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in coefficient estimates that, spuriously, are statistically significant more often than they 
should. 
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1 Introduction 

Occasionally one aims to examine variables that refer to a share (used here synonymous with 

a ratio or a proportion) of some sort. This could be the share of unemployed in different 

regions, the share of women within the board of public companies, or the share of persons of 

foreign origin in a state, municipality, or school, just to mention a few examples. In empirical 

research one habitually includes such kind of variable by its simplest form, i.e. just by taking 

the ratio of A to B. Sometimes, however, shares occur by their logarithmic transformation, i.e. 

log(A/B). The tendency of using a linear rather than a log-linear approach likely follows from 

convenience in use. However, for a number of reasons the linear measure could fall short of 

standard consistency requirements, as I intend to show in this paper. To be more exact, here I 

will focus on different aspects that emerge from incorporating shares as control variables in 

fixed-effect regression estimation. The overriding question of this paper is the following: 

What are the methodological implications of conducting fixed-effect estimations with 

variables stating shares in its linear form, in comparison with using its logarithmic 

transformation, i.e., the logarithm of shares? 

 

For some scholars such question might look like an issue of marginal relevance. To others, 

especially those dealing with issues regarding outcomes emerging on some aggregated level, 

e.g. the country, state or municipality level, such questions are in no way far-fetched, as ratios 

or percentage shares frequently are of particular interest. For example, a well known study by 

Husted and Kenny (1997) includes the percent of black and elderly within US states in fixed-

effects regression estimations, where the dependent variable is state government spending. 

 

In the following section the methodological derivation underlying the claims made here will 

be explained. This is followed by a discussion as to how consistency assumptions of 
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coefficient estimates could be violated by the choice of estimator, while the subsequent 

section provides results from estimations on simulated data to test for empirical implications. 

The last section concludes. 

2 Fixed-effect modeling 

The main feature of standard fixed-effect estimation in a panel data setting is its focus on a 

variable’s relative outcome to its mean value over time. That is, for the purpose of identifying 

coefficient estimates this approach merely utilizes the within variation of a variable over time. 

This can be seen by the following way of notation (see for example Verbeek (2000), p. 313): 

(i) )()(' ... iitiitiit xxyy εεβ −+−=− ,  where ( )2,0~ εσε IIDit  

Here xit are time varying control variables in region i at time t (for the purpose of the paper 

these variables include at least one variable denoting a share of some sort), while ity denotes 

the according dependent variable. The coefficient vector β  is estimated by conducting 

ordinary least squares estimations (OLS) on the demeaned variable. Similarly, in a log-linear 

setting one would have the following expression1 

(ii) ( ) )()ln()ln(')ln(ln ... iitiitiit xxyy εεβ −+−=− , 

Another way of achieving fixed-effect estimations works by including dummies in line with 

the following notation 

(iii) ,'
ititiit xy εβα ++=  where ( )2,0~ εσε IIDit  

As before, xit are time varying control variables, but now in addition a dummy variable for the 

respective entity of observations (e.g. US states) are included, denoted by iα . Frequently this 

way of formalizing the model is referred to as “Least Squares Dummy Variable” (LSDV) 

                                                 
1 For ease of notation I here refer to the case where all explanatory variables enter the model in logarithms, but 

for the purpose of argument it does not matter how other right hand variables other than the “share”-variable(s) 

are treated.  
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approach. It can be shown that both approaches will lead to the same coefficient and standard 

deviation estimates; see for example Greene (2003), Chapter 3.3. That is to say, using (i) or 

(iii) will result in equal regression estimates β̂ . Such similarity implies that even studies that 

use an approach of controlling for time constant effects by means of including dummy 

variables essentially are utilizing within differences over time as their tool in identifying β̂ . 

The latter aspect highlights why fixed-effect estimators frequently are called “within 

estimators” as they suppress variation in the cross-sectional dimension. 

Fixed-effect regressions with shares 

Start by denoting a share in a given period as itS , where
it

it
it b

a
S = .2 In line with the notation in 

(i) the within variation of the share itS  can be written as 

∑
=

−=
++

−=−
T

t
itik

iTiis
ikiik TSS

T
SSS

SSS
1

2
.

1...
, where t is a time index, ranging from 1 to 

T, and }{ Tk ,...1∈ . To facilitate the presentation I will denote∑
=

T

t
it TS

1

1  as iSΦ , referring to 

Φ as the “arithmetic mean value operator” that is applied on a sequence of 

shares }{ iTii SSS ..., 21 . 

 

Similarly, in a log-linear setting one has the following 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−=

++
− ∏

=

T

t

T
itikiTiiik

iTii
ik SSSSSTS

T
SSS

S
1

1

21
21 )(ln)ln()...ln(1)ln(

)ln(...)ln()ln(
)ln(  

                                                 
2 Subsequently I will refer to itb as “population”. Depending on the research question, the population might 

include ita , such that ititit cab += , with itc  denoting “others”. For the argument of this section such difference in 

defining itb is of no relevance. However, on the margin it could play a role for the consistency argument 

addressed in the next section. 
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Subsequently I will denote ∏
=

T

t

T
itS

1

1
)( as iS∆ , saying that∆ is the “geometric mean value 

operator”. 

 

Focusing on the linear case to start with, one can restate the within estimator as 

(iv) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

Φ
Φ

−=Φ− ∑∑
∑

it

it

it

it

i

i

ik

ik
iik b

a
TaT

bT
b
a

b
a

SS 1
1

1
, 

where Taa
T

t
iti

1
1
∑
=

=Φ  and Tbb
T

t
iti

1
1
∑
=

=Φ . 

The last factor in expression (iv), i.e.,
∑
∑∑

it

it

it

it

a
b

b
a

T
1  is a statistic relating the “mean of 

ratios” times to the inverse of “the ratios of means”. Simply for ease of notation I will call this 

term Pi.3 

Using the Pi notation, (iv) can be rewritten Pi
b
a

b
a

SS
i

i

ik

ik
iik Φ

Φ
−=Φ− . Dividing by iaΦ and 

multiplication with ikb  results in 

(v) 
ik

i

i

ik

i

ik
iik b

a
Pi

b
b

a
a

SS
Φ

⎥
⎦

⎤
⎢
⎣

⎡
Φ

−
Φ

=Φ−   ¤ 

This expression says that the within variation in the share iS with respect to time in a fixed-

effect setting is the weighted (!) difference in the relative size of ika and ikb with respect to 

their respective arithmetic mean values. 

                                                 
3 Letting t go to infinity Pi becomes [ ] 1)()()( −bEaEbaE . A standard result in statistics holds that the 

expectation of a ratio does not equal the ratio of expectations, i.e. )()()/( bEaEbaE ≠ . In certain situations 

equality applies; that is the case if (and only if) 0),( =bbaCov , see Heijmans (1999). Sometimes equality is 

said to hold as a close approximation, see Angrist and Pischke (2008; 207).  
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The implications of such a result might become clearer when one compares the above 

expression with the one attained with the set up in the log-linear case. One can rewrite the 

within estimator in log shares as follows 

(vi) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆
∆

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∆−

i

i

ik

ik
iik b

a
b
a

SS lnln)ln()ln(  

The equality holds simply because of 
it

it
it b

a
S =  so that 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆
∆

=
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∆=∆

∏
∏∏∏

i

i

T
it

T
it

T
it

T
it

T

it

it

i

i
i b

a

b

a

b

a
b
a

b
a

S ln
)(

)(
ln

)(

)(
lnln)ln()ln( 1

1

1

11

 

The right hand side of equation (vi) can then be rephrased as 

[ ] ⇔⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆

=∆−∆−−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆
∆

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

i

ik

i

ik
iiikik

i

i

ik

ik

b
b

a
a

baba
b
a

b
a

lnln)ln()ln()ln()ln(lnln  

(vii) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆

=∆−
i

ik

i

ik
iik b

b
a

a
SS lnln)ln()ln(   ¤ 

The last expression specifies the within variation (with respect to its geometric mean over 

time) in the logarithmic share ikS as the difference in the according relative size of ika and 

ikb with respect to their respective geometrical mean values. Comparing the linear estimator in 

(v) and the log-linear estimator in (vii), the main difference is that the latter does not apply a 

weighting by 
ik

i

b
aΦ

. While the population indicator ikb  is varying over time, the numerator 

iaΦ  is constant over the whole time period for each i.  

Next the argument will be addressed more formally. For that purpose I will connect to a paper 

by Törnqvist et al. (1985). In their study the authors look at “indicators of relative differences 

of a variable /…/ measured on a ratio scale”; see Törnqvist et al. (1985), p.1. To facilitate a 
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comparison with their work, I introduce a new notation, 
⎭
⎬
⎫

⎩
⎨
⎧

∆Φ
∈Ω

i

ik

i

ik
a a

a
a

a
,  and 

⎭
⎬
⎫

⎩
⎨
⎧

∆Φ
∈Ω

i

ik

i

ik
b b

b
b

b
, .  Accordingly aΩ states the relative size of ika in one time period in 

relation to either its arithmetic or geometric mean over time. An analogous interpretation 

holds for bΩ , simply by addressing ib instead of ia .4 

 

Using that notation and rewriting the right hand side of equation (v) and (vii) results in 

(viii) [ ]
ik

i
ba b

a
Pi

Φ
Ω−Ω   and 

(ix) ( ) ( )ba Ω−Ω lnln   respectively. 

As a first step, it will be shown that the linear estimator (viii) is an indicator of “relative 

differences” – albeit a trembling one – in line with the definition given in Törnqvist et al. 

(1985). As their paper already considered the log-linear setting akin to the one in (ix) – which 

also emerged to be their chosen estimator of reference – I only aim to discuss the linear case. 

 

Definition: ),( baC ΩΩ is an indicator of relative differences given that 

1) ),( baC ΩΩ = 0 iff ba Ω=Ω  (iff ≡ “if and only if”) 

2) ),( baC ΩΩ > 0 iff ba Ω>Ω  

),( baC ΩΩ < 0 iff ba Ω<Ω  

3) ),( baC ΩΩ  is a continuous and increasing function of aΩ  when bΩ is fixed 

4) ),(),(0: baba CllCll ΩΩ=ΩΩ→>∀  

                                                 
4 For the argument of the paper, any difference in numeric values between the arithmetic and the geometric mean 

is of no significant importance.  
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The last condition says “that the values of an indicator of relative difference must be 

independent of the unit of measurement”, p. 43. Stated differently, it says that 

function )(,.,C is homogenous of degree zero. Here (.,.)C  is used to indicate a real valued 

function that takes aΩ and bΩ as its arguments. 

 

Looking at condition 1), one immediately realizes that Pi has to be equal to one in (viii) as 

otherwise the first condition will not be met. Depending on the actual empirical conditions, 

the factor Pi might take on various values, but here I will assume that Pi is about equal to one, 

so that the linear estimator (viii) can be approximated by  

[ ]
ik

i
ba b

a
CC

Φ
Ω−Ω=≈ (.,.)~(.,.) . 

The conditions under point 2) are satisfied (provided that Pi is sufficiently close to one), i.e., 

baba PiΩ>Ω⇒Ω>Ω  and baba PiΩ<Ω⇒Ω<Ω . 

 

Condition 3) can be shown to hold by differentiating ),( baC ΩΩ with respect to aΩ : 

0(.,.)
>

Φ
=

Ω∂
∂

ik

i

a b
aC , saying that after an increase in aΩ  the functional value of the 

(continuous) function )(,.,C will increase monotonically, given bΩ (and Pi) fixed. 

 

Finally, accuracy of condition 4) can be shown by utilizing that  

ibik
i

ik
bibik

i

ik
b bllb

b
lb

lbb
b

b
ΦΩ=⇔

Φ
=Ω⇒ΦΩ=⇔

Φ
=Ω  

Hence, one achieves the following equality 

[ ] [ ] [ ] ),(),( ba
ik

i
ba

ik

i
ba

ik

i
baba C

b
a

Pi
lb

a
Pil

lb
a

PillllC ΩΩ=
Φ

Ω−Ω=
Φ

Ω−Ω=
Φ

Ω−Ω=ΩΩ  
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Setting 
b

l Ω= 1 (and Pi =1) one also has 

⎟
⎠
⎞⎜

⎝
⎛

Ω
Ω=

ΩΦ
⎥⎦
⎤

⎢⎣
⎡ −Ω
Ω=⎟

⎠
⎞⎜

⎝
⎛

Ω
Ω=ΩΩ

b

a

ik

bi

b

a

b

a
ba H

a
a

CllC ~11,~),(~ , i.e., a (continuous) 

function H~ , taking the ratio ⎟
⎠
⎞⎜

⎝
⎛

Ω
Ω

b

a as its argument. 

To sum up, even in the linear setting the conditions stated by Törnqvist et al. (1985) are met, 

given that Pi is approximately equal to one. As a next step, I now turn to discussing the 

advantage of using the logarithmic estimator as in (ix) over the linear estimator in (viii). 

 

According to Törnqvist et al. (1985), the key factor to highlight regards an estimator being 

symmetric. In particular, symmetry can be defined as follows 

⎟
⎠
⎞⎜

⎝
⎛

Ω
Ω

b

aH = ⎟
⎠
⎞⎜

⎝
⎛

Ω
Ω−

a

bH . 

which is the standard definition for a symmetric function in two variables, i.e., 

),(),( yxfxyf −= . 

In the log linear case symmetry applies trivially by logarithm rules, i.e., 

⎟
⎠
⎞⎜

⎝
⎛

Ω
Ω−=⎟

⎠
⎞⎜

⎝
⎛

Ω
Ω

b

a

b

a lnln .  

In the linear case, however, equality will not apply, i.e., 

⎟
⎠
⎞⎜

⎝
⎛

Ω
Ω−=Ω

Φ
⎥⎦
⎤

⎢⎣
⎡ −Ω
Ω−≠Ω

Φ
⎥⎦
⎤

⎢⎣
⎡ −Ω
Ω=⎟

⎠
⎞⎜

⎝
⎛

Ω
Ω

a

b
a

ik

i

a

b
b

ik

i

b

a

b

a H
a

b
b

a
H ~11~ . 

 

Proposition 1: Only the log-linear measure of relative differences in fixed-effect 

estimations is symmetric 

To provide an intuitive understanding of non-symmetry in accordance with the Törnqvist et al. 

(1985) set up, note the following example: assuming a share of 4 percentage points in the 
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initial period, and a share of 5 percentage points in the subsequent period, the relative change 

can be measured by relating either to the value for the former, saying that the share increased 

by 25% (i.e., 5/4 -1). On the other hand, using as base period the latter, this would imply that 

the share initially was 20% lower (i.e., 4/5 -1) than it was in the subsequent period. Hence, 

depending on the chosen base level, one will receive different results, meaning that an 

“ordinary” linear percentage estimator is not symmetric. This is in contrast to the log-linear 

estimator, where ln(5/4) = -ln(4/5), saying that the relative change is exactly the same in 

absolute values. Of course, in terms of absolute changes both measures are symmetric, i.e. |5-

4|=|4-5| and |ln(5)-ln(4)|=|ln(4)-ln(5)| respectively.5 

Extension to first-difference estimations 

A related estimation concept in panel based estimations to fixed-effects is the “first-

difference” approach.6 The results achieved above for the fixed-effect setting can easily be 

extended to first-difference estimations as shown below. 

 

Proposition 2: Only the log-linear measure of relative differences in first-difference 

estimations is symmetric 

Proof: First rewriting the linear estimator according to its first difference analogue results in: 

ik

ik

ik

ik

ik

ik

ik

ik

ik

ikikikikik
ikiik b

a
b
b

a
a

b
a

b
aSSSS

SSS 1

111

111
2

1
2

1
22

−

−−−

−−−
⎥
⎦

⎤
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡
−=

−
=⎟

⎠
⎞

⎜
⎝
⎛ +

−=Φ−  

                                                 
5 One of the few papers referring to Törnqvist et al. (1985) is Ashenfelter and Greenstone (2004). Applying a 

difference-in-difference framework they emphasize the advantage of the “ln difference approach”, see p. 248. A 

field of application where the Törnqvist et al. (1985) paper has received more attention regards price or quantity 

indexation; see for example Armstrong (2001) and Reinsdorf et al. (2002). 

6 It can be shown that in the two-period case first-difference and fixed effect estimation result in identical 

coefficient estimates and standard deviations. (See for example Wooldridge, 2003, pp. 67-68) 
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Applying the same reformulation in a log-linear setting result in: 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

−
=Φ−

−−−

−−

111

11 lnln2
1lnln2

1
2

)ln()ln(
)ln()ln(

ik

ik

ik

ik

ik

ik

ik

ikikik
iik b

b
a
a

b
a

b
aSS

SS  

 

Slightly changing the notation for aΩ and bΩ  such that 

1−

=Ω
ik

ik
a a

a
 and 

1−

=Ω
ik

ik
b b

b
, respectively, one receives 

[ ]
ik

ik
baiik b

a
SS 1

2
1 −Ω−Ω=Φ−  

( ) ( )[ ]baiik SS Ω−Ω=Φ− lnln2
1)ln()ln(  

This means that even in the first-difference setting the properties of the estimator are similar 

as in the fixed-effect setting, meaning symmetry applies in the log-linear but not in the linear 

setting. ▄ 

 

Note that in the first-differences case there is not factor Pi “disturbing” the estimator. The 

lack of symmetry solely refers to [ ] [ ]
ik

ik
ab

ik

ik
ba a

b
b

a 11 −− Ω−Ω−≠Ω−Ω . 

(Non-)Consistency of estimates due to weighting in the linear set-up 

Departing from equation (i) and using the notation in Wooldridge (2002), p. 269, the 

regression coefficients are estimated by: ⎟
⎠

⎞
⎜
⎝

⎛ ′⎟
⎠

⎞
⎜
⎝

⎛ ′= ∑∑∑∑
= =

−

= =

N

i

T

t
ii

N

i

T

t
iiFE yxxx

1 1

1

1 1
β̂  

Here )( .iiti xxx −=  and )( .iiti yyy −= , t =1, 2… T are the respective time periods and i =1, 

2,…N are index numbers for each observation, capturing the cross sectional dimension, e.g. 
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US-states as in the Husted and Kenny (1997) paper. Consistency in coefficient estimations is 

defined as [ ] FEFEn
E ββ =

∞→
ˆlim  

It says that the expected value of the estimated coefficient vector FEβ̂  should be equal to 

FEβ when the sample size goes to infinity. 

 

How could estimator FEβ̂  become non-consistent? The most immediate argument relates to 

bias occurring because of a correlation between ix  and the error term iε . To see this more 

clearly, note that one can rewrite the estimator as follows 

⎟
⎠

⎞
⎜
⎝

⎛ ′⎟
⎠

⎞
⎜
⎝

⎛ ′+= ∑∑∑∑
= =

−

= =

N

i

T

t
ii

N

i

T

t
iiFEFE xxx

1 1

1

1 1

ˆ εββ . 

Given that the consistency assumption is violated, i.e. 0)( ≠′ iixE ε , then FEβ̂  will be biased, as 

it will not converge to the true value of FEβ . According to the preceding section, a linear 

estimator of a share variable implies weighting by “population”. For several reasons 

“population” could be correlated with the error term. Stated differently, the coefficient 

estimate of a share variable could become statistically significant due to that “population” 

ib and outcome variable iy are correlated. More formally this can be formulated as follows. 

Let iii vbg += )(ε   such that 0)( =′ iivxE  and (.)g  be some function taking ib  as its 

argument. In case ( ) 0)(; ≠ibgbCov  then SS FEFE ββ ≠ˆ , i.e. the coefficient for the linear share 

variable would be biased due to omitted variable bias.  

3 Simulations and Estimations 

The results presented above have been inherently theoretical. They should be complemented 

by studies on real data and/or simulation to measure the actual implications for applied 

research. One attempt of doing this is provided in this section. For that purpose a data set is 
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created with 50 time periods and 100 “states”. The share variable is constructed by letting the 

denominator (i.e. the “population” denoted ib  above) be a function of .iy , i.e. by design the 

denominator will be correlated with the time-demeaned dependent variable (see Appendix A 

for details on the design of variables and the estimation set up). To secure similar 

preconditions, the expected value of the demeaned share variable is approximately zero in 

both settings (see Appendix B). The purpose is to test the following predictions from the 

theoretical section above: 

First: The linear share estimator will be correlated with the dependent variable due to the 

implicit weighting by “population”, while this is not the case when using the logarithm of a 

share. This implies that there is scope for spuriously significant coefficient estimates in the 

first, but not in the second setting.  

Second: Letting the numerator (denoted ia  above) be correlated with iy  should to a lesser 

extent result in spuriously significant regression estimates (in the linear setting). This is due to 

the fact that the shape of the weighting factor 
ik

i

b
aΦ

 implies that the denominator ikb  is more 

likely to pick up changes in the error term over time than what should be the case with the 

numerator iaΦ , which is constant for each unit i. Subsequently instead of the denominator the 

numerator is defined to be a function of .iy . 

 

Regression estimations are conducted using both the linear and the log-linear share variable 

respectively, while the various appearances of the dependent variable are following exactly 

the same data-generating process in both settings. Thus, the models estimated read 

iii xy εβ +′=  and iii xy εβ +′= )ln( , respectively. 

The dependent variables are constructed in a random manner by using autoregressive 

parameters (subsequently denoted k) of size 0; 0.1; 0.2; ...1.0; respectively, utilizing various 
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grades of stationary in the dependent variable. Randomization allows creating outcome 

variables that follow a normal distribution, such that from the outset the variance of the error 

term is normally distributed, a feature that will translate to the standard errors of the 

coefficient estimates. Figure 1 shows one realization of the dependent variable after a random 

draw of an AR(1) process for each of the considered parameter k.7 Conversely, variation of 

the share variables over time follow a simple random walk. This implies that dependent and 

independent variable are following different trends, so that the identification of coefficients, 

standard errors, and, consequently, statistical significance should not be the result of spurious 

correlation. Due to the overall random design of the share variable the null-hypothesis of a 

zero-effect should not be rejected more than is determined by the chosen level of significance 

(with deviations in the range of predictable statistical error). 

 

Table 1 and Table 2 present the number of times the regression estimates have been found to 

be significantly different from zero after utilizing a five percent level of significance. 

Accordingly these numbers should be significant in about five out of one hundred estimations. 

The tables account for the numbers after two thousand iterations of estimations have been 

evaluated, accordingly one should expect there to be approximately 100 statistically 

significant estimates when testing for 5 percent level of significance. A number very different 

from 100 would indicate that the estimated model is not consistent, i.e. it violates the 

assumption that β̂N  is asymptotically normal distributed. Given 2000 independent draws, 

each with the same probability distribution, one can settle the lower and upper boundary 

                                                 
7 Given the regression model in (i), introducing an AR(1) process in the dependent variable leads to 

)()()(' ..1.. iititiitiit yykxxyy εεβ −+−+−=− − . If one does not explicitly account for the dynamic 

structure the error term would become ittiit ykv ε+= −1, , saying that FEβ̂  will become bias if 0)( ≠itit vxE . 
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values of a two-sided 95% confidence interval for testing H0:  p = 100/2000 = 0.05 to be 81 

and 119 respectively.8 

 

As becomes clear from the first row in Table 1 are the numbers about 200 when the 

denominator is a function of .iy . Looking at Table 2 one can see that the log share variable is 

doing a much better job, lying in the range of the proposed consistency level. The different 

realizations of the autoregressive process by means of increasing k in the dependent variable 

(see Figure 1) describe a range of trajectories, being linear, concave or exponential, 

respectively.  If the superior results for the log-linear estimator would just be caused by a 

more appropriate association of the variance covariance structure of the dependent variables 

and the share-variable, one should expect to find at least some sensitivity as to the distribution 

of test statistics in the different form of appearances of the dependent variable. As that 

apparently does not seem to be the case one can conclude that it is the actual structure of the 

estimator per se that is causing the diverging patterns of the respective share variable.  

 

According to the predictions of the theoretical section the scope for spurious significance of 

share coefficients should be larger in case the denominator (the “population”) is correlated 

with the outcome variable. The second row in Table 1 and Table 2 reports the number of 

cases where the p-value of the t-statistic becomes smaller than .05. The numbers are in 

                                                 
8 More precisely, the confidence interval is given by 

⎥
⎦

⎤
⎢
⎣

⎡ −
+

−
−

2000
)05.01(05.0*96.12000  ,

2000
)05.01(05.0*96.12000

xx , 

i.e., assuming a normal distribution given by 
⎥⎦
⎤

⎢⎣
⎡ −

n
pppN )1(, 00

0
. The applied standard errors weighting 

scheme, based on estimations using the “cluster”-command in Stata, results in estimates that are robust to both 

heteroskedasticity in a cross sectional dimension and to serial correlation. For a discussion on such and related 

issues, see Kézdi (2004) and Bertrand et al. (2004). 
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accordance with statistical expectations for the log-linear setting, and approximately so in the 

linear setting. The latter point suggests that estimates are less prone to be affected when the 

correlation goes between the numerator in a share-variable and the dependent variable, than 

when it is the denominator. 

 

The probable interpretation of this exercise goes as follows: given that both the dependent 

variable and the (denominator of the) share variable are determined by factors that relate to a 

common base, such as population size, there is an underlying risk of attaining non-reliable 

statistics by using a linear share variable, while there is no such risk in a log-linear setting. 

According to the numbers achieved from the present exercise, the effect can be rather sizable, 

rejecting the null-hypothesis of a zero-effect ten times out of hundred while testing on a five 

percent level of significance, which should be significant only five times out of hundred. 

Stating differently, in the latter case there is greater risk of Type-I errors, i.e. rejecting a null-

hypothesis of a zero-effect. Of course, the way the variables are generated is inherently ad-

hoc, so one cannot draw general conclusion on the overall scope of disturbance that could 

emerge in general. They might be smaller, but could also be larger. 

4 Conclusion 

This paper has shown that the linear estimator (inversely) weights changes in shares by its 

denominator. Relying on the work by Törnqvist et al. (1985), it can be shown that the linear 

estimator is non-symmetric. The implicit weighting of the share variable in the linear setting 

implies scope for spurious correlation between the share and the dependent variable. 

 

The choice between using a log-linear or linear approach is determined by the particular 

research question under study and the data examined. Accordingly, one should not take the 

results presented in this paper as strict advice to use a log-linear approach anytime one 
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includes “share”-variables in a fixed-effect estimation framework. Indeed, the choice should 

be anchored in accordance with a number of considerations, both theoretical and empirical. 

Among others, using logs changes the reading of coefficient estimates. Anyway, in empirical 

research there often is no structural model available to base the model to be estimated on, so 

that the decision on using shares (ratios) in a linear or a log-linear way becomes rather ad hoc. 

In such situation, the recommendation emerging from this paper would be to consider a 

logarithmic transformation of shares as ones default choice rather than to use a simple ratio. 
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Table 1. Counting the number of significant coefficient estimates on a five percent level for “share of 

immigrants” as explanatory variable. Randomized dependent and independent variable; Results after 

2000 iterations when using linear shares. 

yt = k*yt-1+ et; 
et~N(0,1) 

k=0 k=0.1 k=0.2 k=0.3 k=0.4 k=0.5 k=0.6 k=0.7 k=0.8 k=0.9 k=1.0 

Denominator 
function of  

.iy  

204 215 217 208 192 224 234 202 232 260 206 

Numerator 
function of  

.iy  

115 142 125 120 131 117 126 120 117 121 98 

Notes: 50 time periods and 100 “states”. Adjusted standard errors with respect to state clusters.  
 
 
 
Table 2. Counting the number of significant coefficient estimates on a five percent level for “share of 

immigrants” as explanatory variable. Randomized dependent and independent variable; Results after 

2000 iterations when using log-linear shares. 

yt = k*yt-1+ et; 
et~N(0,1) 

k=0 k=0.1 k=0.2 k=0.3 k=0.4 k=0.5 k=0.6 k=0.7 k=0.8 k=0.9 k=1.0 

Denominator 
function of  

.iy  

99 108 101 84 104 102 103 103 94 100 99 

Numerator 
function of  

.iy  

106 89 98 104 102 91 98 107 106 99 120 

Notes: 50 time periods and 100 “states”. Adjusted standard errors with respect to state clusters.  
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Figure 1 
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Appendix A 

drop _all 
set obs `N' 
******* 
foreach k of numlist 0 1 2 3 4 5 6 7 8 9 10   { 
gen pv`k'=.   
        } 
************************ 
foreach k of numlist 0 1 2 3 4 5 6 7 8 9 10   { 
 
 local j=0 
  while `j' < `N'   { 
       local j=`j'+1 
  preserve 
 
clear 
 
foreach i of numlist 1950/2000 { 
 clear 
 range Z 100 400 100 
 range X 200 800 100 
  
gen municipnr=_n 
gen artal=`i' 
sort artal municipnr 
save arbetsdata`i', replace 
      } 
 
use arbetsdata1950, clear 
foreach i of numlist 1951/2000 { 
append using arbetsdata`i' 
      } 
 
tab artal, gen(d) 
foreach i of numlist 1/51 { 
local l=`i'+1949 
rename d`i' d`l' 
     } 
 
sort municipnr artal  
     
* Introducing uniform random component for “Population size” applying an  
* AR(1) process without drift and trend 
replace Z=Z*(uniform()+1)  if artal==1950 
replace Z=Z[_n-1]  + invnormal(uniform()) if municipnr[_n]==municipnr[_n-1] 
& artal~=1950 
 
replace X=X*(uniform()+1)  if artal==1950 
 
* Defining the dependent variable by applying an autocorrelation structure 
* of increasing order 
gen w = X + invnormal(uniform()) if artal==1950 
replace w=(`k'/10)*w[_n-1] + invnormal(uniform()) if w[_n-1]~=. & 
municipnr[_n]==municipnr[_n-1] & artal~=1950 
 
* Defining the year-average of the dependent variable 
by municipnr, sort: egen w_mean=mean(w) 
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* Defining a variable that combines the year-average dependent variable and 
* the randomly generated variable Z 
gen Z_w_mean=Z*w_mean 
 
* Defining a constant that will be used in the definition of the share-    
* variable 
gen constant=10+10*uniform() 
 
* Defining the share variable. Here the denominator, indicated b, by design 
* is a function of the time average of the dependent variable. Subsequently 
* the algorithm for generating a and b are alternated to test if there are 
* any differences emerging from the position in the share variable, i.e. if 
* there are differences occurring from the position as denominator or      
* numerator 
gen a=  constant 
gen b= (constant + uniform()-0.5)*Z_w_mean 
 
gen share_rand=a/b 
gen lnshare_rand=ln(a/b) 
 
* Defining “log of population” to be included in the estimations as another   
* covariate in the log setting 
gen lnbef=ln(b) 
 
* Running fixed-effect regression 
xtreg w d1951-d2000 `ln'b `ln'share_rand, fe i(municipnr)cluster(municipnr) 
       
gen V= _se[`ln'share_rand] /* get standard-error for share variable */ 
gen b= _b[`ln'share_rand] /* get coefficient for share variable */ 
     gen tv=b/V        /* the "t"-ratio */ 
     scalar pv`k' = 2 * ttail(e(df_r), abs(tv))    /* the p-value  */ 
 
 
restore 
  
replace pv`k'=scalar(pv`k') in `j' /* set pv to the p-value for the ith 
simulation */ 
     
 save data_pv_`label'_`N'_`ln', replace 
       
       } 
        
        }   
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Appendix B 
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