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ABSTRACT 
 

Immigration and Innovation in European Regions* 
 
The concentration of people with diverse socio-cultural backgrounds in particular geographic 
areas may boost the creation of new ideas, knowledge spillovers, entrepreneurship, and 
economic growth. In this paper we measure the impact of the size, skills, and diversity of 
immigration on the innovativeness of host regions. For this purpose we construct a panel of 
data on 170 regions in Europe (NUTS 2 level) for the periods 1991-1995 and 2001-2005. 
Innovation outcomes are measured by means of the number of patent applications per million 
inhabitants. Given the geographical concentration and subsequent diffusion of innovation 
activity, and the spatial selectivity of immigrants’ location choices, we take account of spatial 
dependence and of the endogeneity of immigrant settlement in our econometric modelling. 
We use the location of McDonald’s restaurants as a novel instrument for immigration. The 
results confirm that innovation is clearly a function of regional accessibility, industrial 
structure, human capital, and GDP growth. In addition, patent applications are positively 
affected by the diversity of the immigrant community beyond a critical minimum level. An 
increase in the fractionalization index by 0.1 from the regional mean of 0.5 increases patent 
applications per million inhabitants by about 0.2 percent. Moreover, the average skill level of 
immigrants (proxied by global regions of origin) also affects patent applications. In contrast, 
an increasing share of foreigners in the population does not conclusively impact on patent 
applications. Therefore, a distinct composition of immigrants from different backgrounds is a 
more important driving force for innovation than the sheer size of the immigrant population in 
a certain locality. 
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IMMIGRATION AND INNOVATION IN EUROPEAN REGIONS 
 

 
1. Introduction 
 

The more than doubling of the number of foreign-born residents of developed countries since 1980 
has triggereda high level ofresearchactivity regarding the economic consequences of immigration. 
Yet many issues remain of concern to researchers, politicians and the general public. Much of the 
literature provides rather conclusive evidence that the short-run economic impact of an influx of 
foreigners on the host population is either positive (for example, an increase in demand; an increase 
in wages of those whose skills complement those of the arrivals; lower prices; a greater variety of 
goods and services) or only mildly negative (for example, a slight decrease of wages of those who are 
close substitutes for the new arrivals; an increase in the price of rental accommodation; a trade 
balance deterioration).1 Far less is known about the long-run economic impact. Yet the preference of 
many host countries to recruit highly-skilled workers (as revealed by their selection processes) is 
grounded in the belief that such workers will integrate more easily, reducethe amount public 
funding that is required for education and training,2

Essentially, there are five mechanisms through which immigration may boost innovation. These may 
be referred to as:the population sizeeffect;the population density effect;the migrant share effect;the 
skill composition effect;and the migrant diversity effect. The first two of these externality effects also 
apply to the domestic population, and will be taken into account with other local determinants of 
innovation. The other three are specific to immigration only, and are the focus of the paper. Our 
empirical research considers these effects individually, but also jointly. Of course, to operationalize 

 and boost long-run economic growth. 
 
In this paper we focus on a specific driver of economic growth: namely, innovation, and investigate 
empirically whether there is a positive impact of immigration on innovation. Migrants can contribute 
to innovation in various ways. They contribute to the population growth of cities, which reinforces 
agglomeration – with positive benefits for innovation and growth (e.g. Audretch, 1998; Gordon and 
McCann, 2005; Kerr, 2010). Moreover, their skills, their youthfulness,and their self-selection in terms 
of ability, risk-taking, and entrepreneurship may positively influence innovation (e.g. Poot, 2008). 
Furthermore, migrants increase the ethnic and cultural diversity of the cities they settle in.It is well 
known, particularly since the work of Jacobs (1961, 1969), that more diverse cities are more 
innovative and prosperous. 
 
However, the empirical research on the links between immigration and innovation is still very recent 
and limited to about ten studies using predominantly North American data. Given that growth in the 
foreign-born population since 1980 has been faster in Europe than anywhere else in the world (e.g. 
Longhi et al., 2010b), research on the impact of this immigration on innovation activity in Europe is 
warranted, and has not been conducted previously, except for astudy on German regions (Niebuhr, 
2010), and another on London (Lee and Nathan, 2010). The present paper takes,therefore,a 
European perspective, and aims to identify the impact of immigration on patenting at a regional 
level across 12 European countries. 
 

                                                            
1Recent reviews include Hanson (2008), Pekkala Kerr and Kerr (2009), and Longhi et al. (2010a). 
2However, Hunt (2009) finds with US data that the graduate training in the US of foreign-born workers yields a greater net 
benefit than recruiting workers with equivalent foreign training. 
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such effects, we must define these externalities more precisely. For example, the host economy may 
benefit from an influx of highly-skilled immigrants, but also from an influx of immigrants 
representing a wide range of occupations. In that respect, occupational diversity may be just as 
important as cultural diversity. However, limited data availability necessitates the measurement of 
diversity only in terms of countries of citizenship. 
 
Effectively, our research aims to find answers to three research questions. Firstly, do regions with a 
greater share of immigrants in the population innovate more? Secondly, what is the impact of the 
skill composition of the stock of immigrants on innovativeness? Thirdly and finally, does a culturally 
diverse society form a “contextually-enabling environment” for innovativeness? The econometric 
estimation exploits a two-period (1991-95 and 2001-05) panel of data on 170 NUTS 2 regions in 
Europe. Innovation outcomes are measured by means of the total number of patent applications. 
Given the geographical concentration and subsequent diffusion of innovation activity, and the 
spatial selectivity of immigrant settlement patterns, we take account of spatial dependence and of 
the endogeneity of immigrant settlement in the econometric modelling. 
 
The perspective we take is restricted to that of the host country. The extent to which the emigration 
of highly-skilled workers from developing countries (the “brain drain”) impacts on such countries 
either positively (raising post-compulsory schooling enrolment) or negatively (leading to shortages of 
workers in education, health, ICT and other knowledge industries) is not considered here, but we 
note that, if a freeing up of the international exchange of skilled labour increases the global level of 
innovation, diffusion of new knowledge may benefit the sending nations as well, and raise welfare 
there also (for a review, see Duncan, 2008). 
 
Our results suggest that an increase in the share of the foreign-born in the population of a regionis 
not conclusively associated with innovation. However, an increase in the average skill level of 
migrants (proxied by migration from source countries from which emigrants are on average higher 
skilled) has a positive and statistically significant effect on patent applications. In addition, 
innovation levels are also positively associated with the cultural diversity of the migrant community. 
However, this effect appears nonlinear, and only operates beyond a critical minimum level of 
diversity.In Section 2, we provide a brief review of the previous literature on the effects of migration 
on innovation. The European data set that has been compiled to test for the impact of immigration 
on innovationis described in Section3. Various measurement issues are also addressed in this 
section. Section 4 discusses the methodology and econometric modelling. Section 5provides a short 
descriptive analysis. In Section 6 we discuss a range of econometric models that measure the joint 
impact on innovation of the immigrant shareof the population and the skill level and ethnic diversity 
of the immigrants. Section 7 sums up and suggests avenues for further research. 
 
 
2. Channels of Influence of Immigration on Innovation 

 
As noted above, there may be many channels through which migration contributes to innovation. In 
a standard neoclassical setting, the main impact of immigration is distributional (Borjas, 1995). The 
“immigration surplus” associated with the expanding economy, accruing to the owners of capital 
and workers who are complements in production to migrants, is quantitatively small. While the 
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associated shift of income from those supplying labour to the owners of capital may be in principle 
much larger, various adjustment mechanisms such as an inflow of capital in an open economy and 
internal migration may reduce the distributional impacts as well (see e.g. Longhi et al., 2010a). 
However, such comparative static analysis of the impact of immigration ignores the dynamic 
benefits flowing from new investment, knowledge exchange, greater product variety, and 
consumption externalities associated with the presence of diverseimmigrant groups (Ottaviano and 
Peri, 2006; Bellini et al., 2008).  
 
Considering the first three mechanisms through which immigration may enhance innovation, 
population size, population density,and population share effects of immigration result from the fact 
that immigration boosts local aggregate demand. Such demand is partially met through additional 
imports, but predominantly through greater levels and greater variety of local production (Mazzolari 
and Neumark, 2009). While such output growth in the short run may be met by greater capacity 
utilization and additional labour supply (predominantly provided by the immigrants themselves), in 
the long run additional investment will be needed. Such new investment will embody the latest 
technologies, and the associated investment behaviour of firms will encourage product and process 
innovation. Moreover, the resulting expansion of the host economy may lead to firm growth or 
additional start-up firms, which will also again boost innovation (e.g. Freeman and Soete, 1997). 
Moreover, migrants, being predominantly attracted to the larger urban areas where job 
opportunities are the greatest, contribute to urban population growth, and thereby strengthen the 
forces of agglomerationwhich, as we noted in the Introduction,encourages greater innovation. 
 
Given that in the modern knowledge economy technological change is an endogenous process, in 
whichthe production of new ideas is a function of the number of ideas workers (e.g.Lucas, 1988), the 
global competition for highly-skilled migrants has been intensifying. Borjas (1999) argues that 
immigrants are not randomly selected samples from sending countries. There is a process of self-
selection in which the skilled workers who migrate may also be more entrepreneurial and less risk 
averse, and considerably younger (e.g. Kloosterman and Rath, 2003; Poot, 2008). Professional 
migrants often make multiple moves over their life course or even commute between multiple 
residences. This mobility behaviour generates spillover benefits to host countries in terms of 
transfers of new ideas and work practices. In sum, their self-selection and the host country entry 
regulations serve jointly as a pre-arrival melting pot.Hence, the fourth mechanism through which 
immigration boosts innovation is through the way in which they change the human capital stock of 
the host regions, by bringing in new ideas and knowledge. 
 
Probably themain waythrough which the composition of immigration can make the host economy 
more innovative is through explicit admission policies that favour highly-skilled workers. Moreover, 
the global mobility of highly-skilled workers has been increasing sharply due to globalization, the 
growing importance of the knowledge economy, and transfers within transnational corporations 
(e.g. Poot et al. 2008).  
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Both historically and at present, the world’s greatest cities are inhabited by large and diverse foreign 
populations.3

As noted in the Introduction, empirical evidence on the association between immigrationand 
innovation has only emerged in recent years. Patent applicationsare often used as a proxy for 
innovation. Acommon feature of this empirical work so far is a strong focus on North America and 

The issue of whether an economy containing such a diverse group of inhabitants is 
more productive and more creative than a more homogeneous one is a very significant policy 
question.City economies are complex, efficient, dynamic, and made up of myriad interacting small 
enterprises. In large cities many of these are run by migrant entrepreneurs, or employ migrant 
workers. Such enterprises increase the cultural diversity of these cities. This, in turn, encourages the 
proliferation of new firms and also leads to more innovative behaviour among the local firms. 
Similarly, firms producing differentiated outputs are also attracted to the large cities. Rapid 
advancements in technologies have drastically reduced the product lifecycles, which has increased 
the pace of product evolution. These changes encourage firms to locate in agglomerated areas. The 
benefits of size, density, and diversity in large cities yield higher returns to capital. Moreover, scale 
economies reduce transaction costs in production by generating better labour market matching 
between available skills and job requirements. The greater availability of heterogeneous skills in the 
labour market decreases costly job search and imperfect matching. Therefore, complementarities in 
production yield higher returns to physical and human capital (Quigley, 1998). The 
emergingliterature on the economics of diversity sharescommon roots with the consumption 
externalities literature (Florida, 2003; Clark et al., 2002; Shapiro, 2003).  
 
Consequently, the fifth mechanism through which immigration can boost innovation is through 
generating greater cultural diversity in the host economy. This diversity manifests itself both on the 
demand side and the supply side. Jacobs (1961) argues that the city is the engine of growth of the 
economy and immigrants are predominantly drawn to cities. The diversity one finds in cities in terms 
of the variety of commercial and cultural activities, and the ways in which new ideas and creativity 
are boosted in diverse urban environments, is highly beneficial for long-run development. Of course, 
the skills of these entrepreneurial people and the city’s resources should complement each other to 
create an enabling environment for creativity (Glaeser et al., 2010). Obviously, the variety of services 
provided in a city is enhanced by the presence of a culturally diverse society. Greater diversity also 
promotes diversified information spillovers across production sectors and processes (Glaeser et al., 
1992). 
 
However, this does not necessarily imply that increasing diversity is always beneficial. While it can be 
shown that, even in the standard neoclassical model,the economic benefits of immigration for the 
host population tend to be larger, the more dissimilar that migrants and native-born are (e.g. Borjas, 
1999), excessive diversity can increase transaction costs, reduce social capital and lead to social 
tensions. Bellini et al. (2008) review various studies that suggest that diversity is detrimental to 
economic growth. Clearly, the relationship between diversity and economic performance in general 
may have an inverted U-shape and an optimal level of diversity may be identified in specific cases 
(de Graaff and Nijkamp, 2010). However, in terms of the narrower focus of diversity and 
innovation,there is no a priori notion of excessive diversity, but the relationship could be nonlinear. 
 

                                                            
3 For instance, more than 130 nationalities are represented among the residents of Amsterdam, even though this city only 
has a modest population of about 800,000. 



 

5 
 

highly-skilled immigrant populations. We review the US and Canadian evidence first. Hunt and 
Gauthier-Loiselle (2008) find that highly-skilled immigrants boost patenting at the state-level in the 
US without crowding out native patenting. Moreover, a college graduate immigrant contributes to 
patenting at least twice as much as his/her native counterpart does. This is clearly related to the 
disproportionate share of immigrants in the fields of science and engineering in the US.Chellaraj et 
al. (2008) use US time-series data to show that an increase in foreign students raises patent 
applications —more so than an increase in skilled immigration. A similar finding is also reported by 
Hunt (2009) by means of the 2003 US national survey of college graduates. She emphasizes that 
migrants who enter with student or trainee visas have better outcomes in wages, patenting, 
commercializing and licensing patents than native college graduates. Kerr and Lincoln (2010) and 
Kerr (2010) use an exogenous surge in the immigration of scientists and engineers in the US, due to 
the 1990 Immigration Act, as the means to identify the impact of immigration on the level and 
spatial patterns of US innovation. Especiallythe increase in Chinese and Indian patenting, referred as 
‘ethnic invention’, has a strong correlation with admissions of foreigners by the H-1B type of visa in 
the US. 
 
Zucker and Darby (2007) focus on the geographic movements of “star scientists” in the US and other 
countries that are ranked high in science and technology (S&T). They find a link between their 
movements and innovative activity in receiving countries and regions. Star scientists, many of whom 
are foreign-born, tend to cluster in particular places that also attract high-tech firms, and have a 
strong incentive and ambition to commercialize innovations. Zucker and Darby conclude that return 
migration and fewer opportunities for gifted students to remain in the US after graduation may be 
detrimental to firm start-up and growth in the S&T sector in that country. 
 
Partridge and Furtan (2008) find that skilled immigrants from developed countries boost patenting in 
the provinces of Canada. They find that a 10percent increase in immigrants with a sufficient level of 
language proficiency increases the provincial patent flow by 7.3percent in Canada. Particularly 
immigrants with backgrounds from Western Europe and North America have such an impact. This 
highlights the importance of communication skills, as well as complementarities between 
immigrants and natives. Maré et al. (2010) use surveys of innovation activity reported by New 
Zealand firms (both product and process innovations) to check for a link with the presence of 
immigrants, and find that such an association exists at a broad spatial scale (labour market areas), 
but not at the level of local neighbourhoods in that country. 
 
Finally, Niebuhr (2010) shows how cultural diversity (in terms of workers’ nationalities) boosts 
patent applications across German regions. She uses the geography of prior immigration patterns as 
an instrument to identify the causal effect. The review of the available studies suggests that there is 
widespread, but not always robust, evidence of a positive link between immigration and innovation. 
Moreover, as noted earlier,this link has been rather under-researched in Europe. The present paper 
aims to fill this gap.  
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3. Data and Measurement Issues 
 
The major source of the data used in this study is Eurostat’s General and Regional Database.4The 12 
European countries included in our dataset are: Austria, Belgium, Denmark, France, Germany 
(western), Ireland, Italy, Netherlands, Portugal, Spain, Sweden, and United Kingdom. The dataset 
contains information on 170 regions in those countries from 1991 until the year of most recently 
available data (mostly 2008-2009). It consists of five sets of indicators: (i) patent applications; (ii) 
population & labour force; (iii) immigration; and (iv) production structure & performance;and (v) 
geography (See Table 1). A separate document describes the data sources and modifications in detail 
and can be downloaded from the MIDI-REDIE project’s website.5

The available data have several limitations. Firstly, data on patent applications to the European 
Patent Office (EPO) by regions are available only at the NUTS 2 level.
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The patent data: namely, patent applications to the EPO by IPC (International Patents 
Classification),are divided into eight sections.

 This limits the analysis to this 
level, even though some regional information is available at the NUTS 3 level. Consequently, where 
data were only available at the NUTS 3 level, such data had to be aggregated tothe NUTS 2 level. The 
aggregation proved to be very time-consuming, as the coding and classification of NUTS 3 regions 
have changed over time.  
 

7In the present paper we consider only the aggregate of 
all patents summed over the various sections. Patent applications are regionally allocated according 
to the inventors’ place of residence. If there is more than one co-inventor, then a patent count will 
be equally divided by the number of inventors, which implies that fractions of a patent may be 
assigned to different regions and/or countries. This eliminates multiple counting and avoids 
overestimation of the importance of some regions as being the main generators of patent 
applications. The inventors of these patent applications are obviously not exclusively immigrants, 
and the dataset includes both non-native and native applicants.8

                                                            
4The data used in this version of the paper has been completely updated in line with Eurostat’s update of regional 
databases in June 2010. Therefore, the estimations and descriptive statistics are based on the updated version of the 
source information.  

Given the fact that patent 
applications require a costly and time-consuming registration process, researchers face three major 
problems when using patents. Firstly, patent application procedures, which are determined by each 
country’s central government, may vary substantially between different countries (Furman et al., 
2002). Secondly, the propensity to register innovations may be culturally dependent. Thirdly, it is 

5http://www.norface-migration.org/publications.php 
6 The Nomenclature of Units for Territorial Statistics (NUTS) is a geocode standard for referencing the subdivisions of 
European countries for statistical purposes. The NUTS 1 level refers roughly to states or large regions, level 2 to provinces, 
and level 3 to counties.  
7 We use the EPO International Patents Classification (IPC) data to measure the patent applications per million inhabitants 
by priority year. The priority year refers to the first filing worldwide. This is therefore the year closest to the invention date. 
The total patent applications per million inhabitants used in this study consist of 8 IPC Sections: a) Human necessities, b) 
Performing operations; transporting, c) Chemistry; metallurgy, d) Textiles; paper, e) Fixed constructions, f) Mechanical 
engineering; lighting; heating; weapons; blasting, g) Physics, h) Electricity.  
8 Although the patent applications database gathered from the Eurostat website is fairly complete, there are some missing 
values for the United Kingdom and some other countries. Due to data deficiences, the two NUTS2 regions representing 
London had to be excluded. In most other cases missing values were imputed through interpolation by means of 
compound growth rates of patent applications. The compound annual growth rates (CAGR) are calculated over the largest 
possible period of time. For the selection of beginning/end values to calculate CAGR, we used beginning and end years that 
have no missing observations among the 170 regions. 

http://www.norface-migration.org/publications.php�
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questionable that the residential location of the patent applicant always corresponds with the region 
where the impact is felt most strongly.  
 
The literature provides a range of theories on the geography of innovation, ranging from incubation 
theory to product life-cycle theory and diffusion theory (e.g.Davelaar and Nijkamp, 2004). 
Nonetheless, there is broadly consensus on the local determinants of innovation production (Gordon 
and McCann, 2005). For instance, the demographic structure of the local population, and the 
information and institutional infrastructure drive the innovative potential of localities. Since 
innovations are indicators of the creativity of society, and have an economic value in terms of their 
impact on economic growth, considerable effort has been devoted to proxy visibleinnovations by 
means of patent applications or research grants. As a result of different classifications and intrinsic 
variability, it is generally accepted that patents are an imperfect proxy of innovation, although this 
would actually depend on the research task (Griliches, 1990). 
 
Another data limitation is that, although many variables are available annually for the period of 
1990-2008, the ‘share of foreigners in the population’ data (with ‘foreigner’ defined in terms of 
nationality or country of birth)are available in some countries only in 1991 and 2001 from 
populationcensuses.9

No information is available on the time the immigrants have spent in the host country or region, the 
skills acquired in the process of integration into the host country, or on the number of foreign-born 
migrants who were subsequently naturalized. We measure the diversity effect of immigrants on the 
innovativeness of the host regions by means of a fractionalization index that is calculated on the 
basis of the regional population by country of citizenship.

Moreover, the share of foreigners in the population could only be 
disaggregated by country of citizenship at the NUTS 2 level in 2001. Furthermore, no information is 
available on the skill levels of the immigrants at the NUTS 2 level, so we use the country of 
citizenship information as a proxy for the skills and the influence of culture that are specific to the 
country of citizenship. We created five major categories (Africa, America, Asia, Europe, and Oceania) 
as well as broader regional categories within the continents (e.g. North-America, North-Africa, 
Middle East, and Central and Eastern European (CEE) countries).  
 

10

Data on human resources in science and technology as a percentage of the active population aimto 
measure the stock of aggregate knowledge in the regions. This knowledge acts as the major input in 
the production of new ideas.In general,real GDP per capita is used as a good indicator of the ability 
of regions to convert the available knowledge into economic value (Furman et al., 2002). Yet, 
considering the period of analysis, we observe that many regions that were non-existent on the 

 However, since the population by 
country of citizenship dataset is available only for 2001, we cannot account for a change in diversity 
over the period 1991-2001. 
 

                                                            
9 The data for 1991 were kindly provided by Giovanni Prarolo at the NUTS 3 level. German data on the share of immigrants 
by citizenship are available only for western Germany, and the 2001 data were provided by IAB Nuremberg, using 
information from the social security administration. The data refer to people who are active in the labour market, but not 
to their families. An estimate of the foreign-born population is obtained by dividing the number of foreign-born workers by 
the regional labour force participation rate. This estimate of the foreign-born population in each German region is then 
used to calculate the share of immigrants in the population. 
10A major limitation of our measure of diversity is the absence of comparable data on the linguistic or ethnic diversity of 
the European regions. It is possible to extract some ethnic and linguistic diversity information from various sources 
mentioned in Alesina et al. (2003), but this information is available only at country level. 
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innovation map in 1990s appeared to be strong inventors in the following decade. For that reason, 
we use the GDP growth rate to account for the change in the aggregate technological improvement 
in the regions. Since the share of GDP devoted to R&D spending is quite constant over time, and 
often increasing with the development level of the region, the GDP growth rate is a good measure of 
increased resources that are available to the knowledge industries, rather than R&D expenditures 
themselves (Hunt, 2008; Kleinknecht et al., 2002). 
 
The size of a region’s population and its density are commonly used variables to account for the 
impact of agglomeration on innovation. Average population size captures the available resources, 
the scale of production of non-traded goods and services, and the market size of the regions. 
Additionally, population density facilitates face to face interaction, the exchange of ideas and labour 
pooling. The impact of densityon productivity and innovation has been established by e.g. Ciccone 
and Hall (1996) .The final demographic feature to be considered is the age composition of the 
population. Sub-national studies often find a positive correlation between the youthfulness of the 
population and regional economic growth or innovation activity (e.g. Poot, 2008). Of course the 
causality may run from regional growth to age composition since fast growing regions attract young 
migrants. However, the age structure changes only very slowly so that this reverse causality is 
unlikely to be important in our 1991-95 and 2001-2005 panel. We measure age composition by the 
fraction of the working population aged 25-64 that is aged 25-44. 
 
We also obtained data on the ratio of the value added of services to thevalue added of the industrial 
sector in a region. We expect this variable to have a negative effect on patent applications, because 
patents are disproportionately generated in the high-end manufacturing sector.  
 
A final issue of importance is that of accessibility (e.g. Reggiani et al. 2011). Clearly, knowledge 
spillovers require face to face interaction, and the cost of travel between the various innovation 
clusters is likely to matter. The accessibility index used in this study was provided by ESPON.11

wherecijm is the cost of travel by mode m between i and j, and λ is a parameter indicating the 
sensitivity to travel cost. This formulation of composite travel cost is superior to average travel 

 The 
theoretical assumption behind potential accessibility is that the attractiveness of a destination 
increases with the size of the population and decreases with distance, travel time, or cost. These 
aspects are combined multiplicatively to calculate the potential accessibility: 
 
 ,        (1) 

 
whereAiis the accessibility of area i, Wj is the opportunity(population) to be reached in area j; and  

is the generalized cost of reaching area j from area i. Ai is the total of the activities reachable at all 
areasj, weighted by the ease of getting from i to each areaj. The interpretation is that the greater is 
the number of attractive destinations in areas j and the more easily areasj are reachable from area i, 
the greater is the accessibility of area i. In turn, the generalized cost is calculated as follows: 

 

,        (2) 

 

                                                            
11See ESPON (2009). 
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cost,because it makes sure that the removal of a mode with higher cost (i.e. closure of a rail line) 
does not result in a — false — reduction in aggregate travel cost (ESPON, 2009). 
 
The information on all variables is summarized in Table 1. With respect to diversity, the view that 
this may have significant economic benefits has become stronger in recent years.12

 

Since the turn of 
the millennium, several studies provide fairly robust results between innovation and diversity, 
starting with Duranton and Puga (2000). Diversity and cultural coherence evolve over time and 
through interactions between people and places. In order to measure the impact of cultural diversity 
on an economy, we need to acknowledge that diversity is a multi layered concept, in which ethnic, 
linguistic, religious and personal perceptions of belonging overlap. Among these, ethnicity may be 
considered a general concept which is formed by common culture and ancestry. The other 
dimensions such as language or religion are sub-types of ethnicity (Wimmer, 2008). Unfortunately, 
Eurostat data donot permit us to make such distinctions at the NUTS 2 regional level.  
 
The diversity effect is measured by means of the fractionalization index(Alesina et al., 2003), which is 
calculated as follows: 
 

 Divj = ,         (3) 

 
in which sij is the share of the group i (i=1, ..., N) in region j.13

The nature of the data, a pooled cross-section of regional average characteristics, suggests that 
panel data techniques that account for heteroscedasticity, endogeneity,fixed effects and spatial 
spillovers are the most appropriate. However, the availability of data on the share of foreigners at 
only two points in time (1991 and 2001),and of data on the diversity among these immigrants at only 
one point in time (2001), limits the extent to which dynamic panel models can be utilized. Therefore, 
we devotemost attention to specifications that take a longer time frame per observation: namely, 
two pooled cross-sections of average patents (1991-1995 and 2001-2005). In this way we are also 
able to avoid the issue of having to specify serial autocorrelation in the presence of missing annual 

 The index represents the probability 
that two individuals randomly selected from a sample will belong to different population groups. The 
minimum value of the index is 0 (complete concentration inone type), and the maximum value is 1-
1/N. The natives are excluded from the diversity index calculations because diversity in the form of 
having immigrants represent is already captured by the share of immigrants in the population. In 
addition, natives represent the largest group in regions, which in turn leads to underestimation of 
the immigrant diversity. Finally, the diversity measure including natives is, using the NUTS2 data, 
highly correlated with the share of foreigners, whereas the diversity index excluding natives is 
uncorrelated with the share of foreigners. Using the latter two variables allows us therefore to 
identify separate effects of migrant ‘density’ and migrant diversity. 
 
 
4. Methodology and Econometric Modelling 
 

                                                            
12A good example is Page (2007). See also the review of this book by Ioannides (2010). 
13 Alternatively, the fractionalization index is defined as 1−H, with H the Herfindahl index of concentration of observations 
in certain categories of a classification. 
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immigration data. Arguably, the longer time frame is also theoretically preferable since the impact of 
immigration on innovation is unlikely to manifest itself fully within a year (Griliches, 1990). 
 
Hence, the basic specificationis as follows: 
 

lnPi,t=μ+mi,t’γ+xi,t’β+εi,t εi,t ~ N(0, σ2
i,t), (4) 

 
wherePi,trefers tothe five-year average patent applications per million inhabitants in region i 
inperiod t;mi,t is the vector that measures the characteristics of immigration in a region;xi,t is a vector 

of control variables;μis the constant;and εi,t is the error term.The coefficient vector γis of central 
interest in our analysis, and we assess the robustness of the estimates across different 
specifications. 
 
As argued earlier in the paper, there are five ways in which immigration can influence patent 
applications. They are: the population scale effect; the population density effect; the share of 
foreigners in the population; the skill composition of the migrant flow; and the diversity 
ofimmigrants (measured by their countries of citizenship, using the following breakdown: North 
Africa, Africa others, North America, America others, Middle East, Asia Others, Central and Eastern 
European (CEE) countries, Other European countries, Oceania, Others/unknown). Given the 
limitations of the data, we can only account for the varying skill levels of immigrants by grouping 
migrants on the basis of the average skill levels of migrants from various globalregions. 
 
An important problem in measuring the impact of immigration on innovation is the presence of two-
way causation. Immigration is likely to be endogenous. Skilled migrants in particular, may be 
attracted to regions where per capita income is growing, where there is considerable R&D activity, 
and patent applications are likely to be increasing as well. We will use instrumental variables 
estimation to deal with a possible endogeneity bias. We, therefore, instrument immigration by 
exogenous variables. The instruments needto be correlated with immigration in the regions, but not 
with the error term of the model that explains the spatial, and temporal variation in patent 
applications.  
 
The literature review suggested that commonly used instruments are historical migration patterns, 
the initial share of immigrant high school dropouts, or one-off major changes in migrant admission 
policies. Here we propose a novel spatial instrument that has not been previously used. The 
instrument should be a good proxy for international connectedness and openness that may also 
signal the presence of migrants, while at the same time there is little association with local 
innovation.  For this, we searched for a multinational company that has ubiquitous establishments, 
but whose innovation is largely non-spatially differentiated. The company must determine the 
location of new outlets predominantly on the basis of population size rather than income (given the 
correlation between income and R&D activity), and must be widespread all over Europe.14

                                                            
14Opening new restaurants in the highly populated areas, but not necessarily high GDP areas, is also mentioned as a 
location choice strategy in the frequently asked questions section of the McDonald’s UK’s website. 

 The 
obvious candidate is the distribution of McDonald’s restaurants across NUTS 2 regions. Unlike in 
North America and in some other parts of the world, McDonald’s restaurants are considered in 
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Europe to be a symbol of cosmopolitanism and a modern urban lifestyle among the youngrather 
than simply a caterer of fast food to low income people. The choice of McDonald’s as an instrument 
fits in with the consumption externalities literature. The chain is associated with a lifestyle that is 
internationally connected and aims to serve a variety of people. McDonald’s is also a significant 
employer of unskilled migrants. Consequently, a higher number of McDonald’s restaurants in a 
region may be used a proxy for the openness and international connectedness of the region. On the 
other hand, the location of McDonald’s restaurants is not in any way driven by patenting. 
 
The data were collected from the McDonald’s country websites, using regional locators that provide 
the addresses of the restaurants closest to the specified locality. Given that the greatest 
concentration of McDonald’s restaurants is in large population areas, and that population scale is 
already a variable in the model, we adopt the number of McDonald’s restaurants per million 
inhabitants in the region as an instrument. 
 
Capital cities are for many immigrants often the first point of entry to the destination countries. On 
the other hand,innovation levels are not necessarily higher in those cities than in other large cities. 
Therefore, a dummy variable that represents the location of capital cities of the countries among the 
NUTS 2 level regions provides a second instrument.15

Besides the issue of endogenous regressors, a pooled cross-section of regional outcomes should also 
take into account the possibility that the error term of the regression model is spatially correlated. 
There is a vast literature that argues, and provides evidence, that there are spatialknowledge 
spillovers, and that spatial proximity matters (Döring and Schnellenbach, 2006).  Although it can be 
argued that the flows of knowledge and ideas are invisible (Krugman, 1991), proximity may lead to 
more exchange. Consequently, patent activity in any given region maybe positively affected by 
patent activity in surrounding regions. On the other hand, Bottazzi and Peri (2003) found that at the 
spatial scale of NUTS2 regions, spatial autocorrelation was actually rather minor. Nonetheless, we 

 
 
Formal tests showed that the spatial distribution of McDonald’s restaurants and the capital dummy 
turned out to be strong instruments that explain 20percent of the cross-section variation in the 
share of foreign residents. Nevertheless, the capital cities are not by definition the most diverse 
areas. They may attract a large number of foreign short-term visitors rather than permanent 
residents. Indeed, the identification tests confirm that the capital dummy is a weak instrument for 
measuring cultural diversity. For that reason, we explore a better instrument which takes into 
account that the diversity of the regions depends on various economic, social and historical regional 
characteristics. Following Ciccone (2002), we use the total area of each of the NUTS 2 regions in km2 
as an instrument, since the area of each of the regions is historically predetermined. An observed 
negative correlationbetweenthe area of each of the regions and cultural diversity suggest that 
smaller areashavegreater labour market density andpossibly labour force variety (regions that are 
dominated by universities are good examples, e.g. Oxford University in Oxfordshire and Cambridge 
University in East Anglia). The spatial distribution of McDonald’s restaurants and area of the regions 
appear to be strong instruments that explain about 13percent of the variation of the diversity index. 
 

                                                            
15There are two exceptions to using the capital city for defining the instrument. Given the absence of London data in our 
dataset, the UK dummy was set equal to 1 for the Westmidlands region. In the case of Spain, the dummy was set equal to 1 
for Catalunia, given the prominence of Barcelona as a migrant destination in Spain. 
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include spatial econometric modelling in our robustness analysis. We use a row-standardized spatial 
weight matrix, with weights inversely proportional to the Euclidean distances between the centres 
of the regions. Before we report the results of both non-spatial and spatial econometric modelling in 
Section 6, we first provide some descriptive analysis in the next section. 
 
 
5. Descriptive Analysis 
 
The number of patent applications per million inhabitants of the NUTS 2 regions per year hasmore 
than doubled from 55.8 in 1991 to 121.9 in 2001. The distribution across the 170 regions is given in 
Figure 1 for each year from 1990 until 2007.  
 
There were26.7 millionimmigrants (foreign citizens) living in the EU12 area in 2001. They 
represented7.2percentof the total EU12 population. Themean (median) share of immigrants in the 
population across the 170 NUTS 2 regions increased from 4.8percent (3.8percent) in 1991 to 
7.2percent (6.0percent) in 2001. Comparedwith the traditional immigrant-receiving countries of 
North America and Australasia, the percentage of foreign-born is still relatively small in 
manyEuropean regions. Nevertheless, there has been a relative shift of the distribution of 
immigrants from Western Europe to Central and Southern Europe. In recent years, the latter 
countries have attracted a disproportionate share ofnew immigrants.16

Table 2 provides descriptive statistics for the two five-year period averages that constitute most of 
the analysis. The five-year averages of patent applications range from 0.2 to about 812per million 
inhabitants. The share of foreigners ranges from 0.1 percent to 28.6 percent of the population. The 
diversity (fractionalization) index that excludes the native population (index_b) has an average value 
of 0.494, with a range from 0.185 to 0.805. Including the native population, the index has an average 
value of 0.132, with a range from 0.031 to 0.533. 
 

Figure 2 presents the 
distributionof the share of foreigners by NUTS 2 regions in 2001. The average across the EU12 
regions (7.2percent) is also shown in this figure.  
 

Our analysis period coincides with the fall of the Berlin Wall as well as the war years in the Balkans. 
Until 1997some countries,especially Germany, continued to welcome CEE (Central &Eastern-
European) migrants with bilateral agreements to fill a gap in the labour market. Soon after the fall of 
the Iron Curtain, other Western countries implementedrestrictions in mobility from the CEE and 
Balkan countries. However, a migration surge was nonetheless observed from these regions towards 
the West that followed established ethnic networks (Straubhaar and Wolburg, 1999).Besides this 
network effect, two other important drivers have played a role in the migration decision: geographic 
and linguistic proximity. Language skills have been a crucial factor in the choice of destination 
(Fassmann and Hintermann,1998).There were relatively large migration movements from the 
aforementioned countries to Germany and Austria over the study period. Geographical proximity 
has also been a major factor in the migration decision. In a survey of 4000 people from the 

                                                            
16For instance, the foreign-born share in Vienna, Austria, became one of the highest (see Table 3), while in Spain the share 
of immigrants increased from 0.1percent to 5percent. Similarly, Italy experienced an increase from 0.1 percent to 4 percent 
over the same period. 
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fourlargest countries of CEE17

                                                            
17Czech Republic, Slovakia, Poland, and Hungary. 

, 48 percent of the respondents considered geographical proximity 
important,and 43 percent of those considered presence of friends/relatives in the destination 
country central to their migration decision. In our measure of high-skilled workers in the NUTS 2 
regions, we are unable to separate out those who are migrants, but several studies emphasize the 
inflow of a substantial number of highly-skilled immigrants from CEE countries(Straubhaar and 
Wolburg, 1999).  
 
EU citizens living in another EU country than their country of origin make up the largest share (about 
72percent) of all foreigners in the EU12. Africans are the next largest group, followed by Asians and 
Americans. Internal mobility within the EU12 (the percentage of EU born living in another EU 
country) is only about 2.2percent in the study period (Peri, 2005).The fiveregions with the highest 
share of foreignersin 2001 are shown in Table 3. With the exception of the Province-Alpes-Cote 
d’Azur, they are large metropolitan areas: Brussels, Vienna, Paris and Stockholm. In these citiesmore 
than onesixthof theinhabitants have been born in another country. Table 4 shows the five most and 
the five least diverse regions, based on the diversity index (excluding the natives). It is clear that 
some of the most diverse regions are characterized by the presence of universities: Berkshire, 
Buckinghamshire and Oxfordshire (Oxford University), East Anglia (Cambridge University) and 
Surrey, East and West Sussex. Some of the least diverse regions can be found in Belgium and 
Portugal. It is clear from Table 4 that a high diversity does not necessarily imply a high share of 
foreigners and vice versa. For example, Hainaut in Belgium has a low diversity index (0.216) but the 
foreign population, predominantly Other Europeans, still constitutes nearly 12 percent of the 
population. Moreover, even where immigrants come from different parts of the world, immigrants 
may be highly concentrated across a few source countries. For instance, despite immigrantshaving a 
large share of the population in Germany, almost 40 percent of themoriginatejust from two sources 
(Sudekum et al., 2009). 
 
The scatter diagram in Figure 3suggests a positive relationship between patent applications and the 
share of foreigners. Linear regression lines are also presented. These show that the slope of the 
relationship has increased between 1991 and 2001 (the correlation coefficients are 0.33 and 0.48, 
respectively). However, it is clear from the 2001 values that the highest numbers of patent 
applications are not necessarily in the regions where the share of immigrantsin the populationis the 
highest. In any case, immigrants are not homogeneous, and those regions with the highest level of 
patent applications may be regions where the share of highly-skilled migrants in the population is 
the largest, even though the overall share of immigrants may be relatively low. Moreover,as patent 
applications haveincreased over time they have also become more dispersed. In 1991 innovation 
activity was still highly concentrated in particular regions,yet spin-offs from traditional patent-
producing regions resulted in innovation activity becoming more widespread in the EU12 by 2001 
(see Figure 4).In the following section, we discuss our findings from multivariate analysis.  
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6. Regression Results 
 

Standard specifications 
 
We noted earlier in the paper that annual observations may not be the appropriate unit of 
measurement for considering the impact of immigration on innovation. Thus, we consider first how 
the share of foreigners in a year influences innovation activity in the subsequent five years, by using 
five-year averages of the variables that are included in the specifications reported in Table 5. This 
five-year averaging also controls for business-cycle effects, which are likely to have an influence on 
patent applications. Table 5 presents the results of three specifications of the pooled cross-section 
of the regional averages model.18 Specifications 5.1, 5.2 and 5.3 test, respectively, the migrant 
density (foreign share of the population) effect, the skill composition effect and the diversity effect 
of migration on innovation. In all three models, we control for time and country effects to capture 
the influence of national institutions and trends.19

As shown in Specification 5.1, the coefficient of the share of immigrants is statistically 
insignificant.This resultsuggests that the mere presence of foreigners in a region is not sufficient to 
induce innovation.Concerning the control variables, a 1percentage point increase in the GDP growth 
rate leads on average to a 0.05 percentincrease in patent applications per million inhabitants. 
Average population size is a commonly used proxy for measuring the agglomeration, demand, and 
consumption potential of the regions. However, population sizeis not a significant factor 
thatdetermines patent applications in the specifications in Table 5. The coefficient of the ratio of 
services over manufacturing value added is negative andstatistically significant at the 1percent level. 
Thus, the economy of the regions specialized in the industry sector is more prone to producing 
innovation applications. Our measure ofthe stock of high-skilled human resources confirms the 
importance of the skilled workforce for the innovativeness of a region. A 10percentage point 
increase in the percentage of human resources in science and technology fields in the economically 
active population increases patent applications by about 0.7 percent.The effectis positive and 
significant at the 1percent level.We also find that high accessibility is an important factor in 
increasing patent applications. The accessibility indicator is highly significant at the 1percent level. 
The country-level dummy variables (not reported in Table 5) show that patent applications are 
significantly higher than average in Sweden, and lower in Ireland and the Mediterranean countries.

While the data set includes 12 countries, 10 
country dummies are incorporated. The Netherlands is the default country and Denmark is omitted 
because it constitutes only one NUTS2 region. All of the estimations also include controls for average 
population, GDP growth rate, regional specialization in services/industry ratio, stock of human 
capital in S&T fields in the regions, and, finally, accessibility of the regions. Robust standard errors 
are calculated to control for cross-sectional heteroscedasticity.   
 

20

                                                            
18All calculations have been carried out with Stata 11. 
19Given that our data consists of two waves (1991-95 and 2001-05) of cross-sectional data (170 NUTS2 regions), panel 
estimators could be considered in principle. However, the fixed effects estimator would omit key variables which are only 
available cross-sectionally at present, such as the diversity index. On the other hand, the random effects model is not the 
appropriate data generating process for our pooled regional averages. 
20The findings on covariates of the model are fairly robust and the coefficients are quite constant over all the following 
estimations. Therefore, we are not going to discuss those further, and the statistical output tables are available from the 
corresponding author on request. 
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Specification 5.2 in Table 5 shows how the composition of the immigrant population, in terms of 
their nationalities, contributes to the innovation output of European regions. We impose the same 
model as before, but replace the share of foreigners by variables that measure the shares of various 
continents in the distribution of the migrant nationalities. We are also able to disaggregate the 
immigrant stock by narrower groups within the continents (North Africa, other African countries, 
America, Middle East, Asia others, CEE, other European countries, Oceania, Other) but this does not 
yield notable additionalresults. Regions that have relatively many migrants from Africa and America 
have relatively more patent applications, while for regions with relatively many migrants from Asian 
countries the opposite is the case. The available data do not permit usto check whether such source 
region effects are due to observed skill differences or unobserved positive selection effects. The 
effect sizes of the coefficients of the control variables are mainlysimilar to those in Model 5.1. All 
variables are statistically significant at the 1 percentlevel, except the average population.  
 
Specification 5.3 tests the influence of cultural diversity of the regional population. The coefficient of 
the fractionalization index is positive and statistically significant, which suggests that there are 
positive externalities in the form of greater innovation activity associated with culturally more 
heterogeneous societies. An increase in the diversity index by 0.1 (the mean value is 0.5, see Table 2) 
increases patent applications per million inhabitants by about 0.16 percent.Almost all the covariates 
are significant at the 1percent level, meaning that, even after controlling for the effect of various 
factors that boost innovation, the positive contribution of diversitysurvives; hence a diverse society 
enhances the creativity of the regions.  
 
To test for the robustness of our results, we consider a range of alternative specifications. These are 
reported in Table 6. First we replace the linear diversity effect by a quadratic form (see specification 
6.1 in Table 6). The quadratic turns out to be convex, with a minimum at about 0.4. At the mean, an 
increase in diversity by 0.1 increases patent applications per million inhabitants by about 0.2, which 
is similar to the result of the linear specification (5.4). The quadratic is plotted in Figure 5. We 
conclude that at low levels of diversity (roughly in the lower quartile of the distribution) an increase 
in diversity has a negative impact on innovation, but beyond a critical point (0.4) the benefits from 
cultural diversity begin toappear. The upper quartile includes regions with major universitiesand 
R&D centres (see Table 4).21

We alsoreport in Table 6the joint effects of diversity and the migrant share of population on patent 
applications (see columns6.2 to 6.4). In Specification 6.2 we show that once density and diversity 
measures are simultaneously included in the estimation, the diversity effect survives significantly at 
the 1percent level, while we again do not find any effect of the share of foreigners. One may argue 
that this estimation just measuresthe marginal effects of the share of foreigners and diversity of 
regions on patent applications, whereas an interaction measure of those two maybe more 
informative about the regions which have both high density and diversity values. Consequently, the 
interaction term of both effects is included in Specification 6.3. The coefficient of the interaction 

 
 

                                                            
21When the diversity index is replaced with one that includes the native population, a concave quadratic emerges with a 
maximum at an index value of about 0.3 (the mean is 0.1, see Table 2). This would suggest a notion of “optimal diversity” 
(see also de Graaff and Nijkamp, 2010). However, because natives still dominate in all regions, the latter index is actually 
highly correlated with the share of foreigners in the population and simply signals that increasing immigration is not 
necessarily associated with higher innovation. This is confirmed by the other specifications in Table 6. 
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variable is negative and statistically significant at the 5percent level. The coefficients of both the 
density and the diversity effect arealso statistically significant.It can be shown that at the mean 
diversity level, increasing the share of foreigners in the population lowers patent applications 
slightly. 
 
The last estimation of Table 6 reports the results for all of the five possible effects of immigration on 
innovation (outlined in Section 2) jointly. They are: population scale, population density, the share of 
foreigners, the diversity among foreigners, and the average skill level of foreigners. As noted earlier, 
the source country distribution is the only statistical information in the data set that we can relate to 
thecultural backgrounds and skills of migrants. The result in column 6.4shows the strong positive 
impact ofthe diversity index; hence this effect is consistent and positive in all the regressions. 
Thus,the cultural composition of the immigration flow does matter in stimulating more patents in a 
region. Secondly, an increase in the share of foreigners from other European countries (excluding 
Central & Eastern Europe)boosts regional patent applications.This group of foreigners is more likely 
to have higher education, and there is a long shared history between these European countries 
which might improve economic and social integration. We do not find a particular effect of 
foreigners from other parts of the world on patent applications. The population scale effect is 
significant (but only at the 10 percent level), which suggests an agglomeration effect. The age 
composition variable is, contrary to expectations, negative. This may in fact simply signal an 
urban/rural distinction. In  a European cross-section, rural regions tend to have higher fertility (e.g. 
Poot and Siegers, 1992) and therefore possibly a more youthful population structure. The population 
density effect is also significant but has a negative sign.  Although this negative coefficient may seem 
at odds with the anticipated benefits of high urban density, at the scale of our research high regional 
density may not necessarily coincide with innovativeness. For example, many innovation centres are 
on the outskirts of the cities.Lastly, the coefficient of share of foreigners is negative but 
statisticallyinsignificant. Taking specification (6.4) as the most informative, we now proceed to 
control for potential endogeneity, and spatial dependence. 
 
Controlling for potential endogeneity 

 
Table 7 reports the results of the 2SLS estimations of the OLS model. Specification tests 
reportthenumberof McDonald’s restaurantsper million inhabitants,and the capital dummyas strong 
instruments (F-test > 10) with an explanatory power of about 20percent of the cross-section 
variation of the share of foreigners in regions in specification (7.1) and of the diversity index that 
includes natives and foreigners in specification (7.2).Diagnostic tests confirm the exogeneity of the 
instruments. The results tell a qualitatively similar story. It is noticeable that the impact of 
immigration on innovation in (7.1) and of the highly similar diversity index in (7.2) are both still 
insignificant, as it wasin the corresponding OLS results reported in Tables 5 and 6.  
 
Concerning cultural diversity among foreigners, we argue that this is not endogenous in a model of 
innovation. The cultural composition of the immigration flow is closely linked to exogenous national 
policies and historical migration patterns and not current innovation activity. However, if we include 
the natives in the measurement of diversity index (as in specification 7.2), the index variable 
certainly reveals a reverse causality problem with patent applications, due to the fact that innovative 
regions do attract more migrants per se. We treat this problem through IV estimation for the 
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diversity index that includes natives, whilewe also include the diversity index excluding natives in 
this estimation to show that they are measuring different compositional patterns in regions (the 
simple correlation coefficient of these two indices is only -0.1370). The results show that the 
coefficient of the diversity index is insignificant, while the diversity index that excludes foreignersis 
highly significant at the 1 percent level and again in value close to 2. The IV estimations include all 
the other control variables, and time/country fixed effects as the other specifications do. Therefore, 
the IV results donot overturn the OLS findings. 
 
Spatial econometric analysis 
 
Agglomeration economies, knowledge spillovers,and the role of proximity suggest that spatial 
effects in innovation are crucial. We generally expect that diffusion of technology is faster among 
regions that are close to each other. This effect may result from a supply-side externality (Vaya et al., 
2004). Moreover, omitted spatially-correlated exogenous variablesand random shocks coming from 
neighbouring regions may influence the outcomes of regions in closeproximity (Fingleton and Lopez-
Bazo, 2006). On the other hand, Bottazzi  andPeri (2003) do not find strong evidence of spatial 
autocorrelation at the NUTS2 level. Nonetheless, we account for spatial autocorrelation by a re-
estimation of the previous results by using spatial econometric models.  
 
It is a common practice to use spatial weight matrices that are based on the pairwise distances 
between the cross-sectional units. The spatial weight matrices specify a form of proximity or 
similarity (Larch and Walde, 2008). As noted earlier, we calculateda row-standardized spatial weight 
matrix where we used the Euclidean distances between the centres of the regions. Becase of the 
panel nature of our data, the spatial weights matrix is block diagonal with positive spatial correlation 
and zero temporal correlation.  The impact of spatial error model is best illustrated by taking 
Specification (5.1) as the starting point. We first omit the country fixed effects from this model and 
test the OLS residuals for spatial autocorrelation by means of Moran’s I statistic. This suggeststhe 
presence of strong spatial autocorrelation in innovation modelling. Five tests have been performed 
to assess the spatial dependence in the model. The choice of the econometric specification is based 
on the statistical significance of the test statistics (Florax and de Graaff, 2004). Given 
heteroscedasticityof the errors in the model, robust tests are to be preferred. The robust Lagrange 
multiplier test indicates the presence of spatial autocorrelation in the error terms and the null 
hypothesis that the λ=0 is rejected at the 1percent level (LM: 14.95, p-val.: 0.000). The existence of 
spatial correlation in the error component suggests that the independence of the observations is 
violated.22

Table 8 summarizes the result of replacing specification (5.1) with the spatial error model. 
Interestingly, we now find a positive effect of the share of foreigners but it is barely significant. The 
coefficients of the industrial composition, the stock of human resources in science and technology 

 An omitted variable bias due to the omission of a spatially correlated unobserved effect 
from neighbouring regions may lead to erroneous estimations.  
 

                                                            
22The spatialerror model estimates the following equations,under the assumption that there may always be 
spatially-correlated measurement error in the estimations, since one cannot model all the aspects of a region, 
e.g. the boundaries, natural resourcesand the climate of study areas may not overlap with the NUTS 2 areas.  
y = Xβ + ε; ε = λWε + ν;v ~N(0,σ2); λ is spatiallag autoregressive parameter;W is a spatial weight matrix; and ν 
are independently distributed errors. 
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and the accessibility indexare again significant at the 1percent level. In contrast, the GDP growth 
rate is no longer statistically significant. The parameter of spatial error process is about 0.75. 
However, once we reintroduce the ten country fixed effects, it can be shown that spatial 
autocorrelation is no longer statistically significant and the coefficients are very similar to those 
already reported. The same result holds in the other specifications of Tables 6 and 7. While 
estimators have now been developed that jointly account for endogeneity and spatial dependence 
(for example, Kelejian andPrucha, 2004), the fact that IV estimation in Table 7 did not overturn the 
OLS results, plus the statistical insignificance of the spatial error and lag model in the presence of 
time and country fixed effects, suggests that nothing is to be gained from such more advanced 
estimators.  Instead, the next section draws the broad conclusions. 
 
 
7. Conclusion 
 
This paper has discussed the various effects of immigration on the innovativeness of the regions. We 
estimatedfive different effects that might occur as a result of the increasing number of foreigners in 
particular locations. We specifically considered the influence ofpopulation scale, population density, 
migrant share, the skills composition of migration, and the diversity among foreigners. To address 
various econometric issues such as omitted variable bias, endogeneity and spatial 
dependence,robustness checks were conducted through varying the specifications, introducing 
instrumental variables and estimating a spatial error model.  
 
The econometric results of this paper are supportive of the view that Jacobs’ externalities are 
important. In other words, cross-fertilization of ideas in a diverse urban area creates a contextual 
environment where more ideas are produced and turned into innovative outputs. The two 
important findings of this work are:firstly, the regions with relatively many immigrants do not have a 
positive or negativeimpact onthe production of a higher number of patent applications; and 
secondly, the diversity of abilities brought by the immigrants may be beneficial and complementary 
to the native workers in the host regions. These results hold even after robustness checks with IV 
and spatial estimation. The varying degrees of cultural differences in terms of horizontal 
differentiation create opportunities for culturally diverse regions. However, we also found that there 
is a critical point beyond which these benefits from diversity may begin to occur.Among the NUTS2 
regions, this point occurs beyond the first quartile of the diversity distribution. For the benefits 
gained from diversity to appear,diversity among foreigners living and working in a particular locality 
needs to be above a threshold level. We also conclude that the index of fractionalization that is 
commonly used to measure diversity, namely the one that includes the native born population, is 
not an appropriate measure of the intended diversity effect. Instead, it simply proxies (and is highly 
correlated with) the share of foreigners in the population, i.e. just the ‘exposure’ of natives to 
foreigners rather than the diversity among the latter. 
 
Innovation is strongly driven by industrial composition, GDP growth, human resources in science and 
technology, and accessibility. Hence higher competitiveness and availability of knowledge spillovers 
in a culturally diverse setting contributes to the innovativeness of the regions in Europe. We found 
that immigrant groups from certain source regions have a more positive and significant effect on 
patent applications than those from other regions. However,better data are needed to studyhow a 
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variation in the composition of the immigrant flow may affectthe economic output on the host 
economy.  
 
Generally, we had considerable data availability problems at the NUTS2 regional level that impede 
us from pursuing more comprehensive research on this topic. However, the available data do permit 
an analysis of the impact of immigration on innovation by patent type, which will be conducted in a 
future paper. More generally, analysis at the micro-level may be more fruitful and we have already 
commenced research along these lines, combining firm data on innovation with matched data on 
employee characteristics in The Netherland. Such research maybehelpful in designing immigration 
policies which can ensure the best economic and social outcomes. Such targeting based on 
perceived host country outcomes is already the main motivation for the points systems that are 
used to select skilled migrants in Australia, Canada, New Zealand, and the United Kingdom. 
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Table1: The data used in the estimations 
  Indicators Code Measures NUTS Years Datasource 
1 Patent applications p Total patent applications per million inhabitants 

(pmi) 
NUTS2 1990-2005 Eurostat, EPO 

     
  2 Population & labour 

force 
ave Average population of the calendar year NUTS3/NUTS2 1990-2006 Eurostat 

  pd Population density (total pop/km2) NUTS3/NUTS2 1990-2005 Eurostat 
  hr Human resources in science & tech. as a share of 

active population 
NUTS2 1994-2007 Eurostat 

3 Immigration shfor Share of foreigners in total pop. NUTS3/NUTS2 1991, 2001 Eurostat, IAB, CENSI 
  index_b Fractionalization index = 1-Herfindal index of 

nationality shares (excl. natives) 
NUTS2 2001 Own calculations 

  index Fractionalization index = 1-Herfindal index of 
nationality shares (incl. natives) 

NUTS2 2001 Own calculations 

4 Production structure & 
performance 

smv Service sector value added divided by industry 
sector value added 

NUTS3/NUTS2 1990-2008 Oxford econometrics 

  gdpgr GDP growth rate (%) NUTS3/NUTS2 1990-2005 Oxford econometrics 
5 Geography w Weight matrix based on Euclidean distance NUTS2 - ETIS 
  mcdst Number of McDonald’s restaurants per million 

inhabitants 
NUTS2 2009 Own calculations 

  area Area of the regions (km2) NUTS2 1990-2005 Eurostat 
  access Accessibility index NUTS2 2009 ESPON 
 
Note: Full details on the data can be found in Ozgen et al. (2010). 
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Table 2: Descriptives – 170 NUTS 2 regions 
  

Variables  Mean Std.Dev. Min Max 
Patent applications per million inhabitants 1991-1995* 61.8 70.9 0.2 320.2 
Patent applications per million inhabitants 2001-2005* 127.5 128.5 1.3 811.9 
Share of foreigners in 1991 0.048 0.042 0.001 0.286 
Share of foreigners in 2001 0.072 0.042 0.016 0.273 
Ratio of services over industry value added1991-1995* 2.47 0.98 0.96 7.74 
Ratio of services over industry value added2001-2005* 3.09 1.34 0.85 11.03 
GDP growth rate (%)1991-1995* 1.68 3.03 -5.24 11.59 
GDP growth rate (%) 2001-2005* 1.78 1.68 -1.49 8.11 
Average Population1991-1995 (000s)* 1914 1582 116 10806 
Average Population2001-2005 (000s)* 1988 1657 121 11313 
Human resources in S&T as % of active pop.1991-1995* 29.83 7.19 12.36 55.02 
Human resources in S&T as % of active pop.2001-2005* 34.88 6.83 13.42 55.16 
Accessibility index 2006 104.77 32.30 39.49 197.27 
Population density1991-1995(pop. per km2)*  335.84 648.81 3.12 5936.5 
Population density2001-2005 (pop. per km2)* 345.00 655.02 3.30 6033.5 
Area of regions (km2)1991-1995* 14905 19736 161 165079 
Area of regions (km2)2001-2005* 14929 19767 161 165296 
Population aged 25-44 / aged 25-64  1991-1995* 0.5767 0.0293 0.4973 0.7101 
Population aged 25-44 / aged 25-64  2001-2005* 0.5634 0.0258 0.4871 0.6417 
Fraction of Africans 2001** 0.0073 0.0103 0.0004 0.0766 
Fraction of Americans 2001**  0.0041 0.0066 0.0002 0.0533 
Fraction of Asians 2001** 0.0069 0.0116 0.0002 0.0863 
Fraction of Central and Eastern Europeans 2001**  0.0052 0.0093 0.0001 0.0790 
Fraction of Other-Europeans 2001** 0.0467 0.0327 0.0084 0.1690 
Diversity index including natives in 2001 0.1321 0.0779 0.0312 0.5331 
Diversity index_b excluding natives in 2001 0.4945 0.1716 0.1853 0.8054 
McDonald’s restaurants per million pop. in 2008 13.49 7.08 0 33.64 
     
Notes: * The individual observations are the five-year averages of the annualvalues for each NUTS 2 region. 
**The fraction of foreigners, from the given continents, among total populationin 2001.  
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Table 3: Regions with the highest and lowest share of foreigners (shfor) in 2001 
 

2001 
NUTS 2 
Codes 

Regions 
Share of 

foreigners 

Re
gi

on
s 

 w
ith

 
hi

gh
es

t s
hf

or
 BE1 Brussels 0.272 

AT13 Wien 0.236 
FR1 Il de France 0.180 
SE01 Stockholm 0.176 
FR82 Province-Alpes-Cote d’Azur 0.173 

Re
gi

on
s 

 w
ith

 
lo

w
es

t s
hf

or
 FR25 Basse-Normandie 0.029 

ES13 Cantabria 0.028 
FR52 Bretagne 0.028 
BE23 Flandre Orientale 0.027 
ES41 Castilla y Leon 0.026 

 
 
 
Table 4: The most and least diverse regions with respect to the continental sharesof foreigners(%) in 
2001 
 

2001 
NUTS 2 
Codes 

Regions 
Diversity index 

index_b 
Share of 

foreigners 
Afr Ame Asi Eur Rest Total 

m
os

t d
iv

er
se

 r
eg

io
ns

 UKJ1 Berkshire, Bucks and 
Oxfordshire 

0.805 0.107 0.23 0.16 0.26 0.3 0.05 1.00 

ES23 La Rioja 0.781 0.053 0.24 0.31 0.10 0.35 0.00 1.00 
UKH1 East Anglia 0.775 0.063 0.11 0.23 0.22 0.39 0.04 1.00 
UKJ3 Hampshire and Isle of 

Wight 
0.775 0.062 0.16 0.13 0.31 0.36 0.04 1.00 

UKJ2 Surrey, East and West 
Sussex 

0.774 0.085 0.24 0.10 0.35 0.28 0.03 1.00 

le
as

t d
iv

er
se

 
re

gi
on

s 

PT16 Centro 0.232 0.055 0.05 0.07 0.00 0.87 0.01 1.00 
PT11 Norte 0.225 0.040 0.05 0.06 0.01 0.87 0.01 1.00 
BE32 Hainaut 0.216 0.118 0.07 0.02 0.01 0.89 0.01 1.00 
BE34 Louxembourg 0.197 0.044 0.05 0.01 0.02 0.91 0.01 1.00 
BE22 Limbourg 0.185 0.080 0.06 0.01 0.02 0.91 0.00 1.00 

Note:For comparability the diversity index values given here referto the continental shares instead of a complete 
breakdown into sub continents. 
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Table 5: Pooled OLS estimation with period data (1991-1995 and 2001-2005) 
 
Dep.var.: ln(Patents) (5.1) (5.2) (5.3) 
    
    
Share of foreigners -0.942   
 (1.356)   
Diversity index_ba   1.578*** 
   (0.392) 
Africans  10.99*  
  (6.598)  
Americans  22.44*  
  (11.58)  
Asians  -15.78**  
  (6.859)  
Central & Eastern Europeans  19.82  
  (13.12)  
Other Europeans  -0.747  
  (2.039)  
Services/industry sectors value added -0.245*** -0.270*** -0.244*** 
 (0.0633) (0.0758) (0.0589) 
GDP growth rate 0.0520*** 0.0560*** 0.0563*** 
 (0.0189) (0.0195) (0.0186) 
ln(total population) 0.0572 0.0865 0.0678 
 (0.0613) (0.0613) (0.0582) 
Human resources in S&T 0.0669*** 0.0562*** 0.0592*** 
 (0.0103) (0.0100) (0.0102) 
Accessibility index 0.0133*** 0.0112*** 0.0113*** 
 (0.00237) (0.00233) (0.00218) 
Constant -0.191 0.0562 -0.446 
 (0.833) (0.839) (0.773) 
Time/Country FE Yes/Yes  Yes/Yes Yes/Yes 
N 340 340 340 
R-squared 0.795 0.804 0.803 
Notes: aThis index includes only foreign population.  
Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1,  
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Table 6: Sensitivity Checks1 

 

Dep.var.: ln(Patents) (6.1) (6.2) (6.3) (6.4) 
     

     
Share of foreigners   -0.0787 7.834** -3.217 
  (1.377) (3.232) (2.335) 
Diversity index_b -5.666*** 1.574*** 2.464*** 1.842*** 
 (1.507) (0.391) (0.535) (0.562) 
Interaction of shfor*index_b   -17.50***  
   (6.596)  
Diversity index_b2 7.548***    
 (1.608)    
Ln(total population) 0.063 0.068 0.061 0.093* 
 (0.058) (0.058) (0.057) (0.057) 
Population density    -0.0003** 
    (0.0001) 
Youthfulness of pop.     -3.212** 
    (1.509) 
Other Europeans    8.221** 
    (3.720) 
Constant 1.187 -0.454 -0.960 0.807 
 (0.824) (0.810) (0.790) (1.251) 
Time/Country FE Yes/Yes Yes/Yes  Yes/Yes Yes/Yes 

N 340 340 340 340 
R-squared 0.813 0.803 0.807 0.825 
Notes: 1 The estimations in this table include the following covariates: services/industry sectors value added, GDP growth 
rate, ln(total population), human resources in S&T, accessibility index. Additionally, Africans, Americans, Asians and  
Central & Eastern Europeans categories are included in the fourth estimation, but they are not reported in column (6.4) to 
save space. All the latter coefficients are statistically insignificant. Robust standard errors in parentheses, *** p<0.01, ** 
p<0.05, * p<0.1. 
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Table 7: Instrumental Variables Estimations1 
 

Dep.var.: ln(Patents) (7.1) (7.2) 
   
   
Share of foreigners -7.005  
 (7.283)  
Diversity indexα  3.355 
  (4.540) 
Diversity index_b  1.835*** 
  (0.493) 
Constant -0.915 0.103 
 (1.179) (1.098) 
Time/Country FE Yes/Yes Yes/Yes 
N 340 340 
R-squared 0.783 0.803 
Notes: 1The estimations in this table include the following covariates: services/industry sectors value added, GDP growth 
rate, ln(total population), human resources in S&T, accessibility index. αThis index includes the foreign and native 
population.Share of foreigners is instrumented with spatial distribution of McDonald’s restaurants per million inhabitants 
and a capital dummy, while the diversity index is instrumented with the former, and area of the regions. Robust standard 
errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 
 
 
 
 
Table 8: Estimations of Spatial Effects 
 

Dep.var.: ln(Patents) (8.1) 
  
  
Share of foreigners 3.458* 
 (1.861) 
Services/industry sectors value 
added 

-0.319*** 

 (0.0795) 
GDP growth rate 0.0200 
 (0.0241) 
ln(total population) -0.0624 
 (0.0667) 
Human resources in S&T 0.0861*** 
 (0.0128) 
Accessibility index 0.0144*** 
 (0.00263) 
Constant 0.579 
 (0.998) 
Time/Country FE Yes/No 
N  340 
Lambda 0.751*** 
 (0.151) 
LR  -465.2 
LM  21.51 
Note: Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0. 
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Figure 1: Distribution of patent applications across NUTS 2 regions, 1990-2007 
 
 

 
Figure 2: Distribution of the share of foreigners in Europe in 2001 
 
 

 
Figure 3: Scatter plot for patent applications per inhabitants vs share of foreigners in the regions in 
1991 and 2001 
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Figure 4: Patent Applications by Regions in 2001 
 
 

 
 
Figure 5: Estimated effect sizes for diversity index (excluding natives) 
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