
No. 
 
 

Author(s) Title 
 

Area Date 

563 T. Dunne 
L. Foster 
J. Haltiwanger 
K. R. Troske 
 

Wage and Productivity Dispersion in U.S. 
Manufacturing: The Role of Computer 
Investment 
 

5 08/02 

564 J. D. Brown 
J. S. Earle 
 

The Reallocation of Workers and Jobs in 
Russian Industry: New Evidence on Measures 
and Determinants 
 

4 09/02 

565 H. L. van Kranenburg 
F. C. Palm 
G. A. Pfann 
 

Survival in a Concentrating Industry: The Case 
of Daily Newspapers in the Netherlands 
 

3 09/02 

566 R. Hujer 
M. Caliendo 
D. Radić 

 
 

Skill Biased Technological and Organizational 
Change: Estimating a Mixed Simultaneous 
Equation Model Using the IAB Establishment 
Panel 
 

5 09/02 

567 H. Lehmann  
K. Phillips 
J. Wadsworth 
 

The Incidence and Cost of Job Loss in a 
Transition Economy: Displaced Workers in 
Estonia, 1989-1999 
 

4 09/02 

568 H. O. Duleep 
D. J. Dowhan 
 

Revisiting the Family Investment Model with 
Longitudinal Data: The Earnings Growth of 
Immigrant and U.S.-Born Women  
 

1 09/02 

569 J. Haltiwanger 
M. Vodopivec 
 

Worker Flows, Job Flows and Firm Wage 
Policies: An Analysis of Slovenia 
 

4 09/02 

570 T. K. Bauer 
S. Bender 
 

Technological Change, Organizational 
Change, and Job Turnover 
 

1 09/02 

571 O. Ashenfelter 
M. Greenstone 
 

Using Mandated Speed Limits to Measure the 
Value of a Statistical Life  
 

5 09/02 

572 C. Y. Co 
I. N. Gang 
M.-S. Yun 
 

Self-Employment and Wage Earning: 
Hungary During Transition 
 

4 09/02 

573 R. T. Riphahn 
O. Serfling 
 

Item Non-Response on Income and Wealth 
Questions 
 

6 09/02 

574 R. Kuhn 
S. Stillman 

Understanding Interhousehold Transfers in a 
Transition Economy: Evidence from Russia 
 

4 09/02 

575 H. Antecol 
D. A. Cobb-Clark 
S. J. Trejo 
 

Human Capital and Earnings of Female 
Immigrants to Australia, Canada, and the 
United States 
 

5 09/02 

576 M. Fertig 
C. M. Schmidt 
H. Schneider 
 

Active Labor Market Policy in Germany – 
Is There a Successful Policy Strategy? 

 
 

6 09/02 

577 K. Ariga 
G. Brunello 
 

Are the More Educated Receiving More 
Training? Evidence from Thailand 
 

2 09/02 

 
 

An updated list of IZA Discussion Papers is available on the center‘s homepage www.iza.org. 

http://www.iza.org/

	liste577.pdf
	Date
	
	
	
	
	
	J. D. Brown






	J. S. Earle
	
	
	
	
	
	H. L. van Kranenburg
	F. C. Palm
	R. Hujer
	M. Caliendo
	H. Lehmann
	K. Phillips
	J. Wadsworth
	H. O. Duleep
	D. J. Dowhan
	J. Haltiwanger
	M. Vodopivec
	O. Ashenfelter





	Using Mandated Speed Limits to Measure the Value of a Statistical Life
	
	
	M. Fertig
	
	H. Schneider






	K. Ariga
	
	
	
	
	
	G. Brunello







	titel 577.pdf
	Kenn Ariga
	
	
	
	
	
	Giorgio Brunello










