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Two ubiquitous empirical regularities in pay distributions are that the variance of wages 
increases with experience, and innovations in wage residuals have a large, unpredictable 
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over time, implying firms must continuously learn about a moving target. Therefore, while the 
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1 Introduction

Understanding why wages of observationally similar workers evolve di¤erently and

why these di¤erences increase with age are among the central questions of labor eco-

nomics. Answers to these questions typically assume that either worker productivity

changes heterogeneously over the life-cycle or that employers receive new information

about the skills and abilities of workers. Both answers can account for two empirical

regularities regarding wage residuals: the variance of wage residuals increases with

experience and innovations in wage residuals have a large unpredictable component.1

Indeed, distinguishing between these alternative hypotheses is intrinsically di¢ cult

because employer learning is not observable per se, and employer expectations about

worker productivity are not directly observable. Understanding the contributions of

productivity evolution and employer learning to pay changes over the life cycle is the

task of this paper.

A large literature tests productivity models by analyzing the second moments of

wage residuals (e.g., Abowd and Card 1989, Hause 1980, MaCurdy 1982 and Baker

1997). The observation that log wage residuals have a large unpredictable component

was seen as evidence against human capital models. By contrast, observing that wage

growth correlates over time was seen as evidence for systematic di¤erences in human

capital accumulation. A major obstacle in this literature is the inability to separate

productivity from pay using wage data alone, since wage dynamics could be driven

by changes in either productivity or �rm expectations.

Considerable advancements were made in the employer learning literature begin-

ning with Farber and Gibbons (1996) and Altonji and Pierret (2001) and later Lange

1These �ndings are intuitive. In learning models, wages equal expected productivity conditional
on the information available at any age. The variance of conditional expectations increases as
the conditioning set increases, implying the same for the variance of wage residuals. Furthermore,
because past wages are included in the �rm�s information set, wage growth will be uncorrelated over
time. In productivity models, one could simply assume a stochastic evolution process which yields
these patterns for productivity and therefore wages.
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(2007). In order to separate productivity from pay, this literature relies on the AFQT

score - a correlate of productivity that may be unavailable to �rms at point of entry

into the labor market - available in the NLSY79. The fact that wages increasingly

correlate with such variables over the life-cycle is seen as evidence for employer learn-

ing. However, one concern to this approach is that it requires the assumption that

employers did not have access to the AFQT score when setting wages, even though

knowledge of the test score would have been valuable, and it may have been possi-

ble to collect. Another drawback is that it cannot allow for productivity dynamics

because AFQT scores re�ect skill di¤erences among individuals that existed prior to

labor market entry.

In this paper, we provide new evidence on whether employer learning or changes

in worker productivity drive changes in wage residuals over the life cycle. To do this,

we use a 20-year unbalanced panel data set of all managerial employees in one �rm,

previously analyzed in Baker, Gibbs and Holmstrom (1994a and 1994b, BGHa and

BGHb hereafter).2 For our purposes, these data have the crucial and as yet unex-

ploited advantage that they contain both annual pay of workers as well as performance

ratings in the form of subjective managerial assessments. The panel structure allows

us to observe performance ratings that were collected prior to, contemporaneous to,

and after the current period. The latter provides us with information about worker

productivity that the �rm was not able to exploit when setting wages. We can thus

dispense with the ad-hoc assumptions on the information available to �rms that were

previously required in this literature. The fact that we have repeated performance

ratings obtained at various points over the life-cycle allows us to estimate dynamic

speci�cations of productivity and learning that go beyond those currently estimated

2These landmark studies provided early empirical evidence on the internal organization and pay
dynamics of the �rm. Their �ndings have inspired the well known contributions by Gibbons and
Waldman (1999 and 2006) who reconcile most of the BGH �ndings by combining simple models of
job (and later task) assignment, human-capital acquisition and learning. In addition, Gibbs (1995)
describes the empirical relationship between pay, promotions and performance and DeVaro and
Waldman (2007) use the data to test the Waldman (1984) promotion-as-signal hypothesis.
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in the literature.

To fully exploit these data, we develop a dynamic model of learning and pro-

ductivity. In the model, �rms set pay equal to expected productivity which they

predict using noisy signals of productivity. In addition, worker productivity itself

varies stochastically over time. It follows that wages vary over the life-cycle because

of both �rm updating and productivity evolution. The model thus nests both of the

competing explanations for how wages vary over the life-cycle: evolving productivity

and employer learning. Further, the nesting allows us to test the pure models against

each other.

We show that the correlations of pay with performance, measured at various

lags and leads, are particularly informative for distinguishing between models. For

example, a pure learning model predicts that these correlations will be larger for past

performance measures than for future because �rms have incorporated the new noisy

signals. Over time, as �rm expectations become more precise and they update less on

new signals, this discrepancy should fall. In contrast, the pure productivity model,

which assumes full information, predicts no distinction between correlations of wages

with past and future performance evaluations, per se.

In isolation, neither model can fully reproduce the moments of the data. We

�nd evidence for employer learning in that we observe that wages are more highly

correlated with past rather than future performance ratings. However, we observe

this pattern even for workers at high experience levels, contradicting the pure learning

model. When estimating the full model, these facts lead us to conclude that �rms

do learn about worker ability and that productivity evolves over time. Somewhat

surprisingly, we �nd that the initial variance in productivity is quite small and that

�rms are well informed about the skills of workers at the outset of their careers.3 Over
3This �nding is however consistent with Arcidiacono et al. who show that �rms have more precise

initial expectations about college graduates than high school graduates. Our sample of managers,
re�ecting highly skilled workers, should be more similar to the college graduates sample.
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time, productivity evolves substantially, thanks to both a predictable and a random

walk component. Therefore the �rm must continuously learn about a moving target,

even at high experience levels.

Overall, we �nd that wages di¤er signi�cantly from individual productivity at

all experience levels. Nevertheless, the majority of the observed dispersion in wage

residuals is due to variation in individual productivity. We believe that this reinter-

pretation of the role of learning represents a signi�cant contribution to the empirical

literature on employer learning (based on Farber and Gibbons 1996 and Altonji and

Pierret 2001).

The remainder of this paper is structured as follows. Section 2 introduces the

model of learning and productivity, shows how this model nests the pure learning

and pure productivity models, and discusses the identi�cation of these two models.

Section 3 describes the data. Section 4 reports the estimation method and results

and evaluates the �t of the model. In Section 5, we interpret the estimates and what

they imply for how learning and productivity contribute to wage dynamics. Section

6 concludes the paper.

2 A Model of Learning and Productivity

In this section, we introduce the model that we use to organize the discussion and

empirical evidence.4 We have chosen a parsimonious speci�cation that nests two of

the main models of wage dynamics, the pure employer learning model and the pure

productivity model. Each model represents a distinct view point about how wages

evolve over the life-cycle. The pure learning model goes back to the speci�cation

analyzed by Farber and Gibbons (1996) (see also Altonji and Pierret (2001) and

Lange (2007)). This model assumes that individual heterogeneity in productivity is

4The models we analyze in this paper are special cases of a more general class of models of
learning and productivity that can be analyzed using the tools developed in this paper. We present
this more general class of models in the appendix.

5



�xed across the life-cycle and that wage dynamics are driven entirely by learning on

the part of employers. The pure productivity model instead assumes that employers

are perfectly informed about worker productivity. Wage dynamics in this model

re�ect variation in productivity over the life-cycle. The nested model allows for both:

productivity varies heterogeneously over the life-cycle and employers are assumed to

constantly update their information about individual productivity.

2.1 The Nested Model

We begin by making a number of assumptions that apply not only to the models we

analyze in this section, but also to the more general model developed in the appendix

I. We assume that labor markets are spot markets and that information is symmetric

across all employers.5 This implies that workers are paid their expected productivity

in each period. Furthermore, we assume that �rms know the structure of the economy

and they update their expectations in a Bayesian manner. We now specify the three

main components of the model: the process of productivity evolution, the information

structure and the measurement issues that link the theory to our data.

Productivity Evolution

A scalar eQit summarizes worker productivity. Productivity varies with observed
characteristics (xi) and experience t. Thus, we let eQit = Q (x; t)�Qi;t; whereQ (x; t) =
E
h eQitjx; ti and Qi;t is the idiosyncratic component of individual productivity. Let

qit = log(Qit).6

5A large literature deviates from the assumptions of spot markets and symmetric information.
For example, Gibbons and Katz (1991), Kahn (2009a),Schönberg (2007) and DeVaro and Waldman
(2007) provide evidence, in a variety of settings, that employers learn asymmetrically. Further BGH
(1994b), Beaudry and DiNardo (1991), Kahn (2010), and Oreopoulos et al. (2006) show that pay is in
part dependent on past labor market conditions. We are enormously sympathetic to this literature,
especially since one of us has contributed to it. However, it would be intractible to include features
of these models in our paper. What is important for us is despite evidence of the existence of these
market imperfections, there is also substantial evidence that �rms are constrained by market forces
when setting pay policies. For example, BGH (1994b) �nd that the �rm analyzed here does not
fully shelter pay from market �uctuations.

6By construction qit is mean zero and uncorrelated with the controls x. From now on, we will
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The di¤erence equation (1) provides a simple, yet �exible way of representing the

evolution of individual log productivity qit :

qit = qit�1 + �i + "
r
it (1)

We assume �i s N (0; �2�) and "rit s N (0; �2r) and that the "rit are uncorrelated over

time and with �i. We initialize this di¤erence equation in period 0 with a draw of qi0,

drawn from a normal distribution N(0; �2q): This draw is independent of �i.
7

According to equation (1), the log of individual productivity, qit, evolves following

an experience pro�le with three sources of heterogeneity. The heterogeneity in qi0

captures di¤erences in initial ability. The heterogeneity in the drift parameter �i im-

plies persistent di¤erences in the intensity with which individuals accumulate human

capital over the life-cycle.8 Finally, the innovations "rit represent time-variation in

individual productivity that are not predictable. The i.i.d. assumption on the "rit

implies that the variation in these innovations does not decline with experience and

that individual productivity diverges even for relatively experienced workers.

There are various possibilities for why worker productivity might evolve randomly

over time. It is for instance plausible that at least a subset of workers is subject to

health shocks that a¤ect performance. A more intriguing possibility is that experience

a¤ects the tasks individuals are required to perform. If productivity on past tasks

does not perfectly predict productivity on future tasks, then worker productivity

would indeed be subject to unpredictable variation as individuals gain experience

(Gibbons and Waldman 2006).

Information Structure

suppress the dependence on x. We generally follow the notational convention that upper case and
lower case letters refer to variables measured in levels and logs, respectively.

7We adopt the convention that period 0 is a period prior to the �rst period the individual spends
in the labor market.

8Persistent di¤erences in intensity would arise, for example, if individuals di¤er in either their
preferences or ability to invest (Becker (1964), Ben-Porath (1967)).
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The �ow of information to employers is modeled using three di¤erent signals.

Information �rms hold about worker productivity at the beginning of their career is

embodied in an initial signal zi0. As individuals spend time in the labor market, �rms

observe two signals in each time period: fpit; zitgTt=1: The signals zi0 and fzitgTt=1 are

not observed in the data available to researchers. The only signal that is (partially)

contained in our data is pit:9 We assume that all three signals are normally distributed

around qi and therefore have zi0 = qi + "i0; pit = qi + "
p
it; zit = qi + "

z
it where

"i0~N (0; �
2
0) ; "

p
it s N

�
0; �2p

�
; and "zit~N(0; �

2
z): The normality assumptions ensure

great parsimony for the model, allowing us to analyze the learning process using the

tools of Kalman �ltering. Without loss of generality, we impose that cov ("zit; "
p
it) =

0.10

Based on the spot market assumption made above, wages will equal expected

productivity conditional on all signals the �rm has observed up to that point.

Measurement Issues

Two measurement issues arise when we try to map the above model onto the

particular data we consider. First, and quite standard, we allow for measurement

error in wages:

Wi;t = W
�
i;t
i;t (2)

where Wit is the observed wage, W �
it is the wage measured without error and 
it

represents the measurement error. Taking logs we get

wit = w
�
it + !it (3)

We assume that !it is classical measurement error with !it~N (0; �2!) :

The second issue arises from the fact that our observed productivity signals, pit,

9In the data section, we describe more precisely the information we have on pit.
10The information in correlated normal signals is identical to the information contained in or-

thogonalized signals. The correlations between pit and wages are therefore identical, regardless of
whether the �rm observes a correlated signal or an uncorrelated signal.
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are subjective managerial performance evaluations (described in more detail below).

As we estimated the model, we found that these performance ratings were very highly

correlated across short time horizons. We believe this pattern arises from temporary

stickiness in performance evaluations and does not re�ect true productivity evolution.

Such persistence could occur, for example, if workers are temporarily matched with

the same manager for several periods who may then give similar ratings. Or, managers

may be reluctant to give ratings that deviate too far from past performance, if they

anticipate the unpleasantness of dealing with worker complaints or needing to provide

extra justi�cation. We model this e¤ect by assuming that the "pit evolve according to

equation (4)

"pit+1 = �"
p
it + uit+1 (4)

where the initial noise is "pi1 = 0 and uit~N (0; �2u) : The parameter � governs the

degree of persistence in manager ratings and will be estimated. Other than this, we

assume that signals re�ect new information, i.e., the signal errors ("i0; "zit; uit) are

uncorrelated across time.11

Summary

The model described above is governed by only 8 parameters:
�
�2q; �

2
r; �

2
0; �

2
u; �

2
!; �

2
�; �; �

2
z

�
:

This parsimony makes quite transparent what features of the data drive the para-

meter estimates. At the same time the model has the advantage of nesting the two

interpretations of wage dynamics that are the object of our inquiry: employer learn-

ing and productivity dynamics. By imposing the appropriate restrictions on these

11A di¤erent modeling assumption would be to put the auto-regressive component, �, directly
into the productivity evolution equation. This would yield some auto-correlation in performance
measures. However, this assumption violates several of the observed patterns in our data, which
we describe below. Speci�cally, because pit contains noise terms, "

p
it, the AR-1 process in observed

performance would exhibit less persistence than the AR-1 process in true productivity. In order to
generate the relatively large auto-correlations between pit and pit�1(we show below that these are
on the order of 0:6), we would need the signal noise in "pit to be very small. But, if the "pit were
very precise, then we would necessarily require wages and performance signals to be very highly
correlated, contradicting the �ndings in the data.
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parameters, we can recover either the pure learning or the pure productivity model.

The restriction �2� = �2r = 0 eliminates any heterogenous dynamics in productivity

and delivers the pure learning model. By contrast, the restriction �20 = �
2
z = 0 implies

that the �rm is perfectly informed at any stage of the life-cycle and thus delivers the

pure productivity model.

2.2 Implications and Identi�cation

We now derive several intuitive implications from the model which help illustrate how

we can identify distinctions between the employer learning and productivity models.

In appendix II, we provide a more formal discussion of how the parameters in the

model can be identi�ed using the second moments of wages and performance ratings.

First, it is worth pointing out that wage data alone would not be su¢ cient for

our exercise of distinguishing between learning and productivity models as the main

drivers of wage dynamics. Indeed, we could always specify a full information model

with productivity evolution that would replicate the second moments of wages. For

example, observing that log wages follow a random walk has been taken as evidence

of employer learning (Farber and Gibbons 1996). However, this pattern would also be

obtained under a full information productivity process that evolves as a random walk.

Therefore, identifying joint models of learning and productivity dynamics using wage

data alone will be fundamentally dependent on the functional form restrictions that

one is willing to impose on the productivity process. Access to productivity correlates

such as performance ratings adds a di¤erent source of information that helps resolve

this identi�cation problem.

Especially helpful is the co-variation in pay with performance across experience.

To illustrate, we consider what the pure learning model implies for how pay covaries

with past performance measures as opposed to future performance measures. To

simplify the discussion assume, for now, that performance ratings are uncorrelated

10



over time (� = 0) and that there is no measurement error in wages (�2! = 0). Then,

an individual�s wage will be given by the following expression:

wit = E
�
qijI t

�
= �t + (1�Kt�1) � E [qijzi0] +Kt�1

1

t� 1
t�1P
j=1

�ij (5)

where �it = (1� �) pit + �zit (6)

Kt =
t�2q

t�2q + �
2
�

(7)

This expression contains both a component �t that is common across individuals

and a component that depends on the signals the �rm obtains.12 In each period, we

combine the two signals zit and pit into a single scalar �it that represents a su¢ cient

statistic for the information obtained in period t. The weight � depends on the

variance of the signal noise in both signals.13

From equations (5)-(7), it is easy to derive the covariances between pay and per-

formance measures across time:

cov(wit; pi� ) =

8><>: Kt�1(�
2
q +

1��
t�1 �

2
p) � < t

Kt�1�
2
q � � t

9>=>; (8)

Equation (8) encapsulates three of the features implied by the pure learning model

that are particular noteworthy.

First, for � > t; the cov(wit; pi� ) increases with t as Kt�1, the weight placed

on the stream of performance measures, grows. Intuitively, as the �rm learns, the

wage becomes increasingly correlated with underlying productivity and therefore will

also correlate more with any signal of productivity, i.e., future performance ratings.

Second, cov(wit; pi� ) is larger for performance measures that occurred before the wage

12The time e¤ects �t capture both the common variation in log productivity over time and also
how the variance of the prediction error varies with experience. A convenient feature of the normal
learning model is that the variance of the prediction error does not depend on the observed signals
and is instead common across all individuals with the same level of experience.
13The exact expressions for � and �2�, the variance of the scalar signal �

2
�; are known, but not of

particular interest at this point.
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was set (� < t) ; than for performance measures that were not yet observed when the

wage was set (� � t). This is because current pay incorporates the realizations of

"p from previously observed performance measures, but not from future performance

measures. Therefore, under the learning model, the relationship between cov(wit; pi� )

and � will be a step function. The size of the step can be obtained by di¤erencing

the two expressions in equation (8) and is equal to Kt�1
1��
t�1 �

2
p: This yields the third

prediction that the size of the step decreases in t. Intuitively, �rms�expectations are

based on substantially more productivity ratings when t is large and they therefore

put less weight on any given signal pit when setting wages.14

Thus, the learning model implies a discontinuity at the present when we compare

how pay in any period correlates with past and future performance ratings. For learn-

ing models, the distinction between the past and the future is fundamental, because

it separates observed and unobserved information, generating the discontinuity in

correlations. By contrast, the pure productivity model treats the past and the future

symmetrically, since the �rm has full knowledge of productivity when setting pay. It

therefore could not generate the step function described above.

3 Data

3.1 General description

This paper analyzes data �rst used by BGHa and BGHb in their canonical studies

of the internal organization of the �rm. The data consist of personnel records for all

managerial employees of a medium-sized, US-based �rm in the service sector from

1969-1988. We have annual pay and performance measures, as well as some demo-

14While correlations of wages with future performance rise as workers gain experience, this does
not happen for correlations with past performance. In a learning model, though wages increasingly
correlate with true productivity, that e¤ect is o¤set by the fact that �rms use any given productivity
measure less for older workers since their expectations have become more precise.
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graphics and a constructed measure of job level (see BGHa for more detail). The

original sample contains 16,133 employees. Of these, we restrict attention to the

9,391 employees with a non-missing education variable who can be observed with a

wage or performance measure between the ages of 25 and 54 and at least one more

wage or performance measure.15

Because we have data on only one �rm, we may su¤er from several selection

problems. We are concerned that attrition from the sample is non-random, since

nonrandom turnover could bias our results. In appendix III, we estimate a selection

corrected version of our model that corrects for attrition based on observables and

�nd that our results are unchanged when we estimate this version of the model.

Summary statistics are reported in table 1. The majority of managers are white

males with at least a college degree. Annual salary averages almost $54,000 in cpi-

adjusted 1988 dollars and measures base pay.16 The performance ratings range from

1 to 4, with higher rating re�ecting better performance.17 From table 1, we see the

average rating is a little over a 3 and the distribution is top heavy, with more than

75% of workers receiving one of the top two ratings.18

Table 1: Summary Statistics

Figure 1 plots log pay and performance residuals by age, with solid and dashed

15Age 25 might be considered slightly old to begin the processes of employer learning and post-
school skill accumulation for most education groups. However, our sample consists of workers who
have already been promoted to the level of manager. As we have no way of learning about their
labor market experiences before they enter this sample, we start at the earliest age which still yields
a decent sample size. This is also why we extend the anaylsis to age 54. From now on, we adopt the
convention that age 25 is the �rst year of experience.
16We have information on bonus pay for some years (1981-1988) but do not include it in the

analysis to maintain consistency in our data across years. In these years, 22% of workers receive a
bonus and, conditional on receiving a bonus, the amount is on average 12% of base salary.
17We inverted and recoded the original measures, which ranged from 1 to 5, combining the worst

two ratings since almost nobody receives the worst.
18This distribution of performance ratings is similar to those found in Medo¤ and Abraham (1980

and 1981) and Murphy (1991) in their studies of performance ratings across various industries and
�rms.
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lines, respectively.19 The solid line shows that the earnings-experience pro�le is rising

and concave, re�ecting typical life-cycle patterns. The dashed line reveals, somewhat

surprisingly, that average performance falls with age. This is unexpected if we think

part of the explanation for the rising age-earnings pro�le is that workers are accu-

mulating more skills. However, this �nding is common in the literature, exhibited

in Medo¤ and Abraham (1980, 1981) for example. They interpret subjective per-

formance measures as relative ranks within a comparison group. Once ratings are

relative, we could rationalize almost any age-performance pro�le.

Figure 1: Log Wages and Performance by Age

In our analysis, we follow the common practice in the literature to treat the

performance measures as relative. That is, we interpret observed performance, ~pit, as

arising from a latent signal on individual productivity, pit, according to the mapping

in equation (9)

~pit =
K�1P
k=1

1(pit � ckt) (9)

A worker is assigned the ranking ~pit = k if his or her latent productivity signals

falls between the two thresholds, ck�1t and ckt. We allow these thresholds to di¤er

across age groups, thus incorporating the assumption that ratings are relative to

individuals of the same age.20 The structure assumed in section 2 yields that the

latent signal, pit, is normally distributed. We can therefore estimate correlations of

pit with other normally distributed variables (such as log wage residuals and lagged

performance) using maximum likelihood methods. Of course, since the observed

19Both variables are residualized on the following set of variables, all interacted with education
group (high school, some college, exactly college, advanced degree): gender, race and year dummies
and gender- and race-speci�c time trends.
20Age may not capture the exact reference group for a worker. We could easily include demo-

graphics, such as race, gender and education, in forming these groups, though we have not done so
here. However, our results are robust to allowing performance to be relative to other workers in
one�s entry cohort or job level.
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performance ratings are categorical, we cannot identify the variance of pit.

It is worth noting that, though subjective performance measures are less desir-

able for this exercise, previous literature has shown that when both objective and

subjective performance measures are available, they are signi�cantly positively cor-

related (Jacob and Lefgren 2008 and survey by Bommer et al. 1995). Further, Gibbs

(1995) shows that these performance ratings do contain meaningful information. For

example, high performance ratings are correlated with higher raises and bonuses,

and increase the probability of promotions. Lastly, we feel that both allowing for an

auto-regressive component to performance ratings and treating them as categorical

variables re�ecting relative ranks are important statistical measures which help us

extract the signal in what some may argue are particularly noisy variables.

3.2 Moments for estimation

Our model outlined above generates implications about the second moments of wages

and performance across di¤erent experience levels. Here we present the empirical

analogs which we use to estimate our model. In principle, we could match correla-

tions in wages and performance ratings across all 30 age levels, 25-54. Instead, we

simplify the estimation and exposition by constructing a set of 68 moments, that we

think are particularly informative for distinguishing learning and productivity models.

These moments are displayed in �gures 2a and 2b with 95% bootstrapped con�dence

intervals.21

Figures 2a and 2b: Moments and 95% CI

Panel A in �gure 2a shows the variance in log wage residuals for six 5-year ex-

perience groups ranging from 1-5 to 26-30 years. The variance in pay around the

21In constructing these moments, we �rst residualize all pay and performance measures by the
following variables all interacted with education group: gender, race age and year dummies, gender-
and race-speci�c time trends as well as gender and race interacted with a quadratic in age. We then
take average correlations and variances across the speci�ed set of experience years weighted by the
number of individuals for which we observe that moment.
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age pro�le is substantial and increases almost linearly with age. It is only after 25

years of experience that the growth in the variance of pay slows.22 Understanding

this variation and its increase over the life-cycle is the primary task of this paper.

Panels B and C in �gure 2a show auto-correlations in performance and pay resid-

uals, respectively, for up to 6 lags and for two experience groups: experience 1-15

shown with solid dots and 16-30 with hollow dots. For both pay and performance,

the more experienced group exhibits higher auto-correlations which fall the further

away in time the observation was. In panel B, the performance auto-correlations ex-

hibit some nonlinear decay across lags. As discussed above, we �t this stickiness in

performance ratings with the parameter, �.

Panel D in �gure 2a shows correlations in pay changes for up to 9 lags and for the

same two experience groups. As has been observed in MaCurdy (1982), Baker (1997)

and many other papers that investigate the 2nd moment properties of log wages, the

autocorrelation in wage growth identi�es permanent heterogeneity in productivity

growth (when wit = qit, as in the pure productivity model). In contrast, a pure

learning model could not yield this implication because each wage innovation re�ects

new information obtained by the �rm in that period.23 Here we clearly have evidence

consistent with productivity evolution since all correlations in pay changes are sizeable

and statistically distinguishable from zero.24

Panel D also exhibits a sharp decline in correlations across lags, which stabilizes

at the 4th lag and remains fairly constant through the 9th lag. We believe this

decline may be evidence of some stickiness in wage growth. Given our spot market

assumption and the current structure of our productivity process we cannot �t this

decline. Instead, we �t only the 4th through 9th lags, since including the �rst three

22It is worth noting that these variances are quite a bit lower than one would observe in a cross-
section (for example, the variance in log earnings residuals is 0.04 in the �rst experience bucket).
This is because we are already restricting attention to workers in the same �rm and occupation.
23Farber and Gibbons (1996) propose testing the pure learning model using exactly this absence

of autocorrelation in wage growth.
24BGHb also obtained this result and took it as evidence of hetergeneous growth in productivity.
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causes problems in the estimation.25

Lastly, we focus on �gure 2b, which gives correlations between current pay and

past, current and future performance measures for up to 6 lags and leads, again across

the two experience groups. We pay particular attention to these moments through-

out the paper because we believe they represent the major innovation to the previous

literature . In section 2, we argued that these correlations are informative about

employer learning. In particular, the pure learning model yields three testable impli-

cations: correlations of wages with future performance measures rise with experience;

correlations of wages with past performance measures decline with experience; and

the relationship between cov(wit; pi� ) and � will be a step function. A corollary of

these three implications is that the size of the step should decline with experience.

Figure 2b provides evidence consistent with two of the predictions. Correlations

for future performance measures are larger for the higher experience group, suggest-

ing �rm expectations approach true worker productivity over time. Also, we indeed

see an asymmetry in correlations of wages with past, relative to future performance

evaluations. For example, for young workers, the correlation of pay with one lag in

performance is 0.015 larger than that with one lead in performance. This and the

comparison for two periods out are statistically signi�cant at the 5% level, while the

comparison for three periods out is statistically signi�cant at the 10% level. How-

ever, the step size does not appear to fall with experience, contradicting the third

prediction. Indeed the correlations of pay with past performance are on average 0.06

larger than those of future performance. All di¤erences at similar time distances are

statistically signi�cant at the 1% level.

Thus we see reduced form evidence consistent with both heterogenous productivity

growth and employer learning. However, �rms continue to exhibit patterns of learning

25We �t up to 9 lags here because we wanted to gain a better sense of the decay process past the
�rst 3 lags. These long run correlations are of particular interest because they cannot be generated
by any temporary correlations in wage growth.
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even for workers at high experience levels, suggesting that the pure learning model

alone will not be able to �t the data.

4 Estimation

In Section 2 we developed a model of learning and productivity that represents a

special case of the more general model described in Appendix I. In this appendix,

we also describe how one can use linear state space methods to derive the moments

of these more general models. Applying these methods to our speci�c case, we can

obtain the implied second moment matrices for wages and performance ratings. These

results allow us to implement method of moments, matching to the empirical moments

described above, to estimate the parameters of our model.

Table 2 displays our parameter estimates for the three models which we obtain via

method of moments with equal weights on all moments. Standard errors, obtained

by bootstrapping with 500 repetitions, are shown in parentheses.26 We now discuss

the �t of each model. As we have mentioned, we pay particular attention to the

correlations between pay and performance and various lags and leads. These results,

discussed below, are summarized for all 3 models in �gure 3.

Table 2: Parameter Estimates.

Figure 3: Correlations of Pay and Performance

The Pure Learning Model

Panel B of �gure 3 and �gure 4 summarize the results of the pure learning model,

26The exact bootstrapping procedure is as follows. We draw the sample randomly, with replace-
ment and generate the bootstrapped moments. We then estimate the parameters to match these
moments, taking as starting values the true parameters values shown in table 2. We do not search
across starting values to �nd the global minimum for each of the 500 samples. However, in each
bootstrap, we go through four optimization routines (alternating between Newton-Rapson and the
simplex method), which should ensure we have found the global minimum.
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contrasting the empirical moments with the predictions based on the estimated pa-

rameters for the pure learning model (restricting �2� = 0 and �
2
r = 0). The predicted

moments are shown using solid lines for younger workers and dashed lines for older

workers.

We �nd that the learning model does succeed in a number of ways. Using a

small set of parameters, it matches the variance of wages across experience levels.

It also matches the approximate levels of the auto-correlations in wages by experi-

ence, though not the decline across lags. It matches the decay across lags in the

auto-correlations of performance measures, thanks to the parameter �, but not the

di¤erences across experience. The model, by construction, predicts that wages follow

a random walk and therefore the learning model is not able to match any of the

long-run positive correlations in pay growth that we observe in the data and report

in panel D of �gure 4.

Figure 4: Results for the pure learning model.

However, as is evident in Figure 3, panel B, the pure learning model does not

�t the correlations between pay and performance ratings that we believe to be the

most important new empirical evidence we add to the literature. The data show that

the correlations of pay and performance are generally increasing with experience,

resulting in a sizeable asymmetry between correlations of wages with past and future

performance measures even at high experience levels. In contrast, the �tted learning

model predicts a cross-over pattern. For young workers, �rms rely heavily on past

performance measures, since current expectations are imprecise. This should result in

wages that are more highly correlated with past performance for younger, relative to

older, workers. The model predicts the reverse for the correlation of current wage with

future performance. Because �rm expectations become more precise, wages of older

workers should approach true worker productivity and become increasingly correlated
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with future performance.

This failure re�ects general features of pure learning models and, in our view, is

not a result of any particular distributional assumptions. Overall, we therefore �nd

signi�cant evidence against the pure learning model.

The Pure Productivity model

Figure 3, panel C and �gure 5 show the �t of the pure productivity model.

Figure 5: Results for the pure productivity model

Along a number of dimensions, the pure productivity model does better than the

pure learning model. First, because the variance of the heterogeneous growth term

�i reported in table 2 is non-zero, the pure productivity model generates long run

correlations in wage changes that are positive, though smaller in magnitude than the

observed moments. The pure productivity model also �ts both the auto-correlations

in pay and performance, better than the learning model did. Allowing productivity

to vary yields stronger declines in auto-correlations across lags and experience groups

that the learning model could not predict. However, this model does poorly in �tting

the experience pro�le of variance of log pay. Growth rate heterogeneity implies that

the variance rises in the square of experience, producing the convex pattern �tted by

the model.

Turning to our main set of moments (�gure 3 panel C), the evidence regarding

the pure productivity model is mixed. A success for the model is that it manages to

�t the approximate levels of correlations across experience groups. Intuitively, these

correlations increase with experience because, as the variance in productivity increases

with experience, the common component in performance ratings and wages becomes

more important, relative to the noise in the performance ratings. Further, �i has a

larger impact on performance further into the future, increasing those correlations

with any given wage. This is the same reason why the correlations of pay with future
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performance rise with the number of leads, another failure of the model. Finally, as

discussed above, the pure productivity model fails to match the asymmetry in the

correlations between pay and past, compared to future, performance.

The Nested Model

Finally, we consider how the parameter estimates and �t of the nested model

compare with those of the pure learning and productivity models. Results from the

nested model are shown in �gure 6 and panel D of �gure 3.

Figure 6: Results for the combined model

Overall, our estimates emphasize that it is important to account for both learning

and productivity growth in explaining the data. Indeed, the nested model can �t the

correlations between pay and performance, both the levels across experience and the

asymmetry across lags, though it admittedly has trouble �tting the decline after about

four leads into the future. In addition, because of imperfect information, productivity

innovations are not immediately incorporated into pay. Therefore, the model is also

able to �t higher correlations in pay growth, resulting from a larger �i, while keeping

only a small convexity in the variance in log wages across experience.

In fact, the nested model attributes a larger role to persistent di¤erences in pro-

ductivity growth, �i, and less of a role to random innovations in productivity, "ri .

An increase in � of one standard deviation corresponds to 45% extra productivity

growth over our time horizon in the nested model, and 35% in the pure productiv-

ity model. Over the same time period, a standard deviation of the sum of random

walk components is about 12% and 25% for the nested and pure productivity models,

respectively.

Turning to the estimates of learning parameters, we �nd that the variance in all

of the signals is much greater for the pure learning model than the nested model. The
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variance of the initial signal (�20) is about four times larger in the pure learning model

and the variance in the the two dynamic signals (�2z; �
2
u) is likewise substantially large.

This is likely due to the fact that in order to match the evidence for learning even

at higher experience levels, the pure learning model needs to impose relatively slow

learning. In contrast, the nested model can �t learning throughout the life-cycle by

introducing additional variation in productivity.

Statistically, we reject the pure learning and pure productivity models in fa-

vor of the nested model. We reject the restrictions of the pure productivity model

(�20 = �2z = 0) against the unrestricted model at a 97.5% signi�cance level (the �2

statistic with two degrees of freedom is 7.51). The restrictions of the pure learning

model (�2� = �
2
r = 0) are rejected at any reasonable signi�cance level with a �

2 of 487.

Overall, we thus �nd support for a model that combines elements of learning with

heterogenous changes in productivity over the life-cycle.

5 Interpretation

In this section, we interpret the magnitudes of the estimates of the nested model

and discuss alternative explanations. In particular, we are interested in how far

productivity and wages can deviate from each other because �rms are imperfectly

informed and how our estimates relate to the literature on the speed of employer

learning (Lange 2007). This analysis informs us about our initial question of whether

wage dynamics are primarily driven by the evolution of individual productivity or by

learning. It is also informative for the incentives faced by employers to invest into

discovering worker productivity.

Productivity and Wage Variance of the Life-Cycle

Figure 7 plots the variances in productivity, wages and expectation error as a
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function of experience, implied by the parameters from the nested model.

Figure7: Variances in productivity, wages and expectation error, by experience

The top line shows the variance in log productivity with the variance of log wages

just below. It becomes clear that both the shape and magnitude of the variance of

log wages are inherited from the shape and variance of productivity. The relatively

small di¤erence in size between the variances of wages and productivity is seen, even

at 30 years of experience, were variances of productivity and log wages are 0.174

and 0.154, respectively. The di¤erence is accounted for by the variance of the �rm�s

error in expectations around worker productivity. At young experience levels, this

variance declines as �rms learn about initial productivity, qi0, and the persistent

component of productivity growth, �i. Subsequently, the variance stabilizes at a

fairly low and constant level around 0.022, re�ecting that �rms must continue to

learn about the random walk in productivity. Thus, to understand why wages diverge

over the life-cycle means �rst and foremost understanding why productivity evolves

heterogeneously over the life-cycle.

While it might therefore seem that imperfect learning is of small consequence,

since the variance of the expectation error is relatively small, we would disagree. The

variance of the expectation error of about 0.022 and the fact that this variance is

relatively stable over the life-cycle implies that on average, wages and productivity

deviate by about 10% of annual productivity for most of the life-cycle. That is, �rms

make sizeable errors when estimating individual productivity and face substantial

incentives to identify the more productive workers. Such a di¤erence between wages

and productivity and the fact that they persist late into individual careers make it

plausible that worker turnover and human resource policies are substantially shaped

by learning.
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The Speed of Learning

Our estimates also allow us to examine how rapidly �rms learn about any di¤er-

ences in productivity that exist at the beginning of the worker�s career, an exercise

�rst performed in Lange (2007).27 He �nds that initial expectation errors decline

by about 50% in the �rst 3 years and that only 25% of the initial expectation er-

ror remains after 8 years. The parameter estimates obtained in this paper imply

that expectation errors about productivity di¤erences existing at the beginning of

individual careers decline by about one third within 3 years and about 70% within

8 years. Thus, our esimates about the speed of learning about initial productivity

di¤erences are strikingly consistent with those of Lange, despite the di¤erences in

methodologies.28

5.1 Alternative Theories linking Pay and Performance

We have concluded above that productivity evolves heterogeneously throughout the

life-cycle and �rms continue to learn about this moving target. The main piece of

evidence for this is the fact that past performance still correlates more highly with

pay than does future performance, even at high experience levels. However, if past

performance matters more for older workers, either because of pay for performance

or because these measures contain a more precise signal, then we might obtain this

same result. We discuss each of these in turn.

It is possible that performance evaluations become more precise as workers age

27Lange (2007) builds on the empirical strategy proposed �rst by Farber and Gibbons (1996) and
developed by Altonji and Pierret (2001), using data on the AFQT from the NLSY 1979, to estimate
how quickly �rms learn about heterogeneity in worker productivity. He argues that this speed
of employer learning is crucial for understanding how relevant signaling motives are in schooling
decisions, because if �rms learn rapidly about worker productivity, then workers have little reason
to signal their productivity by taking costly actions such as acquiring schooling.
28Firms learn about 2 productivity states, �i and qit. This imparts some complicated dynamics

into the speed of learning, which does not allow us to summarize the speed of learning in a single
parameter, as in Lange (2007). The dynamics in fact generate overshooting, such that initial pro-
ductivity di¤erences in q0i will have a more than one-for-one impact on log wages for part of the
individuals life-cycle.
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and the �rm learn better how to evaluate them. This would explain why �rms still

update on worker productivity, for a time, at high experience levels. However, it would

not explain why �rms continue to update at all points along the life-cycle �recall,

the di¤erence between the correlation of pay with lags of performance, compared to

leads of performance is always positive and statistically signi�cant for the older group.

Even if the variance in the productivity signal falls with age, �rms should eventually

stop updating, and we do not see that.

Alternatively, one might be worried about direct pay for performance. If �rms

directly incorporate past performance into pay, we would see larger correlations for

lagged performance and wages, relative to those of future performance. Further, as

workers age and are promoted, the scopes of their jobs might broaden and �rms might

want to strengthen the incentive. If this were the case, we should see a spike at one lag

of performance (or possibly the past few performance measures). We might also see

a larger spike for the high experience group. However, we do not see these patterns.

We see instead that all past performance measures have roughly the same correlation

with current pay ( around 0.28 for young workers and almost 0.40 for old workers).

This is inconsistent with a direct pay for performance scheme.29

However, consider a deferred form of incentive pay. If the �rm is operating under

a tournament model (a la Lazear and Rosen 1981) where workers are compensated

for their past e¤ort upon being promoted later in life. This would result in higher

correlations between pay and past performance for older workers. Correlations of pay

and future performance measures could still be larger for older workers because of

learning. Indeed we cannot distinguish this model from our model of productivity

evolution. To do so, we would need more information on the structure of pay setting

and promotions from the �rm. Lacking such information in this data-set, we are forced

29It is worth pointing out that had we incorporated bonuses into our pay day, this might be
di¤erent. We have not done so because we cannot get consistent bonus measures throughout the
sample. However, it also means that our current measure of pay probably does not include direct
incentives.
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to simply note this identi�cation problem with the hope that in the future, better

and more comprehensive human resource data will permit progress in distinguishing

alternative explanations from the productivity and learning based model analyzed in

this paper.

6 Conclusion

In this paper, we provide new evidence on employer learning and productivity evo-

lution by exploiting performance evaluations, along with pay data, from a panel of

workers in a single �rm. We derive a nested model and show how we can uncover both

the learning and productivity parameters by matching moments in the data. We �nd

that problems of accurately predicting productivity are important for employers and

that average expectation errors are large at all stages of individuals careers. However,

we do not �nd evidence that the wage dynamics overall are driven primarily by the

learning process. Instead, our model suggests that random variation in productivity

drives most of the observed increase in the variance of wages over the life-cycle. We

believe these �ndings represent a signi�cant reinterpretation of the employer learning

literature.

An important caveat to our conclusion is that we are only able to study one �rm

and further, only one occupation (broadly de�ned). Our �nding that �rms have quite

precise expectations over worker ability at the beginning of the worker�s career could

be explained by the fact that these workers have already been promoted to manager.

Thus the market probably had opportunities to learn about these workers, before

they entered out sample. In the future, we hope to analyze other data sets containing

pay and performance measures to establish the generalizability of these �ndings.

Seemingly contradictory to most models of human capital accumulation (Becker

1964, Ben-Porath 1967), we �nd that a signi�cant component of productivity evolves
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unpredictably throughout the life cycle. One explanation for this �nding is that

workers are assigned to di¤erent tasks throughout the life cycle and performance on

past tasks does not predict performance on future tasks. This interpretation suggests

that �rms shift workers into job levels and tasks with little ability to predict worker

success there.
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I A More General Class of Models

In section 2, we have presented a model with particular productivity and learning

structures. In this section, we show a more general class of models of learning about

worker productivity, drawing from Hamilton (1994). We will show how to derive

the second moment matrices of productivity signals and wages in this larger class

of models. To estimate the parameters of these models, one naturally will �t the

predicted and the observed second moment matrices of productivity signals and wages.

I.1 The Productivity Process

In period 0 (before production starts), individuals are endowed with a (nqx1)�vector

of productivity parameters �i;0 with E [�i;0] = 0 and E
h
�i;0�

0

i;0

i
= P0: In subsequent

periods, productivity evolves according to a stochastic process represented by the

stochastic di¤erence equation:

�i;t+1 = ��i;t + "
�
i;t+1 (10)

"�i;t+1~N(0; R�)
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This implies that the productivity states in period 1, the �rst period of actual

production are �i;1 = ��i;0 + "�i;1.

I.2 Prediction in the Initial Period

Before any production takes place, �rms draw a signal about �i0. This signal is

summarized by an initial (nzx1) vector of signals zi;0. This vector is not observed

in the data, but represents the information available to �rms at the beginning of an

individual�s career.

zi;0 = H 0
0�i;0 + "

z
i;0 (11)

"zi;0~N(0; Rz;0)

The dimensions of
�
H0; "

z
i;0; Rz;0; P0

�
are implicitly de�ned to conform to zi;0 and �i;0:

Based on the signal vector zi;0 �rms predict the state �i;0 :

b�i;0j0 = P0H0 (H0
0P0H0 +Rz;0)

�1
zi;0 (12)

= Kzzi;0

Firms set wages based on this predicted state b�i;0j0 taking into account that pro-
ductivity will evolve between the pre-period and period 1 according to equation (10).

Firms best guess about productivity in period 1 is:

b�i1j0 = �b�i0j0
= �Kzzi;0

and the posterior variance of the expectation error is:

P1j0 = �(P0 �KzH
0
0P0) �

0 +R�
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I.3 The Recursion

At the end of each period t > 0, a new (nxx1)�signal vector xit is drawn by the �rm.

xi;t = H 0
x�i;t + "

x
i;t (13)

"xi;t~N(0; Rx)

Based on this signal, the expected posterior of �it conditional on xit is:

b�itjt = b�i;tjt�1 + Ptjt�1Hx �Hx0Ptjt�1Hx +Rx��1 �xi;t �H 0
x
b�itjt�1� (14)

= b�itjt�1 +Kt

�
xit �H 0

x
b�itjt�1�

= (1�KtH
0
x)
b�itjt�1 +Ktxit

Again, when �rms form expectation they account for the evolution in productivity

described in equation (10). Therefore �rms best guess about productivity in period

t+ 1 is:

b�it+1jt = �b�itjt (15)

= �(1�KtH
0
x)
b�itjt�1 + �Ktxit

The variance of the expectation error then evolves according to

Pt+1jt = �
�
Ptjt�1 �KtH

0
xPtjt�1

�
�0 +R� (16)

This de�nes the complete prediction problem of the �rm. The parameters are

(P0; Rz;0; Rx; R�; Hx; H0;�):

32



I.4 Wages

So far, we have described how the vector of individual productivity states �it and the

expectation of this state evolves over time. One component of the individual pro-

ductivity state is qit, the idiosyncratic component of log productivity. We now show

how log wages are related to log productivity. Because we assume that labor mar-

kets are frictionless spot markets and all information is common, we have that wages

W �
it equal expected productivity: W

�
it = E [Q (x; t)QitjI t] = E [Q (x; t) exp (qit) jI t] :

Here Q (x; t) is a productivity pro�le common to all individuals and Qit represents

individual productivity and I t represents the information set available at time t. We

assume also that wages are measured with multiplicative measurement error 
it:

We have made a number of normality assumptions. One advantage of these as-

sumptions is that expected log productivity bqit is normally distributed in each period.
We can therefore write:

Wit = Q (x; t)E [Qi;tjIit] 
it

= Q (x; t)E [exp (qi;t) jIit] 
it = Q (x; t) exp
�bqit + 1

2
v (t)

�

it

where v (t) is the variance of the expectation of log productivity. Taking logs, we

obtain

wit =

�
q (x; t) +

1

2
v (t)

�
+ bqit + !it (17)

= h (x; t) + bqit + !it
where !it is the noise in the measurement error with variance �2!. We assume that

!it is uncorrelated with all other variables in the model.

We residualize wages to remove the common age pro�le h (x; t) and denote the

residual as rit:
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I.5 Link to Observable Data: A State-Space Speci�cation

The next task is to derive the second moments that the model implies for observable

quantities (rit; pit). We note that our problem takes the form of a linear state-space

speci�cations. The states that describe individuals are the individual productivity

states �it as well as the expectations �rms hold b�it. We stack these two vectors and
denote the state vector by �it =

�b�it �it

�0
: The states evolve in a linear stochastic

way and the observed data is linearly related to the states. We denote the observed

data as yit =
�
rit pit

�0
.

The linear state space model consists of three parts. First, we need to specify

how the state evolves. This is done in equation (18) : Second, we need to specify

how the states map into observed variables. This measurement equation is given by

(19). Finally, we need to specify the distribution of the initial state �i1, the forcing

variables vit; and the unobservable noise in the measurement equation eit:

�it+1 = Ft�it + vit+1 (18)

yit = M�it + eit (19)

�i1 =

�
�Kzzi;0
�i1

�
The matrix M has as many rows as there are observable objects. The vector eit

contains the noise in the measurement equations. The matrix Ft is given by

Ft =

0B@� (1�KtH
0
x) �KtH

0
x

0 �

1CA
and the innovation vit+1 to the state vector is de�ned as:

vit+1 =

�
�Kt"

x
it

"�it

�
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The (Kz; Kt)�matrices were implicitly de�ned in equations (12) and (14) above.

I.6 The 2nd Moment Matrix of Observables

We can now derive the variance-covariance matrix for the observables yit and yi� .

Without loss of generality, we can limit ourselves to � � t:

Because eit contains only measurement error, we can write the second moment

matrices of the observables as follows:

E
h
yity

0

i��t

i
=ME [�it�

0
i� ]M

0 + E [eite
0
i� ] (20)

The M are deterministic and we therefore just have 2 components E [�it�
0
i� ] ; and

E [eite
0
i� ] that need to be determined as functions of the parameters of the model. The

matrix E [eite0i� ] is 0 for � 6= t and is directly given from the is variance-covariance

matrix of measurement error within t. We therefore simply need to determine how

E [�it�
0
i� ] is related to the parameters.

Tedious, but straightforward algebra yields

E [�it�
0
i� ] =

j=tP
j=2

( 
l=t�1Q
l=j

Fl

!
E
h
vi;jv

0

i;j

i l=��1Q
l=j

Fl

!0)
+

�
l=t�1Q
l=1

Fl

�
E [�i1�

0
i1]

�
l=��1Q
l=1

Fl

�0
(21)

where

E [�i1�
0
i1] =

0B@�Kz (H
0
0P0H0 +Rz)K

0
z�

0 �KzH
0
0P0�

0

�P0H0K
0
z�

0 �P0�
0 +R�

1CA (22)

and

E
h
vi;jv

0

i;j

i
= E

0B@�Kj�1RxK
0
j�1�

0 0

0 R�

1CA (23)
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We have thus shown how to generate E [yty� ] as functions of the parameters

(P0; Rz;0; Rx; R�; Hx; H0;�) and the measurement matrix for any dynamic speci�-

cation of productivity that follows equation (10) and any normal learning model that

follows equations (11) and (13) :

I.7 The Nested Model as a Member of the General Linear

State Space Models

In this Appendix, we have described how the second moment of observable variables

is linked to the parameters of a general linear learning model. The nested model

encountered in Section 2 is a special case of such a linear learning model. We now show

in the remainder of thist appendix what the nested model implies for the parameter

matrices of the learning model: (P0; Rz;0; Rx; R�; Hx; H0;�) andM: This will allow us

to implement equation (20) together with equations (21) ; (22) ; and (23) to generate

the covariance matrices of the wage residuals and performance ratings.

De�ne �rst the individual productivity states as �it = (b�it; �it)0 where:

�it =

0BBBB@
qit

�i

"pit

1CCCCA
Note here that we let the individual chumminess term "pit enter as an individual

state.

The individual state evolves as

�it+1 =

0BBBB@
qit+1

�i

"pit+1

1CCCCA =

0BBBB@
1 1 0

0 1 0

0 0 �

1CCCCA
0BBBB@
qit

�i

"pit

1CCCCA+
0BBBB@
"rit+1

0

uit+1

1CCCCA
= ��it + "

�
it
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The vector vit+1 is therefore given by vit+1 =
�
�Kt"

x
it

"�it

�
.

Now, the measurement equation is yit = M�it + eit: Thus, we need to de�ne M

and eit: We assume that there is measurement error in rit but that pit is observed

without error in our data. Thus:

eit =

0B@ !it

0

1CA

The measurement error variance is �2! and thus E [eite
0
it] =

0B@�2! 0

0 0

1CA :
Next,

M =

0B@1 0 0 0 0 0

0 0 0 1 0 1

1CA
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Then

P0 =

0BBBB@
�2q 0 0

0 �2� 0

0 0 0

1CCCCA

H0 =

0BBBB@
1

0

0

1CCCCA

Hx =

0BBBB@
1 1

0 0

0 1

1CCCCA
Rz;0 = �20

Rx =

0B@�2z 0

0 0

1CA

� =

0BBBB@
1 1 0

0 1 0

0 0 �

1CCCCA

R� =

0BBBB@
�2r 0 0

0 0 0

0 0 �2u

1CCCCA
This specialization of the general linear state space model represents the nested

model we estimate in this paper.
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II Identi�cation

We now consider the identi�cation of the pure learning and productivity model using

second moments of wages and performance signals.30 To simplify the discussion, we

assume the length of individuals� careers is unbounded and that we can therefore

observe these moments at arbitrarily high experience levels.

II.1 The Pure Learning Model - Identi�cation

The pure employer-learning model allows only for learning and �xes the idiosyncratic

component of worker productivity qit = qi over the life-cycle. This amounts to as-

suming that there is no heterogeneity in the drift �i nor in the individual innovations

"rit and is achieved by setting �
2
� = �

2
r = 0: There remain 6 parameters that need to

be identi�ed:
�
�2q; �

2
0; �

2
u; �

2
!; �; �

2
z

�
:

The pure learning model implies that in the limit wages asymptote towards indi-

vidual productivity. Therefore, we can identify the variance of productivity (�2q) and

the variance of the measurement error (�2!) using the variance and covariance of wages

as experience grows. In particular, we obtain
�
�2!; �

2
q

�
from limt!1 (v (wt)) = �

2
q+�

2
!

and limt!1 (cov (wt; wt+1)) = �
2
q:

The auto-correlations of pit with pit�k at di¤erent lags k inform us about the

parameters (�; �2u) that govern the signal noise "
p
it. As t grows, the distribution of pit

converges to an ergodic distribution which depends only on the parameters � and �2u.

In particular, we have that limt!1 v (pit)) = limt!1 v (qit + "
p
it) = �

2
q+�

�2u
1��2 and that

cov (pit; pit+k) = cov
�
qi + "

p
it; qi + �

k"pit + �
k
j=1uit+j

�
= �2q + �

kvar ("pit) : Combining,

30As described in the data section of this paper, the performance ratings in our data are ordinal,
which implies that we do not observe variances or covariances of performance ratings with other
objects. Therefore, we show how auto-correlations in performance ratings and correlations with
wages at di¤erent experience levels allows us to identify models of learnings and productivity.
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we have that

lim
t!1

lim
k!1

cor(pit; pit+k) =
�2q

�2q +
�2u
1��2

(24)

lim
t!1

cor(pit; pit+1) =
�2q + �

�2u
1��2

�2q +
�2u
1��2

(25)

Since �2q is already identi�ed, we get
�2u
1��2 from equation (24) and � from equation

(25) :

This leaves only two parameters (�2z; �
2
0) that need to to be identi�ed. �

2
0 deter-

mines how much information the has about workers as they begin their careers. We

can identify this parameter using the variance of wages at t = 0, since w0i = E[qijzi0]

and var (w0i) = var (E[qijzi0]). Conditional on �2q; this variance declines monoton-

ically in �20 and we can therefore identify �
2
0 using the variance of log wages for

individuals beginning their careers.

The remaining parameter �2z governs (together with the already identi�ed �
2
u and

�) how much additional information becomes available in any period. Conditional on

(�20; �
2
u; �), the variance of w1i = E[qijz0i; p1i; z1i] declines monotonically in �2z (as the

signal becomes less informative). Therefore we can identify �2z using var (w1i), having

already identi�ed the other parameters of the learning model.

II.2 The Pure Productivity Model - Identi�cation

The pure productivity model assumes that �rms have full information about worker

productivity and that wages equal productivity at all times. This assumption can be

imposed by restricting the signal noise for the unobserved signals to 0: �20 = �
2
z = 0:

There remain 6 parameters that need to be identi�ed:
�
�2q; �

2
r; �

2
u; �

2
!; �

2
�; �
�
:

Because wages at all times equal expected productivity, we can write �wit =

wit+1 � wit = �i + "
r
it+1 + !it+1 � !it. This implies that cov (�wit;�wit+2) = �2�;

40



cov (�wit;�wit+2) = �2� � �2!, and var (�wit) = �2� + �
2
r + 2 � �2!: This system is

triangular and can easily be solved for the parameters (�2�; �
2
r; �

2
!). Furthermore, we

can identify �2q using var (wi0) = �
2
q + �

2
!:

The remaining parameters that need to be identi�ed are the parameters (�; �2u)

that govern the noise in the performance rating pit: To identify these we rely on the

correlations between wages and performance ratings:

corr (pit; wit) =
var (qit)

(var (qit) + var ("
p
it))

1=2 (var (qit) + �2!)
1=2

(26)

Since all the productivity parameters are identi�ed, we can treat var (qit) and

�2! as known. Thus, eq (26) solves for the variance of the signal noise var ("
p
it) for

arbitrary t:

lim
t!1

var ("pit) =
�2u

1� �2 ) �2u =
�
1� �2

�
lim
t!1

var ("pit) (27)

Since we know the var ("pit) for arbitrary t, we can exploit equation (4) to get

�2 =
var

�
"pit+1

�
� limt!1 var ("

p
it)

var ("pit)� limt!1 var ("
p
it)

(28)

These last two equations therefore deliver the parameters � and �2u:We have thus

established the identi�cation of both the pure learning and the pure productivity

model. We will now turn to the estimation of these models.

III Attrition

To obtain the results reported in the main body of the paper we assumed that the

individuals in our data are representative of the population of workers from which the

�rm draws its white-collar workforce. That is, we assume that wages or productivity
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of individuals with the same experience level do not depend on tenure at the �rm. We

can investigate this assumption in reduced form using wages and performance mea-

sures. Figure A-1 and Figure A-2 show by how much log salary and the performance

of �rst-year workers of various ages di¤er from the incumbent workforce of the same

age. We observe that wages of new entrants and the incumbent work-force are quite

similar, but that performance is somewhat lower among new entrants compared with

the existing work-force. Table A-1 illustrates the mechanism that gives rise to this

relation. This table reports how the probability of exiting the �rm depends on the

log salary as well as on the performance ratings of individuals, after controlling for

age.31

Table A-1: Probability of Exit from the Firm

The table illustrates that the performance ratings, but not the salary are statistically

signi�cant predictors of attrition from the sample. In particular, individuals with

very low ratings are signi�cantly more likely to attrit from the sample. The linear

probability model indicates that being in the lowest decile of the performance dis-

tribution raises the attrition probability by about 5 percentage points compared to

being in the second decile. Further moves up in the performance distribution have

a much smaller e¤ect on attrition from the sample. These point estimates therefore

support the notion that leaving the �rm is endogenous to performance rankings and

that the e¤ect of performance on attrition is particular strong for very low ratings.

However, the R2 of the linear probability model also suggests that the overall impact

of turn-over based on performance ratings is small.

To be sure that our estimates reported in the paper are not spurious due to non-

31We control for performance ratings using dummies for each decile within the distribution of
performance rankings. These deciles are populated even though the performance ratings themselves
are only reported on a 5 point scale, because individuals ratings are regression adjusted for race,
gender, and education in a �exible manner.
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random attrition, we estimate an attrition corrected version of our model. For this

purpose, we assume that individuals entering the �rm are randomly drawn from the

population, but that the separation from the �rm is governed by the relationship

captured by the Probit regression reported in column 1 of the Table A-1. That is, we

assume that the probability of separating is given by

� (�wwage+ �
0
PDPDi + �aage) (29)

where � (:) is the standard normal distribution, PDi denotes a vector of performance

deciles and the parameters (�w; �
0
PD; �a) are obtained from column 1 of Table A-1.

We estimate the parameters of the learning and productivity model using a simu-

lated method of moments. That is, we simulate a sample consisting of 1,000 workers

entering the �rm at each experience level for a total of 40,000 workers entering with

experience levels 1-40. For a given point in the parameter space of the nested model

of learning and productivity (described in section 2), we simulate a history of wages

and performance ratings under the assumption that no worker attrits. We then ap-

ply the selection rule (29) to this sample and thus obtain a selected sample. Using

this selected, simulated sample, we generate the same moments (variance of wages,

performance and pay autocorrelation, pay-performance correlations at various leads

and lags) that we use in Section 2 to estimate the parameters of the model. We can

then estimate the parameters by minimizing the distance between the observed and

simulated moments in the same manner as before.32

In Table A-2 we report the attrition corrected parameters.

Table A-2: Parameter Estimates from Attrition Corrected Model
32Note that we estimate the parameters of the selection rule �rst. This is possible, because we

assume that conditional on performance, wages, and age, attrition is random. We can thus treat
the observed wages and performance measures as exogenous in estimating the parameters of the
attrition model. Because we estimate the parameters of the attrition rule separately, we do not
expect the �t of the model to improve as we correct for attrition.
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To facilitate comparison this table also shows the parameter estimates reported for

the full model in table 2.33 The estimated parameters are close. In fact, the �t of

the attrition corrected and the uncorrected estimates is almost identical and none

of our conclusions on the relative importance of learning or productivity evolution

are sensitive to using the attrition corrected or the uncorrected estimates. Over-

all, we therefore believe that our results are robust to attrition based on observed

performance or wages.

33The computational burden of implementing the attrition correction is signi�cant. We therefore
imposed two restrictions on the parameters to reduce the run-time. Because the main model provides
little evidence for measurement error in wages, we restricted the variation of measurement error to
0. We also restricted the auto-regressive parameter in the performance ranking to 0.64. Even after
imposeing these restrictions, estimating the attrition corrected parameters on our system requires
about 1 week of computing time. We therefore refrained from bootstrapping the attrition corrected
standard errors.
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3 )

Table 1: BGH Summary Statistics

Years 1969‐1988

Data Description
Managers of a medium‐
sized US firm in the 
service sector

# Employees1 9391
# Employee‐years 59485

% Male 76.2%
% White 89.4%

Age
39.02
(9.02)

Education
% HS 16.9%
% Some College 18.8%
% College 36.6%
% Advanced 27.7%

Salary2
$53,881
(25447)

[n=54364]

P f 3Performance
3.12
(0 72)(0.72

[n=38933]
Performance Distribution

1 0.009
2 0.177
3 0.499
4 0.315

Notes: Parentheses contain standard deviations.  

1. Sample includes all employees who have a pay or 
performance measure between the ages of 25 and 54 and at 
least one more pay or performance measure, with a non‐
missing education variable.
2. Salary is annual base pay, adjusted to 1988 dollars.

3. Performance is a categorical variable which we recode to 
be between 1 and 4, with 4 being the highest performance.
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Table 2: Parameter Estimates for 3 Models

Employer Learning Productivity Combined

σq
2  0.118

(0.0057)
0.025

(0.0051)
0.037

(0.0072)

σr
2 ‐

0.0040
(0.00032)

0.00049
(0.00040)

σ0
2 0.383

(0.061)
‐

0.114
(0.071)

σu
2 0.650

(0.062)
0.405
(0.031)

0.488
(0.051)

σω
2 0.0049

(0.00021)
0.00030
(0.00048)

2.83e‐12
(4.95e‐12)

σκ ‐
0.00000027
(0.0000023)

0.00015
(0.000016)

ρ
0.645

(0.0084)
0.634

(0.0084)
0.640
(0.009)

σz
2 0.506

(0.131)
‐

0.206
(0.075)

Reported are the parameter values for the pure employer learning model, the pure productivity model and combined model. The pure employer learning 
model and the pure productivity model are estimated imposing zero restrictions on the relevant parameters. Standard errors are obtained by 
bootstrapping with 500 repetitions. 
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<

th tima lt d

Appendix Table A-1: Probability of Exit from the Firm
(1) (2)

Probit Linear Probability 
Model

Log wage 0.0154 0.0034
(0.034) (0.007)

Performance - 2nd 
Decile

-0.204*** -0.0498***
(0.035) (0.008)

Performance - 3rd 
Decile

-0.231*** -0.0552***
(0.036) (0.008)

Performance - 4th 
Decile

-0.212*** -0.0507***
(0.036) (0.008)

Performance - 5th 
Decile

-0.280*** -0.0650***
(0.036) (0.008)

Performance - 6th 
Decile

-0.350*** -0.0788***
(0.037) (0.008)

Performance - 7th 
Decile

-0.411*** -0.0895***
(0.037) (0.008)

Performance - 8th 
Decile

-0.335*** -0.0756***
(0.038) (0.008)

Performance - 9th 
Decile

-0.453*** -0.0964***
(0.038) (0.008)

Age -0.00611*** -0.0013
(0.0009) (0.0002)

Constant -0.657*** 0.236***
(0.043) (0.009)

Observations 33,151 33,151
R-squared 0.008
Reported are the estimates results from a Probit andReported are e es tes resu s from a Probit an  
Linear Probability model of separating from the job.
Standard errors in parantheses. *** p<0.01, ** p<0.05, * p
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Table A-2 Parameter Estimates from Attrition Corrected and Baseline Model

Attrition Corrected Baseline

σq
2  0.0420

0.037
(0.0072)

σr
2 3.7E‐04

0.00049
(0.00040)

σ0
2 0.0716

0.114
(0.071)

σu
2 0.5025

0.488
(0.051)

σω
2 0                            

(fixed)
2.83e‐12
(4.95e‐12)

σκ 0.0125
0.00015

(0.000016)

ρ
0.64                         
(fixed)

0.640
(0.009)

σz
2 0.2464

0.206
(0.075)

Reported are the attrition corrected estimates of the nested model and as comparision the uncorrected estimates ("Baseline"). 
Standard errors for the attrition corrected estimates are not available due to the computational burden of estimating these 
parameters. Standard errors for the Baseline estimates are obtained from bootstrapping 500 times.
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Figure 1: Log Wages and Performance, by Age
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Figure 3: Results - Correlations between Pay and Performance
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Figure 4: Results - Pure Learning Model
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Figure 5: Results - Pure Productivity Model
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Figure 6: Results - Combined Model

 

0
.0

5
.1

.1
5

.2

0 10 20 30
Experience

Productivity Wage
Firm Expectation Error

Full Model
Figure 7: Productivity, Wage, and Error Variances

 

52



 

-.3
-.2

-.1
0

.1

25 30 35 40 45 50 55
Entry Age

Controlling for age, education, race, gender, and year effects
Figure A-1: Log Salary in First Year as a Function of Entry Age
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Figure A-2: Performance in First Year as a Function of Entry Age
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