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1 Introduction

Cities exist because proximity facilitates interactions between economic agents. There are few, if

any, fundamental issues in urban economics that do not hinge in some way on reciprocal action

or influence between or among workers and firms. Thus, the localization of industry arises from

intra-industry knowledge spillovers in Marshall (1890), while the transmission of ideas through local

inter-industry interaction fosters innovation in Jacobs (1969). In fact, the face-to-face interactions

that Jacobs emphasizes are believed to be so critical to cities that Gaspar and Glaeser (1997) (and

others) have asked whether advances in communication and information technology might make

cities obsolete. As Glaeser and Scheinkman (2001, pp. 90) note: “Cities themselves are networks

and the existence, growth, and decline of urban agglomerations depend to a large extent on these

interactions.”

The interactions that underlie the formation of urban areas are also important in other contexts.

Following Romer (1986, 1990), Lucas (1988) views the local interactions that lead to knowledge

spillovers as an important component of the process of endogenous economic growth. Non-market

interactions also figure prominently in contemporary studies of urban crime (Glaeser, Sacerdote

and Scheinkman, 1996; Verdier and Zenou, 2004), earnings and unemployment (Topa, 2001, Calvó-

Armengol and Jackson, 2004; Moretti, 2004; Bayer, Ross and Topa, 2008; Zenou, 2009), peer

effects in education (de Bartolome, 1990; Benabou, 1993; Epple and Romano, 1998), local human

capital externalities and the persistence of inequality (Benabou, 1996, and Durlauf, 1996) and civic

engagement and prosperity (Putnam, 1993).

While there is broad agreement that nonmarket interactions are essential to cities and impor-

tant for economic performance more broadly, the mechanisms through which local interactions

generate external effects are not well understood. The dominant paradigm lies in models of spatial

interaction, which assume that knowledge, or some other source of increasing returns, arises as a

by-product of the production marketable goods. The level of the externality that is available to

a particular firm or worker depends on its location relative to the source of the external effect —

the spillover is assumed to attenuate with distance — and on the spatial arrangement of economic

activity. There is a rich literature (whose keystones include Beckmann, 1976; Fujita and Ogawa,

1980; and Lucas and Rossi-Hansberg, 2002)1 that examines how such spatial externalities influence

the location of firms and households, urban density patterns, and productivity. There is also a

substantial empirical literature (including Jaffee, Tratjenberg and Henderson, 1993; Rosenthal and

Strange, 2003, 2008; and Argazi and Henderson, 2008) demonstrating that knowledge spillovers do

in fact attenuate with distance. Finally, there are more specific models that treat part of the in-

1See Fujita and Thisse (2002) for a literature review.
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teraction process as endogenous. For example, Glaeser (1999) examines a model in which random

contacts influence skill acquisition, while Helsley and Strange (2004) consider a model in which

randomly matched agents choose whether and how to exchange knowledge.

This paper uses recent results from the theory of social networks to open the black box of

local nonmarket interactions. We consider a population of agents who have positions within a

social network and locations in a geographic space. As in Goyal (2007) and Jackson (2008), we

use the tools of graph theory to model the social network. In this model the value of interaction

effort increases with the efforts of others with whom one has direct links in the social network. As

in Helsley and Strange (2007) and Zenou (2011), all interactions take place at a point in space,

the interaction center. We examine how interaction choices depend on the interplay of social and

physical distance, and show that agents who are more central in the social network, or are located

closer to interaction center, choose higher levels of interactions in equilibrium. As a result, the level

of interactivity in the economy as a whole will rise with the density of links in the social network

and with the degree to which agents are clustered in physical space. When agents can choose

geographic locations, there is a tendency for those who are more central in the social network to

locate closer to the interaction center, leading to a form of endogenous geographic separation based

on social distance. Finally, we show that the market equilibrium is not optimal because of social

externalities. We determine the value of the subsidy to interactions that could support the first-best

allocation as an equilibrium, and show that interaction effort and the incentives for clustering are

higher under the subsidy program.

There is a growing interest in theoretical models of peer effects and social networks (see e.g.

Akerlof, 1997; Glaeser, Sacerdote and Scheinkman, 1996; Ballester, Calvó-Armengol and Zenou,

2006; Calvó-Armengol, Patacchini and Zenou, 2009). However, there are very few papers that

consider the interaction of social and physical distance. Brueckner, Thisse and Zenou (2002), Helsley

and Strange (2007), Brueckner and Largey (2008) and Zenou (2011) are exceptions. However, in

these models the social network is not explicitly modeled.2 To the best of our knowledge, this is

the first model that combines an explicit analysis of social networks with an explicit analysis of

geographic location.

The paper is organized as follows. Section 2 presents the basic model of interaction with

social and physical distance, and solves for equilibrium interaction patterns. Section 3 extends

the model to consider location choice and shows that agents who are more central in the social

network will tend to locate closer to the center of interactions, ceteris paribus. Section 4 considers

efficient interaction patterns and policies that will support the optimum as an equilibrium. Section

2See Ioannides (2011, Chap. 5) who reviews the literature on social interactions and urban economics.
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5 discusses our results and concludes.

2 Equilibrium interactions with exogenous location

2.1 The model

2.1.1 Summary

There are n agents in the economy, each of whom benefits from interacting with others. The effort

that an agent devotes to interactions, and the benefit that is subsequently received, depends on the

agent’s position in a social network and on the agent’s location relative to an exogenous interaction

center. Agents who are more central in the social network choose a higher level of effort, ceteris

paribus, as do agents who are located closer to the interaction center. The model examines how

position in the social network and geographic location combine to determine an equilibrium level

of interactivity for each agent and for the economy as a whole.

2.1.2 Locations and the social network

The geography consists of two locations, a center, where all interactions occur, and a periphery. All

agents are located in either the center or the periphery. The distance between the center and the

periphery is normalized to one. Thus, letting xi represent the location of agent i, defined as her

distance from the interaction center, we have xi ∈ {0, 1},∀i = 1, 2, ..., n. In this section we assume

that locations are exogenous; location choice is considered in Section 3.

The social space is a network. A network g is a set of ex ante identical agents N = {1, . . . , n},

n ≥ 2, and a set of links or direct connections between them. These connections influence the

benefit that an agent receives from interactions, in a manner that is made precise below. The

adjacency matrix G = [gij ] keeps track of the direct connections in the network. By definition,

agents i and j are directly connected if and only if gij = 1; otherwise, gij = 0. We assume that if

gij = 1, then gji = 1, so the network is undirected.3 By convention, gii = 0. G is thus a square

(0, 1) symmetric matrix with zeros on its diagonal.

3Our model can be extended to allow for directed networks (i.e. non-symmetric relationships) and weighted links

in a straightforward way.
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2.1.3 Preferences

Consumers derive utility from a numeraire good z and interactions with others according to the

transferrable utility function

Ui(vi,v−i,g) = zi + ui(vi,v−i,g), (1)

where vi is the number of visits that agent i makes to the center, v−i is the corresponding vector of

visits for the other n− 1 agents, and ui(vi,v−i,g) is the subutility function of interactions. Thus,

utility depends on the visit choice of agent i, the visit choices of other agents and on agent i’s

position in the social network g. We imagine that each visit results in one interaction, so that the

aggregate number of visits is a measure of aggregate interactivity. For tractability, we assume that

the subutility function takes the linear quadratic form

ui(vi,v−i,g) = αvi −
1

2
v2i + θ

n∑

j=1

gijvivj, (2)

where α > 0 and θ > 0 (the roles of these parameters will become clear shortly). Equation (2)

imposes additional structure on the interdependence between agents; under (2) the utility of agent

i depends on her own visit choice and on the visit choices of the agents with whom she is directly

connected in the network, i.e., those for whom gij = 1.

Agents located in the periphery must travel to the center to interact with others. Letting y

represent income and t represent marginal transport cost, budget balance implies that expenditure

on the numeraire is

zi = y − txivi. (3)

Using this expression to substitute for zi in (1), and using (2), gives

Ui(vi,v−i,g) = y + αivi −
1

2
v2i + θ

n∑

j=1

gijvivj , (4)

where αi = α− txi. We assume α > t, so that αi > 0, ∀xi ∈ {0, 1} and hence ∀i = 1, 2, ...n. Note

from (4) that utility is concave in own visits, ∂
2Ui
∂v2i

= −1. Note also that the marginal utility of vi is

increasing in the visits of another with whom i is directly connected, ∂2Ui
∂vi∂vj

= θ, for gij = 1. Thus,

vi and vj are strategic complements from i’s perspective when gij = 1. Each agent i chooses vi to

maximize (4) taking the structure of the network and the visit choices of other agents as given.

Before analyzing this game, we introduce a useful measure of an agent’s importance in the social

network.
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2.1.4 The Katz-Bonacich network centrality measure

There are many ways to measure the importance or centrality of an agent in a social network. For

example, degree centrality measures importance by the number of direct connections that an agent

has with all others, while closeness centrality measures importance by the average distance (in

terms of links in the network) between an agent and all others. See Wasserman and Faust (1994)

and Jackson (2008) for discussions of these, and many other, characteristics of social and economic

networks. The Katz-Bonacich centrality measure (due to Katz, 1953, and Bonacich, 1987), which

has proven to be extremely useful in game theoretic applications (Ballester, Calvó-Armengol and

Zenou, 2006), “presumes that the power or prestige of a node is simply a weighted sum of the walks

that emanate from it” (Jackson, 2008, pp. 41).

To formalize this measure, let Gk be the kth power of G, with elements g
[k]
ij , where k is an

integer. The matrix Gk keeps track of the indirect connections in the network: g
[k]
ij ≥ 0 gives the

number of walks or paths of length k ≥ 1 from i to j in the network g. In particular, G0 = I.

Consider the matrix M =
∑+∞
k=0 θ

k
G
k. The elements of this matrix, mij =

∑+∞
k=0 θ

kg
[k]
ij , count the

number of walks of all lengths from i to j in the network g, where walks of length k are weighted

by θk. These expressions are well-defined for small enough values of θ.4 The parameter θ is a decay

parameter that scales down the relative weight of longer walks. Note that, whenM is well-defined,

one can write M−θGM = I and hence M = [I−θG]−1.5 The Katz-Bonacich centrality of agent i,

4The matrix power series
∑+∞

k=0 θ
k
G
k converges if and only if

‖G‖ < r = lim
k→∞

inf
∣∣∣θk
∣∣∣
−1/k

=
1

θ

where r is the radius of convergence and ‖G‖ is the “norm” of the matrix G. This norm is generally taken to be

the “spectral radius” of G, written ρ(G) = maxi |λi|, where λi is an eigenvalue of G. Thus, the matrix power series

converges, andM is well-defined, for θρ(G) < 1. Convergence of the matrix power series constructively establishes the

existence of the inverse [I− θG]−1, where I is the identity matrix. The condition θρ(G) < 1 relates the payoff function

to the network topology. When this condition holds, the local payoff interdependence θ is lower than the inverse of

the spectral radius of G, which is a measure of connectivity in the network. When this condition does not hold,

existence of equilibrium becomes an issue because the strategy space is unbounded (see Ballester, Calvó-Armengol

and Zenou, 2006).
5 Indeed, expanding the power series gives

M = I+ θG+θ2G2 + ...,

which implies,

θGM = θG+ θ2G2+θ3G3 + ...

Subtracting the latter from the former gives M−θGM = I.
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denoted, bi(g, θ) is equal to the sum of the elements of the ith row of M:

bi (g, θ) =
n∑

j=1

mij =
n∑

j=1

+∞∑

k=0

θkg
[k]
ij . (5)

The Katz-Bonacich centrality of any agent is zero when the network is empty. It is also zero for

θ = 0, and is increasing and convex in θ for θ > 0. For future reference, it is convenient to note

that the (n× 1) vector of Katz-Bonacich centralities can be written in matrix form as

b(g, θ) =M1 = [I− θG]−1 1, (6)

where 1 is the n−dimensional vector of ones.

2.2 Nash equilibrium visits and interactivity

The first-order condition for a maximum of (4) with respect to vi gives the best-response function

v∗i = αi + θ
n∑

j=1

gijv
∗
j ∀i = 1, 2, ...n. (7)

Thus, due to the linear quadratic form in (2), the optimal visit choice of agent i is a linear function

of the visit choices of the agents to whom i is directly connected in the network. In matrix form

the system in (7) becomes v = α+ θGv, where α is the (n× 1) vector of the αi’s. Solving for v

and using (6) gives the Nash equilibrium visit vector v∗:

v
∗ = [I−θG]−1α =Mα. (8)

The Nash equilibrium visit choice of agent i is

v∗i (xi,x−i, g) =
n∑

j=1

mijαj =
n∑

j=1

+∞∑

k=0

θkg
[k]
ij αj , (9)

where x−i is the vector of locations for the other n− 1 agents. The expression on the right in (9)

is the weighted Katz-Bonacich centrality of agent i, where the weight attached to the walks from i

to j is αj. Represent this by bαi(g, θ), so

bαi(g, θ) =
n∑

j=1

+∞∑

k=0

θkg
[k]
ij αj . (10)

This analysis is summarized by the following proposition:6

6For a formal proof, apply Theorem 1 in Calvó-Armengol, Patacchini and Zenou (2009) for β = 1, γ = 0, and

λ = θ.
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Proposition 1 (Equilibrium visits) For any network g and for sufficiently small θ, i.e. θρ(G) <

1, there exists a unique, interior Nash equilibrium in visit choices in which the number of visits by

any agent i equals her weighted Katz-Bonacich centrality,

v∗i (xi,x−i, g) = bαi(g, θ). (11)

The Nash equilibrium number of visits v∗i (xi,x−i, g) depends on position in the social network

and geographic location. Proposition 1 implies that an agent who is more central in the social net-

work, as measured by her Katz-Bonacich centrality, will make more visits to the interaction center

in equilibrium. Intuitively, agents who are better connected have more to gain from interacting

with others and so exert higher interaction effort for any vector of geographic locations.

We would like to see how the equilibrium number of visits v∗i (xi,x−i, g) varies with the different

parameters of the model. It is straightforward to verify that v∗i (xi,x−i, g) increases with α and

decreases with commuting costs t. It is less straighforward to analyze the relationship between

v∗i (xi,x−i, g) and the intensity of social interactions θ, which is also a measure of complementarity

in the network.7 We have the following the result whose proof can be found in the Appendix.

Proposition 2 (Intensity of social interactions) Assume θρ(G) < 1. Then, for any net-

work, an increase in the intensity of social interactions θ raises the equilibrium number of visits

v∗i (xi,x−i, g) by any agent i.

When there are a lot of synergies from social interactions, each agent finds it desirable to visit

the center more because the benefits are higher. The same intuition prevails for α. On the contrary,

when commuting costs increase, then the number of visits to the center decreases.

Let us now analyze aggregate effects. From (9), v∗i (xi,x−i, g) is non-increasing in xi,

v∗i (1,x−i, g)− v
∗
i (0,x−i, g) = −tmii ≤ 0 (12)

since M is a non-negative matrix. Any agent for whom mii > 0 will make more interaction

visits, or exert higher interaction effort, when located in the center rather than the periphery. In

fact, reflecting the complementarity in visit choices, the equilibrium visit choice of agent i is non-

increasing in the distance of any agent from the interaction center. Letting x−ik be the vector of

locations for all agents except i and k, so x−i = (xk,x−ik), we have

v∗i (xi, (1,x−ik) , g)− v
∗
i (xi, (0,x−ik) , g) = −tmik ≤ 0, ∀k 
= i. (13)

7Recall that
∂2Ui
∂vi∂vj

= θ for gij = 1.
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Let V ∗(g) represent the equilibrium aggregate level of visits, or, for simplicity, the equilibrium

aggregate level of interactions. From (9) and (10), we have

V ∗(g) =
i=n∑

i=1

v∗i (xi,x−i, g) =
i=n∑

i=1

bαi(g, θ) (14)

Consider an alternative social network g′, g′ 
= g such that for all i, j, g′ij = 1 if gij = 1. It is

conventional to refer to g and g′ as nested networks, and to denote their relationship as g ⊂ g′.

As discussed in Ballester et al. (2006), the network g′ has a denser structure of network links:

some agents who are not directly connected in g are directly connected in g′. Then, given the

complementarities in the network, it must be the case that equilibrium visits are weakly larger

for all agents, which implies V ∗(g′) > V ∗(g). Similarly, (12) and (13) imply that V ∗(g) is non-

increasing in the distance of any agent from the interaction center. Thus, the more compact is the

spatial arrangement of agents, the greater is the level of aggregate interactions for any network g.

This analysis is summarized in the following proposition:

Proposition 3 (Aggregate interactions) For sufficiently small θ, aggregate interactions in-

crease with the density of network links and decrease with the distance of any agent from the

interaction center.

This is an interesting result since it analyzes the relationship between network structure and

aggregate interactions. It says, for example, that a star-shaped network will have fewer social

interactions than a complete network because agents enjoy fewer local complementarities in the

former than in the latter.

2.3 Example

To illustrate the previous results, consider the following star-shaped social network g with three

agents (i.e. n = 3), where agent 1 holds a central position whereas agents 2 and 3 are peripherals:

� � �

2 1 3

Figure 1: A star network with 3 individuals

The adjacency matrix for this social network is given by:

G =




0 1 1

1 0 0

1 0 0


 .
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Its is a straightforward algebra exercise to compute the powers of this matrix, which are:

G
2k =




2k 0 0

0 2k−1 2k−1

0 2k−1 2k−1


 and G

2k+1 =




0 2k 2k

2k 0 0

2k 0 0


 , k ≥ 1.

For instance, we deduce from G
3 that there are exactly two walks of length three between agents 1

and 2, namely, 12→ 21→ 12 and 12→ 23→ 32. Obviously, there is no walk of this length (and,

in general, of odd length) from any agent to herself. It is easily verified that:

M = [I− θG]−1 =
1

1− 2θ2




1 θ θ

θ 1− θ2 θ2

θ θ2 1− θ2




We can now compute the agents’ centrality measures using (11). We obtain:8




v∗1

v∗2

v∗3


 =




bα1 (θ, g)

bα2 (θ, g)

bα3 (θ, g)


 =

1

1− 2θ2




α1 + θ (α2 + α3)

θα1 +
(
1− θ2

)
α2 + θ

2α3

θα1 + θ
2α2 +

(
1− θ2

)
α3




Suppose now that, for exogenous reasons, individuals 1 and 2 reside in the center, i.e., x1 = x2 = 0

while individual 3 lives at the periphery, i.e., x3 = 1. This implies that α1 = α2 = α and

α3 = α− t > 0. Thus, we now have:




v∗1

v∗2

v∗3


 =

1

1− 2θ2




(1 + 2θ)α− θ t

(1 + θ)α− θ2t

(1 + θ)α−
(
1− θ2

)
t


 (15)

It is easily verified that:9

v∗1 > v
∗
2 > v

∗
3

In that case, the effort exerted by agent 1, the most central player, is the highest one. Interestingly,

even if individuals 2 and 3 have the same position in the network, because of the locational advantage

in the geographical space, individual 2 has a higher weighted Katz-Bonacich centrality and thus

provide higher effort than individual 3. As a result, agents located closer to the center have higher

centrality bαi(g, θ) and thus higher effort (i.e. they visit more often the center to interact with

8Note that this centrality measures are only well-defined when θ < 1/
√
2 or θ2 < 1/2 (condition on the largest

eigenvalue).
9Observe that this inequality is true because we have assumed that θ < 1/

√
2 (this guarantees that the Katz-

Bonacich centrality is well-defined) and α > t.
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other people). Note that, in equilibrium, each agent i’s effort is affected by the location of all

other agents in the network but distant neighbors have less impact due to the decay factor θ in the

Katz-Bonacich centrality.

The equilibrium aggregate level of interactions in a network is then given by:

V ∗(g) =
i=n∑

i=1

v∗i =
(3 + 4θ)α− (1 + θ) t(

1− 2θ2
)

Let us now illustrate Proposition 3. Consider the network described in Figure 1 and add one link

between individuals 2 and 3 so that we switch from a star-shaped network to a complete one.

Suppose that we have the same geographical configuration, i.e. individuals 1 and 2 reside in the

center while individual 3 lives at the periphery, i.e., α1 = α2 = α and α3 = α− t > 0. We easily

obtain:10 


v∗1

v∗2

v∗3


 =

1

1− 2θ2 − θ




α+ αθ − θ t

α+ αθ − θ t

α+ αθ − (1− θ) t




Not surprisingly v∗1 = v∗2 > v∗3 since all individuals have the same position in the social network

but individual 3 has a “disadvantage” in the geographical space. Total activity in this network,

denoted by g[+23], is then equal to:

V ∗(g[+23]) =
(3 + 3θ)α− t (1− θ + 2θ)

1− 2θ2 − θ
> V ∗(g)

3 Location choice

3.1 Basic model

This section extends our model of social networks and interaction to allow agents to choose between

locating in the center and the periphery. To begin, and to make matters extremely simple, we

suppose that there is an exogenous cost differential C > 0 associated with the central location.

Assuming that the center has more economic activity generally, this cost differential might arise from

congestion effects or reflect a difference in location rent from competition among other activities for

center locations. Agents choose locations to maximize net utility, that is, utility from interactions

minus the exogenous location cost, taking the visits of other agents as given.

Using the best-response function (7), we can write the equilibrium utility level of agent i as:

U∗i (v
∗
i ,v

∗
−i,g) = y +

1

2
[v∗i (xi,x−i, g)]

2 = y +
1

2
[bαi(g, θ)]

2 (16)

10 It is easily verified that the condition on the largest eigenvalue is now given by: θ < 1/2.
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Thus, the gross utility difference associated with locating at the center rather than the periphery

is:

∆U∗i =
1

2

{
[v∗i (0,x−i, g)]

2 − [v∗i (1,x−i, g)]
2
}

(17)

=
1

2
{[v∗i (0,x−i, g)− v

∗
i (1,x−i, g)] [v

∗
i (0,x−i, g) + v

∗
i (1,x−i, g)]}

From the best-response function (7), we have:

v∗i (0,x−i, g) = α+ θ
n∑

j=1

gijv
∗
j (xj,x−j, g), (18)

and

v∗i (1,x−i, g) = α− t+ θ
n∑

j=1

gijv
∗
j (xj,x−j, g). (19)

Substituting (18) and (19) into (17) and simplifying gives:

∆U∗i = t

[
v∗i (0,x−i, g)−

t

2

]
> 0 (20)

Our earlier assumption that α > t implies ∆U∗i > 0, ∀i. Not surprisingly, any agent has higher

utility if located at the center. However, (20) shows that the utility differential is linearly increasing

in v∗i (0,x−i, g), which in turn equals agent i’s weighted Bonacich centrality (for the appropriate

value of α) by Proposition 1. This positive relationship between∆U∗i and v∗i , is the key determinant

of location choice: it shows that the benefit of a locating in the geographic center is greater for an

agent who is more central in the social network.

To simplify notation, let v∗i0 ≡ v∗i (0,x−i, g). Order agents by their centrality in the social

network, v∗10 ≥ v∗20 ≥ ...v∗n0, so that the weighted Katz-Bonacich centrality of agent i (for the

appropriate value of α) is not larger than that of agent i− 1. If ∆U∗n < C and ∆U∗1 > C, then, by

continuity and the intermediate value theorem, there must exist a v∗
î0

such that t
(
v∗
î0
− t/2

)
= C

(see Figure 2). All agents i ≤ î will have higher net utility locating at the center; conversely,

all agents i > î will have higher net utility locating at the periphery. Thus, the bifurcation at î

generates a Nash equilibrium in geographic locations: no agent wants to deviate from this pattern,

taking the visit choices of other agents as given. If C > ∆U∗1 , then all agents will choose the

periphery. If C < ∆U∗n, all agents will choose the center. For intermediate values, the equilibrium

has the property that the most central agents locate close to the interaction center to economize

on the transportation costs associated with high levels of visits or interaction effort. This analysis

is summarized in the following Proposition.

12



Proposition 4 (Equilibrium locations) Place agents in non-descending order based on their

centralities in the social network. If the cost of locating in the center, C, is such that

∆U∗n < C < ∆U
∗
1 (21)

where ∆U∗i is the increment to utility from locating in the center for agent i, then there is a critical

type î such that all agents who are more central in the social network than î locate in the center,

while all agents who are less central than î locate in the periphery.

Proposition 4 expresses the salient relationship between position in the social network and

geographic location. If participation in a social network involves costly transportation, then agents

who occupy more central positions in the social network will have the most to gain from locating

at the interaction center. In our model with two locations, in equilibrium agents who are most

central in the social network will locate at the interaction center, while agents who are less central

in the social network locate in the periphery. There is, in effect, endogenous geographic separation

by position in the social network.

*
iU∆

C

*
0iv

*
0îv2/t

2/2t−

CUi ,*∆

Figure 2: Nash equilibrium locations

An increase in C will increase the centrality of the marginal agent î and lead (at least weakly)

to less spatial concentration at the interaction center. Similarly, an increase in marginal transport

cost t, will cause ∆Ui to shift down in Figure 2. This will lead to an increase in the centrality of

13



the marginal agent î and a decrease in spatial concentration at the interaction center. Finally, an

increase in θ, the intensity of social interactions, will increase v∗i0 for all i and thus lead to more

spatial concentration in the center. This discussion is summarized in the following Proposition.

Proposition 5 (Spatial concentration in the center) An decrease in the cost of locating in

the center, a decrease in marginal transport cost, or an increase in the intensity of social interac-

tions, will lead to more spatial concentration of agents in the center.

3.2 Example

Let us return to the network described in Figure 1. We can now calculate the equilibrium utility

(16) of each individual in the city. We have:




U∗1

U∗2

U∗3


 = y +

1

2
(
1− 2θ2

)2




[α1 + θ (α2 + α3)]
2

[
θα1 +

(
1− θ2

)
α2 + θ

2α3
]2

[
θα1 + θ

2α2 +
(
1− θ2

)
α3
]2


 (22)

with αi = α− txi. Let us show that there exists an equilibrium where individuals 1 and 2 live in

the center and individual 3 in the periphery. Using (15) and (20), we have:

∆U∗1 = t

[
v∗1(0,x−1, g)−

t

2

]
= t

[
(1 + 2θ)α− θt

1− 2θ2
−
t

2

]

where x−1 = (0, 1). Similarly, we have:

∆U∗2 = t

[
(1 + θ)α− θ2t

1− 2θ2
−
t

2

]

∆U∗3 = t

[
(1 + θ)α−

(
1− θ2

)
t

1− 2θ2
−
t

2

]

We have an equilibrium with individuals 1 and 2 in the center and individual 3 in the periphery if:

∆U∗1 > C, ∆U
∗
2 > C, and ∆U

∗
3 < C

Since ∆U∗1 > ∆U
∗
2 , we need to check that:

∆U∗3 < C < ∆U
∗
2

which is condition (21) in Proposition 4. These conditions are equivalent to:

(1 + θ)α−
(
1− θ2

)
t <

(
1− 2θ2

)(C
t
+
t

2

)
< (1 + θ)α− θ2t (23)

Since (1 + θ)α−
(
1− θ2

)
t < (1 + θ)α− θ2t, such an equilibrium always exists if (26) holds.
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4 Welfare analysis and subsidy policies

4.1 First-best analysis

We would like to see if the equilibrium outcomes are efficient in terms of social interactions. For

that, the planner chooses v1, ..., vn to maximize total welfare, that is:

max
v1,...,vn

W = max
v1,...,vn

i=n∑

i=1

Ui(vi,v−i,g)

= max
v1,...,vn





i=n∑

i=1

[
y + αivi −

1

2
v2i

]
+ θ

i=n∑

i=1

n∑

j=1

gijvivj





First-order condition gives for each i = 1, ..., n:11

αi − vi + θ
∑

j

gijvj + θ
∑

j

gjivj = 0

which implies that (since gij = gji):
12

vOi = αi + 2θ
∑

j

gijvj (24)

Using (7), we easily see that:

vOi = v
∗
i + θ

∑

j

gijvj (25)

where v∗i is the Nash equilibrium number of visits given in (7). This means that there are too few

visits at the Nash equilibrium as compared to the social optimum outcome. Equilibrium interaction

effort is too low because each agent ignores the positive impact of a visit on the visit choices of

others, that is, each agent ignores the positive externality arising from complementarity in visit

choices. As a result, the market equilibrium is not efficient and the planner would like to subsidize

visits to the interaction center.

4.2 Subsidizing social interactions

Letting SOi denote the optimal subsidy to per visit, comparison of (24) and (25) implies:

SOi = θ
∑

j

gijvj (26)

11 It is easily checked that there is a unique maximum for each vi.
12The superscript O refers to the “social optimum” outcome while a star refers to the “Nash equilibrium” outcome.
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If we add one stage before the visit game is played, the planner will announce the optimal subsidy

SOi to each agent i such that:

Ui = y +
(
αi + S

O
i

)
vi −

1

2
v2i + θ

∑

j

gijvivj

= y + αivi −
1

2
v2i + 2θ

∑

j

gijvivj

By doing so, the planner will restore the first best. Observe that the optimal subsidy is such that

v
O = (I− θG)−1

(
αi + S

O
i

)
1

= (I− 2θG)−1 αi1

which means that

vOi =
n∑

j=1

+∞∑

k=0

θkg
[k]
ij

(
αj + S

O
j

)

= 2
n∑

j=1

+∞∑

k=0

θkg
[k]
ij αj

and thus

UOi = y +
1

2

[
bα+SO(θ, g)

]2

= y +
1

2
[bα(2θ, g)]

2

What is interesting here is that the planner will give a larger subsidy to more central agents in the

social network. Let us summarize our results by the following proposition.

Proposition 6 (Optimal level of social interactions) The Nash equilibrium outcome in terms

of social interactions is not efficient since there are too few social interactions. If the planner

proposes a subsidy SOi = θ
∑
j gijvj to each individual i, then the first-best outcome can be restored.

In that case, it is optimal for the planner to give higher subsidies to more central agents in the

social network.

4.3 Location with efficient interactions

We would like now to investigate a constrained efficient allocation in which the planner can subsidize

interactions (i.e., provide a subsidy of SOi per visit by agent i) but cannot directly control location

choices.

16



From (25), we have:

vOi − v
∗
i = θ

∑

j

gijvj > 0

As stated above, due to the obvious network externality, every agents makes more visits, or chooses

a higher level of interaction effort, in the optimum than in the Nash equilibrium. Note that, in

parallel to (16), one can write the utility level that i receives in the optimum as:

UOi (v
O
i ,v

O
−i,g) = y +

1

2

[
vOi (xi,x−i, g)

]2

If agents make location decisions as before, taking the choices of others as given, then the utility

differential associated with locating in the center for agent i under the subsidy SOi is (see (20)):

∆UOi = t

[
vOi (0,x−i, g)−

t

2

]
> 0

Now consider the marginal type in the periphery î from the equilibrium program. By construction,

setting integer problems aside, for this type,

∆U∗
î
= t

[
v∗
î
(0,x−i, g)−

t

2

]
= C

Further, since vOi (0,x−i, g) > v
∗
i (0,x−i, g) for all i, we have:

∆UO
î
= t

[
vO
î
(0,x−i, g)−

t

2

]
> C

This means that under the subsidy program that supports efficient interactions, the marginal type

in the periphery from the equilibrium program wants to move to the center, that is îO < î∗. Figure

3 displays these two solutions. Indeed, since all agents devote more effort to interacting with

others under the subsidy program in (26), the incentives for clustering must be stronger under that

allocation than in the Nash equilibrium.
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Figure 3: Nash equilibrium versus optimal location choices

Proposition 7 (Equilibrium versus optimal location choices) If the planner proposes a per

visit subsidy SOi to each individual i, then, compared to the Nash equilibrium location choices, more

agents live in the center.

4.4 Example

Let us return to the network described in Figure 1 and to the example from Section 3.2. There

we showed that there exists a Nash equilibrium where individuals 1 and 2 live in the center and

individual 3 in the periphery if and only if (23) holds. Assume now that the planner gives a subsidy

of SOi = θ
∑
j gijvj per visit by agent i. In the context of the network described in Figure 1, we

have:

SO1 = θ(v2 + v3) and SO2 = S
O
3 = θv1 (27)

In that case, the Nash equilibrium generates optimum levels of visits given by:13




vO1

vO2

vO3


 =




bα1 (2θ, g)

bα2 (2θ, g)

bα3 (2θ, g)


 =

1

1− 8θ2




(1 + 4θ)α− 2θt

(1 + 2θ)α− 4θ2t

(1 + 2θ)α−
(
1− 4θ2

)
t




13The largest eigenvalue of G is still given by
√
2. The condition on the largest eigenvalue is, however, given by

2θρ(G) < 1, which is equivalent to: 4θ <
√
2 or θ2 < 1/8.

18



and therefore 


UO1

UO2

UO3


 = y +

1

2
(
1− 8θ2

)2




[(1 + 4θ)α− 2θt]2

[
(1 + 2θ)α− 4θ2t

]2
[
(1 + 2θ)α−

(
1− 4θ2

)
t
]2




It is then easily verified that:

∆UO1 = t

[
(1 + 4θ)α− 2θt

1− 8θ2
−
t

2

]

∆UO2 = t

[
(1 + 2θ)α− 4θ2t

1− 8θ2
−
t

2

]

∆UO3 = t

[
(1 + 2θ)α−

(
1− 4θ2

)
t

1− 8θ2
−
t

2

]

Since ∆UO1 > ∆U
O
2 , the condition for this equilibrium to exist is ∆UO3 < C < ∆U

O
2 , that is:

(1 + 2θ)α−
(
1− 4θ2

)
t <

(
1− 8θ2

)(C
t
+
t

2

)
< (1 + 2θ)α− 4θ2t (28)

Let us now show that under the optimal subsidy policy, there can be an equilibrium for which all

agents live in the center while this is not possible in the pure Nash equilibrium case. The subsidies

are still given by (27) but now α1 = α2 = α3 = α. As a result,




vO1

vO2

vO3


 =

1

1− 8θ2




5α

α (1 + 2θ)

α (1 + 2θ)




∆UO1 = t

[
5α

1− 8θ2
−
t

2

]

∆UO2 = ∆U
O
3 = t

[
α (1 + 2θ)

1− 8θ2
−
t

2

]

The condition that guarantees that all agents live in the center is therefore ∆UO2 > C (since

∆UO1 > ∆U
O
2 ), that is:

1

α

(
C

t
+
t

2

)
<
1 + 2θ

1− 8θ2
(29)

Now, if we perform the same analysis for the Nash equilibrium case, it can be shown that the

condition that guarantees that all agents live in the center is given by:

1

α

(
C

t
+
t

2

)
<

1 + θ

1− 2θ2
(30)
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Since 1+2θ
1−8θ2

> 1+θ
1−2θ2

, it is clear that (30) is much more restrictive than (29). As a result, when

1 + θ

1− 2θ2
<
1

α

(
C

t
+
t

2

)
<
1 + 2θ

1− 8θ2

holds, it is optimal for all three agents to choose to reside in the center under the subsidy program

while at most two agents will locate in the center if no subsidy is received. This example illustrates

Proposition 7. Indeed, when all agents receive a subsidy, it becomes less costly to travel to the

center to interact with other agents and, as a result, they all devote more effort to interacting with

others. This leads to a spatial configuration where incentives for clustering are stronger under the

subsidy program than in the Nash equilibrium.

5 Concluding remarks

This paper provides what we believe to be the first analysis of the interaction between position in

a social network and position in a geographic space, or between social and physical distance. We

have developed a model in which agents who are more central in a social network, or are located

closer to an interaction center, choose higher levels of interaction effort in equilibrium. As a result,

the level of interactivity in the economy as a whole rises with with density of links in the social

network and with the degree to which agents are clustered in physical space. When agents can

choose geographic locations, there is a tendency for those who are more central in the social network

to locate closer to the interaction center.

There are many potential extensions and applications of the work described here. For example,

we have assumed that all interactions occur at a single, exogenous interaction center. In reality,

interactions in cities occur at many sites, and whether a site becomes a focal point for interactions

is of course endogenous. As in all models of complementarity, there is an interesting coordination

problem in the endogenous determination of the location of an interaction center in this model.

Natural applications for this analysis arise in studying the location of activities where network

position seems important. For example, the most senior and presumably “best connected” busi-

ness services firms in cities (law firms, consulting firms, accounting firms, and so on) appear to

concentrate in downtowns, which are generally assumed to be the center of interactions for such

activities. However, in other industries, like the high tech industries of the Silicon Valley, the center

of interactions is actually near the geographic periphery of the metropolitan area. Finally, it might

be interesting to consider relationships between various types of interactions and firm location. One

might find, for example, that when internal and external interactions are complementary, firms who

are more central in the social network and therefore locate close to the interaction center tend to be

large, while when internal and external interactions are substitutes, firms who are more central in
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the social network tend to be small. This analysis could also be extended to study the interaction

between electronic interactions, nonmarket interactions and location for firms or households with

varying positions in a social network.
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Appendix

Proof of Proposition 2. We want to study how bαi (g, θ) varies with θ. We have:

bα(g, θ) = [I− θG]
−1
α =

+∞∑

k=0

θkGk
α

and so
∂bα(g, θ)

∂θ
=
∂

∂θ

[
+∞∑

k=0

θkGk
α

]
=
+∞∑

k=0

k θk−1Gk
α =

+∞∑

k=1

k θk−1Gk
α

Since G and all its powers are positive matrices, and the coefficients θk increase with θ, it imme-

diately follows that the infinite series result in a matrix with all entries larger or equal than the

infinite series with the initial value of θ. Hence, for any fixed vector of weights α, the weighted

Bonacich vector bα(g, θ) increases with θ. In other words, when θρ(G) < 1 holds, [I− θG]−1 is

well defined and

∂bα(g, θ)

∂θ
> 0

and the result follows.
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