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ABSTRACT 
 

Identification and Estimation of Distributional Impacts of 
Interventions Using Changes in Inequality Measures* 

 
This paper presents semiparametric estimators of distributional impacts of interventions 
(treatment) when selection to the program is based on observable characteristics. 
Distributional impacts of a treatment are calculated as differences in inequality measures of 
the potential outcomes of receiving and not receiving the treatment. These differences are 
called “Inequality Treatment Effects” (ITE). The estimation procedure involves a first non-
parametric step in which the probability of receiving treatment given covariates, the 
propensity-score, is estimated. In the second step weighted sample versions of inequality 
measures are computed using weights based on the estimated propensity-score. Root-N 
consistency, asymptotic normality, semiparametric efficiency and validity of inference based 
on the bootstrap are shown for the semiparametric estimators proposed. In addition of being 
easily implementable and computationally simple, results from a Monte Carlo exercise reveal 
that its good relative performance in small samples is robust to changes in the distribution of 
latent selection variables. Finally, as an illustration of the method, we apply the estimator to a 
real data set collected for the evaluation of a job training program, using several popular 
inequality measures to capture distributional impacts of the program. 
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1 Introduction

For the evaluation of a social program, the policy-maker may want to learn about the distri-
butional e¤ects of the program going beyond the program�s mean impact. For example, it is
reasonable to assume that the policy-maker is interested in the e¤ect of the treatment on the
dispersion of the outcome, which can be captured by commonly used inequality measures such
as the Gini coe¢ cient, the interquartile range or other inequality indices, as those belonging to
the Generalized Entropy Class.1

The distributional impact of the program on the outcome can be measured by what we call
in this paper Inequality Treatment E¤ects (ITE), which are de�ned as di¤erences in inequality
measures of the distributions of the potential outcome of joining the program (receiving the
treatment) and not joining it (not receiving the treatment).

We follow an increasing part of the literature of program evaluation that is interested in dis-
tributional impacts of a treatment. That recent literature could be divided into two branches,
depending on how exactly one de�nes �distributional impacts of a treatment�. If that is under-
stood to be the �distribution of individual treatment e¤ects�, then key parameters are features
of the distribution of the di¤erence of potential outcomes.2.

The second branch, which this paper contributes to, de�nes �distributional impacts of a
treatment�as treatment impact on distributions. In that case, one is interested in learning how
a program changes the distribution of the outcome under two scenarios: with and without the
program. For that goal, one may look at the entire cumulative distribution functions (c.d.f.) or
all quantiles, as Imbens and Rubin (1997), Abadie (2002), Abadie, Angrist and Imbens (2002),
Firpo (2007) and Frölich and Melly (2007).

We discuss identi�cation of inequality treatment e¤ects parameters under the assumption
termed by Rubin (1977) as treatment unconfoundedness, which is also known as the selection
on observables assumption.3 The unconfoundedness assumption is a conditional independence
assumption: Given observable characteristics, the decision to be treated is independent of the
potential outcome of being treated and the one of not being treated. This assumption is
crucial as it allows that functionals of the potential outcome distributions be identi�ed from
the observed data.

A two step estimation procedure is proposed. In the �rst step, weighting functions are
nonparametrically estimated; in the second step inequality measures are calculated using the
weighted data. The e¤ect of the program is estimated, therefore, as a simple di¤erence in
weighted inequality measures. Note that unlike previous works, as Firpo (2007), estimation
of all quantiles to recover di¤erences in a given inequality measure is not necessary. All that
is needed is direct calculation of weighted inequality measures, which may or may not involve
computation of quantiles, depending on its formula.

1For a detailed discussion of several inequality measures see, for example, Cowell (2000).
2Some contributions to that branch of the literature are the papers by Heckman (1992), Heckman, Smith and

Clements (1997), Heckman and Smith (1998), Carneiro, Hansen and Heckman (2001, 2003), Cunha, Heckman
and Navarro (2005), Aakvik, Heckman and Vytlacil (2005), Firpo and Ridder (2008), Fan and Park (2010).

3 Important examples in which this assumption has been used are, among others, Rosenbaum and Rubin
(1983), Heckman, Ichimura, Smith and Todd (1998), Dehejia and Wahba (1999) and Hirano, Imbens and Ridder
(2003).
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Weighted or inverse probability weighted (IPW) estimators are largely used in the missing
data and treatment e¤ects literatures and leading examples where IPW estimator is used are
Robins and Rotnitzky (1995) and Wooldridge (2007) in the missing data literature and Hirano,
Imbens and Ridder (2003) in the treatment e¤ects literature. Recently, Tarozzi (2007), Chen,
Hong and Tarozzi (2008) and Cattaneo (2009) have shown how to generalize treatment e¤ects
identi�cation and estimation under unconfoundedness for a class of parameters that satisfy
certain moment conditions. In all these papers, weighted estimators have been presented and
used in the context of M-estimation, as parameters of interest solve some moment condition.
One main exception is DiNardo, Fortin and Lemieux (1996) who analyzed over time changes in
wage densities controlling for covariates through a weighting scheme.

The key methodological contribution of this paper is to provide a weighted estimator that
can be expressed as a functional of the empirical weighted distribution. Therefore, we general-
ize the usage of weighted estimators to statistics that may not be represented as solutions to
moment conditions. We focus our analysis on the class of Hadamard di¤erentiable functionals.
That class encompasses many interesting inequality measures, which are highly non-linear func-
tionals of the distribution but that may admit a linear functional derivative. We show that four
popular inequality measures belong to that class: the coe¢ cient of variation, the interquartile
range, the Theil index and the Gini coe¢ cient.

Under the unconfoundedness assumption and mild regularity conditions, we show that our
weighted estimators are consistent, asymptotically normal and semiparametrically e¢ cient.
Inference based on the bootstrap is shown to be a valid procedure for testing using the estimators
developed in this paper.

Under failure of unconfoundedness, we may not have a causal interpretation. Nevertheless,
the method proposed here can also be used for the goal of comparing inequality measures con-
trolling for the distribution of covariates (observables). Applied researchers are often interested
in comparing features of two or more outcome distributions. For example, we might be in-
terested in comparing the Gini coe¢ cient, a widely used inequality measure, of two di¤erent
wage distributions (e.g. two di¤erent countries). Acknowledging for the fact that there are
many observed factors whose distributions di¤er across countries, such as schooling and job
experience, leads us to try to control for these factors when comparing Gini coe¢ cients. By
doing so, we would be able to identify how systematic di¤erences in the pay structure of the
two countries a¤ect the Gini coe¢ cient, �xing the distribution of covariates to be the same.

In the literature of wage gap decomposition, controlling for observables is achieved by the
construction of �counterfactual�wage distributions and Juhn, Murphy and Pierce (1993) and
DiNardo, Fortin and Lemieux (1996) provide estimation methods for some features of the
counterfactual. DiNardo, Fortin and Lemieux (1996) propose a method for estimation of coun-
terfactual densities, using some of the weights we use in this paper, while Juhn, Murphy and
Pierce (1993) construct counterfactual distributions using �tted values and residuals from linear
regressions. These methods have been generalized in many ways and recent contributions are
the papers by Gosling, Machin and Meghir (2000), Donald, Green and Paarsch (2000), Machado
and Mata (2005) and Melly (2006).

More recently, Chernozhukov, Fernandez-Val and Melly (2009) and Rothe (2010) have ex-
tended the analysis based on counterfactuals to situations where one may be interested in
learning features of the whole marginal distribution of outcomes using a completely new dis-
tribution of covariates, the one that could prevail after a policy intervention that a¤ects solely
the distribution of covariates. Their approach is semiparametric: in a �rst stage they estimate
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nonparametrically the conditional c.d.f. of the outcome given covariates. In the second step,
using the new distribution of covariates, they construct marginal counterfactual distributions
and recover features from those distributions.

We view our estimation procedure as a computationally simple and elegant alternative way
to recover features (inequality measures) of the counterfactual distribution. It is computation-
ally simple since all it is required is a �rst step that involves estimation of weights and in a
second step calculation of inequality measures using these weights. We do not need to calculate
the conditional c.d.f. at several points in the support, nor many conditional quantiles, as other
consistent semiparametric methods require.

This paper is divided as follows: In the next section we present more formally the ITE class
of parameters. Section 3 presents the main identi�cation result. Section 4 discusses estimation
and derives the large sample properties of the inequality treatment e¤ects estimators. Section 5
discusses �nite-sample behavior through a Monte Carlo exercise. We present in section 6 a small
empirical exercise that uses data on a Brazilian job training program of the late 90�s. Although
the training program had been designed to be a randomized experiment, randomization was
performed at strata (classes) level with di¤erent proportions of treated units across strata. Thus
controlling for strata is crucial in obtaining consistent estimates of the program impact. Finally,
section 7 concludes. Proofs of results are left to the Appendix.

In both sections 5 and 6, we compare our estimation procedure with three other methods:
a naive procedure, which computes simple di¤erences in inequality measures with no attempt
to control for selection; a method based on regression, which is the one proposed by Juhn,
Murphy and Pierce (1993); and a method based on nonparametric estimation of the conditional
distribution of the outcome, which is the one proposed by Chernozhukov, Fernandez-Val and
Melly (2009). Somewhat surprisingly, evidence fromMonte Carlo exercises reveals that although
we may have a much less cumbersome estimation procedure, the costs in terms of bias, variance
and coverage rate of our method, when compared to alternative methods, seem to be negligible
even in small sample sizes.

2 Inequality Treatment E¤ects Parameters

We start by assuming that there is an available random sample of N individuals (units). For
each unit i, let Xi be a random vector of observed covariates with support X � Rr. De�ne Yi(1)
as the potential outcome for individual i if she enters in the program, and Yi(0) the potential
outcome for the same individual if she does not enter. Let the treatment assignment be de�ned
as Ti, which equals one if individual i is exposed to the program and equals zero otherwise. As
we only observe each unit at one treatment status, we say that the unobserved outcome is the
counterfactual outcome. Thus, the observed outcome can be expressed as:

Yi = Ti � Yi(1) + (1� Ti) � Yi(0); 8i.

A legitimate way to introduce inequality measures is to assume that there is a social welfare
function, W , that depends on a vector of functionals of the outcome distribution. Suppose in
particular that W assumes the following form:

W (F ) = 
 (� (F ) ; � (F ))
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where � is the outcome mean, � is the inequality measure and F is a distribution function.4 We
de�ne the inequality measure � as a functional of the distribution, � : F� ! R. where F 2 F� if
� (F ) < +1. A particular example ofW and � is the case where � is the Gini coe¢ cient andW
is decreasing in �. Under this setting, a natural parameter used to compare two distributions F
and G 2 F� is the simple di¤erence � (F )�� (G). We discuss three comparisons of distributions
that give rise to three di¤erent inequality treatment e¤ect parameters.5

The �rst case arises when we want to compare the situation in which everyone is exposed to
the program with the situation in which no one is exposed to it. Under the �rst scenario, the
distribution of the outcome equals FY (1), the distribution of Y (1); while in the second scenario,
the outcome distribution equals FY (0). The di¤erence in a given inequality measure � between
these two hypothetical cases is the Overall Inequality Treatment E¤ect (ITE), �� , de�ned
as:

�� = �
�
FY (1)

�
� �

�
FY (0)

�
= �1 � �0

Other parameters could be de�ned for subpopulations. In particular, consider the Inequal-
ity Treatment E¤ect on the Treated (ITT), ��T :

��T = �
�
FY (1)jT=1

�
� �

�
FY (0)jT=1

�
= �11 � �01

where FY (1)jT=1 and FY (0)jT=1 are respectively the conditional distributions of the potential
outcomes of being in the program and of not being in the program for the subpopulation that
was actually exposed to the program.

We �nally consider a parameter which is a comparison between the current inequality � (FY )
and the inequality that we would encounter if there were no program �

�
FY (0)

�
. We call this

parameter the Current Inequality Treatment E¤ect (CIT):6

��C = � (FY )� �
�
FY (0)

�
= �Y � �0

3 Identi�cation of Inequality Treatment E¤ects

This section is divided up into four subsections. In the �rst one, we introduce notation along
with de�nitions of weighted distributions and respective weighting functions. Subsection 3.2
presents the identi�cation assumptions, while in subsection 3.3 we present the main identi�-
cation results. Finally, in the last subsection we present some examples of popular inequality
measures and show how they �t into the framework just presented.

4This is the reduced-form social welfare function discussed by Champernowne and Cowell (1999) and Cowell
(2000).

5Alternative setups to what follows can be found in Manski (1997) and would lead to the de�nition of some
other possible treatment e¤ects parameters. That includes allowing individuals to choose their treatment status
and assigning them to treatment based on observed characteristics.

6 If � is not decomposable, we cannot write the CIT as linear combination of the previous parameters. Note that
in general, � (FY ) 6= �

�
FY jT=1

�
�Pr [T = 1]+�

�
FY jT=0

�
�Pr [T = 0]. Note also that many other parameters could

be considered, as for example the di¤erence in inequality measures between treated and control subpopulations
that where formed following a rule that is a function of pretreatment covariates X.
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3.1 The Setup

We now set up assumptions for identi�cation of �� . Remember that because Y (1) and Y (0)
are never fully observable, we need to impose some identifying assumptions in order to be able
to express functionals of their marginal distributions as functionals of the joint distribution of
observable variables (Y , T , X). Let the data be de�ned by the sequence fYi; Ti; XigNi=1 where
each element (Yi; Ti; Xi) is a random draw from FY;T;X , the joint distribution of (Y; T;X) 2
Y � f0; 1g � X , where Y �R.

Identi�cation of �� will follow after we establish conditions for identi�cation of functionals
of the distributions of Y (1) and Y (0), as the parameters �� are de�ned as di¤erences between
functionals of those distributions.

We start by writing the weighted marginal distribution of Y , which is a key tool in our
identi�cation strategy. The weighted marginal distribution of Y at y that uses proper functions
of T and X as weights is

F!Y (y) = E [! � 1IfY � yg] ; (1)

where 1If � g is the indicator function and ! is the weighting function. Note that the de�nition
of weighted c.d.f of Y subsumes the case of the simple (unweighted) marginal c.d.f. of Y by
making ! = 1.

Let us de�ne the propensity-score, p(x), as the probability that given a value x 2 X an
individual will be in the treatment group, that is, p(x) � Pr[T = 1jX = x]. The unconditional
probability, Pr [T = 1], is p, which is assumed to be positive. Let P � [0; 1] be the image set of
the mapping p (�) ; p : X ! P. A restriction on P will be made later on Assumption 2.

Next, we de�ne the following four �weighting functions�, generally written as !, such that
! : f0; 1g � P ! R:

!1 (t; p (x)) = t=p (x)

!0 (t; p (x)) = (1� t) = (1� p (x))
!11 (t; p (x)) = t=p

!01 (t; p (x)) = ((1� t) = (1� p (x))) � (p (x) =p) :

Therefore, a weighted c.d.f. of Y using !A, which is a general representation of the above
weights, is

F!=!AY (y) = E [!A (T; p (X)) � 1IfY � yg] .

These weighting functions will be used to identify the marginal c.d.f.�s of distributions of Y (1)
and Y (0) as we show later.

3.2 Identifying Assumptions

Here we invoke the set of identifying restrictions that will permit that we write the distribution
of the unobserved potential outcomes in terms of observable data. Moreover, those distributions
will actually fall into the category of the weighted distributions just de�ned.

Assumption 1 [Unconfoundedness] Let (Y (1); Y (0); T;X) have a joint distribution. For all
x in X : (Y (1); Y (0)) is jointly independent from T given X = x, that is, (Y (1); Y (0)) ?? T jX =
x.
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Assumption 1 is sometimes a strong assumption and its plausibility has to be analyzed in a
case by case basis. It has been used, however, in several studies of the e¤ect of treatments or
programs. Prominent examples are Rosenbaum and Rubin (1983), Heckman and Robb (1986),
LaLonde (1986), Card and Sullivan (1988), Heckman, Ichimura, and Todd (1997), Heckman,
Ichimura, Smith, and Todd (1998), Hahn (1998), Lechner (1999), Dehejia and Wahba (1999)
and Becker and Ichino (2002). We present in the empirical section an example where, by design,
Assumption 1 is valid.

We also make an overlap assumption:

Assumption 2 [Common Support] For all x in X , 0 < p(x) < 1:

Assumption 2 states that with probability one there will be no particular value x in X that
belongs to either the treated group or the control group. Such assumption is important as it
allows that groups (T = 1 and T = 0) become fully comparable in terms of X. Assumptions 1
and 2 are termed together as strong unconfoundedness.

3.3 Identi�cation Results

Finally, the main identi�cation result will follow as a corollary of the next theorem. We therefore
write the ITE parameters as functions of the observable variables (Y ,T ,X).

Lemma 1 [Firpo (2007), Lemma 1]:Let Y (1) � FY (1), Y (0) � FY (0), Y (1)jT = 1 � FY (1)jT=1,
Y (0)jT = 1 � FY (0)jT=1 and Y � FY . Under Assumptions 1 and 2, for every y 2 Y, the
c.d.f.�s associated with these distributions can be written respectively as FY (1)(y) = F!=!1Y (y);
FY (0)(y) = F!=!0Y (y); FY (1)jT=1(y) = F!=!11Y (y); and FY (0)jT=1(y) = F!=!01Y (y).

Corollary 1 Under Assumptions 1 and 2 �� , ��T , and �
�
C are identi�able.

Once we know that the inequality treatment e¤ects are identi�able, we can turn our atten-
tion to estimation and inference. Before doing so, let us give concrete examples of inequality
measures that are considered in this article.

3.4 Some Inequality Measures

We now turn our attention to some concrete examples of inequality measures and express them
as functionals of a weighted distribution of Y .

Comparison of inequality measures is often performed on the basis of the attainment of some
desirable properties for inequality measures. There is no clear ranking among the measures,
but it is common in the welfare literature to check which of the usual properties an inequality
measure possesses. Among those properties, the most common and important ones are the
principle of transfers, invariance, decomposability and anonymity. For a detailed discussion on
this topic, see Cowell (2000) and Cowell (2003).7

We consider four popular inequality measures: the coe¢ cient of variation, the interquartile
range, the Theil index and the Gini coe¢ cient. As discussed in Cowell (2000), the coe¢ cient

7An interesting result in the income distribution literature establishes that any continuous inequality measure
that satis�es the principle of transfers, scale invariance, decomposability and the anonymity must be ordinally
equivalent to the Generalized Entropy class, which is indexed by a single scalar parameter. See Cowell (2003),
Theorem 2.
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of variation will satisfy all properties listed before but invariance. The interquartile range will
not satisfy any of those properties besides anonymity. The Theil index, being a member of the
Generalized Entropy class, will satisfy all four properties, whereas the Gini coe¢ cient, probably
the most used inequality measure, is known to be non-decomposable.

We proceed treating those four measures as functionals of a weighted outcome distribu-
tion. By doing that, we gain the �exibility necessary to further de�ne the treatment e¤ects as
di¤erences in functionals of weighted distributions:8

1. Coe¢ cient of Variation (CV):

�CV (F!Y ) =

�R �
y �

R
z � dF!Y (z)

�2 � dF!Y (y)�1=2R
y � dF!Y (y)

2. Interquartile Range (IQR):

�IQR (F!Y ) = �Q:75 (F!Y )� �Q:25 (F!Y )

= inf
q

�Z q

�1
dF!Y (y) �

3

4

�
� inf

q

�Z q

�1
dF!Y (y) �

1

4

�

3. Theil Index (TI):9

�TI (F!Y ) =

R
y �
�
log (y)� log

�R
z � dF!Y (z)

��
� dF!Y (y)R

y � dF!Y (y)

4. Gini Coe¢ cient (GC):

�GC (F!Y ) = 1� 2
R 1
0

R �Q�(F!Y )
�1 y � dF!Y (y) � d�R

y � dF!Y (y)

4 Estimation and Large Sample Inference

We now focus our attention to estimation of � (F!Y ), the inequality measure of a weighted
outcome distribution. We �rst show how to estimate and derive the asymptotic distribution of
the estimator of � (F!Y ) with a general !, and later show how to use these results to estimation
and inference regarding �� , ��T and �

�
C .

4.1 Estimation

Estimation of � (F!Y ) follows from the sample analogy principle. We replace the population
distribution F!Y , by its empirical distribution counterpart with estimated weights, bF!=b!Y , and
plug it into the functional �. The estimator will therefore be:

b�b!Y = �
� bF!=b!Y

�
8 In what follows we assume that �!Y �

R
y � dF!

Y (y) 6= 0.
9The Theil index requires that the support of the outcome variable be restricted to the positive real numbers.
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Note that we take advantage of the fact that the weighted c.d.f. is expressed as F!Y (y) =
E [! (T; p (X)) � 1IfY � yg], and we write its sample analog as:

bF!=b!Y (y) = N�1
NX
i=1

b!i � 1IfYi � yg:

It is clear that we have to consider carefully the estimation of weights ! by b!.
4.1.1 Weights Estimation

We have four weighting functions to consider: !1, !0, !11, and !01. Three of them depend on
the propensity-score p (x), the exception being !11.

For the propensity-score estimation we do not impose any parametric assumption on the
conditional distribution of T given X nor assume that the propensity-score has a given func-
tional form. We follow the sieve ML approach proposed by Hirano, Imbens and Ridder
(2003). They approximate the log odds ratio of the propensity score, L (p (x)) by a series
of polynomial functions of x.10 Stacking all these polynomials in a vector, we end up with
HK(x) = [HK; j(x)] (j = 1; :::;K), a vector of length K of polynomial functions of x 2 X .
The estimation procedure will therefore involve computation of the vector of length K of coef-
�cients �̂K :

L (bp (x)) = HK (x)
0 b�Kbp (x) = L�1

�
HK (x)

0 b�K� = � �HK (x)0 b�K�
where � : R ! R, �(z) = (1 + exp(�z))�1 is the the c.d.f. of a logistic distribution evaluated
at z. The nonparametric �avor of such procedure comes from the fact that K is a function of
the sample size N such that K(N) ! 1 as N ! 1. Therefore, the vector �̂K increases in
length as the sample size increases. The actual calculation of �̂K follows by a pseudo-maximum
likelihood approach:

�̂K = arg max
�K2RK

NX
i=1

�
Ti � log(�(HK(Xi)0�K)) + (1� Ti) � log(1� �(HK(Xi)0�K))

�
:

In the implementation of this procedure, following Hirano, Imbens and Ridder (2003), we
restrict the choice of HK (�) to the class of polynomial vectors satisfying at least the following
three properties: (i) HK : X ! RK ; (ii) HK; 1(x) = 1, and (iii) if K > (n+ 1)r, then HK(x)
includes all polynomials up order n.11

We propose an estimator b! for the weighting function !:
b!i = ! (Ti; bp (Xi)) :

Speci�cally for the weighting functions !1, !0, !11, and !01 we have

b!1;i = !1 (Ti; bp (Xi)) = Tibp (Xi)
10The log odds ratio of z, L (z), is L (z) = log (z= (1� z)).
11Further details regarding the choice of HK(x) and its asymptotic properties can be found in appendix and

in Hirano, Imbens and Ridder (2003).
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b!0;i = !0 (Ti; bp (Xi)) = � 1� Ti
1� bp (Xi)

�
b!11;i = !11 (Ti; bp (Xi)) = Tibp

b!01;i = !01 (Ti; bp (Xi)) = bp (Xi)bp �
�

1� Ti
1� bp (Xi)

�
:

4.1.2 Estimation of inequality treatment e¤ects

Once the weights have been computed, the three ITE parameters are easily estimated by the
plug-in method. We write the corresponding estimators of �� , ��T , and �

�
C as

b�� = b�1 � b�0 = �
� bF!=b!1Y

�
� �

� bF!=b!0Y

�
b��T = b�11 � b�01 = �

� bF!=b!11Y

�
� �

� bF!=b!01Y

�
b��C = b�Y � b�0 = �

� bFY �� � � bF!=b!0Y

�
.

4.2 Large Sample Inference

We now devote our attention to the asymptotic behavior of our estimators. We derive the
asymptotic distribution for inequality treatment e¤ect parameters based on inequality measures
that are Hadamard di¤erentiable functionals of the distribution of potential outcomes. Although
we use four inequality measures as concrete examples, our analysis is more general and could be
extended to other functionals of the distribution that satisfy the same di¤erentiability property,
as for example, inequality measures that belong to the Generalized Entropy Class. In fact, many
other estimands and hypothesis tests of interest could be considered beyond the inequality
measures here studied.12

We then use results from the semiparametric e¢ ciency literature and treatment e¤ects
literature (e.g. Hahn, 1998 and Hirano, Imbens and Ridder, 2003, Cattaneo, 2009) to establish
e¢ ciency of our estimators.13 Finally, we argue that the inference based on bootstrap is a valid
method for the weighted estimators considered in this paper.

4.2.1 Hadamard Di¤erentiability

We invoke a smoothness condition in order to be able to derive the asymptotic normality of
the inequality estimators just proposed. We restrict the discussion to the class of inequality
measures that are Hadamard di¤erentiable functionals of the distribution.

A functional � is a map � : F� ! R de�ned on a subset F� of the normed space of c.d.f.�s
F that contains �. Following van der Vaart (1998, chapter 20), we say that � is Hadamard

12For examples of some estimands and hypotheses tests that could involve, for instance, the quantile process,
�rst- and second-order stochastic dominance, and Kolmogorov-Smirnov tests, see Abadie (2002) and Cher-
nozhukov, Fernandez-Val and Melly (2009).
13Similar e¢ ciency results can be found in the missing data literature. Robins, Rotnitzky, and Zhao (1994),

Robins and Rotnitzky (1995) and Rotnitzky and Robins (1995) provide calculations of the semiparametric e¢ -
ciency bounds for nonlinear regression models.
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di¤erentiable at F 2 F� if there exists a continuous, linear map  � : F ! R such that

lim
s#0





� (F + s � �s)� � (F )s
�  � (�)





 = 0
for all functions �s ! � such that F + s � �s 2 F� , for all small s > 0.

That smoothness condition is used here to help us establishing (i) asymptotic normality, (ii)
e¢ ciency and (iii) validity of the inference procedure for our estimators. We therefore write it
as an assumption.

Assumption 3 [Hadamard] The inequality measure � de�ned over the marginal distribution
of potential outcomes is Hadamard di¤erentiable.

Under some mild additional conditions on the c.d.f., Assumption 3 can be veri�ed to hold
for all four inequality measures considered in subsection 3.4. The coe¢ cient of variation and
the Theil index are known functions of expectations, which are already linear functionals, and
therefore satisfy Assumption 3 by de�nition. The interquartile range is a known function of
quantiles, which are Hadamard di¤erentiable if the c.d.f. F is continuously di¤erentiable with
positive derivative f at the quantile.14 Finally, as shown in Bhattacharya (2007, Proposition
2), if in addition to the continuous di¤erentiability of the c.d.f. and the existence of positive
density we impose a tail restriction that makes the density not to go to 0 too slowly at the tails,
then the Gini coe¢ cient will also be Hadamard di¤erentiable.15

4.2.2 Asymptotic Normality, E¢ ciency and Valid Inference

We now derive the limiting distribution of estimators of inequality measures for weighted distri-
butions. We �rst show that under an additional regularity condition, they will be asymptotically
equivalent to a sum of terms that do not depend on the estimated weights, but instead, on the
true ones.

Assumption 4 [Smoothness] For all weighting functions ! considered, Pr [Y � yjX = x; T = t]
is continuously di¤erentiable for all x in X , and at all (t; y) 2 f0; 1g � Y.

Assumption 4 is analogous to the more technical requirement imposed by Hirano, Imbens
and Ridder (2003, assumption 3) that the conditional expectation of Y be continuously di¤eren-
tiable. As we have a more general framework, we need that the conditional weighted probability
be continuously di¤erentiable.

We are now able to obtain the limiting distribution of our estimators. For that goal, we
�rst consider a proposition that establishes uniform root-N consistency for bF!=b!Y and presents
a uniform asymptotically linear representation for that estimator. In possession of these results
we can later apply the functional delta-method to get the limiting distribution of b�.

The assumptions required for the following proposition have been stated along the text; we
also invoke an assumption presented in the appendix (Assumption A.1) that guarantees uniform
convergence of the estimated propensity-score to the true one.
14To be precise and following van der Vaart (1998, chapters 20 and 21), the ��th quantile of the c.d.f. will

be Hadamard di¤erentiable tangentially to the subset of c.d.f.s where  � is well de�ned. In fact, as discussed in
van der Vaart (1998, Theorem 20.8) one only needs tangential Hadamard di¤erentiability (and not necessarily
Hadamard di¤erentiability) for functional delta-method applications.
15Some of the inequality measures of subsection 3.4 also need restrictions on Y, the support of Y1 and Y0, to

be well de�ned. For example, the Gini and the Theil are de�ned for (0;1). The coe¢ cient of variation and the
Gini also require that mean of the distribution is di¤erent from zero.
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Proposition 1 Let h (�; p (x)) � @! (�; p (x)) =@p (x). Then, under Assumptions 1, 2, 4 and
A.1: p

N
� bF!=b!Y � F!Y

�
= 	!N + op (1) uniformly in `1 (Y � f0; 1g � X ) ,

where at a given y 2 Y

	!N (y) = N�1=2
NX
i=1

! (Ti; p (Xi)) 1IfYi � yg

+E [h (T; p (Xi)) � 1IfY � ygjX = Xi] (Ti � p (Xi))
�E [! (T; p (X)) � 1IfY � yg] :

Proposition 1 follows after we specialize the results in Newey (1994) to the missing data case
and Hirano, Imbens and Ridder (2003) and Chen, Hong and Tarozzi (2008) to the indicator
function. Proposition 1 is a general result that can be used along with the four weighting
functions considered here.

One can check that the derivatives of the four weighting functions with respect to p (x) are

h1 (t; p (x)) � @!1 (t; p (x)) =@p (x) = �t=p2 (x)
h0 (t; p (x)) � @!0 (t; p (x)) =@p (x) = (1� t) = (1� p (x))2

h11 (t; p (x)) � @!11 (t; p (x)) =@p (x) = 0

h01 (t; p (x)) � @!01 (t; p (x)) =@p (x) = (1� t) =
h
p � (1� p (x))2

i
:

As the estimators of the inequality treatment e¤ect parameters are simply di¤erences in
estimators of inequality measures of weighted distributions, we can establish the following result
as a direct consequence of Proposition 1:

Proposition 2 Under Assumptions 1-4 and A.1:
p
N �

�b�� ����
=

1p
N

NX
i=1

!1 (Ti; p (Xi)) �  �
�
Yi;F

!=!1
Y

�
� !0 (Ti; p (Xi)) �  �

�
Yi;F

!=!0
Y

�
+

1p
N

NX
i=1

(E
�
h1 (T; p (X)) �  �

�
Y ;F!=!1Y

�
jX = Xi

�
� E

�
h0 (T; p (X)) �  �

�
Y ;F!=!0Y

�
jX = Xi

�
) � (Ti � p (Xi)) + op(1)

D�! N (0; V )

p
N �

�b��T ���T�
=

1p
N

NX
i=1

!11 (Ti; p (Xi)) �  �
�
Yi;F

!=!11
Y

�
� !01 (Ti; p (Xi)) �  �

�
Yi;F

!=!01
Y

�
� 1p

N

NX
i=1

E
�
h01 (T; p (X)) �  �

�
Y ;F!=!01Y

�
jX = Xi

�
� (Ti � p (Xi)) + op(1)

D�! N (0; VT )
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p
N �

�b��C ���C� = 1p
N

NX
i=1

 � (Yi;FY )� !0 (Ti; p (Xi)) �  �
�
Yi;F

!=!0
Y

�
� 1p

N

NX
i=1

E
�
h0 (T; p (X)) �  �

�
Y ;F!=!0Y

�
jX = Xi

�
� (Ti � p (Xi)) + op(1)

D�! N (0; VC)

where V , VT and VC , whose formulas are given below, are the semiparametric e¢ ciency bounds
for, respectively, �� , ��T , and �

�
C .

V = E[(!1 (T; p (X)) �  �
�
Y ;F!=!1Y

�
� !0 (T; p (X)) �  �

�
Y ;F!=!0Y

�
+ (E

�
h1 (T; p (X)) �  �

�
Y ;F!=!1Y

�
jX
�

� E
�
h0 (T; p (X)) �  �

�
Y ;F!=!0Y

�
jX
�
) � (T � p (X)) )2]

VT = E[(!11 (T; p (X)) �  �
�
Y ;F!=!11Y

�
� !01 (T; p (X)) �  �

�
Y ;F!=!01Y

�
�E

�
h01 (T; p (X)) �  �

�
Y ;F!=!01Y

�
jX
�
� (T � p (X)) )2]

VC = E[( � (Y ;FY )� !0 (T;X) �  �
�
Y ;F!=!0Y

�
�E

�
h0 (T; p (X)) �  �

�
Y ;F!=!0Y

�
jX
�
� (T � p (X)) )2]

Furthermore, inference based on the bootstrap will be valid as bootstrapped variances will be
consistent to V , VT and VC .

Valid inference for inequality treatment e¤ect parameters can be implemented either by
estimation of the analytical expressions for the variance terms presented in Proposition 2 or by
resampling methods, such as the bootstrapping as stated in that same proposition. Recently,
Abadie and Imbens (2008) gave an example of a root-N consistent and asymptotically normal
estimator for which the bootstrap does not work, so it is worth checking if usual conditions for
inference based on the bootstrap are valid in our setting. In fact, the bootstrap is surely an
easier alternative than calculation of the analytical standard errors. In the next sections, we
present a Monte Carlo exercise and an empirical application that use bootstrapped standard
errors.

5 A Monte Carlo Exercise

In this section we report the results of Monte Carlo exercises. The interest is in learning how the
estimators for the overall inequality treatment e¤ect (ITE). One thousand (1,000) replications
of the experiment with sample sizes of 250, 1,000 and 4,000 observations were considered.

We design the data generation process (d.g.p.) to produce �selection on observables�, that
is, the conditional distribution of X given T will di¤er from the marginal distribution of X, but
marginal distributions of the potential outcomes will be independent of T given X. Note that
as Y (1) and Y (0) are known for each observation i, we can compute �unfeasible� estimators
of functionals of the marginal distributions of Y (1) and Y (0). If we restrict our the attention

12



to subpopulations, for example, the treated, we can still compute �unfeasible� statistics of
estimators Y (1)jT = 1 and Y (0)jT = 1.

The generated data follows a very simple speci�cation. Starting with X = [X1; X2]
| we

set X1 � Unif
h
�X1 �

p
12
2 ; �X1 +

p
12
2

i
and X2 � Unif

h
�X2 �

p
12
2 ; �X2 +

p
12
2

i
, which will be

independent random variables with the following means and variances: E [X1] = �X1 , E [X2] =
�X2 and V [X1] = V [X2] = 1. The treatment indicator is set to be

T = 1If�0 + �1X1 + �2X2 + �3X2
1 + �4X

2
2 + �5X1X2 + � > 0g:

We consider three possible distributions for �: (i) logistic, � � F�(n) = 10
�
1 + exp

�
��n=

p
3
���1

;

(ii) normal, � � F�(n) =
R n
�1 10 (2�)

�1=2 exp
�
�z2=2

�
dz; (iii) uniform, � � F�(n) =

p
12n=120+

1=2. In all cases, � � (0; 100), that is, � has mean zero and standard deviation 10.
The potential outcomes are

Y (0) = exp
�
�00 + �01X1 + �02X2 + �03X

2
1 + �04X

2
2 + �05X1X2 + �0

�
Y (1) = exp

�
�10 + �11X1 + �12X2 + �13X

2
1 + �14X

2
2 + �15X1X2 + �1

�
where

�0 =
�
�s00 + �

s
01X1 + �

s
02X2 + �

s
03X

2
1 + �

s
04X

2
2 + �

s
05X1X2

�
� �0

�1 =
�
�s10 + �

s
11X1 + �

s
12X2 + �

s
13X

2
1 + �

s
14X

2
2 + �

s
15X1X2

�
� �1

and where �0 and �1 are distributed as standard normals. The variables X, �, �0 and �1 are
mutually independent. Under this speci�cation, Y (1) and Y (0) will not have a closed form
distribution. We compute target functionals using median values from 100 simulations of size
100,000 for the �unfeasible estimator�, which is presented below.

The parameters were chosen to be �X1 = 1, �X2 = 5 and those in the table below.

Table 1: Parameter speci�cation for Monte Carlo Exercise

coeff:n| 0 1 2 3 4 5

�j �1 10 2 �10 �3 10
�0j 0:01 �0:01 0:01 0:01 �0:01 �0:02
�1j 0:1 0:01 0:01 0:01 0:01 0:01

�s0j 0:01 �0:01 0:01 0:01 �0:01 �0:02
�s1j 0:01 0:01 0:01 0:01 0:01 0:01

We will compute inequality treatment e¤ects on the treated. For that purpose, it is impor-
tant to have the values of some functionals of the distributions of potential outcomes for the
treated. These are listed below.
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Table 2: Features of the Distributions of Potential Outcomes
for the Treated (conditional on T = 1), scaled by 100.

� Logistic Normal Uniform
�nDistribution Y (0) Y (1) Y (0) Y (1) Y (0) Y (1)

Mean 76.59 193.33 76.61 193.19 76.61 193.12
Standard Deviation (s.d.) 28.17 123.33 28.21 123.23 28.12 122.90

Mean of Logarithm -33.58 52.92 -33.58 52.88 -33.54 52.87
S.D. of Logarithm 38.72 48.39 38.68 48.34 38.58 48.29
10th Percentile 43.50 97.68 43.52 97.68 43.58 97.73
1st Quartile 58.64 124.23 58.66 124.18 58.69 124.17

Median 75.04 162.57 75.04 162.50 75.07 162.55
3rd Quartile 91.30 222.28 91.31 222.25 91.31 222.10

90th Percentile 108.66 315.46 108.65 314.93 108.57 314.68

Table 3: Inequality Measures of Potential Outcomes
for the Treated (conditional on T = 1)

� Logistic Normal Uniform
�nDistribution Y (0) Y (1) Y (0) Y (1) Y (0) Y (1)

Coe¢ cient of Variation .3677 .6389 .3681 .6377 .3671 .6363
Interquartile Range .3264 .9806 .3262 .9804 .3259 .9789

Theil Index .0651 .1466 .0651 .1464 .0647 .1458
Gini Coe¢ cient .1961 .2817 .1960 .2814 .1956 .2810

Naked eye inspection of Tables 2 and 3 reveal that target functionals are little a¤ected by
the distribution underlying the selection model. Thus, consistent semiparametric estimators of
functionals of these distributions should not be a¤ected by the nature of the d.g.p.. In Tables
4 and 5 we present results for the d.g.p. based on the normal speci�cation. Tables A.1 and A.2
with logistic and uniform d.g.p.�s are left to the Appendix.16

We provide in Tables 4 and 5 results for the unfeasible estimator and also for �ve estimators
that do not use information from Y (1) and Y (0) but instead use information from usually
available data (Y; T;X). The �rst one is the estimator proposed here and labeled �weighted
estimator�. In order to simplify the estimation procedure, we considered a parametric �rst step,
in which we computed the propensity-score by a logit using the correct quadratic speci�cation.

The second estimator is the one based on the empirical distributions of Y jT = 1 and
Y jT = 0. We call that estimator the �naive estimator�. Given that there is selection into
treatment based on observables, the naive estimator will be inconsistent to the ITE parameters.

We then consider what we call the �location shift estimator�. This is constructed in the
following way. We �rst run two linear regressions (with intercept) of Y on X1, X2, X2

1 , X
2
2 and

X1X2 , one for each group (T = 0 and T = 1). Save residuals buj and compute s2j where j = 0; 1
indexes treatment groups, s2j = (Nj � 6)

�1PNj
i (buji)2 and N1 =PN

i Ti and N0 = N�N1. Save
coe¢ cient estimates for group T = 0, b
00, b
10, b
20, b
30, b
40, b
50. Then, let Y �i be counterfactual
outcome of treated observation i:

Y �i = b
00 + b
10X1i + b
20X2i + b
30X2
1i + b
40X2

2i + b
50X1iX2i +qs20=s21 � bu1i
16Tables of results of Monte Carlo experiments with 1,000 observations are not presented as results are very

similar to those with sample size 4,000 presented in the paper.
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and since Y �i is well de�ned for all treated i, we compute the inequality measures for two
distributions: Y jT = 1 and Y �jT = 1. From the empirical Y jT = 1 we estimate functionals of
Y (1) jT = 1, whereas with Y �jT = 1 we estimate functionals of Y (0) jT = 1. Note that this is
a way of �controlling�for covariates.

By noticing that Y is distributed over the positive real numbers, an alternative way to
implement the same idea is to take the logarithm �rst. We call this estimator �log-location
shift estimator�. We proceed by following the same steps for the location shift estimator. The
di¤erence is that we apply the logarithm on Y �rst. Then, after we complete all steps described
for the location shift estimator, we exponentiate the counterfactual logarithm of the outcome.
By proceeding this way we guarantee that the counterfactual outcome will always be de�ned
over the positive reals, something that we cannot guarantee for the location-shift estimator.17

These location shift estimators correspond indeed to the procedure proposed by Juhn, Murphy
and Pierce (1993).

Our �nal estimator is the one proposed by Chernozhukov, Fernandez-Val and Melly (2009).
We estimate the conditional distribution function of Y jX;T = 0 by using logit estimators. To
be more precise, let Dy = 1IfY � yg and FY jT;X (yj0; x) = Pr [Dy = 1jT = 0; X = x]. For �xed
y, the conditional probability can be estimated by a �exible logit. Exactly as we did for all
other estimators, for each y we used the full quadratic model in the logit. The number of
points y considered was dependent on the sample size. For N = 250, we used 100 points; for
N = 1; 000, we used 500 points; and for N = 4; 000, we used 1; 000 points from the support of
Y . Once we have an estimate of the conditional c.d.f. of Y jT = 0; X, we can integrate it using
the empirical distribution of XjT = 1. We call that estimator the �CFM estimator�.

Results in Tables 4, 5, A.1 and A.2 show distribution features for each one of the estimators
of inequality treatment e¤ect parameters. We report average, standard deviation and quantiles
(10th percentile, median, and 90th percentile) for the four types of treatment e¤ects on in-
equality measures here considered (coe¢ cient of variation, interquartile range, Theil index and
Gini coe¢ cient). Besides those inequality treatment e¤ects, we also report results for average
treatment e¤ects. Finally, we present results that compare the estimates with the population
target. Those are reported by the bias, root mean squared error, mean absolute error and the
coverage rate of 90% con�dence intervals.

In Tables 4 and 5 we present results using a normal d.g.p. for the latent variable in the
selection model. Among all three d.g.p.s, this is the least favorable one to the weighted esti-
mator, which has been constructed using a �xed polynomial model for the logit. The results
in Tables 4 and 5 point out, however, that the weighted estimator is a competitive estimator
for distributional impacts, when compared to a more elaborated and computationally more de-
manding estimator as the CFM estimator. The weighted estimator performs well according to
the MSE criteria and its variance shrinks as expected as the sample size increases. Relatively to
other estimators also being analyzed, the weighted estimator clearly dominates in all considered
criteria the naive estimator and the two estimators based on Juhn, Murphy and Pierce (1993).

17 In fact, in most Monte Carlo replications we obtained negative counterfactual outcomes for the location
shift estimator for very few observations. Typically, in 1; 000 replications, around 900 had at least one nega-
tive counterfactual and among these replications only less than 10 percent had more than one negative value.
Interestingly, we obtained more negative counterfactual outcomes for N = 250 than for N = 4; 000.
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6 Empirical Application

The empirical application is on a Brazilian public-sponsored job training program, also known
as PLANFOR (Plano Nacional de Quali�cação Pro�ssional). That program, which started
in 1996, has provided classroom training for the formation of the basic skills necessary for
certain occupations (e.g. waiters, hairdressers, administrative jobs). The program operates
on a continuous basis throughout the year, with new cohorts of participants starting every
month. Although funding comes from the federal government, the program was decentralized
at the State level18. Each state subcontracted for classroom training with vocational propri-
etary schools and local community colleges. The target population consists of disadvantaged
workers, who have been de�ned as the unemployed, and individuals with low level of schooling
and/or income. Enrollment of individuals in the program is voluntary, but its scale in 1998 was
relatively small, being around 1.5% of the labor force in all metropolitan areas in Brazil.

The evaluation of PLANFOR involved the �rst attempt in the country to perform a ran-
domized study designed to measure impacts of a social program. In the years of 1998-99, the
Brazilian Ministry of Labor �nanced an experimental evaluation of the program impact on
earnings and employment.19 Experimental data were collected in two metropolitan areas of
the country, namely Rio de Janeiro and Fortaleza. The process of randomization of individuals
in and out of the program was performed at the class level and took place in August 1998,
and almost all individuals that were selected in attended the training courses in September
1998. In that month, participants in both cities were interviewed through the application of
the same questionnaire, and retrospective questions were asked about their labor market his-
tory. A follow-up survey took place in November 1999, and retrospective questions were asked
going back to September 1998.

The total available sample size from the baseline interview was 5,249 individuals. Given
that randomization was performed at class level, for the sake of our analysis we dropped all
classes with either only one treated or one control unit, remaining with 5,222 individuals, out
of which 2,616 were from Rio de Janeiro. They were distributed in along 237 classes (74 in Rio)
that had a median size of 18 students.

Because of the strati�ed randomization, we have by design that, conditional on the class
(stratum), treatment status is independent of potential outcomes. Thus we can infer causality
by applying the proposed method discussed in this paper using class dummies as confounding
variables.

We �rst check whether randomization was properly performed. Because randomization oc-
curred within class, we check whether randomization was well performed in each class through
t-tests of di¤erences in means between treated and control groups. We have decided to drop
classes that, for at least in one covariate, presented imbalances detected by t-tests at 1% sig-
ni�cance level. After we apply that �lter 17 classes were dropped (5 in Rio), and we remained
with 4,864 observations (2,469 in Rio) out of which 2,298 in the treated group (1,258 from Rio)
and 2,566 in the control group (1,211 from Rio).20

18According to the Brazilian Ministry of Labor, during January 01 1996 and October 27 2007, exactly R$
4,312,426,625.55 or US$2,661,991,699.67 (using June 2008 exchange rate) have been spent on PLANFOR all over
the country.
19This data set has also been used by Foguel (2006), in which further details on the impact evaluation study

can be found.
20Although we found imbalances in 17 out of 237 classes (7.2% of classes), that is not necessarily evidence that

controlling for class dummies is insu¢ cient to remove bias in this case. We call attention for the fact that our
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Because within each class we have few observations to rely solely on t-tests, which are only
asymptotically valid,21 we pool the data.22 However, the proportion of treated units within
class greatly varied across classes, from 0.11 to 0.86 and, therefore, unless covariates were mean
independent of classes, t-tests with pooled data would not be a valid procedure for testing
imbalance in covariates. Indeed, there is evidence that covariates distributions do vary by
class, as regressions of covariates on class dummies always produced signi�cant F-stats. This
is explained by the fact that there were many di¤erent courses being o¤ered attracting people
with di¤erent backgrounds.

A summary statistics table, Table 6, shows that for some covariates there are statisti-
cally signi�cant di¤erences in means between treated and control groups for pooled data. We
therefore applied the weighting function !01 to the control group to recover a counterfactual
distribution of covariates that would have prevailed if the control group were distributed across
classes exactly as the treated group. By doing so, we expect to �undo�the problem induced by
having di¤erent proportions of treated units across classes. Table 6 shows that after applying
weights di¤erences by treatment status become non-signi�cant. We interpret this as evidence
that randomization was well performed at the class level.

A few interesting features emerge from Table 6, revealing that the target population in
those two sites, Rio de Janeiro and Fortaleza are intrinsically di¤erent: People in our Fortaleza
sample are older (average age of 27 years old) than people in our Rio de Janeiro sample, which
consists basically of teenagers/young adults (average age of 18 years old). Average schooling is
8 years in Rio and 9 in Fortaleza, perhaps re�ecting age di¤erences between sites. For the same
reason it is no surprise that in Rio de Janeiro, about 50% of sample had never worked before,
whereas in Fortaleza that number was around 20%.

Using the follow-up survey we constructed two outcome variables: The hourly wage rate
at the �rst job in the 12-month interval after treatment period; and the sum of all monthly
salaries received during 12 months after treatment period. Since hourly wage rate at the �rst
job is only well de�ned for those who obtained a job, a condition that may have been a¤ected
by treatment itself, we also consider the second outcome variable, the sum of all earnings. In
the construction of that variable we did not drop individuals who remained unemployed after
the 12 month period after treatment; instead we assigned them zero earnings.

Our sample size decreased from the baseline to the follow-up stage to 3,783 individuals
(2,071 in Rio), 1,884 belonging to the treated group (1,106 in Rio) and 1,899 to the control
group (965 from Rio). We checked whether attrition could be explained by treatment status
but found no statistical evidence supporting it.23 We also had a sample size reduction when

criteria of dropping classes that presented detectable imbalances at 1% level was applied for 8 covariates. There
were no classes that presented more than one unbalanced covariate at that signi�cance level. Thus, we performed
8*237=1,896 tests and rejected the null 17 out of 1,896 tests, that is, we rejected the null at 1% signi�cance level
in 0.9% of the tests.
21For robustness we present a summary statistics table (Table A.3) in the Appendix with the sample before we

dropped classes removed on the t-tests criteria. The features of data remain almost identical after we dropped
the 17 classes.
22Fisher�s permutation tests are commonly used as an alternative procedure when we cannot rely on asymptotic

approximations. Their validity rely, however, on an exchangeability assumption. Also, given the typical class
size we have, they will not be very powerful tests for the di¤erence in means. For a detailed survey on exact
inference see Agresti (1992).
23We ran a regression of an indicator of missingness on the treatment dummy, class dummies and interactions

between treatment and class dummies; and obtained a non-signi�cant at 5% coe¢ cient for the treatment dummy.
We interpret this as evidence that there was no within-class di¤erential attrition between treated and controls.
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using the variable hourly wage rate at the �rst job because that variable is de�ned only for
those who were obtained a job after the program.24

In Table 7 we report average and inequality treatment e¤ects estimates. We report point
estimates and bootstrapped standard errors (100 replications) for all �ve feasible estimators that
have been de�ned in the Monte Carlo section. For all of them, except for the naive estimator,
we use as controlling or confounding variables classroom dummies. It turns out that because
we use a fully saturated model for the propensity-score, �rst stage of our weighted estimator
will be nonparametric. In order to have comparability with all other estimators we also used
class dummies as regressors in all of them. For CFM estimator, given the sample sizes in the
control group, we estimated the conditional c.d.f. for 1,000 points.

A problem that may emerge with the location shift estimator is that it might create negative
earnings, as predicted values from the linear regression are not necessarily bounded above zero.
Having a variable with negative values creates an asymmetry between that estimator and other
estimators since some inequality measures are de�ned only for positive values. We do not
attempt to make samples comparable, and interpret that asymmetry as another source of bias
for the location shift estimator.

Results are that on average the program is either ine¤ective or has a small negative e¤ect
on earnings. However, we see that for Rio de Janeiro, although the program does seem to
induce no average gains, it does reduce inequality among treated according, for example, to
the weighted estimator applied to the �rst hourly wage. One possible interpretation is that the
program reduces signaling costs, allowing employers to set similar wages for entering workers
that have program certi�cates. For the sum of all earnings we obtain no di¤erence in inequality,
which reinforces that interpretation. For Fortaleza, results using weighted estimator are that
the program is ine¤ective in reducing inequality. Finally, log-linear location shift, linear location
shift and naive estimators, all detected signi�cant positive e¤ects. We are agnostic regarding
these results as we know, from the Monte Carlo exercises, that these estimators are in general
biased ones.

7 Conclusion

We proposed a method that may be useful for applied researchers that are interested in compar-
ing inequality measures of two or more outcome distributions. When comparing Gini coe¢ cients
between two groups (for example, treated and non-treated groups), it is important to acknowl-
edge for the fact that there are many observed factors whose distributions di¤er across groups.
Our method allows applied researchers to identify the impact of the treatment through prop-
erly weighted di¤erences in Gini coe¢ cients between these two groups of workers. That allows
decomposing di¤erences in Gini coe¢ cients in a part �xing the distribution of covariates and
another that is merely a composition e¤ect, induced by di¤erent distribution in covariates.

The estimation strategy adopted here is useful when the individual decision to participate
in the program (the treatment) depends on observable characteristics. If the identi�cation
restrictions hold, then the reweighing method allows identifying the distribution of potential
outcomes and, therefore, the causal impact of the program on many functionals of interest for
policy analysis, such as inequality indices.

24For that variable, we have 2,443 non-missing observations for the combined sample, 1,241 in the treated
group. In Rio de Janeiro we have 577 treated and 456 control units.
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Results from our Monte Carlo study suggest that, when looking at distributional aspects,
consistent alternatives to the weighted estimator would probably require a very complete model
for the conditional distribution of Y given covariates. Because the weighted estimator only
requires estimation of a single conditional expectation, it is a easy and readily implementable
alternative; which clearly contrasts to non-parametric estimators of the conditional distribution,
which may also su¤er from additional dimensionality di¢ culties. Finally, in addition to its
computational simplicity the weighted method also has desired large sample properties and
behave relatively well in small samples.

Possible ways to extend the work presented would be to characterize semiparametric estima-
tion of inequality treatment e¤ects using alternative e¢ cient estimators. A natural alternative
procedure is the �e¢ cient in�uence function estimator�, also known as the �double robust
estimator�after Scharfstein, Rotnitzky and Robins (1999), that was recently proposed by Cat-
taneo (2009) for the multivalued case in the GMM context. Although such estimator may not
be as simple to compute as the weighted estimator, it may represent an interesting mixture,
between that estimator and those proposed by Chernozhukov, Fernandez-Val and Melly (2009)
and Rothe (2010).
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APPENDIX

Proofs

Proof of Lemma 1: See Lemma 1 in Firpo (2007):

Proof of Corollary 1:
By de�nition of ITE parameters, we have that they are the following di¤erences in func-

tionals of the distributions:

�� = �
�
FY (1)

�
� �

�
FY (0)

�
= �

�
F!=!1Y

�
� �

�
F!=!0Y

�
��T=1 = �

�
FY (1)jT=1

�
� �

�
FY (0)jT=1

�
= �

�
F!=!11Y

�
� �

�
F!=!01Y

�
��C = � (FY )� �

�
FY (0)

�
= � (FY )� �

�
F!=!0Y

�
and therefore those three parameters can be expressed as functions of the observable data
(Y ,T ,X).

Q:E:D:

Proof of Proposition 1
In order to be able to prove Proposition 1, we need �rst to guarantee that the propensity-

score estimated here as proposed by Hirano, Imbens and Ridder (2003) is uniformly consistent
for the true propensity-score. They show that with an extra assumption uniform consistency is
achieved. For sake of completeness we state such assumption and the desired result:

Assumption A.1 [First Step]:
(i) X is a compact subset of Rr;
(ii) the density of X, f(x), satis�es 0 < infx2X f(x) � supx2X f(x) <1
(iii) p(x) is s-times continuously di¤erentiable, where s � 7r and r is the dimension of X;

(iv) the order ofHK(x), K, is of the formK = C �N c where C is a constant and c 2
�

1
4( sr�1)

; 19

�
Newey (1995, 1997) has established that for orthogonal polynomials HK(x) and compact

X :
�(K) = sup

x2X
kHK(x)k � C �K (A-1)

where C is a generic constant. Note then that because of part (iv) of Assumption A.1, � will
be a function of N since K is assumed to be a function of N .

Uniform consistency of the estimated propensity-score is guaranteed by the following lemma:
Lemma A.1 [First Step]: Under Assumptions 2 and A.1, the following results hold:

(I) supx2X jp(x) � pK(x)j � C � �(K) � K�s=2r � C � K1�s=2r � C � N (1�s=2r)c = o(1); where

pK(x) = L(HK(x)
0�K) and �K = argmax�2RK E

�
p(X) � log(L(HK(X)0�))+(1�p(X)) � log(1�

L(HK(X)
0�))

�
;

(II) k�̂K � �Kk = Op

�q
K(N)
N

�
� C �Op

�q
Nc

N

�
� C �Op

�
N

c�1
2

�
= op(1);

(III) supx2X jp(x) � bp(x)j � C1 � N (1�s=2r)c + Op

�
�(K) �

q
K(N)
N

�
� C1 � N (1�s=2r)c + C2 �

N (3c�1)=2 �Op (1) = op(1);
(IV) There is " > 0: limN!1 Pr[" < infX2X p̂(X) � supX2X p̂(X) < 1� "] = 1.
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Proof of Lemma A.1: See Hirano, Imbens and Ridder (2003), Lemmas 1 and 2.

Let us now consider
p
N
� bF!=b!Y (y)� F!Y (y)

�
:

p
N
� bF!=b!Y (y)� F!Y (y)

�
= N�1=2

NX
i=1

(! (Ti; bp (Xi)) 1IfYi � yg � E [! (T; p (X)) � 1IfY � yg])

= N�1=2
NX
i=1

(! (Ti; bp (Xi))� ! (Ti; p (Xi))) 1IfYi � yg

+N�1=2
NX
i=1

(! (Ti; p (Xi)) 1IfYi � yg � E [! (T; p (X)) � 1IfY � yg])

and

N�1=2
NX
i=1

(! (Ti; bp (Xi))� ! (Ti; p (Xi))) 1IfYi � yg

= N�1=2
NX
i=1

(! (Ti; bp (Xi))� ! (Ti; p (Xi))� h (Ti; p (Xi)) (bp (Xi)� p (Xi))) 1IfYi � yg (A-2)

+N�1=2
NX
i=1

(h (Ti; p (Xi)) 1IfYi � yg) (bp (Xi)� p (Xi)) (A-3)

�N�1=2
NX
i=1

E [E [h (T; p (X)) � 1IfY � ygjX] (bp (X)� p (X))]

+N�1=2
NX
i=1

E [E [h (T; p (X)) � 1IfYi � ygjX] (bp (X)� p (X))] (A-4)

�N�1=2
NX
i=1

E [h (T; p (Xi)) � 1IfYi � ygjX = Xi] (Ti � p (Xi))

+N�1=2
NX
i=1

E [h (T; p (Xi)) � 1IfY � ygjX = Xi] (Ti � p (Xi)) :

Therefore:
p
N
� bF!=b!Y (y)� F!Y (y)

�
= 	!N (y) + (A-1.) + (A-2.) + (A-3.)

where

	!N (y) = N�1=2
NX
i=1

 !i (y)
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 !i (y) =  !y (Yi; Ti; Xi) = ! (Ti; p (Xi)) 1IfYi � yg
+E [h (T; p (Xi)) � 1IfY � ygjX = Xi] (Ti � p (Xi))
�E [! (T; p (X)) � 1IfY � yg] :

We now investigate whether k(A-1.) + (A-2.) + (A-3.)k1 is op (1). We notice that we for all
choices of weights, ! (!1, !1, !11, and !01), these expressions have already been analyzed by
Hirano, Imbens and Ridder (2003), except that they have considered Y , while we replace that
random variable by the indicator variable 1IfY � yg and take the sup over y in Y, the support
of Y . See for example, Theorem 1 in Hirano, Imbens and Ridder (2003), in which they consider
!1 as weights and work in details the algebra. Under the same conditions considered here, but
adding a bounding restriction to the variance of Y , they obtain that their analogs to terms
(A-1.), (A-2.) and (A-3.) are all op (1). Given that the the indicator function is bounded (and
so is its variance), we can adapt their results to ours, obtaining a uniform root-N consistency
result: p

N
� bF!=b!Y � F!Y

�
= 	!N + op (1) in `1 (Y � f0; 1g � X ) .

We now check whether the empirical process 	!N converges to a tight random element in the
collection of bounded functions Y�f0; 1g�X ! R. Consider the i.i.d. sequence fYi; Ti; X|

i g
N
i=1

of random vectors and write  !y (Yi; Ti; Xi) as

 !y (Yi; Ti; Xi) = ! (Ti; p (Xi)) 1IfYi � yg
+�!y (Ti; p (Xi))

where
�!y (t; p (x)) = E [h (t; p (x)) � 1IfY � ygjX = x] (t� p (x))

is the contribution of estimation of p (x) to the in�uence function  y. Now, note that  
!
y is a

weighted indicator function plus a zero mean term, with bounded variance. Thus,

N�1
NX
i=1

 !y (Yi; Ti; Xi)

is weighted empirical distribution plus a zero mean Op
�
N�1=2�. Therefore, because the weight-

ing function satis�es the conditions in Example 19.12 of van der Vaart (1998), we will have that
the sequence of empirical processes	!N is in a Donsker class and converges in `

1 (Y � f0; 1g � X )
to a tight random element term with mean zero and �nite variance.

Q:E:D:
Proof of Proposition 2:

With Proposition 1 at hand, we can then apply a functional Delta-method to the inequality
measures here considered, as those will be Hadamard di¤erentiable. Thus, according to Theorem
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20.8 and 20.9 in van der Vaart (1998), we have that

p
N �

�
�
� bF!=b!Y

�
� � (F!Y )

�
=  � (	!N ) + op (1) = N�1=2

NX
i=1

 �i (F
!
Y ) �  ! (Yi; Ti; Xi) + op (1)

=
1p
N

NX
i=1

! (Ti; p (Xi)) �  � (Yi;F!Y )

+
1p
N

NX
i=1

E [h (T; p (X)) �  � (Y ;F!Y ) jX = Xi] � (Ti � p (Xi)) + op(1)

D�! N (0; V !� )

where  � (y;F!Y ) is the in�uence function of the functional �. The fact that it shares the same
notation with the Hadamard derivative is not mere coincidence: If � is Hadamard di¤erentiable,
then lims#0d� ((1� s)F!Y + s�y) =ds =  � (y;F!Y ) , where �y is the (Dirac) probability measure
that put mass 1 at value y. Conveniently enough,

R
 � (y;F!Y )dF

!
Y (y) = 0:

For the four inequality measures here considered, the in�uence functions are well known or
easily derivable. Their expressions can be found either directly or constructed after a simple
delta-method argument from the following references: Lehmann (1999, chapter 6) for the coef-
�cient of variation, interquartile range and Theil index; and the Gini coe¢ cient in Cowell and
Victoria-Feser (1996) and Schluter and Trede (2003).

A straightforward application to the four weighting functions separately to allows us to
obtain a asymptotic normality result for the estimators b�� , b��T and b��C of the inequality
treatment e¤ects �� , ��T and �

�
C :

p
N �

�b�� ���� =  �
�
	!1N

�
�  �

�
	!0N

�
+ op (1)

=
1p
N

NX
i=1

!1 (Ti; p (Xi)) �  �
�
Yi;F

!=!1
Y

�
� !0 (Ti; p (Xi)) �  �

�
Yi;F

!=!0
Y

�
+

1p
N

NX
i=1

(E
�
h1 (T; p (X)) �  �

�
Y ;F!=!1Y

�
jX = Xi

�
� E

�
h0 (T; p (X)) �  �

�
Y ;F!=!0Y

�
jX = Xi

�
) � (Ti � p (Xi)) + op(1)

D�! N (0; V )

p
N �

�b��T ���T� =  �
�
	!11N

�
�  �

�
	!01N

�
+ op (1)

=
1p
N

NX
i=1

!11 (Ti; p (Xi)) �  �
�
Yi;F

!=!11
Y

�
� !01 (Ti; p (Xi)) �  �

�
Yi;F

!=!01
Y

�
� 1p

N

NX
i=1

E
�
h01 (T; p (X)) �  �

�
Y ;F!=!01Y

�
jX = Xi

�
� (Ti � p (Xi)) + op(1)

D�! N (0; VT )
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p
N �

�b��C ���C� =  � (	N )�  �
�
	!0N

�
+ op (1)

=
1p
N

NX
i=1

 � (Yi;FY )� !0 (Ti; p (Xi)) �  �
�
Yi;F

!=!0
Y

�
� 1p

N

NX
i=1

E
�
h0 (T; p (X)) �  �

�
Y ;F!=!0Y

�
jX = Xi

�
� (Ti � p (Xi)) + op(1)

D�! N (0; VC)

where V , VT and VC , whose formulae were given in the statement of the Theorem are simply

V = E
h�
 �
�
	!1N

�
�  �

�
	!0N

��2i
VT = E

h�
 �
�
	!11N

�
�  �

�
	!01N

��2i
VC = E

h�
 � (	N )�  �

�
	!0N

��2i
:

We now prove the e¢ ciency claim in Proposition 2. E¢ ciency follows from van der Vaart
(1991) and van der Vaart (1998, Theorem 25.48) who established that if � is Hadamard dif-
ferentiable and the empirical distribution is pointwise e¢ cient for all y 2 Y , then b� is ef-
�cient. Following Hahn (1998), Hirano, Imbens and Ridder (2003) and Cattaneo (2009),
who derived e¢ ciency bounds in the multivariate treatment context, we can again replace
Y by 1IfY � yg and obtain for every point y, e¢ ciency bounds for FY (1) (y), FY (0) (y),
FY (1)jT (yj1), and FY (0)jT (yj1). Inspection of their formulae for the e¢ cient score and re-
placement of Y by 1IfY � yg yields the respective e¢ ciency bounds on the c.d.f.�s at y:
V SEBFY (1)(y) = E

h�
	!1N (y)

�2i, V SEBFY (0)(y) = E
h�
	!0N (y)

�2i, V SEBFY (1)jT=1(y) = E
h�
	!11N (y)

�2i, and
V SEBFY (0)jT=1(y) = E

h�
	!01N (y)

�2i.
Now, because, � is Hadamard di¤erentiable, we can write the e¢ ciency bounds for �1, �0, �11

and �01 as: V SEB�1 = E
h�
 �
�
	!1N

��2i, V SEB�0 = E
h�
 �
�
	!0N

��2i, V SEB�11 = E
h�
 �
�
	!11N

��2i,
and V SEB�01 = E

h�
 �
�
	!01N

��2i. Finally, given the linearity of the in�uence functions, we get
that V SEB�� = V , V SEB��T

= VT , V SEB��C
= VC .

Validity of bootstrap-based inference is a direct consequence of the functional delta-method
applied to the bootstrap. We have that our inequality measures are Hadamard di¤erentiable
functionals; and that sums of our weighted c.d.f.s estimators converge uniformly in law to tight
measurable random elements in `1 (Y � f0; 1g � X ) ; �nally our original sample fYi; Ti; XigNi=1
is i.i.d..

Let FY;T;X be the joint distribution of (Y; T;X). The weighted marginal distribution of Y
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using weights given by ! (T; p (X)) can be written as a linear functional of the joint c.d.f.:

F!Y (�) = E [! (T; p (X)) 1IfY � �g]

=

Z
Y

Z
X
! (0; p (x)) 1Ifz � �gdFY;T;X (z; 0; x)

+

Z
Y

Z
X
! (1; p (x)) 1Ifz � �gdFY;T;X (z; 1; x)

= �! (FY;T;X) :

The functional � of the weighted c.d.f. is therefore the composite functional � (F!Y ) = � �
�! (FY;T;X). Our estimator b� can be written as b� = �

� bF!=b!Y

�
= � � �!

� bFY;T;X�, where bFY;T;X
is the joint empirical distribution.

That representation is useful for applying Theorem 23.9 of van der Vaart (1998) that estab-
lishes validity of the bootstrap for Hadamard di¤erentiable functionals. Example 23.11 of van
der Vaart (1998) adapts that theorem when the empirical process is the empirical distribution.
As a consequence, we obtain the following result:

p
N
�
� � �!

� bF �Y;T;X�� � � �! � bFY;T;X�� =
p
N
�
�
� bF!=b!;�Y

�
� �

� bF!=b!Y

��
=  � (	!N ) + op (1) :

where bF �Y;T;X is the bootstrap empirical distribution of (Y; T;X) and bF!=b!;�Y is the bootstrap
empirical weighted distribution of Y using, in each replication of the bootstrap, estimated
weights in that replication.

Because of the asymptotic equivalence of the previous equation, we know that inference for
� using a bootstrap procedure that draws N observations with replacement in each bootstrap
replication from the empirical distribution of (Y; T;X) will be valid and variance estimates
obtained by the bootstrap should converge in probability to those presented in Proposition 2.

Q:E:D:
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Treatment on the 
Treated 

Parameters
Estimators Target Average Lower 10th 

percentile Median Upper 10th 
percentile

Standard 
Deviation Bias

Root Mean 
Squared 

Error

Mean 
Absolute 

Error

Median 
Absolute 

Error

90% C.I. 
Coverage 

Rate

1.166
Unfeasible 1.165 1.000 1.155 1.344 0.137 -0.001 0.137 0.109 0.093 0.907
Naive 1.124 0.965 1.113 1.297 0.133 -0.042 0.139 0.113 0.103 0.895
Weighted 1.167 0.932 1.166 1.406 0.184 0.000 0.184 0.143 0.120 0.910
Location Shift 1.163 0.954 1.163 1.377 0.168 -0.003 0.168 0.133 0.107 0.905
Log Location Shift 1.170 0.950 1.173 1.382 0.171 0.003 0.171 0.134 0.107 0.904
CFM 1.207 1.008 1.197 1.407 0.163 0.041 0.168 0.131 0.108 0.901

0.270
Unfeasible 0.243 0.094 0.224 0.406 0.144 -0.027 0.147 0.110 0.092 0.936
Naive 0.306 0.160 0.281 0.469 0.139 0.036 0.144 0.100 0.074 0.926
Weighted 0.286 0.095 0.277 0.477 0.169 0.017 0.170 0.124 0.098 0.920
Location Shift 0.286 0.130 0.266 0.464 0.146 0.016 0.147 0.104 0.079 0.923
Log Location Shift 0.289 0.143 0.270 0.461 0.138 0.020 0.139 0.099 0.077 0.927
CFM 0.228 0.025 0.219 0.417 0.175 -0.042 0.180 0.133 0.103 0.899

0.654
Unfeasible 0.657 0.459 0.649 0.865 0.161 0.003 0.161 0.127 0.104 0.897
Naive 0.689 0.485 0.684 0.889 0.160 0.035 0.164 0.128 0.105 0.898
Weighted 0.689 0.356 0.699 0.990 0.252 0.035 0.254 0.199 0.164 0.913
Location Shift 0.715 0.512 0.703 0.931 0.164 0.061 0.175 0.136 0.112 0.871
Log Location Shift 0.670 0.459 0.661 0.893 0.167 0.016 0.168 0.134 0.113 0.906
CFM 0.607 0.302 0.618 0.897 0.234 -0.047 0.238 0.185 0.147 0.890

0.081
Unfeasible 0.078 0.030 0.072 0.129 0.045 -0.003 0.045 0.034 0.028 0.940
Naive 0.097 0.050 0.089 0.151 0.044 0.015 0.047 0.033 0.025 0.917
Weighted 0.087 0.025 0.084 0.148 0.056 0.005 0.056 0.040 0.030 0.917
Location Shift 0.091 0.040 0.084 0.150 0.049 0.010 0.050 0.035 0.027 0.923
Log Location Shift 0.092 0.045 0.085 0.146 0.045 0.011 0.046 0.033 0.025 0.924
CFM 0.065 -0.008 0.068 0.132 0.068 -0.016 0.070 0.047 0.033 0.919

0.085
Unfeasible 0.083 0.042 0.083 0.126 0.034 -0.002 0.034 0.027 0.022 0.903
Naive 0.115 0.075 0.114 0.157 0.032 0.030 0.044 0.035 0.030 0.776
Weighted 0.112 0.032 0.115 0.193 0.067 0.026 0.072 0.056 0.046 0.885
Location Shift 0.114 0.056 0.113 0.169 0.044 0.028 0.053 0.042 0.035 0.833
Log Location Shift 0.103 0.057 0.102 0.150 0.036 0.018 0.040 0.032 0.026 0.864
CFM 0.076 -0.011 0.085 0.147 0.064 -0.010 0.065 0.048 0.036 0.900

Gini Coefficient

Theil Index

Table 4: Results of Monte Carlo Exercise (Sample Size 250, Replications 1000, Normal Selection)

Mean Treatment 
Effects

CV

Interquartile 
Range



Treatment on the 
Treated 

Parameters
Estimators Target Average Lower 10th 

percentile Median Upper 10th 
percentile

Standard 
Deviation Bias

Root Mean 
Squared 

Error

Mean 
Absolute 

Error

Median 
Absolute 

Error

90% C.I. 
Coverage 

Rate

1.166
Unfeasible 1.167 1.123 1.166 1.214 0.035 0.001 0.035 0.028 0.024 0.897
Naive 1.127 1.084 1.127 1.172 0.034 -0.040 0.052 0.044 0.041 0.684
Weighted 1.168 1.108 1.169 1.226 0.047 0.002 0.047 0.037 0.032 0.899
Location Shift 1.167 1.112 1.166 1.218 0.041 0.001 0.041 0.033 0.027 0.897
Log Location Shift 1.181 1.129 1.180 1.235 0.041 0.015 0.044 0.035 0.029 0.876
CFM 1.169 1.112 1.169 1.224 0.043 0.003 0.043 0.034 0.028 0.908

0.270
Unfeasible 0.267 0.210 0.262 0.329 0.050 -0.003 0.050 0.037 0.029 0.916
Naive 0.331 0.276 0.325 0.389 0.049 0.061 0.078 0.064 0.056 0.699
Weighted 0.274 0.203 0.272 0.352 0.066 0.005 0.066 0.048 0.036 0.918
Location Shift 0.322 0.267 0.317 0.380 0.050 0.052 0.072 0.057 0.048 0.757
Log Location Shift 0.325 0.274 0.319 0.382 0.047 0.056 0.073 0.058 0.050 0.721
CFM 0.282 0.201 0.286 0.364 0.076 0.012 0.077 0.055 0.041 0.930

0.654
Unfeasible 0.655 0.607 0.654 0.707 0.040 0.001 0.040 0.031 0.027 0.901
Naive 0.687 0.639 0.687 0.738 0.039 0.033 0.052 0.041 0.037 0.806
Weighted 0.656 0.579 0.655 0.736 0.061 0.002 0.061 0.049 0.040 0.901
Location Shift 0.755 0.703 0.753 0.809 0.042 0.101 0.109 0.101 0.099 0.221
Log Location Shift 0.687 0.637 0.687 0.739 0.040 0.033 0.052 0.042 0.037 0.803
CFM 0.669 0.603 0.670 0.735 0.052 0.015 0.054 0.043 0.037 0.893

0.081
Unfeasible 0.081 0.066 0.080 0.097 0.012 0.000 0.012 0.009 0.008 0.895
Naive 0.100 0.085 0.099 0.115 0.012 0.019 0.022 0.019 0.018 0.562
Weighted 0.082 0.062 0.083 0.103 0.017 0.001 0.017 0.013 0.010 0.915
Location Shift 0.101 0.084 0.100 0.117 0.014 0.019 0.024 0.020 0.018 0.617
Log Location Shift 0.098 0.084 0.098 0.113 0.012 0.017 0.021 0.018 0.016 0.605
CFM 0.087 0.066 0.089 0.108 0.019 0.006 0.020 0.015 0.012 0.915

0.085
Unfeasible 0.085 0.074 0.085 0.097 0.009 0.000 0.009 0.007 0.006 0.896
Naive 0.118 0.107 0.118 0.129 0.009 0.033 0.034 0.033 0.033 0.017
Weighted 0.089 0.064 0.090 0.113 0.019 0.003 0.019 0.015 0.013 0.895
Location Shift 0.126 0.109 0.126 0.143 0.014 0.041 0.043 0.041 0.040 0.087
Log Location Shift 0.111 0.099 0.111 0.123 0.009 0.025 0.027 0.025 0.025 0.142
CFM 0.095 0.072 0.097 0.117 0.018 0.010 0.021 0.017 0.015 0.849

Theil Index

Gini Coefficient

Table 5: Results of Monte Carlo Exercise (Sample Size 4,000, Replications 1000, Normal Selection)

Mean Treatment 
Effects

CV

Interquartile 
Range



Variables
0.52 0.47 0.51 0.05 0.01 0.82 0.82 0.83 -0.01 -0.01

(0.01) (0.01) (0.02) (0.02)** (0.02) (0.01) (0.01) (0.01) (0.02) (0.02)
0.08 0.07 0.09 0.01 -0.01 0.38 0.37 0.40 0.01 -0.02

(0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.02) (0.02)
8.58 8.31 8.50 0.26 0.08 9.00 9.27 9.18 -0.27 -0.18

(0.06) (0.07) (0.08) (0.09)*** (0.10) (0.10) (0.07) (0.09) (0.13)** (0.14)
18.55 18.03 18.63 0.52 -0.08 27.10 26.52 26.54 0.58 0.56
(0.12) (0.12) (0.19) (0.18)*** (0.23) (0.29) (0.24) (0.36) (0.37) (0.47)
0.93 0.94 0.92 0.00 0.01 0.64 0.64 0.61 0.00 0.03

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.03)
0.03 0.03 0.04 0.00 -0.01 0.21 0.19 0.18 0.02 0.03

(0.01) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02)
0.38 0.40 0.41 -0.03 -0.03 0.34 0.31 0.30 0.03 0.04

(0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.01) (0.02) (0.02)* (0.03)
0.36 0.34 0.38 0.02 -0.02 0.39 0.43 0.41 -0.03 -0.02

(0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.01) (0.02) (0.02) (0.03)
Number of Observations 1258 1211 1211 1040 1355 1355
Bootstrapped standard errors in parenthesis. *: Significant at 10%; **: Significant at 5%; ***: Significant at 1%.

Previous Labor Market 
Engagement (Dummy)
Number of children

Schooling (Years)

Male Dummy

Age

Dummy for Single

Household Head 
Dummy
White Dummy

Final Sample
Rio de Janeiro Fortaleza

Table 6: Summary Statistics

Difference 
(D)-(F)

Treatment 
(A) Control (B) Weighted 

Control (C)
Difference 

(A)-(B)
Difference 

(A)-(C)
Treatment 

(D) Control (E) Weighted 
Control (F)

Difference 
(D)-(E)



Treated Naive Weighted
Linear 
Shift

Log Linear 
Shift CFM Treated Naive Weighted

Linear 
Shift

Log Linear 
Shift CFM

701.23 143.45 20.57 19.97 -907.40 -48.67 1.53 -0.20 -0.35 -0.34 -0.43 -0.35
(37.28) (47.42)*** (62.04) (87.75) (244.09)*** (85.79) (0.10) (0.18) (0.22) (0.23) (0.29) (0.24)

1.82 -0.19 -0.11 0.02 0.25 -0.11 1.56 -0.25 -0.21 -0.20 -0.83 -0.13
(0.07) (0.11)* (0.13) (0.13) (0.39) (0.16) (0.55) (0.59) (0.58) (0.58) (0.88) (0.63)
955.15 311.80 184.30 -49.66 -482.40 20.86 0.92 -0.02 -0.07 -0.59 -0.39 -0.07
(80.21) (97.53)*** (122.27) (109.02) (214.66)** (145.84) (0.05) (0.07) (0.11) (0.60) (0.15)** (0.11)

2.34 -0.62 -0.11 1.80 1.69 -0.07 0.36 -0.23 -0.23 -0.15 -0.32 -0.20
(0.15) (0.25)** (0.28) (0.15)*** (0.20)*** (0.30) (0.13) (0.16) (0.16) (0.14) (0.23) (0.19)
0.75 -0.04 -0.01 0.95 2.28 -0.01 0.38 -0.10 -0.10 0.05 -0.13 -0.10

(0.01) (0.01)*** (0.02) (0.14)*** (0.14)*** (0.02) (0.04) (0.05)* (0.05)** (0.19) (0.06)** (0.06)

Treated Naive Weighted
Linear 
Shift

Log Linear 
Shift CFM Treated Naive Weighted

Linear 
Shift

Log Linear 
Shift CFM

1250.16 145.12 122.17 122.17 -1034.21 141.68 1.74 0.06 -0.28 -0.24 -0.12 -0.47
(67.54) (104.43) (127.89) (148.51) (441.02)** (144.47) (0.09) (0.17) (0.33) (0.78) (0.88) (0.35)

1.82 0.32 0.26 0.28 0.26 0.34 1.70 0.28 -0.12 0.14 0.34 -0.33
(0.21) (0.23) (0.24) (0.25) (0.42) (0.26) (0.31) (0.43) (0.57) (0.51) (0.53) (0.63)

1874.91 58.71 20.31 340.92 -235.70 10.86 1.02 -0.08 -0.13 -0.30 -0.21 -0.13
(126.16) (139.52) (171.68) (209.96) (328.28) (185.48) (0.06) (0.09) (0.11) (0.32) (0.25) (0.18)

1.38 -0.09 -0.09 0.90 0.73 -0.02 0.51 0.12 -0.08 0.01 0.09 -0.20
(0.12) (0.16) (0.19) (0.13)*** (0.18)*** (0.20) (0.10) (0.13) (0.22) (0.22) (0.23) (0.25)
0.68 0.00 0.00 0.51 1.08 0.01 0.47 0.06 -0.02 0.24 0.15 -0.06

(0.02) (0.02) (0.02) (0.09)*** (0.10)*** (0.03) (0.03) (0.04) (0.07) (0.09)*** (0.08)* (0.08)**
Bootstrapped standard errors in parenthesis. *: Significant at 10%; **: Significant at 5%; ***: Significant at 1%.

Theil Index 

Gini Coefficient

Table 7: Inequality Treatment Effects for the PLANFOR data set

Treatment Effect Estimators

Gini Coefficient

Average

Interquartile Range

Coefficient of Variation 

Sum of all earnings during the 12-month period after treatment Hourly wage rate at first job in a 12-month period after treatment

Theil Index 

Treatment Effect Estimators

Treatment Effect Estimators

Average

Coefficient of Variation 

Interquartile Range

Treatment Effect Estimators

Fortaleza

Rio de Janeiro
Sum of all earnings during the 12-month period after treatment Hourly wage rate at first job in a 12-month period after treatment



Treatment on the 
Treated 

Parameters
Estimators Target Average Lower 10th 

percentile Median Upper 10th 
percentile

Standard 
Deviation Bias

Root Mean 
Squared 

Error

Mean 
Absolute 

Error

Median 
Absolute 

Error

90% C.I. 
Coverage 

Rate

1.167
Unfeasible 1.168 1.122 1.167 1.214 0.035 0.000 0.035 0.028 0.025 0.903
Naive 1.126 1.083 1.126 1.171 0.034 -0.041 0.053 0.045 0.041 0.669
Weighted 1.166 1.104 1.168 1.226 0.048 -0.001 0.048 0.038 0.034 0.900
Location Shift 1.166 1.115 1.166 1.218 0.041 -0.002 0.041 0.033 0.028 0.902
Log Location Shift 1.181 1.129 1.181 1.232 0.041 0.013 0.044 0.035 0.030 0.887
CFM 1.167 1.114 1.169 1.222 0.043 0.000 0.043 0.034 0.029 0.903

0.270
Unfeasible 0.267 0.211 0.263 0.325 0.050 -0.002 0.050 0.038 0.031 0.918
Naive 0.332 0.277 0.327 0.388 0.049 0.062 0.079 0.064 0.057 0.696
Weighted 0.272 0.199 0.270 0.350 0.067 0.002 0.067 0.048 0.036 0.918
Location Shift 0.323 0.267 0.317 0.383 0.049 0.053 0.072 0.057 0.048 0.751
Log Location Shift 0.325 0.271 0.320 0.381 0.047 0.056 0.073 0.058 0.051 0.728
CFM 0.283 0.206 0.288 0.363 0.076 0.013 0.077 0.054 0.040 0.921

0.654
Unfeasible 0.656 0.606 0.655 0.706 0.039 0.001 0.039 0.031 0.026 0.896
Naive 0.688 0.640 0.688 0.741 0.040 0.034 0.052 0.042 0.036 0.782
Weighted 0.655 0.575 0.654 0.737 0.062 0.000 0.062 0.049 0.039 0.896
Location Shift 0.756 0.703 0.755 0.811 0.042 0.102 0.110 0.102 0.101 0.200
Log Location Shift 0.688 0.639 0.687 0.741 0.040 0.034 0.052 0.042 0.037 0.792
CFM 0.670 0.603 0.669 0.737 0.052 0.015 0.054 0.043 0.037 0.887

0.081
Unfeasible 0.081 0.066 0.080 0.096 0.012 0.000 0.012 0.010 0.008 0.905
Naive 0.100 0.085 0.099 0.116 0.012 0.019 0.022 0.019 0.018 0.570
Weighted 0.082 0.060 0.082 0.103 0.018 0.000 0.018 0.013 0.011 0.929
Location Shift 0.101 0.084 0.100 0.118 0.014 0.020 0.024 0.020 0.018 0.615
Log Location Shift 0.098 0.084 0.097 0.114 0.012 0.017 0.021 0.018 0.016 0.619
CFM 0.087 0.067 0.089 0.108 0.020 0.006 0.020 0.015 0.012 0.907

0.086
Unfeasible 0.086 0.074 0.085 0.097 0.009 0.000 0.009 0.007 0.006 0.889
Naive 0.118 0.108 0.118 0.130 0.009 0.033 0.034 0.033 0.032 0.015
Weighted 0.088 0.063 0.089 0.111 0.019 0.002 0.019 0.015 0.013 0.913
Location Shift 0.127 0.110 0.126 0.144 0.014 0.041 0.043 0.041 0.040 0.082
Log Location Shift 0.111 0.100 0.110 0.123 0.009 0.025 0.027 0.025 0.025 0.123
CFM 0.095 0.073 0.097 0.116 0.018 0.010 0.021 0.017 0.014 0.868

Theil Index

Gini Coefficient

Table A.1: Results of Monte Carlo Exercise (Sample Size 4,000, Replications 1000, Logistic Selection Model)

Mean Treatment 
Effects

CV

Interquartile 
Range



Treatment on the 
Treated 

Parameters
Estimators Target Average Lower 10th 

percentile Median Upper 10th 
percentile

Standard 
Deviation Bias

Root Mean 
Squared 

Error

Mean 
Absolute 

Error

Median 
Absolute 

Error

90% C.I. 
Coverage 

Rate

1.165
Unfeasible 1.164 1.119 1.164 1.211 0.035 0.000 0.035 0.028 0.024 0.911
Naive 1.124 1.081 1.123 1.168 0.034 -0.041 0.053 0.045 0.043 0.655
Weighted 1.164 1.108 1.165 1.219 0.044 0.000 0.044 0.035 0.030 0.885
Location Shift 1.162 1.106 1.161 1.216 0.043 -0.003 0.043 0.035 0.029 0.886
Log Location Shift 1.176 1.120 1.176 1.232 0.043 0.011 0.045 0.036 0.030 0.894
CFM 1.168 1.107 1.170 1.229 0.050 0.004 0.050 0.040 0.032 0.900

0.270
Unfeasible 0.266 0.209 0.260 0.324 0.051 -0.004 0.051 0.038 0.030 0.933
Naive 0.328 0.274 0.322 0.382 0.049 0.058 0.076 0.060 0.053 0.737
Weighted 0.253 0.180 0.254 0.326 0.063 -0.016 0.065 0.048 0.037 0.902
Location Shift 0.320 0.265 0.314 0.375 0.050 0.050 0.071 0.054 0.045 0.788
Log Location Shift 0.322 0.271 0.316 0.375 0.047 0.052 0.070 0.055 0.047 0.766
CFM 0.253 0.150 0.267 0.345 0.097 -0.017 0.098 0.065 0.045 0.920

0.653
Unfeasible 0.653 0.603 0.652 0.706 0.040 0.000 0.040 0.031 0.027 0.895
Naive 0.685 0.634 0.684 0.737 0.040 0.032 0.051 0.041 0.035 0.787
Weighted 0.646 0.574 0.644 0.715 0.060 -0.006 0.060 0.046 0.038 0.898
Location Shift 0.752 0.701 0.750 0.808 0.041 0.099 0.107 0.099 0.097 0.227
Log Location Shift 0.683 0.633 0.682 0.740 0.041 0.031 0.051 0.041 0.035 0.816
CFM 0.666 0.589 0.672 0.741 0.070 0.013 0.071 0.051 0.040 0.930

0.081
Unfeasible 0.081 0.066 0.080 0.096 0.012 0.000 0.012 0.010 0.008 0.915
Naive 0.099 0.084 0.098 0.114 0.012 0.018 0.021 0.018 0.017 0.579
Weighted 0.075 0.055 0.076 0.094 0.016 -0.006 0.017 0.013 0.010 0.886
Location Shift 0.100 0.083 0.099 0.117 0.014 0.019 0.023 0.019 0.018 0.637
Log Location Shift 0.097 0.082 0.096 0.112 0.012 0.016 0.020 0.167 0.015 0.643
CFM 0.077 0.048 0.082 0.104 0.030 -0.004 0.030 0.019 0.013 0.941

0.085
Unfeasible 0.085 0.074 0.085 0.097 0.009 0.000 0.009 0.007 0.006 0.895
Naive 0.117 0.107 0.117 0.129 0.009 0.032 0.033 0.032 0.032 0.017
Weighted 0.080 0.059 0.080 0.102 0.018 -0.005 0.019 0.015 0.012 0.886
Location Shift 0.126 0.109 0.125 0.143 0.014 0.040 0.042 0.040 0.039 0.088
Log Location Shift 0.110 0.098 0.109 0.121 0.009 0.024 0.026 0.024 0.024 0.156
CFM 0.084 0.052 0.089 0.113 0.028 -0.001 0.028 0.020 0.015 0.927

Theil Index

Gini Coefficient

Table A.2: Results of Monte Carlo Exercise (Sample Size 4,000, Replications 1000, Uniform Selection Model)

Mean Treatment 
Effects

CV

Interquartile 
Range



Variables
0.51 0.46 0.50 0.05 0.01 0.81 0.83 0.84 -0.02 -0.02

(0.01) (0.01) (0.02) (0.02)** (0.02) (0.01) (0.01) (0.01) (0.02) (0.02)
0.08 0.06 0.08 0.01 0.00 0.38 0.37 0.42 0.01 -0.03

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.03)
8.50 8.26 8.38 0.24 0.11 9.03 9.31 9.19 -0.29 -0.16

(0.06) (0.07) (0.08) (0.09)*** (0.10) (0.09) (0.07) (0.09) (0.12)** (0.14)
18.42 17.86 18.32 0.56 0.10 27.34 26.64 26.94 0.70 0.40
(0.13) (0.11) (0.16) (0.17)*** (0.21) (0.31) (0.26) (0.36) (0.39)* (0.45)
0.93 0.94 0.93 -0.01 0.00 0.63 0.64 0.60 -0.01 0.03

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.03)
0.03 0.03 0.04 0.01 0.00 0.21 0.19 0.18 0.02 0.03

(0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.02)
0.37 0.42 0.41 -0.05 -0.04 0.35 0.32 0.33 0.03 0.02

(0.01) (0.01) (0.02) (0.02)** (0.02)* (0.01) (0.01) (0.02) (0.02) (0.02)
0.36 0.34 0.39 0.03 -0.02 0.41 0.42 0.40 -0.01 0.01

(0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.01) (0.02) (0.02) (0.03)
Number of Observations 1323 1293 1293 1152 1454 1454
Bootstrapped standard errors in parenthesis. *: Significant at 10%; **: Significant at 5%; ***: Significant at 1%.

Dummy for Single

Household Head 
Dummy
White Dummy

Original Sample
Rio de Janeiro Fortaleza

Previous Labor Market 
Engagement (Dummy)
Number of children

Schooling (Years)

Age

Difference 
(D)-(F)

Male Dummy

Treatment 
(A) Control (B) Weighted 

Control (C)
Difference 

(A)-(B)
Difference 

(A)-(C)
Treatment 

(D) Control (E) Weighted 
Control (F)

Difference 
(D)-(E)

Table A.3: Summary Statistics




