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ABSTRACT 
 

Maximum Likelihood Estimation and Lagrange Multiplier 
Tests for Panel Seemingly Unrelated Regressions with 

Spatial Lag and Spatial Errors: 
An Application to Hedonic Housing Prices in Paris* 

 
This paper proposes maximum likelihood estimators for panel seemingly unrelated 
regressions with both spatial lag and spatial error components. We study the general case 
where spatial effects are incorporated via spatial errors terms and via a spatial lag dependent 
variable and where the heterogeneity in the panel is incorporated via an error component 
specification. We generalize the approach of Wang and Kockelman (2007) and propose joint 
and conditional Lagrange Multiplier tests for spatial autocorrelation and random effects for 
this spatial SUR panel model. The small sample performance of the proposed estimators and 
tests are examined using Monte Carlo experiments. An empirical application to hedonic 
housing prices in Paris illustrates these methods. The proposed specification uses a system 
of three SUR equations corresponding to three types of flats within 80 districts of Paris over 
the period 1990-2003. We test for spatial effects and heterogeneity and find reasonable 
estimates of the shadow prices for housing characteristics. 
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1 Introduction
Zellner’s (1962) pioneering paper considered the estimation and testing of
seemingly unrelated regressions (SUR) with correlated error terms. SUR
has been applied in many research areas in economics and other fields, see
Srivastava and Giles (1987) and Fiebig (2001) for excellent surveys. It is
by now clear that SUR achieves gains in efficiency by estimating a set of
equations simultaneously rather than estimating each equation separately.
Common factors affecting these equations allow such gains in efficiency and
has been demonstrated in economics, for e.g., in studying demand systems
and translog cost functions, to mention a few important applications.
Avery (1977) and Baltagi (1980) extended the SUR model to panel data

models with error components. This extension allows one to take advantage
of panel data which pools regions, counties, countries, neighborhoods over
time. Besides the larger variation in the data across these regions, one is able
to control for unobserved heterogeneity across these units of observation.
Anselin (1988) extended the SUR model to allow for spatial correlation

in the data. This extension allows one to take advantage of spillover effects
across regions. Here, we focus on combining the spatial and panel aspects
of the data in a SUR context. In fact, Anselin (1988) and Elhorst (2003)
among others provided maximum likelihood (ML) methods that combine
panel data with spatial analysis, while Kapoor, Kelejian and Prucha (2007)
provided a generalized moments estimators (GM) approach for estimating
a spatial random effects panel model with SAR disturbances. Fingleton
(2008a) extended the GM approach of Kapoor, Kelejian and Prucha to allow
for spatial moving average disturbances, see Anselin, Le Gallo and Jayet
(2008) for a recent survey.
This paper followsWang and Kockelman (2007) who applied ML methods

to a SUR model with spatial effects incorporated via autocorrelation in the
spatial error terms and heterogeneity in the panel incorporated via random-
effects. However, this paper extends the ML approach developed by Wang
and Kockelman (2007) to the general case where spatial effects are incorpo-
rated via spatial error terms and via a spatial lag dependent variable and
where the heterogeneity in the panel is incorporated via an error component
specification.
We propose joint and conditional Lagrange Multiplier tests for spatial

autocorrelation and random effects for this spatial SUR panel model. The
small sample performance of the proposed estimators and tests are examined
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using Monte Carlo experiments. We show that ignoring these spatial effects
and/or heterogeneity can lead to misleading inference.
An empirical application to hedonic housing prices in Paris illustrates

these methods. The proposed specification uses a system of three SUR equa-
tions corresponding to three types of flats within 80 districts of Paris over
the period 1990-2003.1. One of the main contributions of the paper is that it
pays special attention to the heterogeneity and spatial variation in housing
prices across districts and it tests for their existence.2 We find significant
spatial effects and heterogeneity across the Paris districts, and we show that
ML methods that incorporate these effects lead to reasonable estimates of
the shadow prices of housing attributes.
Section 2 sets up the panel SUR model with spatial lag and spatial error

components. In section 3, we present the ML estimation under normality
of the disturbances. Section 4 considers the problem of jointly testing for
random effects as well as spatial correlation in the context of this spatial SUR
panel model. This extends earlier work on testing in spatial panel models
by Baltagi et al. (2007) from the single equation case to the SUR case.
Section 5 performs Monte Carlo experiments which compare the small sample
properties of the proposedML estimators and LM tests. Section 6 provides an
empirical application of these methods to the problem of estimating hedonic
housing prices in Paris, while section 7 concludes. We recognize that there is
a large literature on hedonic housing and that our application is only meant
to illustrate our spatial panel ML methods and the the asscociated LM test
statistics.

1Hedonic measures have a strong theoretical grounding and use regression techniques
to control for compositional and quality change (see, for example, Arguea and Hsiao
(1993), Can (1992), Dubin (1992), Dubin et al. (1999), Griliches (1971), Halvorsen and
Pollakowski (1981) and Rosen (1974) to mention a few).

2For spatial effects in real estate (see Fingleton (2008b), Glaeser (2008), and Helpman
(1998) to mention a few). For spatial econometric methods (see Anselin (1988), Anselin
and Bera (1998), Anselin et al. (2008), Baltagi (2010), Baltagi et al. (2007), and Elhorst
(2003, 2010) to mention a few).
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2 The panel SUR with spatial lag and spatial
error components

We consider a spatial system of equations model viewed as an extension of
the single equation spatial model introduced by Cliff and Ord (1973, 1981).
In particular, we specify a system of spatially interrelated panel equations
corresponding to N cross sectional units over T time periods. The spatial
SUR model for panel data is composed ofM equations (each potentially hav-
ing a different set of explanatory variables) for N regions which are observed
over T time periods. Consider the set of M equations:

yjt = γjWyjt +Xjtβj + εjt , j = 1, ...,M , t = 1, ..., T (1)

= γjyjt +Xjtβj + εjt

where yjt is a (N × 1) vector, W is an (N ×N) spatial weights matrix3, Xjt
is a (N × kj) matrix of exogenous variables, βj is a (kj × 1) vector of para-
meters and εjt is a (N × 1) vector of disturbances. The vector yjt (=Wyjt)
is typically referred to as the spatial lag of yjt. In addition to allowing for
general spatial lags in the endogenous variables, we also allow for spatial
autocorrelation in the disturbances. In particular, we assume that the dis-
turbances are generated either by a spatially autoregressive (SAR) process
or a spatially moving average (SMA) process:

εjt =

½
λjWεjt + ujt for SAR
λjWujt + ujt for SMA

(2)

and ujt is an error component:

ujt = µj + vjt (3)

When we pool the T time periods, we get:

yj = γj (IT ⊗W ) yj +Xjβj + εj , εj =
½
λj (IT ⊗W ) εj + uj for SAR
λj (IT ⊗W ) uj + uj for SMA

(4)

3For ease of presentation, we are assuming that the system involves only one weight
matrix. This also seems to be the typical specification in applied work. Our results can be
generalized in a straight forward way to the case in which the weight matrix varies across
equations.
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with

uj = (ιT ⊗ IN)µj + vj (5)

where µj =
¡
µj1, ...., µjN

¢0
, vj = (vj11, ..., vjN1, ..., vj1T , ..., vjNT )

0 and ιT is a
(T × 1) vector of ones, see Anselin, Le Gallo and Jayet (2008). So:

y = (Γ⊗ IT ⊗W ) y +Xβ + ε , ε =
½
(Λ⊗ IT ⊗W ) ε+ u for SAR
(Λ⊗ IT ⊗W )u+ u for SMA

(6)

where Γ = diagMj=1

©
γj
ª
and Λ = diagMj=1 {λj} . Then,

Ay = Xβ + ε , Bε = u (7)

with 
A = INTM − (Γ⊗ IT ⊗W )
B =

½
INTM − (Λ⊗ IT ⊗W ) for SAR
[INTM + (Λ⊗ IT ⊗W )]−1 for SMA

(8)

or

A =

 IT ⊗ A1

. . .
IT ⊗ AM

 , B =
 IT ⊗B1

. . .
IT ⊗BM

 (9)

with

Aj = IN − γjW , Bj =
½
IN − λjW = Hj for SAR
(IN + λjW )

−1 = L−1
j for SMA

(10)

The variance-covariance matrix of ε is given by:

Ωε = B
−1Ωu (B

0)−1 (11)

where Ωu is the variance-covariance matrix of the error component term, see
Baltagi (1980):

Ωu = [Ωjl] with Ωjl = σµjl
(JT ⊗ IN) + σvjl

INT (12)

= Σu ⊗ IN = Ωµ ⊗ JT ⊗ IN + Ωv ⊗ IT ⊗ IN
=

¡
TΩµ + Ωv

¢⊗ JT ⊗ IN + Ωv ⊗ ET ⊗ IN

5



with JT = JT/T , ET =
¡
IT − JT

¢
and JT is a (T × T ) matrix of ones.

Ωµ =


σ2
µ1

σµ12
· · · σµ1M

σµ21
σ2
µ2

· · · σµ2M

...
...

. . .
...

σµM1
σµM2

· · · σ2
µM

 andΩv =


σ2
v1

σv12 · · · σv1M

σv21 σ2
v2

· · · σv2M

...
...

. . .
...

σvM1
σvM2

· · · σ2
vM

 .
Based on a joint standard normal distribution for the error term ν =

Ω
−1/2
u B (Ay −Xβ), the log-likelihood function for the joint vector of obser-
vations y is proportional to:

` ∝ −1
2
ln |Ωu|+ ln |B|+ ln |A|− 1

2
ν0ν (13)

with

ν 0ν = (Ay −Xβ)0B0Ω−1
u B (Ay −Xβ) (14)

= (Ay −Xβ)0Ω−1
ε (Ay −Xβ) = ε0Ω−1

ε ε

3 Maximum Likelihood Estimation
The log-likelihood function (13) can also be written as follows:

` ∝

 −N
2
ln |Σu|+ T

MP
j=1

ln |Bj|+ T
MP
j=1

ln |Aj|
−1

2
(Ay −Xβ)0B0 (Σ−1

u ⊗ IN )B (Ay −Xβ)
(15)

Using the results in Baltagi (1980) and Magnus (1982),(
|Σu| =

¯̄
TΩµ + Ωv

¯̄ |Ωv |T−1

Σ−1
u =

¡
TΩµ + Ωv

¢−1 ⊗ JT + Ω−1
v
⊗ET

(16)

we can express the log-likelihood function as follows:

` ∝ −N
2
ln
¯̄
TΩµ + Ωv

¯̄− N (T − 1)
2

ln |Ωv |+ T
MX
j=1

ln |Bj|+ T
MX
j=1

ln |Aj|

−1
2
(BAy −BXβ)0

³¡
TΩµ + Ωv

¢−1 ⊗ JT ⊗ IN
´
(BAy −BXβ) (17)

−1
2
(BAy −BXβ)0 ¡Ω−1

v
⊗ET ⊗ IN

¢
(BAy −BXβ)
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Generalizing the Wang and Kockelman (2007) approach, the model can be
estimated using a three-step method: First, β can be estimated using gen-
eralized least squares (GLS), conditional on Ωµ , Ωv , γ = (γ1, ..., γM)

0 , and
λ = (λ1, ...,λM)

0 . Then Ωµ and Ωv can be estimated conditional on β, γ and
λ. These first two steps are iterated until the optimal Ωµ, Ωv , and β are
found (conditional on γ and λ). The third step is to substitute the estimated
Ωµ , Ωv , and β and to maximize the concentrated log-likelihood function over
γ and λ. The estimated γ and λ then re-enter the estimation of Ωµ, Ωv , and
β. This procedure is iterated until convergence.
The estimation method proposed can be performed using the following steps:

3.1 Step 1: Estimate β conditional on Ωµ, Ωv
, γ and λ

Note that JT ⊗ IN denotes an average of the (BAy −BXβ) values over time
for each equation, and ET ⊗ IN denotes each observation’s deviation from
these averages. If one lets P 0P =

¡
TΩµ + Ωv

¢−1
and Q0Q = Ω−1

v
, one can

transform the data as follows:½
y∗ = (Q⊗ INT )BAy − ((P −Q)⊗ INT )BAy
X∗ = (Q⊗ INT )BX − ((P −Q)⊗ INT )BX (18)

where bars indicate averages over time. In this way, the regression resembles
a standard linear regression, with transformed data:

bβ = ³X∗0
X∗
´−1

X∗0
y∗ (19)

3.2 Step 2: Estimate Ωµ and Ωv
conditional on β, γ and

λ

Denote by be = B ³Ay −Xbβ´, the spatial-autocorrelated transformed resid-
uals, then the last part in Eq.(17) (conditional on both β, γ and λ) is simply:

−1
2
be0 ¡Ω−1

v
⊗ ET ⊗ IN

¢ be (20)

This term is actually a scalar that equals its trace, so:

be0 ¡Ω−1
v
⊗ ET ⊗ IN

¢ be = tr
¡be0 ¡Ω−1

v
⊗ ET ⊗ IN

¢ be¢ (21)

= tr
¡ee0 ¡Ω−1

v
⊗ INT

¢ ee¢ = tr ¡¡Ω−1
v
⊗ INT

¢ eeee0¢
7



with

ee = (IM ⊗ET ⊗ IN )be (22)

Thus, ee is simply the transformed residuals be expressed in deviations from
their time mean. Using eΠ (of dimensionNTM×NTM) to denote the matrixeeee0, Eq.(21) can be further simplified as

be0 ¡Ω−1
v
⊗ ET ⊗ IN

¢ be = tr³Ω−1
v
eΘ´ (23)

where eΘ is an (M ×M) matrix in which each element is the trace of an
(NT ×NT ) sub-block matrix of eΠ:
eΘj,l = tr


eΠ(j−1)NT+1,(l−1)NT+1

eΠ(j−1)NT+1,(l−1)NT+2 · · · eΠ(j−1)NT+1,lNTeΠ(j−1)NT+2,(l−1)NT+1
eΠ(j−1)NT+2,(l−1)NT+2 · · · eΠ(j−1)NT+2,lNT

...
...

. . .
...eΠjNT,(l−1)NT+1

eΠjNT,(l−1)NT+2 · · · eΠjNT,lNT

 , ∀j, l

(24)

Similarly, be0 ³¡TΩµ + Ωv

¢−1 ⊗ JT ⊗ IN
´ be can be simplified as tr³¡TΩµ + Ωv

¢−1
Θ
´
,

where Θ also is an (M ×M) matrix with each element being the trace of
the corresponding sub-block matrix of Π. This comes from the transformed
residuals be but now averaging them over time: e =

¡
IM ⊗ JT ⊗ IN

¢ be. Thus
Eq.(17) can be finally expressed as

` ∝ −N
2
ln
¯̄
TΩµ + Ωv

¯̄− N (T − 1)
2

ln |Ωv |+ T
MX
j=1

ln |Bj|+ T
MX
j=1

ln |Aj|

−1
2
tr
³¡
TΩµ + Ωv

¢−1
Θ
´
− 1
2
tr
³
Ω−1
v
eΘ´ (25)

The first order conditions for ML estimation are obtained by setting the score
vector equal to zero:

d =

µ
∂`

∂θ

¶
= 0 , θ =

³
β 0, γj,λj, σµjl

, σvjl

´0
, j = 1, ...,M (26)
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In particular,

∂`

∂Ωµ
= −NT

2

¡
TΩµ + Ωv

¢−1
+
T

2

¡
TΩµ + Ωv

¢−1
Θ
¡
TΩµ + Ωv

¢−1

∂`

∂Ωv

= −N
2

¡
TΩµ + Ωv

¢−1 − N (T − 1)
2

Ω−1
v

+
1

2

¡
TΩµ + Ωv

¢−1
Θ
¡
TΩµ + Ωv

¢−1
+
1

2
Ω−1

v
eΘΩ−1

v

which gives immediate solutions for Ωµ and Ωv :(
Ωv = 1

N(T−1)
eΘ

Ωµ = 1
NT
Θ− 1

N(T−1)
eΘ (27)

By iterating steps 1 and 2, the optimal values for Ωµ, Ωv and β can be
obtained conditional on γ and λ.

3.3 Step 3: Estimate γ and λ conditional on Ωµ, Ωv
and

β

The optimized Ωµ, Ωv and β from the first two steps are substituted into
the log-likelihood function, and the only parameters left are γj and λj,
j = 1, ...,M . These can be estimated by iteratively maximizing Eq.(17)
via `(γ,λ|β,Ωµ,Ωv) and `(β,Ωµ,Ωv |γ,λ) until convergence. The informa-
tion matrix given by:

[I (θ)]−1 = −E
·
∂2`

∂θ∂θ0

¸−1

(28)

is not block-diagonal between γj and λj (and γj and β). As a consequence,
the expression for the inverse [I (θ)]−1 is not straightforward, but not analyt-
ically prohibitive due to the sparseness of the non-diagonal parts (see Anselin
(1988)). The I (θ) elements are given in the Appendix. Derivations of the
score vector and the information matrix are available upon request from the
authors in the supplement material.

4 Joint and conditional LM tests
Testing for spatial dependence has been surveyed by Anselin (1988) and
Anselin and Bera (1998). This has been extended to single equation spatial
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panels by Baltagi et al. (2007). Here we extend this to SUR spatial panels.
Let us partition θ as follows: θ = [θ01, θ

0
2]
0 where θ1 pertains to the parameters

included in the null hypothesis and θ2 to the remainder parameters. The
Lagrange Multiplier (LM) or score test statistic for testing, H0 : θ1 = 0, may
be written as:

LMθ1=0 = eD0
θ1
eJ−1
θ1

eDθ1 (29)

where Dθ1 is the score of the log-likelihood with respect to θ1. Jθ1 is the cor-
responding block of the information matrix pertaining to θ1, and eD denotes
that D is evaluated under the null H0. Under normality of the disturbances,
this statistic is asymptotically distributed as N → ∞, as a χ2 with kθ1 de-
grees of freedom, where kθ1 denotes the number of parameters in the vector
θ1 (see Breusch and Pagan (1980)).
In the next sub-section, we consider a joint LM test for spatial dependence
(in the form of an omitted spatially lagged variable

¡
γj = 0, ∀j

¢
or spatial

autocorrelation in the disturbance term (λj = 0, ∀j)) as well as heterogeneity
(in the form of random effects

¡
σµlm

= 0, ∀l,m¢).
4.1 The joint LM test

For the general panel SUR with spatial lag and spatially correlated errors de-
scribed by equations (4)-(5), testing for no spatial correlation and no random
effect in this model amounts to jointly testing the three sources of misspeci-
fication:

Ha
0 :
£
γj, λj, σµlm

¤0
= 0, ∀j, l,m = 1, ..,M

In this case, model (4)-(5) reduces to the pooled homoskedastic SUR model:

yj = Xjβj + εj, εj = vj, ∀j = 1, ..,M

For the score vector Dθ1 , only
h³

∂`
∂γj

´
,
³
∂`
∂λj

´
,
³

∂`
∂σµlm

´i0
need to be consid-

ered since
³
∂`
∂β

´
and

³
∂`

∂σvlm

´
are zero as a result of the conditions for max-

imum likelihood estimation. Under the null hypothesis, the corresponding
LM statistic is given by:

LMHa
0
= eD0

Ha
0

eJ−1
Ha

0

eDHa
0

10



where the score vector is:

eDHa
0
=

 ε0 ¡Ω−1
v
F jj ⊗ IT ⊗W

¢
y

ε0
¡
Ω−1

v
F jj ⊗ IT ⊗W

¢
ε

−NT
2
Tr
£
F jkΩ−1

v

¤
+ T

2
ε0
£
Ω−1

v
F jkΩ−1

v
⊗ JT ⊗ IN

¤
ε


and

eJHa
0
=
¡
J11 − J12J

−1
22 J

0
12

¢
with

J11 =

 eIγγ eIγλ 0eIλλ 0eIσµσµ

 , J12 =

 0 eIγβ0

0 0eIσµσv 0

 , J22 =

Ã eIσvσv 0

0 eIββ0

!

F jk is an (M ×M) matrix of zeroes except for its (j, k) and (k, j) elements,
which are equal to one. Here j and k index equations 1 throughM . eIxy = Ixy
in which A and B reduce to IMNT and Ωµ = 0. Intermediate matrices4, used
in elements of the information matrix Ixy (see appendix) reduce to DA

j =
DB
j = Sj = Rj = U

B
j = W . Derivation of the corresponding LM statistic is

available upon request from the authors in the supplement material. Under
the null Ha

0 , this statistic is expected to be asymptotically distributed as

χ2 with
³
2M + M(M+1)

2

´
degrees of freedom. We do not formally establish

the large sample distribution of the LM score tests derived in this paper,
but we conjecture that they are likely to hold under similar sets of primitive
assumptions developed in Kelejian and Prucha (2001) for the Moran I test
and its close cousins the LM tests for spatial dependence. See also Pinkse
(1998, 1999) who provided general conditions under which Moran I flavoured
tests for spatial correlation have a limiting normal distribution in the presence
of nuisance parameters in six frequently encountered spatial models.

4

DA
j =WA

−1
j , DB

j =

½
WH−1

j for SAR
L−1

j W for SMA
, UB

j =

½
H−1

j W for SAR
WL−1

j for SMA

Sj =

½
HjWA

−1
j for SAR

L−1
j WA−1

j for SMA
and Rj =

½
HjWA

−1
j H−1

j for SAR
L−1

j WA−1
j Lj for SMA
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4.2 Two-dimensional conditional LM tests

4.2.1 Conditional LM test for no spatial correlation and no spatial
lag given random effects

Testing for no spatial correlation and no spatial lag given random effects
amounts to jointly testing:

Hb
0 :
£
γj, λj

¤0
= 0, ∀j = 1, ..,M ; allowing for random effects.

In this case, model (4)-(5) reduces to the one-way error component SUR
model:

yj = Xjβj + εj, εj = (ιT ⊗ IN )µj + vj, ∀j = 1, ..,M

Under the null hypothesis, the corresponding LM statistic is given by:

LMHb
0
= eD0

Hb
0

eJ−1
Hb

0

eDHb
0

where the score vector is:

eDHb
0
=

 ε0 n¡TΩµ + Ωv

¢−1
F jj ⊗ JT ⊗W

o
y + ε0

©
Ω−1

v
F jj ⊗ET ⊗W

ª
y

ε0
n¡
TΩµ + Ωv

¢−1
F jj ⊗ JT ⊗W

o
ε+ ε0

©
Ω−1

v
F jj ⊗ ET ⊗W

ª
ε


and

eJHb
0
=
¡
J11 − J12J

−1
22 J

0
12

¢
with

J11 =

Ã eIγγ eIγλeIλλ
!
, J12 =

µ
0 0 eIγβ0

0 0 0

¶
, J22 =

 Iσµσµ Iσµσv 0
I 0σµσv

Iσvσv 0

0 0 eIββ0


where eIxy are elements of the information matrix (Ixy) in which matrices
A = IMNT , B = IMNT , DA

j = DB
j = Sj = Rj = UBj = W . Derivation of

the corresponding LM statistic is available upon request from the authors in
the supplement material. Under the null Hb

0, this statistic is expected to be
asymptotically distributed as χ2 with (2M) degrees of freedom.
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4.2.2 Conditional LM test for no spatial lag and no random effects
given spatial error correlation

Testing for no spatial lag correlation and no random effect given spatial error
correlation, amounts to jointly testing:

Hc
0 :
£
γj, σµlm

¤0
= 0, ∀j, l,m = 1, ..,M ; allowing for spatial error correlation.

In this case, model (4)-(5) reduces to the pooled SUR model with spatial
errors:

yj = Xjβj + εj , εj =
½
λj (IT ⊗W ) εj + vj for SAR
λj (IT ⊗W ) vj + vj for SMA

, ∀j = 1, ..,M

Under the null hypothesis, the corresponding LM statistic is given by:

LMHc
0
= eD0

Hc
0

eJ−1
Hc

0

eDHc
0

where the score vector is

eDHc
0
=

·
ε0B0

¡
Ω−1

v
F jj ⊗ IT ⊗BjW

¢
y

−NT
2
Tr
£
F lmΩ−1

v

¤
+ T

2
ε0B0

£
Ω−1

v
F lmΩ−1

v
⊗ JT ⊗ IN

¤
Bε

¸
and

eJHc
0
=
¡
J11 − J12J

−1
22 J

0
12

¢
with

J11 =

Ã eIγγ eIγσµeIσµσµ

!
, J12 =

Ã eIγλ eIγσv
eIγβ0eIσµλ

eIσµσv 0

!
, J22 =

 eIλλ eIλσv 0eIσvσv 0eIββ0


where eIxy = Ixy in which A = IMNT , Ωµ = 0, DA

j = W, Sj = eSj = HjW for
SAR and Sj = eSj = L−1

j W for SMA and Rj = eRj = HjWH−1
j for SAR and

L−1
j WLj and Rj = eRj = L−1

j WLj for SMA. Derivation of the corresponding
LM statistic is available upon request from the authors in the supplement
material. Under the null Hc

0, this statistic is expected to be asymptotically

distributed as χ2 with
³
M + M(M+1)

2

´
degrees of freedom.
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4.2.3 Conditional LM test for no spatial error correlation and no
random effects given a spatial lag

Testing for no spatial error correlation and no random effects given a spatial
lag, amounts to jointly testing:

Hd
0 :
£
λj, σµlm

¤0
= 0, ∀j, l,m = 1, ..,M ; allowing for a spatial lag.

In this case, model (4)-(5) reduces to the pooled SUR model with spatial lag:

yj = γj (IT ⊗W ) yj +Xjβj + εj , εj = vj, ∀j = 1, ..,M

Under the null hypothesis, the corresponding LM statistic is given by:

LMHd
0
= eD0

Hd
0

eJ−1
Hd

0

eDHd
0

where the score vector is:

eDHd
0
=

·
ε0
¡
Ω−1

v
F jj ⊗ IT ⊗W

¢
ε

−NT
2
Tr
£
F lmΩ−1

v

¤
+ T

2
ε0
£
Ω−1

v
F lmΩ−1

v
⊗ JT ⊗ IN

¤
ε

¸
and

eJHd
0
=
¡
J11 − J12J

−1
22 J

0
12

¢
with

J11 =

Ã eIλλ 0eIσµσµ

!
, J12 =

Ã eIλγ 0 0eIσµγ
eIσµσv 0

!
, J22 =

 eIγγ eIγσv
eIγβ0eIσvσv 0eIββ0


where eIxy = Ixy in which B = IMNT , Ωµ = 0, DA

j = WA−1
j , D

B
j = W ,

UBj = W , Sj = D
A
j , Rj = D

A
j . Derivation of the corresponding LM statistic

is available upon request from the authors in the supplement material. Under
the null Hd

0 , this statistic is expected to be asymptotically distributed as χ
2

with
³
M + M(M+1)

2

´
degrees of freedom.
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4.3 One-dimensional conditional LM tests

4.3.1 Conditional LM test for no spatial lag correlation given spa-
tial error correlation and random effects

Testing for no spatial lag correlation amounts to testing:

He
0 :
£
γj
¤
= 0 , ∀j = 1, ..,M ; allowing for spatial error correlation and random effects.

In this case, model (4)-(5) reduces to the one-way error component SUR
model with spatial errors:

yj = Xjβj + εj , εj =
½
λj (IT ⊗W ) εj + uj for SAR
λj (IT ⊗W )uj + uj for SMA

with uj = (ιT ⊗ IN)µj + vj, ∀j = 1, ..,M
Under the null hypothesis, the corresponding LM statistic is given by:

LMHe
0
= eD0

He
0

eJ−1
He

0

eDHe
0

where the score vector is:

eDHe
0
= ε0B0Ω−1

u B
¡
F jj ⊗ IT ⊗W

¢
y

and

eJHe
0
=
¡
J11 − J12J

−1
22 J

0
12

¢
with

J11 =
³eIγγ´ , J12 =

³ eIγλ eIγσµ
eIγσv

eIγβ0

´
, J22 =


Iλλ Iλσµ Iλσv 0

Iσµσµ Iσµσv 0
Iσvσv 0

Iββ0


where eIxy = Ixy in which A = IMNT , DA

j = W, Sj = eSj = HjW for SAR
and Sj = eSj = L−1

j W for SMA and Rj = eRj = HjWH
−1
j for SAR and

L−1
j WLj and Rj = eRj = L−1

j WLj for SMA. Derivation of the corresponding
LM statistic is available upon request from the authors in the supplement
material. Under the null He

0 , this statistic is expected to be asymptotically
distributed as χ2 with M degrees of freedom.
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4.3.2 Conditional LM test for no spatial error correlation given a
spatial lag and random effects

Testing for no spatial error correlation given a spatial lag and random effects,
amounts to testing:

Hf
0 : [λj ] = 0 , ∀j = 1, ..,M ; allowing for a spatial lag and random effects.

In this case, model (4)-(5) reduces to the one-way error component SUR
model with spatial lag:

yj = γj (IT ⊗W ) yj +Xjβj + εj , εj = (ιT ⊗ IN )µj + vj, ∀j = 1, ..,M

Under the null hypothesis, the corresponding LM statistic is given by:

LMHf
0
= eD0

Hf
0

eJ−1

Hf
0

eDHf
0

where the score vector is:

eDHf
0
= ε0Ω−1

u

¡
F jj ⊗ IT ⊗W

¢
y

and

eJHf
0
=
¡
J11 − J12J

−1
22 J

0
12

¢
with

J11 =
³eIλλ´ , J12 =

³ eIλγ 0 0 0
´
, J22 =


eIγγ eIγσµ

eIγσv
eIγβ0

Iσµσµ Iσµσv 0
Iσvσv 0eIββ0


where eIxy = Ixy in which B = IMNT , DA

j = WA−1
j , D

B
j = W , UBj = W ,

Sj = D
A
j , Rj = D

A
j . Derivation of the corresponding LM statistic is available

upon request from the authors in the supplement material. Under the null
Hf

0 , this statistic is expected to be asymptotically distributed as χ
2 with M

degrees of freedom.
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4.3.3 Conditional LM test for no random effects given a spatial
lag and spatial error correlation

Testing for no random effects given a spatial lag and spatial error correlation,
amounts to testing:

Hg
0 :
£
σµlm

¤
= 0 , ∀l,m = 1, ..,M ; allowing for a spatial lag and spatial error correlation.

In this case, model (4)-(5) reduces to the pooled homoskedastic SUR model
with spatial lag and spatial errors:

yj = γj (IT ⊗W ) yj +Xjβj + εj , εj =
½
λj (IT ⊗W ) εj + vj for SAR
λj (IT ⊗W ) vj + vj for SMA

, ∀j = 1, ..,M

Under the null hypothesis, the corresponding LM statistic is given by (see
Appendix 2):

LMHg
0
= eD0

Hg
0

eJ−1
Hg

0

eDHg
0

where the score vector is:

eDHg
0
= −NT

2
Tr
£
F lmΩ−1

v

¤
+
T

2
ε0B0

£
Ω−1

v
F lmΩ−1

v
⊗ JT ⊗ IN

¤
Bε

and

eJHg
0
=
¡
J11 − J12J

−1
22 J

0
12

¢
with

J11 =
³eIσµσµ

´
, J12 =

³ eIσµγ
eIσµλ

eIσµσv 0
´
, J22 =


eIγγ eIγλ eIγσv

eIγβ0eIλλ eIλσv 0eIσvσv 0eIββ0


where eIxy = Ixy in which Ωµ = 0. Derivation of the corresponding LM sta-
tistic is available upon request from the authors in the supplement material.
Under the null Hg

0 , this statistic expected to be asymptotically distributed

as χ2 with
³
M(M+1)

2

´
degrees of freedom.
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5 Monte Carlo experiments for the ML esti-
mates and the LM tests

5.1 The data generating process

Consider the spatial SUR panel data model composed of M = 2 equations
for N individuals (cities, regions, countries, ...) and T time periods:

yj = γj (IT ⊗W ) yj +Xjβj + εj
εj =

½
λj (IT ⊗W ) εj + uj for SAR
λj (IT ⊗W ) uj + uj for SMA

uj = (ιT ⊗ IN)µj + vj with j = 1, 2

Let Xj = [Xj1, Xj2] and βj =
£
βj1,βj2

¤0
. We fix the spatial lag coefficients

as γ1 = 0.8, γ2 = 0.8, the spatial error coefficients as λ1 = 0.5, λ2 = 0.5, the
βj coefficients as β11 = β12 = β21 = β21 = 1. Following Nerlove (1971), we
consider two explanatory variables [Xj1, Xj2] generated by:½

Xj,1,it = a1,1t+ a1,2Xj,1,it−1 + ωj,1,it
Xj,2,it = a2,1t+ a2,2Xj,2,it−1 + ωj,2,it

where ωj,1,it (resp. ωj,2,it) is a random variable uniformly distributed on the
interval [b1,1, b1,2] (resp. [b2,1, b2,2]) and where the value Xj,1,i0 (resp. Xj,2,i0)
is chosen as c1,1+ c1,2ωj,1,i0 (resp. c2,1+ c2,2ωj,2,i0 ). We fix the parameters as:½

a1,1 = 0.1 , a1,2 = 0.5 , b1,1 = −0.5 , b1,2 = 0.5 , c1,1 = 5 , c1,2 = 10
a1,1 = 0.2 , a1,2 = 0.3 , b1,1 = −0.6 , b1,2 = 0.6 , c1,1 = 10 , c1,2 = 5

We use several weighting matrices W which essentially differ in their degree
of sparseness. The first matrix is a “1 ahead and 1 behind” matrix such
that it’s i-th row (1 < i < N) of the N ×N matrix has non-zero elements in
positions i+1 and i−1. So, that the i-th cross-sectional unit is related to the
one immediately after it and the one immediately before it. This matrix is
row normalized so that all its non-zero elements are equal5 to 1/2. The other
weighting matrices are labelled as “l ahead and l behind” with the non-zero
elements being 1/2l, for ∀l. For each Xj,it, we generate T + 10 observations
and we drop the first ten observations in order to reduce the dependency on

5The matrix is defined in a circular world so that the non-zero elements in rows 1 and
N are, respectively, in positions (1, N) and (N, 1).
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initial values and we keep the last T observations for estimation.
The (2NT × 1) vector of disturbances is ε = B−1 [µ+ v] with

B =

µ
IT ⊗B1 0
0 IT ⊗B2

¶
, Bj =

½
IN − λjW = Hj for SAR
(IN + λjW )

−1 = L−1
j for SMA

, j = 1, 2

The inverse of the variance-covariance matrix is Ω−1
ε = B0Ω−1

u B with Ω
−1
u =

Σ−1
u ⊗ IN where (Σu ⊗ IN) is the variance-covariance of the error component
term (µ+ v) with:

Σu = Ωµ ⊗ JT + Ωv ⊗ IT
and

Ωµ =

µ
σ2
µ1

ρ
µ
σµ1
σµ2

ρ
µ
σµ1
σµ2

σ2
µ2

¶
, Ωv =

µ
σ2
v1

ρvσv1σv2

ρvσv1σv2 σ2
v2

¶
where

σ2
µ1
= 1, σ2

µ2
= 0.5, ρ

µ
= 0.8, σ2

v1
= 1, σ2

v2
= 0.5, ρv = 0.6

In order to generate the vector of disturbances (µ+ v) , we use the Choleski
decomposition6. For all estimators, 1000 replications are performed. We com-
pute the bias and the RMSE7 of the coefficients βi,j (i, j = 1, 2), the spatial
lag coefficients γj (j = 1, 2), the spatial autoregressive or moving average
coefficients λj (j = 1, 2) and the variance components (σ2

µ1
, σ2

µ2
, σµ12

, σ2
v1
,

σ2
v2
, σv12). We choose N = (25, 50) , T = (5, 10) , “1 ahead and 1 behind”

and “5 ahead and 5 behind” weighting matrices.
6As (µ+ v)∼N (0,Σu ⊗ IN) and µ and v are uncorrelated, µ∼N

¡
0,
¡
Ω

µ
⊗ JT

¢⊗ IN

¢
and v ∼ N (0,Ωv ⊗ INT ), then,

v ' Cv ⊗ IN

· eu1eu2

¸
and µ '

µ
ιT ⊗ (Cµ ⊗ IN) eµ1

ιT ⊗ (Cµ ⊗ IN) eµ2

¶
where (eu1, eu2) and (eµ1, eµ2) are standard normal. Cµ (resp. Cv) is the lower triangular
matrix defined by the decomposition: CµC

0
µ (resp. CvC

0
v) namely

Cµ =

"
σµ1

0

ρ
µ
σµ2

σµ2

q
1− ρ2

µ

#
and Cv =

·
σv1 0

ρvσv2 σv2

p
1− ρ2

v

¸
(see Anderson (1984)).

7Following Kapoor, Kelejian and Prucha (2007), our measure of dispersion is closely
related to the standard measure of the RMSE, but it is based on quantiles rather than
moments because, unlike moments, quantiles are assured to exit. For ease of presentation,
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5.2 The results for the ML estimates

Table 1 gives the results on the bias and RMSE of the ML estimators for the
SUR parameters, the spatial lags and spatial errors coefficients for a SAR
process. Results on the estimates of the variance components are deleted to
save space, these are available upon request from the authors. We report the
results for 8 cases with N = 25, 50, T = 5, 10 and for “1 ahead and 1 behind”
and “5 ahead and 5 behind” weighting matrices. Table 1 suggests that the
biases are small (less than 3%). These biases decrease as N increases from
25 to 50, ∀T . Increasing the number of neighbors from (W = 1 to W = 5)
does not change the results significantly. The RMSE also improves as we
double N from 25 to 50 holding T fixed. Also when we double T from 5 to
10 holding N fixed. Table 2 shows these results for the SMA specification.
The results are similar but, the magnitude of these biases and RMSE are
smaller in absolute value than those for the SAR process.

5.3 The results for the LM tests

5.3.1 Joint LM test for Ha
0 : γj = 0, λj = 0, σµjk

= 0, ∀j, k = 1, ..,M
We use the same experimental design for the Monte Carlo simulations as in
subsection 5.1. Table 3 gives the frequency of rejections at the 5% level for
the joint LM test for Ha

0 : γj = 0, λj = 0, σµjk
= 0, ∀j, k = 1, ..,M = 2. For

1000 replications, counts between 37 and 63 are not significantly different
from 50 at the 0.05 level. The results are reported for N = 25, 50, T = 5,
10 and for “1 ahead and 1 behind” and “5 ahead and 5 behind” weighting
matrices. Table 3 shows that at the 5% level, the size of the joint LM test is
close to 0.05 and varies between 0.036 and 0.054 depending on N and T . The

we also refer to our measure as RMSE. It is defined by:

RMSE =

s
bias2 +

·
IQ

1.35

¸2

where bias is the difference between the median and the true value and IQ is the in-
terquantile range Q3 −Q1 where Q3 is the 0.75 quantile and Q1 is the 0.25 quantile. If
the distribution is normal, the median is the mean and, aside from a slight rounding error,
IQ/1.35 is the standard deviation.
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power8 of the joint LM test is reasonably high as long as γj or λj are larger
than 0.2. In fact, if γj or λj > 0.4, this power is almost one in all cases. For
a fixed γj or λj, this power dramatically improves as N and T increase. For
instance, for N = 25, T = 5, W = 1, λj = 0.2, the power is around 69%. If
we double T from 5 to 10, this power tends to 93%. Increasing the number
of neighbors from one to five, ( i.e., W = 1 to W = 5) does not change
the results significantly but slightly reduces the speed of convergence of the
power to one.

5.3.2 Two-dimensional conditional LM tests

Conditional LM test for no spatial correlation and no spatial lag
given random effects Hb

0 : γj = 0, λj = 0, ∀j = 1, ..,M. Table 4 gives
the frequency of rejections at the 5% level for the two-dimensional LM test
for Hb

0 : γj = 0, λj = 0, ∀j = 1, 2 (allowing σµjk
6= 0). In particular, we use

σ2
µ1
= 1, σ2

µ2
= 0.5 and ρµ = 0.8. The size of this test is not significantly

different from 0.05 for N = 25, T = 5, 10 and W = 1. However, it is
undersized for N = 50, T = 5, 10 and W = 5. The power of this LM test is
reasonably high as long as γj or λj are larger than 0.2. In fact, if λj > 0.4,
this power is almost one in all cases. For a small γj or λj, this power strongly
improves as N and T increase.

Conditional LM test for no spatial lag and no random effects given
spatial error correlation Hc

0 : γj = 0, σµjk
= 0, ∀j, k = 1, ..,M. Table 5

gives the frequency of rejections at the 5% level for the two-dimensional LM
test for Hc

0 : γj = 0, σµjk
= 0, ∀j, k = 1, 2 (allowing λj = 0.5). For N = 25,

T = 5, the test is over-sized (0.09) but if we double T from 5 to 10, or double
N from 25 to 50, the size of this test becomes close to 0.05. The power of
this LM test is reasonably high as long as γj is larger than 0.2. In fact, if
γj > 0.4, this power is almost one in all cases. Increasing the number of
neighbors (W = 1 to W = 5) does not change the results significantly but
slightly reduces the speed of convergence of the power to one.

8We use the SAR specification:

εj = λj (IT ⊗W ) εj + uj and uj = (ιT ⊗ IN)µj + vj , ∀j = 1, 2
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Conditional LM test for no spatial error correlation and no random
effects given a spatial lag Hd

0 : λj = 0, σµjk
= 0, ∀j = 1, ..,M. Table 6

gives the frequency of rejections at the 5% level for the two-dimensional LM
test for Hd

0 : λj = 0, σµjk
= 0, ∀j, k = 1, 2 (allowing γj = 0.5). The size

of this test is not significantly different from 0.05 for N = 25, T = 5, but
becomes slightly undersized as N , T and W increase. The power of this LM
test is high as long as λj is larger than 0.2. In fact, if λj > 0.4, this power is
always one. Increasing the number of neighbors (W = 1 to W = 5) slightly
reduces the speed of convergence of the power to one.

5.3.3 One-dimensional conditional LM tests

Conditional LM test for no spatial lag correlation given spatial
error correlation and random effects He

0 : γj = 0, ∀j = 1, ..,M. Table
7 gives the frequency of rejections at the 5% level for the one-dimensional
LM test for He

0 : γj = 0, ∀j = 1, 2 (allowing σµjk
6= 0 and λj = 0.5). The

size of this test is not significantly different from 0.05 for N = 25, T = 5,
but becomes slightly undersized as N , T and W increase. The power is
reasonably high as long as γj is larger than 0.2. If γj > 0.4, this power is
almost one in all cases. For a fixed γj, this power improves as N and T
increase. Increasing the number of neighbors (W = 1 to W = 5) slightly
reduces the speed of convergence of the power to one.

Conditional LM test for no spatial error correlation given a spatial
lag and random effects Hf

0 : λj = 0, ∀j = 1, ..,M. Table 8 gives the
frequency of rejections at the 5% level for the one-dimensional LM test for
Hf

0 : λj = 0, ∀j = 1, 2 (allowing σµjk
6= 0 and γj = 0.5). At the 5% level, the

size of this LM test is not significantly different from 0.05 for all experiments
involving W = 1. However, for W = 5, it becomes slightly undersized. The
power is almost one as long as λj is larger than 0.2. For a fixed λj, this power
improves as N and T increase.

Conditional LM test for no random effects given a spatial lag and
spatial error correlation Hg

0 : σµjk
= 0, ∀j, k = 1, ..,M. Table 9 gives

the frequency of rejections at the 5% level for the one-dimensional LM test
for Hg

0 : σµjk
= 0, ∀j, k = 1, 2 (allowing γj = 0.5 and λj = 0.5). At the 5%

level, the size of this LM test is close to 0.05. The power is always one if
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σµjk
6= 0 (σ2

µ1
= 1, σ2

µ2
= 0.5, ρ

µ
= 0.8) whatever the size of N and T. This

holds for both sets of W matrices considered.

6 An application to hedonic housing prices in
Paris

We illustrate our spatial panel methods by estimating a three SUR equations
for hedonic housing prices in Paris. As the capital of France, Paris represents
one of the most important real estate markets. The city of Paris is divided
into 20 arrondissements (administrative districts) which in turn are divided
into 4 quartiers (quarters). Our units of observation are the 80 quartiers.
In France, the housing classification used for flats by real estate agencies

and notaries is the following: the studio (or efficiency) which is the cheapest
rents in a given area, and consist mainly of a large room which is the living,
dining, and bedroom combined. The kitchen facilities is usually a part of this
central room, but the bathroom is its own smaller separate room. The two
rooms (F2) flats (or one-bedroom apartments in the US or Great Britain),
in which one bedroom is separate from the rest of the apartment. The three
rooms (F3) flats (or two-bedroom in the US or Great Britain), and the four
rooms (F4) flats (or three-bedroom in the US or Great Britain), etc.

6.1 Data Description

The French institutional setting is characterized by a network of notaries
who have a monopoly in registering real estate transactions. The data base
“BIEN”, managed by the Notary Chamber of Paris covers Ile-de-France,
i.e. the city of Paris and the Paris region9. For each transaction, we have
information on the price for which the property was sold, along with its
detailed characteristics (size, number of rooms and bathrooms, floor level,
whether it has a balcony, whether it has a garage, a maid’s room, time of
construction, etc.) and its precise localization (Lambert II grid coordinates)
with a precision of the order of 5 meters.
The data base covers the period 1990-2003. The dependent variable is the

9The data on a particular sale is made on a voluntary basis. However, the rate of
coverage in 2003 is estimated to be 83% in Ile-de-France. Moreover, the database is
anonymous, to comply with the French law.
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(log) mean price per square meter10 in each quartier for each time period and
the explanatory variables are the mean characteristics of properties in each
quartier for each time period. Using this aggregated quartier data gives us a
balanced panel data of NT = 80× 14 = 1120 observations per variable.11

Put Table 10 here

Table 10 gives some descriptive statistics for housing prices and housing
characteristics by three types of flats sold in the 80 quartiers during the
period 1990 − 2003. We have dropped studios, and flats with more than 8
rooms. So, the statistics pertain to flats with two rooms, three rooms and
four to seven rooms (hereafter F2, F3, F4m, respectively).
The mean price per square meter is about 3000 euros, this ranged from

932 to 1200 euros per square meter. The mean price of flats has followed a
J-shape curve. We observe a decrease from 1990 to 1997 and a boom after.
This downswing and then upswing are more pronounced for the larger flats
(F4m) and lead to mean prices per square meter between 4000 and 4400
euros.
Note that 29% (resp. 26%, 16%) of the F2 flats (resp. F3 and F4m)

are not equipped with a bathroom and 70% (resp. 70%, 63% ) have one
bathroom. The majority of properties are sold without a parking lot (90%,
85%, 75% respectively for F2, F3 and F4m) and without a maid’s room (98%,
95%, 83% resp. for F2, F3 and F4m).
Less than 3% of the flats have a balcony. These properties are mainly

located between the ground floor and the third floor (55%) and only 8.4%
of buildings have more than 7 floors. The mean square footage of all the
properties is around 60 m2. About 80% of these buildings are located in

10Our SUR ML estimator with spatial lags and spatial errors is derived only for a
balanced panel data set with three indexes (jit) where j = 1, ...,M equations, i = 1, ..., N
individuals (“quartiers”) and t = 1, ..., T time periods. The initial data base “BIEN ”
covers more than 260, 000 transactions and is an unbalanced clustered panel data set with
four indexes (jlit) where l = 1, ..., Li flats sold in “quartier” i (= 1, ...,N). This is why

we use mean price per square meter
³PLi

l=1 pjlit/Li

´
instead of price of each flat (pjlit) of

type j in each “quartier” i at time t.
11Unfortunately, some variables of interest like property taxes, crime rates, etc., were

not available in this data set at the quartier level. These unobservable characteristics of
the Paris districts may account for the spatial correlation in the disturbances and may be
the reason for their significance.
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streets, followed by avenues (7− 10%) and boulevards (5− 10%). The mean
distance between these flats and the barycenter of each quartier is around
360 m.

Put figure 1 here

Figure 1 summarizes the spatial localization of mean prices per square meter
of properties in the Paris area. This graph reveals the spatial heterogeneous
behavior of housing prices, with low prices (< 2500 euros per sq.m) for
some arrondissements as XV III th, XIXth and XXth which are the north
side popular districts of Paris and high prices (> 4000 euros per sq.m) for
some arrondissements as V th, V I th, V II th, V III th and XV I th which are the
famous, young, trendy and fashionable districts of Paris.

Put figures 2 and 3 here

Figures 2 and 3 give the mean prices per square meter of the properties
in Paris during the period 1990-2003. We observe a decrease from 1990 to
1997 and a boom after. These downswing and upswing are more pronounced
for some arrondissements as V th, V I th, V II th and XV th. These graphs
reveal the heterogeneity in house price movements across time and quartier.
Figure 3 also gives the proportion of flats according to square footage, by
arrondissement.

6.2 The model and estimation results

To our knowledge, there is no econometric study on hedonic housing prices
for the Paris real estate market that uses both panel and spatial dimensions
and also take into account both micro-markets and market segmentation
between several kinds of flats.12

The hedonic price function describes the expected price (expressed in logs)
as a function of the house characteristics described in the data section (see
Rosen (1974)). However, here we generalize it by introducing both spatial
lag and spatial errors:

ln (Yjt) = γjW1j ln (Yjt) +Xjtβj + εjt , j = 1, 2, 3, t = 1, ..., T (30)

with εjt = λjW2jεjt + ujt and ujt = µj + vjt.

12Some of the hedonic housing studies for France include Gravel et al. (1997), David et
al. (2002), Laferrère (2003), Meese and Wallace (2003), Le Blanc and Lagarenne (2004),
Maurer et al. (2004), Nappi-Choulet and Maury (2009) and Fack and Grenet (2010).

25



Yjt is the (N × 1) vector of mean price per square meter for time period
t = 1, ..., T and flat type j = 1, 2, 3. The vector of observations is over
the (N = 80) quartiers. Xjt is a (N × kj) matrix of mean characteristics
of properties in the quartiers for time period t and flat type j. βj is a
(kj × 1) vector of parameters and εjt is an (N × 1) vector of disturbances.
µj is an (N × 1) vector of unobserved quartiers effects and vjt is an (N × 1)
vector of remainder disturbances. In this standard SUR hedonic housing
price specification, the coefficients βj measure the shadow prices of average
house attributes for flats of type j. W1j and W2j are (N ×N) spatial weight
matrices, usually containing functions of distance or contiguity relations. This
is an extension of the single equation spatially autoregressive (SAR) process
introduced by Cliff and Ord (1973, 1981) to the SUR case, see Anselin (1988).
The vector [W1jyjt] is typically referred to as the spatial lag of yjt. In addition
to allowing for general spatial lags in the endogenous variables, we also allow
for spatial autocorrelation in the disturbances. In particular, we assume
that the disturbances (εjt) are generated by a spatially autoregressive (SAR)
process. γj is the coefficient of the spatially lagged dependent variableW1jyjt,
while λj is the coefficient of the spatially correlated errors.
The Lambert II grid coordinates allow us to compute distances dpq be-

tween flats of the same type j sold in the two quartiers p and q. As the rela-
tionship we are modelling varies over space, mean prices of transactions that
are near should exhibit similar relationships and those that are more distant
may exhibit dissimilar relationships. Each spatially lagged variable depends
upon a weight matrix which may vary across equations: Wj =

n
w

(j)
pq

o
with

w
(j)
pp = 0 and the weight w

(j)
pq is defined by w

(j)
pq = d−1

pq /
³PN

n=1 d
−1
pn

´
for p 6= q.

This is row standardized, so that each row sums to 1. In this case, the spatial
weight matrix is filled with N (N − 1) = 6320 nonzero elements depending
on dpq.
Another possible source of locational information is contiguity, reflecting

the relative position in space of one unit with respect to the other units. The
spatial contiguity matrix is defined as w(j)

pq = 1 for p 6= q, for entities that
share a common edge; otherwise, this weight is equal to zero. We consider
here the 16 nearest neighbors (i.e. quartiers) which roughly corresponding
to the 4 nearest arrondissements. Regarding spatial dependence, neighboring
quartiers should exhibit a higher degree of spatial dependence than quartiers
located far apart. This contiguity matrix is also row-normalized. In this case,
the spatial contiguity matrix is sparse and is filled with only 16N = 1280
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nonzero elements.
Table 11 gives the estimation results of our hedonic housing price SUR

system with spatial lags and spatial errors where the weights matrices W1j

and W2j are functions of distances13. The estimated values of the spatial de-
pendence coefficients (γ1, γ2 and γ3) are not significantly different from zero.
In contrast, the estimated values of the spatial autocorrelation coefficients
(λ1, λ2 and λ3) are (0.735, 0.756 and 0.73) which are all statistically different
from zero.
The estimated variance-covariance matrices of the disturbances shown in

Table 11 report significant cross-correlations between the three types of flats.
This is true for the unobserved quartiers effects as well as the remainder
disturbances. These significant cross-correlations favor the use of a panel
SUR model for hedonic housing prices in Paris.
Lagrange multiplier (LM) tests for spatial autocorrelation, spatial lags

and random effects are also reported in Table 11. These LM tests do not
reject zero spatial lag on the dependent variable but they do reject zero
effects on the spatial autoregressive structure of the disturbances and also
the zero variance-covariance effects from the random quartier effects.
In summary, with distance matrices for both spatial lags and spatial er-

rors, our results seem to favor a hedonic housing price SUR system with
spatial autoregressive disturbances and random quartier error components
but without a spatial lag on the dependent variables.14

Put Table 11 here

Except for three specific dummies (upper, rich and golden districts) and
two distances variables (distance from the center of the arrondissement and
distance from the center of the quartier, which are expressed in meters),
all the other explanatory variables are ratios. So, the shadow price for an
attribute Xkj is computed at the average price per square meter of the flat
of type j. For F2 flats, if the demand for these flats with one bathroom
increases by 10%, shadow price is expected to be, on average, 361 euros per

13Time dummies have been removed to save space.
14As the estimated parameters bγj were not statistically significant in Table 11, the

model was re-estimated by dropping the spatial autoregressive lag in yj , but not the
spatial dependence in the disturbances, see (3). The results are practically the same and
are not reported here to save space. They are available upon request from the authors.
They are used here to compute the shadow prices for house attributes.
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square meter (hereafter e.s.m) to get this property. If the demand for F2
flats with one maid’s room increases by 10%, the shadow price is around 448
e.s.m. The impact of garage plot(s) is relevant for the largest F4m flats, and
the shadow price is 123 e.s.m for one garage and 409 e.s.m for two garage
plots, altough with wider confidence intervals. Shadow prices are expected
to be higher for properties located at higher floor levels. For F2 flats, the
shadow price of floor level (4 to 7) is 247 e.s.m. For F2 flats, the shadow
price for larger square footage is 153 e.s.m as we go from [20m2 − 40m2]
to [41m2 − 60m2] , and 279 e.s.m as we go to [61m2 − 80m2]. The quality
of flats is also linked to their date of construction. As compared to the
reference period (1850-1913) which includes the 19th century Hausmannian
construction in Paris (1852-1870), old buildings built in the previous period
are strongly demanded since their shadow prices are 608 e.s.m for F4m flats.
The closest the flat is to the quartier (or arrondissement) barycenter, the
higher is the shadow price. This price is expected to be between 388 and 806
e.s.m less on average if the distance to the center of the quartier is increased
by 100 meters. Last, living in the rich districts of Paris strongly increase
the average price per square meter of all kinds of flats (around 1700 e.s.m
for the F3 flats). Fashionable districts have a premium, especially “upper-
class areas” (XIV th and XV th arrondissements), “rich, famous, young and
trendy areas” (V th and V I th arrondissements) and “golden adresses” (V II th,
V III th and XV I th arrondissements).
For robustness checks we also used the contiguity spatial weight matrix

and we get similar results but with different magnitudes. The LM tests still
reject the spatial lag but not the spatial autocorrelation. These results are
reported in Table 12.

Put Table 12 here

7 Conclusion
This paper proposed ML estimators for a panel SUR with both spatial lag
and spatial error components. It extends the MLE approach developed by
Wang and Kockelman (2007) to the general case where spatial effects are
incorporated via spatial error terms and via a spatial lag on the dependent
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variables and where the heterogeneity in the panel is incorporated via an error
component specification. This panel SUR model can be estimated using an
iterative three-step method.
We also considered the problem of testing for random effects as well as

spatial correlation under normality of the disturbances, and proposed joint
and conditional LM tests for several sources of misspecification. This ex-
tends earlier work by Baltagi, et al. (2007) on spatial panels from the single
equation to the SUR case.
While we did not derive the asymptotic distribution of our test statistics,

we conjectured that they are likely to hold under similar set of primitive
assumptions described in Kelejian and Prucha (2001). We reported extensive
Monte Carlo experiments on bias and RMSE relating to the ML estimators
for the SUR parameters, the variance components, the spatial lags and spatial
errors coefficients for SAR and SMA process.
We find that the biases are small (less than 3%) even when N is small.

These biases decrease when we double N . The results are similar for the
SMA specification but, on average, bias and RMSE are smaller than those
of the SAR process.
The same experimental design for the Monte Carlo simulations was used

to obtain the size and power for the joint LM test, the two-dimensional
conditional LM tests and the one-dimensional conditional LM tests. At the
5% level, the size of these LM tests are close to 0.05 depending on N and T .
The power of these tests is reasonably high as long as the spatial lag and the
spatial error components are larger than 0.2.
The results in the paper should be tempered by the fact that in our

Monte Carlo experiments, N = 25, 50 and T = 5, 10 and we consider
only two equations. One could encounter more equations, and larger N in
micropanels. Larger N will probably improve the performance of these tests
whose critical values are based on their large sample distributions. However,
it is well known that maximum likelihood and quasi-maximum likelihood
estimation of the spatial autocorrelation coefficients can be computationally
difficult, particularly when N is large.
The paper concludes with an empirical illustration involving hedonic

housing prices in Paris. For the 80 quartiers data for the city of Paris ob-
served over the period 1990−2003, our results suggest that a reasonable spec-
ification is a hedonic housing price SUR system with spatial autoregressive
disturbances and random quartier effects, but without a spatial lag on the
dependent variables. Using this specification, we find statistically significant
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as well as reasonable estimates of the shadow prices for mean characteristics
of three types of flats considered.

30



References

Anderson, T., 1984. An Introduction to Multivariate Statistical Analysis, Wiley, New

York.

Anselin, L., 1988. Spatial Econometrics: Methods and Models, Kluwer Academic Pub-
lishers, Dordrecht.

Anselin, L., Le Gallo, J., and H. Jayet, 2008. Spatial panel econometrics, The Econo-
metrics of Panel Data: Fundamentals and Recent Developments in Theory and

Practice, Chapter 19, L. Mátyás and P. Sevestre, (eds.), Springer, Berlin, 625-660.

Anselin, L. and A.K. Bera, 1998. Spatial dependence in linear regression models with an
introduction to spatial econometrics, in Handbook of Applied Economic Statistics,

A. Ullah and D.E.A Giles, (eds.), Marcel Dekker, New York.

Arguea, N. and C. Hsiao, 1993. Econometric issues of estimating hedonic price functions,

Journal of Econometrics, 56, 243-267.

Avery, R.B, 1977. Error components and seemingly unrelated regressions, Econometrica
45, 199-209.

Baltagi, B., 1980. On seemingly unrelated regressions with error components, Econo-
metrica 48, 1547-1551.

Baltagi, B.H., 2010. Spatial panels, forthcoming in The Handbook of Empirical Eco-
nomics and Finance, A. Ullah and D.E.A. Giles, (eds.), Chapman and Hall.

Baltagi, B., S.. H. Song, B. C. Jung and W. Koh, 2007. Testing for serial correlation, spa-

tial autocorrelation and random effects using panel data, Journal of Econometrics
140, 5-51.

Breusch, T.S. and A.R. Pagan, 1980. The Lagrange multiplier test and its applications

to model specification in econometrics, Review of Economic Studies 47, 239-253.

Can, A., 1992. Specification and estimation of hedonic housing price models, Regional

Science and Urban Economics, 22, 453-477.

Cliff, A., and Ord, J., 1973. Spatial Autocorrelation, Pion, London.

Cliff, A., and Ord, J., 1981. Spatial Processes, Models and Applications, Pion, London.

31



David A., Dubujet F., Gouriéroux C. and Laferrère A., 2002. Les indices de prix des
logements anciens, Insee méthodes, Paris, 98.

Dubin, R., 1992. Spatial autocorrelation and neighborhood quality, Regional Science and
Urban Economics, 22, 433-452.

Dubin, R., Pace, K, and T. Thibodeau, 1999. Spatial autoregression techniques for real
estate data, Journal of Real Estate Literature, 7, 79-95.

Elhorst, J.P., 2003. Specification and estimation of spatial panel data models, Interna-

tional Regional Science Review, 26, 244-268.

Fack, G. and J. Grenet, 2010. When do better schools raise housing prices? Evidence
from Paris public and private schools, Journal of Public Economics, 94(1-2), 59-77.

Fiebig, D.G., 2001. Seemingly unrelated regression, in A Companion to Theoretical
Econometrics, Chapter 5, Baltagi, B.H. (ed.), Blackwell, Massachusetts.

Fingleton, B., 2008a. A generalized method of moments estimator for a spatial panel
model with an endogeneous spatial lag and spatial moving average errors, Spatial
Economic Analysis, 3, 27-44.

Fingleton, B., 2008b. Housing supply, housing demand and affordability, Urban Studies,
45, 1545-1563.

Glaeser, E.L., 2008. Cities, Agglomeration and Spatial Equilibrium, Oxford University
Press, Oxford.

Gravel, N., Martinez, M. and A. Trannoy, 1997. Evaluation des prix hédoniques du loge-

ment dans les communes du Val-d’Oise, Rapport pour la Direction Départementale
de l’Equipement du Val-d’Oise, THEMA-CNRS, Université de Cergy-Pontoise.

Griliches Z., 1971. Price Indices and Quality Change, Harvard University Press, Cam-
bridge, Massachusetts.

Halvorsen, R., and H. Pollakowski, 1981. Choice of functional form for hedonic price

equations, Journal of Urban Economics, 10, 37-49.

Helpman, E., 1998. The size of regions, in Public Economics, Pines, D. Sadla. E and I.

Zilcha. (eds.), Cambridge University Press, Cambridge, Massachusetts, 33-54.

32



Kapoor, M., H.H. Kelejian and I.R. Prucha, 2007. Panel data models with spatially
correlated error components, Journal of Econometrics 140, 97-130.

Kelejian, H.H. and I.R. Prucha, 2001. On the asymptotic distribution of the Moran I
test with applications. Journal of Econometrics 104, 219-257.

Laferrère A., 2003. Hedonic housing price indices: the French experience, IMF and
BIS conference on Real Estate Indicators and Financial Stability, Washington, DC,
October 27-28.

Le Blanc, D and C. Lagarenne, 2004. Own-occupied housing and the composition of
the household portfolio: the case of France, Journal of Real Estate Finance and
Economics, 29, 259-275.

Le Sage, J. and R.K. Pace, 2009. Introduction to Spatial Econometrics, Taylor & Francis,
New York.

Magnus, J.R., 1982. Multivariate error components analysis of linear and non-linear
regression models by maximum likelihood, Journal of Econometrics, 19, 239-285.

Maurer, R., Pitzer, M. and S. Sebastian, 2004. Hedonic price indices for the Paris housing

market, Advances in Statistical Analysis (Allgemeines Statistisches Archiv), 88(3),
303-326.

Meese R. and N. Wallace, 2003. House price dynamics and market fundamentals: the
Parisian housing market, Urban Studies, 40 (5-6), 1027-1045.

Nappi-Choulet I. and T. Maury, 2009. A Spatiotemporal Autoregressive Price Index for

the Paris Office Property Market, Real Estate Economics, 37(2), 305 340.

Pinkse, J., 1998. Asymptotic properties of Moran and related tests and a test for spatial

correlation in probit models. Working paper, Department of Economics, University
of British Columbia.

Pinkse, J., 1999. Moran-Oavoured tests with nuisance parameters: examples, inAdvances

in Spatial Econometrics: Methodology, Tools and Applications, Anselin, L. and
R.J.G.M. Florax (Eds.), Springer, Berlin, 67-77.

Nerlove, M. 1970. Further evidence on the estimation of dynamic economic relations

from a time series of cross sections, Econometrica, 39, 359-382.

33



Rey, S.J. and M.G. Boarnet, 2004. A taxinomy of spatial econometric models for si-
multaneous equations systems, in Advances in Spatial Econometrics: Methodology,

Tools and Applications, Anselin, L. and R.J.G.M. Florax, (eds.), Springer, New
York, 99-120.

Rosen, S., 1974. Hedonic prices and implicit markets, Journal of Political Economy, 82,

34-55.

Srivastava, V.K and D.E.A Giles, 1987. Seemingly Unrelated Regression Equations:

Model and Estimation, Marcel Dekker, New York.

Wang X., K.M. Kockelman, 2007. Specification and estimation of a spatially and tem-
porally autocorrelated seemingly unrelated regression model: application to crash

rates in China, Transportation, 34, 281-300.

Zellner, A., 1962. An efficient method of estimating seemingly unrelated regression equa-

tions and tests for aggregation bias, Journal of the American Statistical Association,
57, 348-368.

34



8 Appendix: the information matrix
The information matrix given by:

[I (θ)]−1 = −E
·
∂2`

∂θ∂θ0

¸−1

is not block-diagonal between γj and λj (and γj and β) and the I (θ) elements
are:
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F jk is an (M ×M) matrix of zeroes except for its (j, k) and (k, j) elements,
which are equal to one. Here j, k, l and m index equations 1 through M .
Derivations of the score vector and the information matrix are available upon
request from the authors in the supplement material.
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                     Table 1 - Bias and RMSE of ML estimators and standard errors of estimators                     Table 1 - Bias and RMSE of ML estimators and standard errors of estimators                     Table 1 - Bias and RMSE of ML estimators and standard errors of estimators                     Table 1 - Bias and RMSE of ML estimators and standard errors of estimators
                     for panel SUR with spatial lag and spatial autoregressive errors (SAR)                     for panel SUR with spatial lag and spatial autoregressive errors (SAR)                     for panel SUR with spatial lag and spatial autoregressive errors (SAR)                     for panel SUR with spatial lag and spatial autoregressive errors (SAR)

bias rmse bias rmse bias rmse bias rmse bias rmse bias rmse bias rmse bias rmse
ββββ11111111 1 0.01738 0.28376 -0.00557 0.01938 0.01407 0.29966 -0.00706 0.02209 0.02211 0.17986 -0.00090 0.00817 0.00237 0.18398 -0.00130 0.00975
ββββ12121212 1 0.02729 0.21200 -0.00371 0.01417 0.02357 0.21581 -0.00401 0.01991 0.02690 0.13011 -0.00026 0.00660 0.01162 0.13721 -0.00063 0.00986
λλλλ1111 0.5 -0.00562 0.01990 0.00000 0.00336 -0.00243 0.01618 -0.00040 0.00620 -0.00539 0.01425 0.00018 0.00168 -0.00327 0.01255 0.00006 0.00334
γγγγ1111 0.8 -0.00228 0.07582 -0.00016 0.00527 -0.04313 0.14258 0.00667 0.02194 0.00694 0.05353 -0.00040 0.00276 -0.02129 0.09120 0.00195 0.00964
σσσσ2222

µ11µ11µ11µ11 1 -0.07766 0.33669 -0.02377 0.09473 -0.07991 0.34847 -0.02549 0.09808 -0.05091 0.31141 -0.01547 0.08894 -0.05717 0.31981 -0.01605 0.08963
σσσσ2222

µ12µ12µ12µ12 0.56569 -0.03881 0.21092 -0.01492 0.06074 -0.04486 0.21885 -0.01521 0.06380 -0.02148 0.18879 -0.00727 0.05567 -0.02723 0.19788 -0.00893 0.05637
σσσσ2222

µ22µ22µ22µ22 0.5 -0.04632 0.17166 -0.01288 0.04858 -0.04935 0.17690 -0.01420 0.05037 -0.02410 0.15524 -0.00677 0.04442 -0.02505 0.16435 -0.00758 0.04709
ββββ21212121 1 0.01499 0.19823 -0.00415 0.01383 0.01969 0.22051 -0.00699 0.01613 0.01423 0.11973 -0.00150 0.00631 0.00441 0.14076 -0.00220 0.00762
ββββ22222222 1 0.02111 0.14887 -0.00315 0.01009 0.01571 0.14981 -0.00501 0.01284 0.01559 0.09000 -0.00102 0.00474 0.00310 0.10058 -0.00211 0.00624
λλλλ2222 0.5 -0.00478 0.01325 -0.00032 0.00132 -0.00228 0.01173 -0.00071 0.00243 -0.00365 0.00954 -0.00013 0.00071 -0.00149 0.00854 -0.00033 0.00119
γγγγ2222 0.8 0.00094 0.06660 -0.00063 0.00477 -0.03937 0.13532 0.00516 0.02088 0.00521 0.04774 -0.00050 0.00249 -0.02240 0.09475 0.00235 0.01100
σσσσ2222

vvvv11111111 1 -0.02411 0.15531 -0.00388 0.02318 -0.02769 0.14547 -0.00439 0.02082 -0.00901 0.09551 -0.00083 0.00961 -0.01304 0.09941 -0.00123 0.00945
σσσσ2222

vvvv12121212 0.42426 -0.00773 0.09045 -0.00171 0.01237 -0.00856 0.08616 -0.00207 0.01186 -0.00435 0.05480 -0.00067 0.00520 -0.00455 0.05502 -0.00067 0.00524
σσσσ2222

v22v22v22v22 0.5 -0.00640 0.07125 -0.00131 0.01061 -0.01199 0.06739 -0.00167 0.00979 -0.00734 0.04795 -0.00078 0.00481 -0.00698 0.04820 -0.00072 0.00459

bias rmse bias rmse bias rmse bias rmse bias rmse bias rmse bias rmse bias rmse
ββββ11111111 1 0.02383 0.18844 -0.00161 0.00813 0.02759 0.18416 -0.00131 0.01047 0.02344 0.12462 -0.00017 0.00439 0.01585 0.13400 0.00005 0.00460
ββββ12121212 1 0.03060 0.13593 -0.00062 0.00614 0.00472 0.13177 -0.00073 0.01061 0.03351 0.09400 0.00012 0.00322 0.02454 0.09750 0.00011 0.00558
λλλλ1111 0.5 -0.00643 0.01461 0.00026 0.00161 -0.00382 0.01176 0.00011 0.00345 -0.00502 0.01103 0.00015 0.00087 -0.00360 0.00918 0.00014 0.00158
γγγγ1111 0.8 0.00740 0.05262 -0.00052 0.00241 -0.01716 0.08896 0.00185 0.00966 0.00604 0.03674 -0.00025 0.00134 -0.00512 0.06173 0.00040 0.00487
σσσσ2222

µ1µ1µ1µ1 1 -0.03525 0.24036 -0.00795 0.04849 -0.03995 0.24037 -0.00764 0.04762 -0.03112 0.21536 -0.00588 0.04398 -0.03713 0.20341 -0.00753 0.04136
σσσσµ12µ12µ12µ12 0.56569 -0.01757 0.15150 -0.00477 0.02909 -0.02244 0.15397 -0.00642 0.02987 -0.01899 0.14176 -0.00430 0.02916 -0.02158 0.13704 -0.00461 0.02758
σσσσ2222

µ2µ2µ2µ2 0.5 -0.01179 0.11377 -0.00293 0.02284 -0.02248 0.11694 -0.00446 0.02325 -0.01920 0.11629 -0.00354 0.02341 -0.01680 0.10976 -0.00320 0.02187
ββββ21212121 1 0.01823 0.12709 -0.00168 0.00681 0.00812 0.13417 -0.00182 0.00705 0.01333 0.08695 -0.00046 0.00294 0.00591 0.09235 -0.00065 0.00327
ββββ22222222 1 0.02004 0.09145 -0.00131 0.00496 0.00164 0.09628 -0.00179 0.00589 0.01603 0.06625 -0.00037 0.00230 0.00696 0.06410 -0.00071 0.00304
λλλλ2222 0.5 -0.00439 0.01022 -0.00012 0.00077 -0.00175 0.00843 -0.00030 0.00120 -0.00294 0.00751 -0.00002 0.00037 -0.00096 0.00532 -0.00014 0.00060
γγγγ2222 0.8 0.00594 0.04664 -0.00055 0.00237 -0.01801 0.08541 0.00193 0.00943 0.00307 0.03430 -0.00025 0.00126 -0.00668 0.05829 0.00036 0.00464
σσσσ2222

vvvv1111 1 -0.01641 0.09890 -0.00151 0.01041 -0.01492 0.10278 -0.00154 0.01036 -0.00182 0.07367 -0.00015 0.00515 -0.00327 0.06984 -0.00021 0.00473
σσσσvvvv12121212 0.42426 -0.00489 0.05559 -0.00068 0.00525 -0.00500 0.05903 -0.00072 0.00555 -0.00026 0.03756 -0.00013 0.00261 -0.00086 0.03930 -0.00011 0.00248
σσσσ2222

v2v2v2v2 0.5 -0.00610 0.05379 -0.00061 0.00560 -0.00405 0.05089 -0.00041 0.00504 -0.00195 0.03248 -0.00012 0.00230 -0.00273 0.03393 -0.00018 0.00221

N=25, T=5, spatial lag and SAR errors N=25, T=10, spatial lag and SAR errors
W=1 W=5 W=1 W=5

coefficients s.e of coeff. coefficients s.e of coeff. coefficients s.e of coeff. coefficients s.e of coeff.
true value

N=50, T=5, spatial lag and SAR errors N=50, T=10, spatial lag and SAR errors
W=1 W=5 W=1 W=5

s.e of coeff.coefficients s.e of coeff. coefficients s.e of coeff.
true value

coefficients s.e of coeff. coefficients



                     Table 2 - Bias and RMSE of ML estimators and standard errors of estimators                     Table 2 - Bias and RMSE of ML estimators and standard errors of estimators                     Table 2 - Bias and RMSE of ML estimators and standard errors of estimators                     Table 2 - Bias and RMSE of ML estimators and standard errors of estimators
                     for panel SUR with spatial lag and spatial moving average errors (SMA)                     for panel SUR with spatial lag and spatial moving average errors (SMA)                     for panel SUR with spatial lag and spatial moving average errors (SMA)                     for panel SUR with spatial lag and spatial moving average errors (SMA)

bias rmse bias rmse bias rmse bias rmse bias rmse bias rmse bias rmse bias rmse
ββββ11111111 1 -0.00656 0.23468 -0.00692 0.01824 0.03623 0.32349 -0.00873 0.02289 -0.00277 0.13446 -0.00200 0.00785 0.01419 0.16933 -0.00232 0.00844
ββββ12121212 1 0.02333 0.16342 -0.00505 0.01294 -0.01120 0.21461 -0.00762 0.02136 0.00303 0.10445 -0.00168 0.00565 0.00160 0.12455 -0.00225 0.00842
λλλλ1111 0.5 -0.00189 0.01374 -0.04525 0.04529 -0.00105 0.01206 -0.19801 0.19806 -0.00062 0.00940 -0.03196 0.03198 -0.00083 0.00835 -0.14080 0.14082
γγγγ1111 0.8 0.00490 0.06361 0.04386 0.04412 -0.05999 0.27258 0.19232 0.19312 0.00261 0.04713 0.03126 0.03136 -0.01808 0.16857 0.13913 0.13933
σσσσ2222

µ1µ1µ1µ1 1 -0.08114 0.33823 -0.02539 0.09792 -0.08523 0.36689 -0.02565 0.10456 -0.05235 0.31129 -0.01609 0.08887 -0.06463 0.33346 -0.01875 0.09420
σσσσµ12µ12µ12µ12 0.56569 -0.03813 0.20971 -0.01310 0.05840 -0.03987 0.22547 -0.01625 0.06460 -0.03167 0.19716 -0.01086 0.05362 -0.03553 0.19476 -0.01224 0.05416
σσσσ2222

µ2µ2µ2µ2 0.5 -0.03305 0.17351 -0.00887 0.05000 -0.04172 0.16302 -0.01384 0.04654 -0.02429 0.14864 -0.00731 0.04278 -0.03677 0.15405 -0.01022 0.04354
ββββ21212121 1 0.02309 0.16222 -0.00451 0.01361 0.03784 0.23182 -0.00694 0.01646 0.02817 0.11127 -0.00109 0.00570 0.02215 0.12972 -0.00124 0.00683
ββββ22222222 1 0.05061 0.12700 -0.00281 0.01016 0.01582 0.15985 -0.00672 0.01397 0.03575 0.08453 -0.00074 0.00447 0.01893 0.09155 -0.00116 0.00571
λλλλ2222 0.5 -0.00766 0.01331 -0.04546 0.04547 -0.00403 0.01051 -0.19854 0.19855 -0.00707 0.01009 -0.03198 0.03198 -0.00398 0.00782 -0.14094 0.14094
γγγγ2222 0.8 0.01343 0.06843 0.04377 0.04408 -0.05951 0.25253 0.19279 0.19336 0.01123 0.04625 0.03121 0.03131 -0.01346 0.15725 0.13946 0.13962
σσσσ2222

vvvv1111 1 -0.01860 0.15157 -0.00288 0.02392 -0.02993 0.14928 -0.00451 0.02167 -0.00528 0.09790 -0.00085 0.01063 -0.01856 0.08854 -0.00173 0.00858
σσσσvvvv12121212 0.42426 -0.00688 0.08478 -0.00058 0.01221 -0.01523 0.08441 -0.00281 0.01124 -0.00043 0.05869 -0.00025 0.00576 -0.00546 0.05729 -0.00081 0.00510
σσσσ2222

v2v2v2v2 0.5 0.00021 0.07050 -0.00014 0.01121 -0.01616 0.06958 -0.00209 0.01015 -0.00034 0.04961 -0.00006 0.00532 -0.00574 0.05470 -0.00052 0.00522

bias rmse bias rmse bias rmse bias rmse bias rmse bias rmse bias rmse bias rmse
ββββ11111111 1 0.00057 0.16248 -0.00264 0.00915 -0.00340 0.19260 -0.00322 0.01025 0.00346 0.10259 -0.00104 0.00385 0.00570 0.11975 -0.00103 0.00413
ββββ12121212 1 -0.00142 0.11949 -0.00199 0.00610 0.00039 0.13677 -0.00242 0.00847 0.00440 0.08355 -0.00122 0.00278 -0.00418 0.08800 -0.00122 0.00420
λλλλ1111 0.5 -0.00046 0.00911 -0.03094 0.03096 -0.00069 0.00862 -0.13868 0.13870 -0.00038 0.00634 -0.02250 0.02250 -0.00008 0.00625 -0.09952 0.09953
γγγγ1111 0.8 -0.00062 0.04697 0.03031 0.03041 -0.02459 0.16665 0.13676 0.13696 0.00255 0.03189 0.02211 0.02214 -0.01257 0.11194 0.09866 0.09872
σσσσ2222

µ1µ1µ1µ1 1 -0.04023 0.24029 -0.00864 0.04807 -0.03979 0.23161 -0.00902 0.04735 -0.03131 0.20774 -0.00598 0.04150 -0.03213 0.21591 -0.00702 0.04290
σσσσµ12µ12µ12µ12 0.56569 -0.02140 0.15552 -0.00524 0.03070 -0.02089 0.15563 -0.00549 0.03067 -0.01501 0.13412 -0.00243 0.02609 -0.02105 0.14827 -0.00535 0.02886
σσσσ2222

µ2µ2µ2µ2 0.5 -0.01423 0.11806 -0.00278 0.02384 -0.02483 0.12434 -0.00475 0.02432 -0.00981 0.11142 -0.00182 0.02256 -0.01708 0.11496 -0.00359 0.02316
ββββ21212121 1 0.03053 0.12216 -0.00135 0.00715 0.01626 0.14206 -0.00236 0.00791 0.02431 0.07283 -0.00049 0.00306 0.02075 0.08611 -0.00065 0.00315
ββββ22222222 1 0.03927 0.09466 -0.00058 0.00489 0.01931 0.09951 -0.00161 0.00624 0.04464 0.07683 0.00025 0.00224 0.02018 0.06628 -0.00041 0.00259
λλλλ2222 0.5 -0.00741 0.01025 -0.03086 0.03086 -0.00411 0.00766 -0.13891 0.13891 -0.00712 0.00883 -0.02245 0.02245 -0.00350 0.00611 -0.09946 0.09947
γγγγ2222 0.8 0.01348 0.04764 0.03002 0.03013 -0.02255 0.16765 0.13689 0.13707 0.01112 0.03010 0.02209 0.02212 -0.00292 0.11714 0.09914 0.09920
σσσσ2222

vvvv1111 1 -0.00617 0.10966 -0.00082 0.01236 -0.01733 0.10225 -0.00170 0.01053 -0.00580 0.06780 -0.00055 0.00510 -0.00857 0.06799 -0.00065 0.00466
σσσσvvvv12121212 0.42426 0.00367 0.06230 0.00013 0.00614 -0.00836 0.06234 -0.00100 0.00586 0.00034 0.03995 0.00019 0.00274 -0.00413 0.03954 -0.00038 0.00245
σσσσ2222

v2v2v2v2 0.5 0.00470 0.05422 0.00047 0.00597 -0.00548 0.05202 -0.00056 0.00544 0.00825 0.03549 0.00066 0.00267 -0.00453 0.03400 -0.00034 0.00235

true value
coefficients s.e of coeff. coefficients s.e of coeff.coefficients s.e of coeff. coefficients s.e of coeff.

true value

N=50, T=5, spatial lag and SAR errors N=50, T=10, spatial lag and SAR errors
W=1 W=5 W=1 W=5

coefficients s.e of coeff. coefficients s.e of coeff.coefficients s.e of coeff. coefficients s.e of coeff.

N=25, T=5, spatial lag and SMA errors N=25, T=10, spatial lag and SMA errors
W=1 W=5 W=1 W=5



Table 3 - Joint LM test H0a: γj = 0 , λ j = 0, σµjk = 0

N T γj λ j W=1 W=5 N T γj λ j W=1 W=5
25 5 0 0 0.054 0.061 50 5 0 0 0.036 0.037
25 5 0 0.2 0.690 0.505 50 5 0 0.2 0.986 0.290
25 5 0 0.4 1.000 0.854 50 5 0 0.4 1.000 0.800
25 5 0 0.8 1.000 1.000 50 5 0 0.8 1.000 1.000
25 5 0.2 0 0.386 0.173 50 5 0.2 0 0.755 0.280
25 5 0.2 0.2 0.856 0.238 50 5 0.2 0.2 1.000 0.381
25 5 0.2 0.4 1.000 0.663 50 5 0.2 0.4 1.000 0.916
25 5 0.2 0.8 1.000 1.000 50 5 0.2 0.8 1.000 1.000

25 10 0 0 0.040 0.039 50 10 0 0 0.023 0.024
25 10 0 0.2 0.928 0.427 50 10 0 0.2 1.000 0.362
25 10 0 0.4 0.999 0.770 50 10 0 0.4 1.000 0.973
25 10 0 0.8 1.000 1.000 50 10 0 0.8 1.000 1.000
25 10 0.2 0 0.806 0.327 50 10 0.2 0 0.986 0.486
25 10 0.2 0.2 0.996 0.560 50 10 0.2 0.2 1.000 0.688
25 10 0.2 0.4 1.000 0.842 50 10 0.2 0.4 1.000 1.000
25 10 0.2 0.8 1.000 1.000 50 10 0.2 0.8 1.000 1.000



Table 4 - Conditional LM test for no spatial correlation and no spatial lag given random effects H0b: γj = 0 , λ j = 0

N T γj λ j W=1 W=5 N T γj λ j W=1 W=5
25 5 0 0 0.036 0.031 50 5 0 0 0.032 0.017
25 5 0 0.2 0.619 0.217 50 5 0 0.2 0.917 0.339
25 5 0 0.4 0.999 0.705 50 5 0 0.4 1.000 0.959
25 5 0 0.8 0.999 1.000 50 5 0 0.8 1.000 1.000
25 5 0.2 0 0.673 0.130 50 5 0.2 0 1.000 0.310
25 5 0.2 0.2 0.974 0.452 50 5 0.2 0.2 1.000 0.476
25 5 0.2 0.4 1.000 0.685 50 5 0.2 0.4 1.000 0.983
25 5 0.2 0.8 1.000 1.000 50 5 0.2 0.8 1.000 1.000

25 10 0 0 0.034 0.018 50 10 0 0 0.026 0.011
25 10 0 0.2 0.915 0.340 50 10 0 0.2 1.000 0.601
25 10 0 0.4 1.000 0.962 50 10 0 0.4 1.000 1.000
25 10 0 0.8 1.000 1.000 50 10 0 0.8 1.000 1.000
25 10 0.2 0 0.997 0.290 50 10 0.2 0 1.000 0.540
25 10 0.2 0.2 1.000 0.680 50 10 0.2 0.2 1.000 0.773
25 10 0.2 0.4 1.000 0.985 50 10 0.2 0.4 1.000 1.000
25 10 0.2 0.8 1.000 1.000 50 10 0.2 0.8 1.000 1.000

Table 5 - Conditional LM test for no spatial lag and no random effects given spatial error correlation H0c: γj = 0 , σµjk = 0

N T γj W=1 W=5 N T γj W=1 W=5
25 5 0 0.091 0.090 50 5 0 0.070 0.069
25 5 0.2 0.235 0.186 50 5 0.2 0.476 0.105
25 5 0.4 0.928 0.817 50 5 0.4 1.000 0.353
25 5 0.8 1.000 1.000 50 5 0.8 1.000 1.000

25 10 0 0.063 0.060 50 10 0 0.046 0.039
25 10 0.2 0.398 0.276 50 10 0.2 0.992 0.366
25 10 0.4 1.000 0.456 50 10 0.4 1.000 0.574
25 10 0.8 1.000 0.998 50 10 0.8 1.000 1.000



Table 6 - Conditional LM test for no spatial error correlation and no random effects given a spatial lag H0d:  λ j = 0, σµjk = 0

N T λ j W=1 W=5 N T λ j W=1 W=5
25 5 0 0.043 0.027 50 5 0 0.032 0.022
25 5 0.2 0.707 0.117 50 5 0.2 0.978 0.246
25 5 0.4 1.000 0.641 50 5 0.4 1.000 0.963
25 5 0.8 1.000 1.000 50 5 0.8 1.000 1.000

25 10 0 0.032 0.021 50 10 0 0.025 0.017
25 10 0.2 0.965 0.180 50 10 0.2 1.000 0.460
25 10 0.4 1.000 0.935 50 10 0.4 1.000 0.963
25 10 0.8 1.000 1.000 50 10 0.8 1.000 1.000

Table 7 - Conditional LM test for no spatial lag correlation given spatial error correlation and random effects H0e:  γj = 0

N T γj W=1 W=5 N T γj W=1 W=5
25 5 0 0.040 0.038 50 5 0 0.037 0.036
25 5 0.2 0.264 0.235 50 5 0.2 0.554 0.427
25 5 0.4 0.964 0.783 50 5 0.4 0.998 0.819
25 5 0.8 0.990 0.994 50 5 0.8 1.000 1.000

25 10 0 0.030 0.028 50 10 0 0.030 0.027
25 10 0.2 0.418 0.327 50 10 0.2 0.932 0.521
25 10 0.4 0.999 0.814 50 10 0.4 1.000 0.921
25 10 0.8 0.998 0.997 50 10 0.8 1.000 1.000



Table 8 - Conditional LM test for no spatial error correlation given a spatial lag and random effects H0f:  λ j = 0

N T λ j W=1 W=5 N T λ j W=1 W=5
25 5 0 0.050 0.030 50 5 0 0.051 0.031
25 5 0.2 0.929 0.414 50 5 0.2 0.999 0.519
25 5 0.4 0.999 0.857 50 5 0.4 1.000 0.993
25 5 0.8 1.000 1.000 50 5 0.8 1.000 1.000

25 10 0 0.050 0.014 50 10 0 0.059 0.021
25 10 0.2 0.998 0.433 50 10 0.2 1.000 0.796
25 10 0.4 1.000 0.992 50 10 0.4 1.000 1.000
25 10 0.8 1.000 0.999 50 10 0.8 1.000 1.000

Table 9 - Conditional LM test for no random effects given a spatial lag and spatial error correlation H0g:  σµjk = 0

W=1
N T σµjk = 0 σµjk =/ 0 σµjk = 0 σµjk =/ 0 

25 5 0.042 1.000 0.047 1.000
25 10 0.038 1.000 0.040 1.000

50 5 0.039 1.000 0.041 1.000
50 10 0.036 1.000 0.037 1.000

W=5



 
Figure 1 – Spatial localization of mean prices per sq. meter of properties in Paris (1990-2003) 

 
 
Figure 2 –Mean prices per sq. meter of properties in Paris’ quartiers (areas) (1990 - 2003) 

 
 



 
 
Table 10 - Descriptive statistics for hedonic housing prices in Paris (N=80 quartiers, 1990-2003)  
        
        
  F2 flat F3 flat F4m flat 

  Two rooms Three rooms More than three rooms 

 Variable Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

 price per sq.meter (€) 1990 3067.193 932.153 3068.918 1063.746 3287.623 1203.218 

no bathroom 0.287 0.146 0.258 0.168 0.166 0.160 

one bathroom 0.705 0.152 0.701 0.186 0.627 0.194 

two bathrooms 0.003 0.011 0.024 0.045 0.171 0.141 

B
at

hr
oo

m
 

three bathrooms and more 0.000 0.002 0.001 0.015 0.014 0.040 

no maid's room 0.980 0.079 0.946 0.142 0.828 0.208 

one maid's room 0.014 0.042 0.034 0.071 0.119 0.137 

M
ai

d'
s 

ro
om

 

two maid's rooms and more 0.002 0.011 0.004 0.018 0.031 0.061 

no garage plot 0.903 0.119 0.853 0.184 0.755 0.258 

one garage plot 0.091 0.101 0.125 0.145 0.195 0.210 

two garage plots 0.001 0.007 0.006 0.017 0.028 0.055 

G
ar

ag
e 

lo
t 

three garage plots and more 0.000 0.001 0.000 0.002 0.001 0.006 
Balcony Balcony (yes or no) 0.015 0.028 0.020 0.037 0.032 0.055 

Floor level (0 to 3) 0.550 0.132 0.540 0.164 0.545 0.194 

Floor level (4 to 7) 0.421 0.129 0.413 0.154 0.384 0.166 

Floor level (8 to 11) 0.021 0.031 0.026 0.041 0.041 0.072 

F
lo

or
 le

ve
l 

Floor level (12 and more) 0.004 0.011 0.005 0.018 0.009 0.029 

Square footage (20 to 40 m2) 0.539 0.212 0.045 0.064 0.001 0.008 

Square footage (41 to 60 m2) 0.414 0.190 0.436 0.235 0.026 0.062 

Square footage (61 to 80 m2) 0.037 0.080 0.421 0.217 0.208 0.174 

Square footage (81 to 100 m2) 0.005 0.025 0.068 0.131 0.361 0.201 

S
qu

ar
e 

fo
ot

ag
e 

Square footage (more than 100 m2) 0.001 0.006 0.014 0.037 0.382 0.264 

<1850 0.146 0.211 0.125 0.201 0.113 0.197 

1850-1913 0.487 0.191 0.502 0.224 0.469 0.264 

1914-1947 0.134 0.094 0.110 0.094 0.094 0.090 

1948-1969 0.104 0.096 0.121 0.127 0.127 0.137 

1970-1980 0.084 0.089 0.090 0.116 0.120 0.172 T
im

e 
of

 b
ui

ld
in

g 

1981-2003 0.020 0.057 0.014 0.040 0.018 0.049 

Avenue 0.069 0.101 0.083 0.120 0.101 0.137 

Boulevard 0.053 0.065 0.075 0.095 0.104 0.126 

Place 0.007 0.030 0.008 0.032 0.011 0.039 

K
in

d 
of

 s
tr

ee
ts

 

Street 0.866 0.134 0.818 0.186 0.762 0.214 

Distance to center of arrond.(m) 760.057 310.966 765.427 310.208 777.903 304.020 location 
Distance to center of quartier (m) 358.279 129.174 364.798 126.975 371.817 125.814 

1990 3241.092 959.262 2907.220 1302.527 3546.180 1506.467 

1991 3399.057 964.035 3417.746 1185.554 3779.806 1332.065 

1992 2955.765 813.685 2925.903 980.454 3175.944 1184.537 

1993 2756.555 792.633 2839.746 914.806 3073.600 918.480 

1994 2817.402 599.574 2773.081 759.587 2956.089 999.147 

1995 2696.131 690.209 2694.468 692.725 2825.733 822.222 

1996 2503.367 485.931 2514.924 626.994 2635.913 738.734 

1997 2531.608 757.600 2494.286 743.385 2525.078 769.864 

1998 2716.929 806.392 2689.576 808.704 2724.691 735.732 

1999 2907.379 797.324 2880.633 827.330 3072.407 837.997 

2000 3204.227 891.160 3286.850 1000.489 3441.326 1053.854 

2001 3414.757 935.591 3486.653 1062.153 3820.322 1219.953 

2002 3706.720 886.354 3773.888 1056.617 4018.603 1276.669 

pr
ic

e 
pe

r 
sq

.m
 (

€)
 

2003 4089.715 974.103 4279.882 1023.213 4431.024 1291.687 

 
 



Table 11 - Hedonic housing price SUR Equations for Paris (N=80 quartiers , 1990-2003)  (distances weight matrices W1j and W2j)
(*)

ln(price per sq.meter) Coeff. T-stat Coeff. T-stat Coeff. T-stat ln(price per sq.meter) Coeff. T-stat Coeff. T-stat Coeff. T-stat

Intercept 6.367 7.191 5.055 4.804 4.704 4.762

no bathroom ref. ref. ref. ref. ref. ref. λ j (j=1,2,3) 0.735 16.102 0.756 20.237 0.730 16.784

one bathroom 1.178 10.401 1.636 12.434 1.876 14.255 γj (j=1,2,3) -0.004 -0.051 0.007 0.083 0.008 0.103

two bathrooms 1.169 1.037 1.527 3.291 2.004 10.160

three bathrooms and more 1.319 0.257 3.639 3.127 2.332 4.655

no maid's room ref. ref. ref. ref. ref. ref.

one maid's room 1.463 4.803 1.276 4.707 1.204 6.803 Coeff. T-stat Coeff. T-stat

two maid's rooms and more -0.690 -0.598 1.369 1.386 1.062 2.520 σ2
µ1 0.271 6.033 0.182 22.724

no garage plot ref. ref. ref. ref. ref. ref. σ2
µ2 0.394 5.829 0.466 22.739

one garage plot 0.265 1.098 -0.163 -0.633 0.375 1.794 σ2
µ3 0.480 5.920 0.457 22.735

two garage plots -2.005 -1.034 -1.359 -1.186 1.242 3.071 σµ12 0.331 6.099 0.089 9.381

three garage plots and more 0.490 0.039 -1.842 -0.162 -1.187 -0.358 σµ13 0.355 6.076 0.019 2.130

Balcony Balcony (yes or no) -0.590 -1.241 0.274 0.539 0.352 0.927 σµ23 0.435 5.990 0.202 12.920

Floor level (0 to 3) ref. ref. ref. ref. ref. ref.

Floor level (4 to 7) 0.807 7.573 1.236 10.341 0.700 5.733 log-likelihood 146.710 AIC -35.428

Floor level (8 to 11) 1.532 2.666 0.534 0.815 -0.120 -0.284

Floor level (12 and more) 0.913 0.622 -0.149 -0.119 -1.112 -1.379 ddl p-value

Square footage (20 to 40 m2) ref. ref. 1.899 6.373 2.355 0.989 H0
a : [γj , λ j , σµlm]' =0 12 0

Square footage (41 to 60 m2) 0.500 5.825 ref. ref. 0.026 0.082 H0
b : [γj , λ j ]' =0 6 0

Square footage (61 to 80 m2) 0.912 4.811 0.794 7.478 1.032 7.046 H0
c : [γj ,σµlm]' =0 9 0

Square footage (81 to 100 m2) -0.348 -0.653 0.961 5.351 1.029 7.818 H0
d : [λ j , σµlm]' =0 9 0

Square footage (> 100 m2) -1.338 -0.585 0.389 0.695 ref. ref. H0
e : [γj] =0 3 1

<1850 0.736 6.822 1.107 8.386 1.848 13.907 H0
f : [λ j] =0 3 0

1850-1913 ref. ref. ref. ref. ref. ref. H0
g : [σµlm] =0 6 0

1914-1947 0.183 1.036 0.998 4.537 0.740 2.966

1948-1969 0.128 0.678 0.068 0.311 0.355 1.671 (*): Regression includes time dummies

1970-1980 -0.658 -2.362 0.304 0.972 0.350 1.433

1981-2003 0.805 3.035 0.876 1.713 0.023 0.049

Avenue 0.425 2.319 0.255 1.196 0.439 2.212

Boulevard 0.836 3.687 1.412 6.300 0.930 5.283

Place 0.630 1.425 1.928 3.262 0.978 1.899

Street ref. ref. ref. ref. ref. ref.

Dist.center.arrond.(m) -0.0003 -5.365 -0.0006 -6.473 -0.0007 -6.953

Dist.center.quartier (m) -0.0013 -8.325 -0.0022 -9.126 -0.0025 -10.009

Upper 0.340 3.492 0.554 3.566 0.340 2.241

Rich 0.299 3.242 -0.026 -0.177 0.364 2.460

Golden 0.282 3.750 0.526 4.341 0.654 5.397

Others ref. ref. ref. ref. ref. ref.

SUR with spatial lags and spatial errors (SAR)

two rooms three rooms more than three rooms

T
im

e 
of

 b
ui

ld
in

g
K

in
d 

of
 s

tr
ee

t

location

B
at

hr
oo

m
M

ai
d'

s 
ro

o
G

ar
ag

e 
pl

ot
F

lo
or

 le
ve

l
A

rr
on

di
ss

em
e

S
pa

tia
l d

ep
.

σ2
v1

LM test

43486.0

3208.6

48806.0

43402.0

0.0S
qu

ar
e 

fo
ot

ag
e

SUR with spatial lags and spatial errors (SAR)

two rooms three rooms more than three rooms

4017.1

48782.0

σv23E
rr

or
 c

om
p.

 V
ar

-c
ov

. M
at

ric
es

σ2
v2

σ2
v3

σv12

σv13



Table 12 - Hedonic housing price SUR Equations for Paris (N=80 quartiers , 1990-2003)  (contiguity weight matrices W1j and W2j)
(*)

ln(price per sq.meter) Coeff. T-stat Coeff. T-stat Coeff. T-stat ln(price per sq.meter) Coeff. T-stat Coeff. T-stat Coeff. T-stat

Intercept 7.104 14.711 6.061 9.815 5.466 10.162

no bathroom ref. ref. ref. ref. ref. ref. λ j (j=1,2,3) 0.575 11.930 0.634 16.213 0.571 12.448

one bathroom 1.149 10.111 1.601 12.106 2.007 15.240 γj (j=1,2,3) -0.045 -0.769 -0.065 -1.018 -0.043 -0.817

two bathrooms 1.166 1.027 1.639 3.546 2.075 10.411

three bathrooms and more 2.487 0.485 4.015 3.459 2.503 4.959

no maid's room ref. ref. ref. ref. ref. ref.

one maid's room 1.507 4.947 1.322 4.855 1.170 6.582 Coeff. T-stat Coeff. T-stat

two maid's rooms and more -0.738 -0.640 1.292 1.316 1.100 2.595 σ2
µ1 0.276 6.031 0.186 22.680

no garage plot ref. ref. ref. ref. ref. ref. σ2
µ2 0.404 5.832 0.474 22.676

one garage plot 0.392 1.610 -0.055 -0.213 0.381 1.804 σ2
µ3 0.506 5.931 0.468 22.695

two garage plots -2.175 -1.111 -1.127 -0.985 1.258 3.086 σµ12 0.337 6.083 0.096 9.870

three garage plots and more 0.018 0.001 -1.714 -0.149 -1.359 -0.405 σµ13 0.367 6.065 0.026 2.845

Balcony Balcony (yes or no) -0.695 -1.460 0.340 0.670 0.371 0.963 σµ23 0.452 6.001 0.204 12.799

Floor level (0 to 3) ref. ref. ref. ref. ref. ref.

Floor level (4 to 7) 0.790 7.375 1.248 10.397 0.645 5.234 log-likelihood 103.730 AIC 50.534

Floor level (8 to 11) 1.484 2.572 0.453 0.693 -0.161 -0.377

Floor level (12 and more) 0.927 0.617 -0.230 -0.180 -0.942 -1.147 ddl p-value

Square footage (20 to 40 m2) ref. ref. 1.837 6.150 3.305 1.376 H0
a : [γj , λ j , σµlm]' =0 12 0

Square footage (41 to 60 m2) 0.480 5.594 ref. ref. 0.121 0.380 H0
b : [γj , λ j ]' =0 6 0

Square footage (61 to 80 m2) 0.988 5.173 0.827 7.587 1.072 7.257 H0
c : [γj ,σµlm]' =0 9 0

Square footage (81 to 100 m2) -0.787 -1.468 1.046 5.790 1.111 8.265 H0
d : [λ j , σµlm]' =0 9 0

Square footage (> 100 m2) -1.304 -0.566 0.428 0.761 ref. ref. H0
e : [γj] =0 3 0.994

<1850 0.717 6.688 1.129 8.483 1.774 13.095 H0
f : [λ j] =0 3 0

1850-1913 ref. ref. ref. ref. ref. ref. H0
g : [σµlm] =0 6 0

1914-1947 0.225 1.282 0.976 4.376 0.842 3.353

1948-1969 0.197 1.054 0.136 0.624 0.378 1.765 (*): Regression includes time dummies

1970-1980 -0.547 -1.954 0.383 1.211 0.362 1.457

1981-2003 0.756 2.802 0.829 1.609 0.115 0.242

Avenue 0.507 2.700 0.274 1.267 0.492 2.441

Boulevard 0.920 4.005 1.439 6.261 0.934 5.204

Place 0.678 1.537 1.951 3.244 0.947 1.823

Street ref. ref. ref. ref. ref. ref.

Dist.center.arrond.(m) -0.0003 -4.881 -0.0006 -5.705 -0.0007 -6.632

Dist.center.quartier (m) -0.0013 -8.291 -0.0021 -8.582 -0.0024 -9.485

Upper 0.356 4.104 0.562 3.823 0.395 2.897

Rich 0.354 4.185 -0.035 -0.245 0.428 3.117

Golden 0.335 4.693 0.547 4.556 0.731 6.232

Others ref. ref. ref. ref. ref. ref.

SUR with spatial lags and spatial errors (SAR) SUR with spatial lags and spatial errors (SAR)

two rooms three rooms more than three rooms two rooms three rooms more than three rooms

B
at

hr
oo

m
M

ai
d'

s 
ro

o
G

ar
ag

e 
pl

ot
F

lo
or

 le
ve

l

S
pa

tia
l d

ep
.

S
qu

ar
e 

fo
ot

ag
e

E
rr

or
 c

om
p.

 V
ar

-c
ov

. M
at

ric
es σ2

v1

T
im

e 
of

 b
ui

ld
in

g

σ2
v2

σ2
v3

σv12

σv13

σv23

K
in

d 
of

 s
tr

ee
t

LM test

2297300.0

location

1268.0

57351.0

A
rr

on
di

ss
em

e

51132.0

0.338

3255.6

47592.0




