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1. Introduction 

 Income taxes are usually progressive in developed countries. The justification 

is to benefit the poor by income redistribution from the rich, perhaps at the cost of 

reduced efficiency. The idea slipped down the political agenda in the U.S. during 

Bush’s years, while it is gaining momentum in the new Obama administration. An 

alternative to the progressive tax system is a flat tax combined with a basic income, 

which reduces transaction costs and incentive complications. It has gained increasing 

support from various parts of the political spectrum. Several Eastern European 

countries have moved in this direction. A populist proposal has been made in the US 

to replace all welfare payments by a $10,000 p.a. basic income, combined with a flat 

tax (Murray 2006). Though generally considered sub-optimal, flat taxes have attracted 

serious interests in both politics and academia. Atkinson (1995) provides a 

comprehensive treatment of this issue.  

 Plausibly, administrative costs of multi-band tax systems increase with the 

number of bands, while the marginal benefit decreases. The advantage of progressive 

taxes over flat tax, if exists, can be best demonstrated by two-band taxes. In fact, 

many countries have slimmed down multiple tax bands to mainly two, such as in U.K. 

The literature has examined the two-band tax structure to justify progressive taxes or 

question their desirability (Sheshinski [1989], Slemrod et al [1994], and Kaplow 

[2008]). If we do not find the optimal tax rate for high income significantly higher 

than the rate for low income, the justification for progressive taxes becomes dubious. 

In this paper we investigate whether this is usually, or under which conditions, true. 

Starting from Mirlees (1971), economists have made serious efforts to 

understand the optimal tax structure. Following Mirlees’ model of general non-linear 
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taxes but finite income, Sadka (1976) and Seade (1977) show that the marginal tax 

rates for the highest and lowest income earners should be zero. But little can be said 

about the rest of the population without further specifying income distributions, utility 

functions and welfare objectives. These specifications make significant differences to 

the basic pattern of the optimal tax structure (see Tuomala [1984, 1990], Kanbur and 

Tuomala [1994], Dahan and Strawczynski (2000), Saez [2001], Tarkiainen and 

Tuomala [2007]). The differences are often too large for policy makers to follow one 

recommendation or the other. For instance, Diamond (1998) and Salanie (2003) 

obtain U–shaped tax curves, and Hindricks et al (2006) find increasing optimal 

average tax rates. But Boadway et al (2000), Hashimzade and Myles (2007) show that 

inverted U-shaped tax curves are optimal. These conflicting results do not tell us 

whether more realistic two-band taxes should be progressive or not.  

Sheshinski (1989) is the first to examine two-band taxes and, as an exception 

in the literature, assumes general utility functions and income distributions. He finds 

that the optimal taxes cannot be regressive under utilitarian and max-min welfare 

functions. This is rather surprising given the conflicting results on non-linear taxes. 

Indeed, Slemrod et al (1994) point out that Sheshinski’s proof for the utilitarian 

welfare case is flawed, because it ignores a possible discrete jump in the tax revenue 

from marginal households whose labour supplies are not unique. They further 

demonstrate that, to maximize weighted utility of two groups with different income 

levels, the tax rates can be either progressive or regressive. Moreover, using a CES 

utility function and a lognormal wage distribution, their numerical simulation shows 

that the optimal taxes are regressive under the utilitarian welfare and a rather 

egalitarian objective with heavy emphasis on the wellbeing of the poor. Salanie 
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(2003), Hindricks and Myles (2006) also obtain regressive taxes in a two-group 

economy, supporting the findings of Slemrod et al.  

While these studies tell us that regressive taxes cannot be dismissed, certain 

questions remain unanswered. First, we do not know how likely the optimal two-band 

taxes are progressive or regressive. As Sheshinski (1989) assumes a general income 

distribution, the discrete jump in tax revenue might be insignificant for some or 

possibly most distributions. Should taxes be progressive in these cases? If so, the 

examples of Slemrod et al may be exceptional rather than general.  

Secondly, the existing research has focused on utilitarian and max-min welfare 

functions. The former does not favor income redistribution and is unlikely to justify 

progressive taxes. The latter is often viewed as the most likely to yield progressive 

taxes. However, as demonstrated by Sheshinski’s example, it needs not yield more 

progressive taxes than the utilitarian welfare. Then these two welfare functions may 

not suffice to dismiss progressive taxes, and the question should be examined under 

alternative welfare functions. In the real world the purpose of progressive taxes is not 

to benefit everyone equally or a few worst-off individuals exclusively, but to help a 

large number of poor people. The desired income redistribution is supposedly to 

benefit these low-income earners at the expense of the high-income earners. The 

literature has not explicitly investigated this type of welfare functions.  

Thirdly, the literature has not clarified how the optimal tax structure depends 

on income distributions, which differ greatly across countries and may change 

dramatically as recently in the UK and US. Conclusions based on specific 

distributions are not reliable. We need simple criteria to evaluate the desirability of 

progressive taxes based on reasonable information about income distributions. 
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In the present paper we try to answer these questions. We first consider 

utilitarian and max-min welfare functions. In contrast to Sheshinski’s claim, we show 

that the optimal taxes are generally not progressive. Then, we examine the optimal 

taxes under new welfare functions, the total and weighted utility of the poor. We find 

necessary conditions for progressive taxes, which only depend on aggregate and 

easily observable features of income distributions. We further discuss the validity of 

these conditions using plausible income distributions. 

 The plan of the paper is to develop the model in the next section 2. Sections 3 

and 4 show optimal taxes are generally not progressive under utilitarian and max-min 

welfare functions. In sections 5 and 6 we derive necessary conditions for progressive 

taxes to maximize total and weighted utility of the poor. The last section concludes. 

2. The Model 

 We assume that a population, normalized to unity, consists of a continuum of 

households, whose wage is denoted by w, and is distributed on [a,b], where a ≥ 0, b is 

either finite or infinite. The cumulative function is denoted by G(w). A household’s 

pre-tax earnings y are proportional to its wage w and labour supply x, i.e., y = wx.  

 The government observes earnings, and imposes two tax rates accordingly. 

We let t1 be the marginal tax rate applicable to earnings up to a threshold y . For 

earnings exceeding y , the tax rate is t2. If a household does not earn more than y , its 

after-tax earnings are wx(1 −  t1). Otherwise the after-tax earnings are wx(1 − t2) + 

y (t2 −  t1). We let w  be the lowest wage of the households who pay t2.  

 Besides wages, every household receives a basic income, denoted by B. Given 

our unit population B represents the basic income for each household as well as for 
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the total population. The utility function for every household is quasi-linear in 

income. Given t1, t2 and y , the utility functions are assumed to be: 

 V1 = wx(1−  t1) – 
1 1/ ε

1 1/
x

ε

+

+
 + B    for w ≤ w  (1) 

 V2 = wx(1 −  t2) + y (t2 −  t1) – 
1 1/ ε

1 1/
x

ε

+

+
 + B  for w > w  (2) 

 Parameter ε  represents the elasticity of labor supply. We assume 0 < ε < 1, 

implying inelastic supply, which is consistent with empirical observations. This type 

of utility function has been used in the literature (e.g. Atkinson, 1995).  

 All tax revenue is spent on B after a fixed expenditure on public goods, P. 

Throughout the paper we assume that P is sufficiently low so that B can be positive if 

this is desirable. For simplicity we ignore P as it does not affect our solutions. Then 

we can write the basic income B as equal to the tax revenue:  

 B = t1 ( )
w

a

wxdG w∫  + t2 ( )
b

w

wxdG w∫ − (t2 −  t1) y [1 − G( w )]  (3) 

 If there is no tax, every household’s labor supply can be solved from the first-

order condition w – x1/ε = 0, as x = wε. This implies optimal-no-tax-earnings (ONTE) 

wε+1. We denote wε+1 by z. To simplify notations, we focus on the distribution of z, 

instead of w. The cumulative and density functions of z are F(z) and f(z), which can be 

derived from the wage distribution. The minimum and maximum ONTE, a1+ε and 

b1+ε, are denoted by m and M respectively. For a household with wage w , its ONTE is 

denoted by z . Obviously F( z ) = G( w ).  

 In the following sections, we examine under various welfare functions if or 

under which conditions the optimal taxes are progressive, i.e.,  > .   *
2t

*
1t
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3. Utilitarian Welfare  

 Following the literature, we choose tax rates t1, t2 and threshold earnings y  to 

maximize utilitarian welfare. Sheshinski argues that if t1 > t2, there is no interior 

solution for y , hence the optimal taxes cannot be regressive. His proof is flawed, as 

shown by Slemrod et al, as he ignores a possible jump in the tax revenue. However, as 

the magnitude of this jump depends on the income distribution, it is unclear whether 

his result still holds for some distributions. To solve this puzzle, we assume a general 

income distribution, which allows a minimum impact of the revenue jump.  

 We first consider households’ labor supply given progressive taxes, i.e., t1 < t2. 

For any y , we can divide households into three groups according to their ONTE z. 

The households with z ≤ y /(1 – t1)ε choose x = wε(1 – t1)ε, and obtain pre-tax earnings 

z(1 – t1)ε ≤ y ; those with z > y /(1 – t2)ε choose x = wε(1 – t2)ε, and earn z(1 – t2)ε > 

y ; those in the interval y /(1 – t1)ε < z ≤ y /(1 – t2)ε would choose x = y /w and just 

earn pre-tax earnings y  (bunching).  

To simplify our proof, we temporarily modify households’ bunching behavior 

as follows. We allow those bunching households to pay the lower tax rate t1 for 

earnings beyond y . Then their work efforts will not stop at y /w, but continue up to 

the first-order condition w(1 − t1) – x1/ε = 0, which implies x = wε(1 − t1)ε. This special 

treatment gives these households higher utility and adds extra tax revenue. Thus, it 

exaggerates the benefit of progressive taxes.   

 Now we have just two groups of households, separated by z  = y /(1 – t2)ε. 

Substituting their efforts wε(1 – t1)ε and wε(1 – t2)ε into (1) and (2), and denoting w1+ε 

by z, we obtain the following maximized utility: 
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  = 1̂V
1 ε

1(1 )
1

z t
ε

+−
+

 + B    for z ≤ 
2(1 )

y
t ε−

   

2̂V  = 
1 ε

2(1 )
1

z t
ε

+−
+

 + (t2 −  t1) y  + B   for z > 
2(1 )

y
t ε−

.   

Integrating  over [m, 1̂V z ],  over [2̂V z , M], and adding them together, we get 

the utilitarian welfare, over valuated due to our special treatment. 

W = 
1 ε

1(1 )
1

t
ε

+−
+

( )
z

m

zdF z∫ + 
1 ε

2(1 )
1

t
ε

+−
+

( )
M

z

zdF z∫  + (t2 −  t1)[1 – F( z )] y  + B 

( )
z

m

zdF z∫ and ( )
M

z

zdF z∫ are the total ONTE of two groups of households with z 

≤ z  and z > z . We denote them by Z1 and Z2 respectively. Using these notations and 

substituting the optimal efforts into (3), we get the over-valued basic income: 

B’ = t1(1 – t1)εZ1 + t2(1 – t2)εZ2 – (t2 −  t1)[1 – F( z )] y     (4) 

 Plug (4) into function W above, we have our over-valued utilitarian welfare: 

W = 11
1

tε
ε

+
+

(1 – t1)εZ1 + 21
1

tε
ε

+
+

(1 – t2)εZ2    (5) 

 We can show that, given t1 < t2, there is no interior solution for y  to maximize 

(5). Although (5) over valuates the welfare, it coincides with the true welfare when y  

takes an extreme value such that no bunching could occur. Hence, no interior solution 

for y  exists when we consider the true welfare function either (see Appendix A).  

 Proposition 1: The taxes maximizing utilitarian welfare are not progressive.   

 Hence the regressive taxes found by Slemrod et al (1994) represent a general 

case. Sheshinski (1989) argues that the optimal taxes must be progressive if the poor 
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have sufficiently higher marginal utility of income than the rich1. This cannot happen 

here since our quasi-linear utility implies an identical marginal utility for all. We will 

show in section 5 that even a maximum gap between marginal utilities is not 

sufficient for progressive taxes. So to justify progressive taxes under utilitarian 

welfare requires complicated twists on utility functions.  

4. Max-min objective 

Sheshinski (1989) claims that the optimal taxes cannot be regressive under a 

max-min objective. He argues that, if taxes are regressive there is no interior solution 

for y , because a higher y  always raises tax revenue. Unfortunately, this argument is 

flawed again. When t1 > t2 and y  increases, households who still earn more than y  

will pay more taxes. But some households will cut earnings below y  after its 

increase, and pay less tax. If this effect dominates the positive impact on tax revenue, 

the total tax revenue may fall, and y  may have an interior solution.  

This error is similar to that pointed out by Slemrod et al (1994) for the 

utilitarian welfare case. However, they do not explicitly discuss the case of the max-

min objective, nor provide an example of regressive taxes. It is worthwhile to give a 

counter example to Sheshinski’s claim. We use an extreme case of our utility function 

with ε = 1, and assume three households with ONTE equal to 0, 1 and 2 respectively. 

As the worst-off household earns no income, the max-min objective is to maximize 

the basic income. We can show the maximum revenue of 9/8 is obtained by  = ¾, 

 = 0, and 

*
1t

*
2t y * = 5/42. So taxes can be regressive under the max-min objective. 

                                                 
1 He does not provide a concrete example as his condition involves unsolved variables such as y .  
2 If both households pay , another solution is  = 1,  = ¼, *

2t
*
1t

*
2t y * = 3/8, and the same revenue 9/8.  

 8



 Besides his (flawed) theoretical argument, Sheshinski (1989) gives an example 

where “the optimum marginal tax increases moderately from 20 to 29 percent”. 

However, he soon recognizes that, “Allowing for two different marginal rates shows 

that the linear tax schedule, with 1 – β  = 0.5, is optimum!” (p. 212). This contradicts 

his claim that the progressive taxes of 20% and 29% are truly optimal. The next 

question is: Can optimal taxes be progressive under the max-min objective?  

 To answer this question, we first consider a special case. In our model, when 

m = 0, the worst-off households earn no income, so the max-min objective is to 

maximize the basic income. Our earlier example is such a case. To choose optimal 

taxes maximizing tax revenue, we now derive the true function of basic income, 

allowing bunching behavior. Recall that given t1 < t2, households are divided into 

three groups. Those with z > z  = y /(1 – t2)ε choose x = wε(1 − t2)ε; those with z ≤ e  

≡ y /(1 – t1)ε choose x = wε(1 − t1)ε; the remaining ones with e  < z ≤ z  choose x = 

y /w and just earn y . The total tax revenue from the three groups is: 

B = t1(1 – t1)ε ( )
e

m

zdF z∫  + t1 y ( )
z

e

dF z∫  + t2(1 – t2)ε ( )
M

z

zdF z∫  – (t2 −  t1)[1 – F( z )] y (6) 

 We examine if the taxes maximizing (6) can be progressive. Instead of looking 

at the solution of y , we allow it to be any value and obtain a stronger result. 

Proposition 2: Given any y , the optimal taxes to maximize the basic income B 

are either a single tax rate t* = 1/(1 + ε), or regressive.  

Proof: see Appendix B. 

 We then examine a general form of the max-min objective. In our model, if m 

> 0, the least productive households do work. The optimal labor supply yields utility 
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m(1 – t1)ε+1/(1+ε). The max-min objective is no longer the basic income B alone, but 

has this extra term. Then we have a general max-min objective: 

 u1 = 
1 ε

1(1 )
1

m t
ε

+−
+

 + B       (7) 

 This expression covers Sheshinski’s earlier example. It is more likely to yield 

progressive taxes than B in (6) due to the extra term. A similar situation arises when 

the worst-off households are unemployed. Even though their utilities solely rely on 

the basic income, higher t1 tends to reduce employment and tax revenue. This effect 

may increase the appeal of progressive taxes and deserves close examination. One 

way to model unemployment is to introduce a fixed cost of working. Households 

work only when they obtain higher utility than this cost. Let z  be the lowest ONTE 

of working households. As households with z < z are unemployed, the tax revenue is 

reduced from (6) by t1(1 – t1)ε ( )
z

m

zdF z∫ . So the utility of the unemployed becomes: 

 u2 = B − t1(1 – t1)ε ( )
z

m

zdF z∫       (8) 

 Moreover, unemployment can also arise due to a fixed unemployment benefit 

Bu, which will be lost if households work. A household works only when it obtains 

higher utility than this benefit. So Bu plays the same role as the fixed cost of working. 

The only difference is the additional income Bu, and a reduction of the basic income 

due to the unemployment payment, BuF( z ), which adds further incentives to lower t1 

than (8), hence more chances for progressive taxes. The utility of the unemployed is:

 u3 = B + Bu − t1(1 – t1)ε ( )
z

m

zdF z∫ − BuF( z )    (9) 
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 Welfare functions (7) – (9) provide additional incentives to lower t1 than (6) 

due to extra terms, and hence more chances for progressive taxes. But these extra 

terms are not affected by y . If we follow Sheshinski and focus on the interior 

solution for y , they have no impact. We can still use B as the objective essentially, 

and show y  has no interior solution if taxes are progressive. To simply our proof, we 

use the over-valuated tax revenue B’ in (4). It gives the same value as the true tax 

revenue B in (6) when y  takes extreme values. If the maximization of B’ does not 

yield an interior solution for y , neither does B. 

 To obtain a clean result, however, we need to impose a mild restriction on 

income distribution functions. 

 Assumption: ( )
1 (

zf z
F z− )

 does not fall when z rises.  

 This assumption requires that f(z) does not fall with z too fast. It is not very 

restrictive as income distributions are usually continuous and change smoothly. In 

particular this assumption holds in all cases, which we will discuss later.  

Proposition 3: Under the Assumption, the optimal taxes cannot be progressive 

under the max-min objectives (7) – (9).  

Proof: see Appendix C. 

 In Sheshinski’s example, the wage (earning) distribution satisfies our 

assumption. Proposition 3 confirms 20% and 29% progressive taxes are not optimal.  

 Given Propositions 1 – 3, neither utilitarian nor max-min welfare functions 

can justify progressive taxes. This should not be too surprising. As utilitarian welfare 

does not favor income redistributions from the rich to the poor, it should not be 

expected to justify progressive taxes. The max-min objective only concerns the worst-
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off individuals, who are either unemployed or unproductive, and hence not much 

affected by the low-income tax. The objective is best achieved by maximizing the 

revenue, which favors regressive taxes due to different disincentive effects of t1 and 

t2. While t2 discourages the work effort of high-income earners for every penny it 

generates, t1 only has such an effect on low-income earners, and collects tax revenue 

from both. So it is optimal to set tax rate t1 higher than t2.  

 The failure to justify progressive taxes by utilitarian and max-min welfare 

functions does not mean that they should be dismissed generally. To evaluate the 

desirability of progressive taxes, we should look for alternative welfare functions. In 

the real world, the justification of progressive taxes is not to promote the interest of 

everyone or the worst-off individuals only, but to help the poor and working class. 

The low-income tax usually hurt them and this is why progressive taxes are preferred. 

Progressive taxes seem more justifiable if we maximize the utility of the poor.  

5. Total Utility of the Poor  

 Sheshinski (1989) argues that optimal taxes maximizing utilitarian welfare 

should be progressive if the poor and rich have very different marginal utilities of 

income. Slemrod et al (1994) recognize that progressive taxes may maximize a 

weighted utility of two groups of households. They point to the same factor. When we 

put low weights on the rich, their loss is unimportant relative to the gain by the poor, 

and progressive taxes are likely. In the extreme case we can assign zero weight to the 

rich, and only maximize the utility of the poor. This is consistent with the political 

agenda of helping the poor and may give the best chance for progressive taxes.  

 We assume that the government maximizes the total utility of poor households 

whose ONTE are below an exogenously given level e , which indicates the dividing 
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line between the poor and rich. When the government imposes progressive taxes, the 

poor should face the lower rate t1, not the higher t2. This can be achieved by setting 

the threshold income y  = e (1 – t1)ε. If y  is set lower, some poor households have to 

face t2 reduce their work efforts. If y  is set higher, it only affects poor households 

through the basic income. Proposition 2 implies that there is no interior solution for 

the optimal y . Hence our choice of y  is the most reasonable one. Then independent 

decision variables are t1 and t2 only. Given t1 < t2, poor households (z ≤ e ) choose x = 

wε(1 − t1)ε, and obtain utility z(1 – t1)ε+1/(1 + ε) + B. Integrating this utility over [m, 

e ], we get the total utility of the poor, which the government maximizes: 

 W1 = 
1 ε

1(1 )
1

t
ε

+−
+

( )
e

m

zdF z∫  + F( e )B     (10) 

 We investigate whether taxes maximizing (10) can be progressive. To simplify 

notations, we denote ( )
e

m

zdF z∫  by E1, ( )
M

e

zdF z∫ by E2, and E1 + E2 by E. Note that E is 

the average ONTE of the population. Further we let e1 denote E1/F( e ), and e2 denote 

E2/[1 – F( e )]. Note e1 and e2 are the average ONTE of the poor and rich respectively. 

From their definitions we always have e1 ≤ e  ≤ e2 and e1 ≤ E ≤ e2. All of them are 

determined by the income distribution and fixed e , independent of taxes. 

Proposition 4: Under the Assumption, the optimal taxes to maximize the total 

utility of the poor cannot be progressive if 

  e1e2 ≤ e E        (11) 

Proof: see Appendix D. 

We can write (11) as e1/E < e /e2, where both sides are unit free ratios. If the 

rich are very rich, e /e2 is low, (11) is unlikely to hold, and progressive taxes are 
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possible. Conversely, if e2 ≈ e , the rich are barely richer than the top poor, (11) holds 

as e1 < E, and progressive taxes are impossible. Given e /e2, (11) is likely to hold 

when e1/E is low, i.e., the poor are very poor relative to the population. If e1 is close to 

zero, (11) must hold. By contrast, if the poor are quite “rich”, such that e1 is close to 

e , (11) must be violated as E < e2. It seems counter intuitive that optimal taxes tend 

to be regressive when the poor are very poor. The reason is the low earnings of the 

poor imply less loss when taxing them, and justify higher t1 to raise tax revenue.  

If we ignore the bunching behavior, it can be shown that (11) becomes a 

sufficient condition for progressive taxes as well. So it can be used approximately as a 

necessary and sufficient condition for progressive taxes if bunching is insignificant.  

It is not always easy to evaluate (11). We present an equivalent condition, 

which depends on the change in the ratio of average ONTE of the poor and the rich.  

Proposition 5: If f(z) > 0 around e , (11) holds if and only if e1/e2 rises with e .  

Proof: see Appendix E. 

Intuitively, a lower e1/e2 indicates a larger gap between the poor and the rich, 

and progressive taxes seem more plausible. However, it is the change, not the level of 

this ratio that matters. When e1/e2 is at its minimum, it will increase if e  rises, taxes 

cannot be progressive until the ratio reaches its peak. Then (11) holds with equality. 

Further rise in e  makes the ratio fall and the taxes may be progressive. In particular, 

if earnings are infinite, when e  approaches infinity, e1 is equal to E and e2 is infinite, 

so e1/e2 is zero. That means the ratio must be falling when e  is sufficiently large.  

Corollary: If earnings are infinite, (11) must be violated when e  is large. 
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Recall that if bunching is negligible, (11) becomes a sufficient condition for 

progressive taxes. Then the Corollary implies that, if the rich are very rich and our 

goal is to help a large poor majority, progressive taxes are justifiable. 

To illustrate how the validity of (11) depends on income distributions, we 

present plausible examples and look at a few cases with analytic solutions.  

Case 1: We first consider income distributions with finite earnings, where the 

lower and upper limits are normalized to 0 and 1. A simple density function is: 

f(z) = βzβ−1,     where β > 0, 0 ≤ z ≤ 1. 

This function satisfies our Assumption but is restricted to be monotonic. If β = 

1, it is a uniform distribution; if β < (>) 1, the density function decreases (increases) 

with z. (11) always holds3, which means progressive taxes are impossible.  

Case 2: Secondly, we consider a density function with infinite earnings. We 

assume a positive lower bound m = 1, and a decreasing density function.  

f(z) = (α − 1)z−α,    where α > 2, z ≥ 1. 

The Assumption holds. The shape of this distribution can be similar to Case 1. 

But the validity of (11) is very different. It never holds4 for e  > 1.  

                                                 

3 We have F = 1

0

e

z dzββ −∫  = e β, E  = 1

0

e

z dzββ∫  = β e β+1/(1 + β), and E = β/(1 + β). Hence e1/E = e , 

and (11) becomes e2 ≤ 1, which is guaranteed. 

4F = (α –1)
1

e

z dzα−∫  = 1 – e 1−α, E  = (α–1)1
1

1

e

z dzα−∫  = (1– e 2−α)(α–1)/(α –2), and E = (α–1)/(α –2). 

So e1/E = (1– e 2−α)/(1– e 1−α), and e2 = e (α–1)/(α–2). (11) becomes (1– e 2−α)/(1– e 1−α) < (α–2)/(α–1). 
It requires e α−1− e (α−1)+α −2 ≤ 0. The function rises with e  from 0. So (11) never holds for e  > 1. 
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Case 3: In the real world, the monotonic distribution is uncommon, and single 

peaked distributions are usually observed. We consider these cases now. We assume 

finite earnings between 0 and 1. Two density functions serve as examples. 

f(z) = ( 1)( 1)α β
β α

+ +
−

(zα – zβ),   where β > α > 0, 0 ≤ z ≤ 1. 

f(z) = 
1 1z (1 )
( , )

z
B

α β

α β

− −− ,   where β, α > 0, 0 ≤ z ≤ 1. 

Both distributions satisfy the Assumption. The second is the Beta distribution, 

which allows monotonically increasing or decreasing density functions as well. Since 

m = 0, the ratio of e1/e2 must rise when e  is very low. But it may not always be so. To 

show this, we look at a special case of both distributions, f(z) = 6z(1 – z). It can be 

shown that (11) is violated if and only if 1 > e  > 5/6 approximately 5.  

Case 4: Next let us consider single peaked income distributions with infinite 

earnings. We first look at a case with a positive minimum ONTE m = 1.  

f(z) = ( 1)( 1)β α
β α
− −

−
(z−α – z−β),  where β > α > 2, z ≥ 1. 

The Assumption is again valid. It can be shown that (11) holds with equality 

when e  = 1, but is violated when e  approaches to infinity. To illustrate how (11) 

depends on e , we consider a special case with α = 3 and β = 4, i.e., f(z) = 6(z−3 – z−4). 

Then (11) holds if and only if e  ≤ 4/36, which is the mode of the distribution.   

                                                 
5 The mean E = 0.5 and F = e 2(3 – 2 e ). As E1 = e 3(2 – 1.5 e ), we have e1 = e (2 – 1.5 e )/(3 – 2 e ). 
Also, e2 = 0.5(1 + 2 e  + 3 e 2)/(1 + 2 e ). So (11) is (2 – 1.5 e )(1 + 2 e  + 3 e 2) < (1 + 2 e )(3 – 2 e ). It is 
1 + 1.5 e  – 7 e 2 + 4.5 e 3 = (1 – e )(1 + 2.5 e  – 4.5 e 2) ≥ 0, violated if and only if 1 > e  > 5/6 roughly.  
6 We first get F = 1 – 3/ e 2 + 2/ e 3, and E1 = 3 − 6/ e  + 3/ e 2. Hence E = 3, e  = 31 e /( e + 2), and e  = 
E /(1 – F) = 3

2

2 e (2 e – 1)/(3 e – 2). Thus (11) becomes 3 e (2 e – 1) < ( e + 2)(3 e – 2), or 3 e 2 – 7 e + 4 
= ( e – 1)(3 e  – 4) < 0. This holds when e  ≤ 4/3. 4/3 is the mode as f’(z) ≥ 0 if and only if z ≤ 4/3.  
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Case 5: Finally, we consider single peaked income distributions with earnings 

covering all possible values. One such distribution often studied in the literature is the 

lognormal distribution. The Gamma distribution has similar properties. 

 f(z) = 1
2zσ π

exp[–
2

2

(ln )
2
z µ
σ
− ]  where z > 0, σ > 0, −∞ < µ < ∞. 

 f(z) = 
1

( )
zα

αα θ

−

Γ
exp(– z

θ
)  where z > 0, α, θ  > 0. 

 Both density functions satisfy our Assumption. Since e  covers the entire R+, 

e1/e2 rises from zero (0/E) and falls to zero (E/∞) at the end. (11) must hold when e  is 

small and be violated when e  is large. Though (11) is difficult to evaluate in general, 

for a lognormal distribution it is valid for a particular value of e , the median. This 

value is interesting because it divides the poor and rich equally. For any lognormal 

distribution (11) always holds when e  is equal to the median7.  

 A lognormal distribution has a median lower than the mean. If a distribution 

has a median larger than its mean, (11) always holds when e  is equal to the median8.  

 If (11) is violated, the optimal taxes may be progressive, but if the two tax 

rates are close, the advantage over a flat tax may not justify administrative costs. We 

can show that, if taxes are progressive, we have  < (1 – *
2t e /e2)/(1 + ε – e /e2) (see 

Appendix D). The ratio decreases with e /e2. When e /e2 is close to 1, the ratio tends 

to be small. For instance, in the example of Case 3, the violation of (11) requires e  > 

5/6. But when e  = 5/6, we have e /e2 = 2 e (1 + 2 e )/(1 + 2 e  + 3 e 2) ≈16/17 (see 

                                                 
7 The median is exp(µ), the mean E is exp(µ  + 0.5σ2), and E2 = Φ(σ)exp(µ  + 0.5σ2), where Φ(σ) is 
the cumulative distribution of the standard normal. So E1 = E – E2 =  [1 − Φ(σ)]exp(µ  + 0.5σ2). 
Substitute them and F = 0.5, (11) becomes 2[1 − Φ(σ)] < 0.5exp(−0.5σ2)/Φ(σ), or 4[1 − Φ(σ)]Φ(σ) − 
exp(–0.5σ2) < 0. It falls from zero and rises to zero as σ changes from zero to infinity. So (11) holds. 
8(11) becomes E1(E – E1)/ e E < ¼.  As e  ≥ E, this holds since (1 − E1/E)E1/E ≤ ¼ for any E1/E. 
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footnote 5). So  must be less than 1/(1 + 17ε). Unless ε is very small,  must be 

low, and significant tax progression is impossible. So a high value of 

*
2t

*
2t

e /e2 generally 

indicates the undesirability of progressive taxes. 

6. Weighted Utility of the Poor 

 When we maximize the total utility of the poor, we treat the poor equally. It 

seems more reasonable to give a continuous discrimination to the poor, favouring the 

poorest over the less poor. Given e  we can construct a weighted utility of the poor. 

We assign weight s(z) to poor households with z ≤ e , subject to ( ) ( )
e

m

s z dF z∫  = F( e ). 

Household z’s optimal work leads to utility z(1− t1)1+ε/(1+ε) + B. Multiply it with s(z) 

and integrate the product over [m, e ]. We get the weighted utility of the poor:  

 W2 = 
1 ε

1(1 )
1

t
ε

+−
+

( ) ( )
e

m

s z zdF z∫  + F( e )B      (12) 

 This function covers (10) as a special case with s(z) = 1. Since we want to help 

the poor, we should not assign a lower weight to poorer households than less poor 

ones. So s(z) should not increase with z. Then the value of ( ) ( )
e

m

s z zdF z∫ cannot 

exceed E1. If we divide it by F( e ), the ratio must lie between m and e1. The more 

weight on the poorer households, the closer the ratio is to m, while the less weight, the 

closer to e1. Dividing (12) by F( e ) and denoting ( ) ( )
e

m

s z zdF z∫ /F( e ) by e , we have:  

 W3 = 
1 ε

1(1 )
1

e t
ε

+−
+

 + B         (13) 

This function is identical to the utility of a poor household with ONTE e , 

which can be interpreted a representative household. To maximize (13) is equivalent 
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to maximizing the utility of this representative household. This is also consistent with 

the political agenda to help a chosen type of family in the society. 

Proposition 6: The optimal taxes to maximize the weighted utility of the poor 

cannot be progressive if  

 ee 2 ≤ e E        (14) 

Proof: see Appendix F. 

The right hand side of (14) is the same as that in (11), but the left hand side is 

smaller as  < ee 1. So (14) is more likely to hold. If (11) holds, no weighted utility of 

the poor can justify progressive taxes either. Thus (11) can be taken as a necessary 

condition for progressive taxes under most reasonable welfare functions. Moreover, 

although our model assumes constant marginal utility of income, our general utility 

weighting plays a similar role as assigning high marginal utility to the poor. Since 

more weights on the very poor cannot justify progressive taxes, our result will not be 

totally invalidated by decreasing marginal utility of income. 

 Given e , the poorer household we choose (lower ), the less likely are taxes 

to be progressive. For instance, in the example of Case 3, the violation of (11) 

requires 

e

e /e2 ≥ 16/17. As E = 0.5, (14) holds if ≤ 8/17. Progressive taxes are 

possible only if the income of the target household is close to the average. Moreover, 

as shown in Appendix F, the lower limit of  falls with . The lower  we choose, 

the higher . If we target a very poor representative, even if the taxes are progressive, 

the progression tends to be small. This confirms our earlier finding that progressive 

taxes are unlikely to be justified by an objective to help the very poor. 

e

*
1t e e

*
1t

6. Concluding remarks 
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In this paper we try to answer three questions. First we show that, progressive 

taxes are generally not justified by utilitarian and max-min welfare functions. This 

result clarifies some ambiguities in the existing literature and questions the general 

desirability of progressive taxes. However, it does not reject progressive taxes 

completely, because these two welfare functions are unlikely to justify progressive 

taxes and are not consistent with the usual political grounds for progressive taxes.  

 Our second goal is to evaluate the desirability of progressive taxes when we 

aim to help the poor exclusively. Under our new welfare functions, progressive taxes 

are possible but still far from guaranteed. We provide necessary conditions for 

progressive taxes. The conditions only depend on aggregate features of income 

distributions, which indicate how poor the poor are relative to the population and how 

rich the rich are relative to the dividing line between the poor and rich.  

 This result allows us to fulfil our third goal, to evaluate the desirability of 

progressive taxes with feasible information. For instance, unbounded earnings, 

meaning that the rich are very rich, and a high dividing line between the poor and rich 

are likely to justify progressive taxes. The opposite is true when the rich are not so 

rich (high e /e2) or the poor are very poor (low e1/E). In particular if the former ratio 

is close to one, even if taxes are progressive, the difference between two tax rates will 

be small, and hence may not justify the extra administrative costs.  

 When two-band taxes are not better than a flat tax, a more complicated tax 

structure is unlikely to be so either, as administrative costs increase with the number 

of tax bands faster than the benefit of income redistribution. Then our result raises a 

general question about the desirability of progressive taxes under certain identifiable 

conditions. Our main contribution may be summarised as showing that, progressive 

taxes are optimal only under surprisingly restrictive conditions. 
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 To ensure the tractability of the model, we assume a particular utility function 

with constant elasticity of labour supply and no income effects. It allows us to analyze 

the impact of income tax with general income distributions. Though it is restrictive, 

the compromise seems necessary to obtain clear results, and similar assumptions are 

often made in the existing literature. Though highly stylized, we hope that this paper 

contributes to the debate on a flat tax system combined with a basic income.   
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Appendix A, Proof of Proposition 1:   

We show that there does not exist an interior solution for y  if t2 > t1. When we 

differentiate (5) with respect to y , we can write ∂W/∂ y  as ∂W/∂ z ×∂ z /∂ y . When t2 

> t1, we have ∂ z /∂ y =1/(1 – t2)ε > 0. Hence ∂W/∂ y  = 0 only if ∂W/∂ z  = 0.  

We notice that ∂Z1/∂ z  = z f( z ) = −∂Z2/∂ z . So the first-order condition for y  is: 

W
z

∂
∂

 = [(1 + εt1)(1 – t1)ε – (1 + εt2)(1 – t2)ε] ( )
1
zf z

ε+
 = 0  (A) 

As f(z) ≥ 0, (A) is non-negative if (1 + εt1)(1 – t1)ε > (1 + εt2)(1 – t2)ε. Differentiate 

function (1 + εt)(1 – t)ε, we get –ε(1 + ε)t(1 – t)ε−1 < 0.  So (1 + εt)(1 – t)ε falls with t. 

If t2 > t1, we have ∂W/∂ z  ≥ 0. W always increases with y  and no interior solution for 

y  exists. Thus the optimal y  must take an extreme value, which means the 

maximum level of (5) is obtained by a single tax rate. In this case, bunching cannot 

occur, the maximum (5) represents a feasible welfare level. Recall that the true 

welfare is lower than (5), except at the extreme values of y . It cannot exceed the 

maximum (5) under a single tax rate. So the optimal taxes cannot be progressive. 

Appendix B, Proof of Proposition 2:  

Given t2 > t1 and a fixed y , we differentiate B in (6) with respect to t1 and t2. Note 

that z  does not depend on t1 and e  does not depend on t2. Hence we get 

 
1

B
t

∂
∂

 = (1 – t1)ε[1 – (1+ε)t1] ( )
e

m

zdF z∫  + t1(1 – t1)ε e f( e )
1

e
t

∂
∂

  

 + y ( )
z

e

dF z∫  − t1 y f( e )
1

e
t

∂
∂

 + [1 – F( z )] y  = 0   (B1) 

 
2

B
t

∂
∂

 = (1 – t2)ε[1 – (1+ε)t2] ( )
M

z

zdF z∫  – t2(1 – t2)ε z f( z )
2

z
t

∂
∂

  

 + t1 y  f( z )
2

z
t

∂
∂

 − [1 – F( z )] y  + (t2 −  t1) y f( z )
2

z
t

∂
∂

  = 0  (B2) 

As (1 – t1)ε e  = (1 – t2)ε z  = y , (B1) and (B2) simplify to:  
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1

B
t

∂
∂

 = (1 – t1)ε[1 – (1+ε)t1] ( )
e

m

zdF z∫  + [1 – F( e )] y  = 0  (B3) 

 
2

B
t

∂
∂

 = (1 – t2)ε[1 – (1+ε)t2] ( )
M

z

zdF z∫  – [1 – F( z )] y = 0  (B4) 

Given 1 – F( e ) > 0, (B3) implies t1 > 1/(1+ε). Given 1 – F( z ) > 0, (B4) implies t2 < 

1/(1+ε). It is impossible to have t2 > t1. If t2 = t1, (6) simplifies to t(1 – t)ε ( )
M

m

zdF z∫ . 

Hence the optimal tax rate is 1/(1+ε). 

Appendix C, Proof of Proposition 3:  

We first show that if  > , there is no interior solution for *
2t

*
1t y  to maximize B’ in (4). 

If such a solution exists, we must have ∂B’/∂ y  = 0, or ∂B’/∂ z ×∂ z /∂ y  = 0. As 

∂ z /∂ y > 0, we need ∂B’/∂ z  = 0. Substitute y  = (1 – t2)ε z  in (4), and differentiate it 

with respect to z , as ∂Z1/∂ z  = z f( z ) = −∂Z2/∂ z , we obtain 

'B
z

∂
∂

 = t2[(1 – t1)ε – (1 – t2)ε] z f( z ) – (t2 – t1)(1 – t1)ε[1 – F( z )] (C1) 

Since ∂ z /∂ y does not depend on y , ∂2B’/∂ y 2 = ∂2B’/∂ z 2×(∂ z /∂ y )2. So the sign of 

∂2B’/∂ y 2 is the same as that of ∂2B’/∂ z 2. We differentiate (C1) again and get: 

2

2

'B
z

∂
∂

 = t2[(1 – t1)ε – (1 – t2)ε][ z f’( z ) + f( z )] + (t2 – t1)(1 – t1)εf( z )(C2) 

Substitute (C1) into (C2), assuming f( z ) > 0, we find 

 
2

2

'B
z

∂
∂

 = (t2 – t1)(1 – t1)ε{[1 – F( z )] ( ) '( )
( )

f z zf z
zf z

+ + f( z )}          (C3)   

Note that [1 – F( z )][ z f’( z ) + f( z )] +  z [f( z )]2 ≥ 0 as zf(z)/[1 – F(z)] does not fall 

with z. Hence if t2 > t1, we have ∂2B’/∂ z 2 ≥ 0 when ∂B’/∂ z  = 0. So B’ does not reach 

its maximum for any interior y . The optimal y  has to be an extreme value, which 

means two taxes effectively become a flat tax. Recall that the true tax revenue B in (6) 

is lower than B’, but the difference disappears with a single tax. Hence the maximum 

B’ represents feasible tax revenue, and B cannot have an interior solution for y .  
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Appendix D, Proof of Proposition 4:  

(i) We first show that if  > , they must be interior solutions. In this proof, since 

F(

*
2t

*
1t

e ) is constant, we just write it as F. Assuming  > , we substitute (1 – t*
2t

*
1t 1)ε e  = 

y  into (6), and write the basic income as:  

B = t1(1 – t1)ε[ ( )
e

m

zdF z∫ + e (1–F)] + t2(1 – t2)ε ( )
M

z

zdF z∫  – t2(1 – t1)ε e [1 – F( z )] (D1) 

Note e  is constant, while z = e (1 – t1)ε/(1 – t2)ε. We substitute (D1) for B in (10) and 

differentiate it with respect to t1 and t2. Writing ( )
e

m

zdF z∫ /F as e1, we get: 

1
1(1 )t

F

ε−− 1

1

W
t

∂
∂

 = –(1 – t1)e1 + [1 – (1+ε)t1][E1 + e (1 – F)] + ε e t2[1 – F( z )]      (D2) 

 1
F

1

2

W
t

∂
∂

 = (1 – t2)ε−1[1 – (1+ε)t2] ( )
M

z

zdF z∫  – (1 – t1)ε e [1 – F( z )]          (D3) 

When t1 = 0, we have ∂W1/∂t1 > 0 if –e1 + E1 + e (1 – F) > 0. As E1 = Fe1 and e  > e1, 

the inequality holds. Hence, if the optimal taxes are progressive,  must satisfy the 

first-order condition ∂W

*
1t

1/∂t1 = 0. Similarly, we see ∂W1/∂t2 < 0 if t2 > 1/(1 + ε). So  

must satisfy the first-order condition ∂W

*
2t

1/∂t2 = 0.  

(ii) We now show that if  > , we must have [1 – F(*
2t

*
1t

*
2t z )] > (1 – F). If W*

1t 1 is 

maximized by  and , B must be higher when t*
2t

*
1t 2 =  than t*

2t 2 = . Note when t*
1t 2 = 

, we have *
1t z = e . Then a higher B with t2 =  implies  *

2t

          {(1– )*
2t

*
2t

ε ( )
M

z

zdF z∫  – y [1 – F( z )]} > [(1– )*
1t

*
1t

ε ( )
M

e

zdF z∫  – y (1 – F)]    

(D4) 

Note both sides of (D4) are positive. Then we have [1 – F(*
2t z )] > (1 – F) if  *

1t

 
*
2(1 ) ( )

1 ( )

M

z
t zdF

F z

ε−

−
∫ z

 ≤  
*
1(1 ) ( )

1

M

e
t zdF z

F

ε−

−
∫               (D5) 

Since (1 – )*
2t

ε z  = (1 – )*
1t

ε e , we can write (D5) as 
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( )

[1 ( )]

M

z
zdF z

z F z−
∫  ≤  

( )

(1 )

M

e
zdF z

e F−
∫  ≡ 2e

e
               (D6) 

Given  > , we have *
2t

*
1t z > e . Then (D6) holds if e2/ e  does not rise or equivalently, 

e /e2 does not fall with e , which will be shown given our Assumption. 

(iii) As e /e2 = e [1 – F( e )]/E2, it does not fall with e  if its derivative with respect to 

e  is non-negative, i.e., E2[1 – F( e ) – e f( e )] + e 2f( e )[1 – F( e )] ≥ 0. Divide this 

inequality by e f( e )E2, we get 

 1 (
( )
F e

ef e
− )  + 

2

e
e

 ≥ 1       (D7) 

If (D7) is violated for any e , e /e2 will fall as e  increases. Given the Assumption, we 

know [1 – F( e )]/[ e f( e )] does not rise with e . So (D7) will never hold as e  

continues to rise, and must be violated when e  = M.  

However, if M is finite, when e  = M, e /e2 must be equal to 1 and (D7) is valid. If M 

is infinite, e /e2 must converge to a limit, so its derivative must be zero. This implies 

the equality of (D7). As (D7) holds when e  = M, it cannot be violated for any e . 

Thus e /e2 never falls with e . So (D6) holds, and we have [1 – F(*
2t z )] > (1 – F). *

1t

(iv) We now find the lower bound of . If we substitute (1 – F) for [1 – F(*
1t

*
1t

*
2t z )] in 

(D2), it falls, and –(1 – )e*
1t 1 + [1 – (1+ε) ][E*

1t 1 + e (1 – F)] + ε e *
1t (1 – F) < 0, i.e., 

  > *
1t 1

1 1 /(1 )
e e

e e E Fε
−

− + −
      (D8) 

(v) Find the upper bound of . As (1 – )*
2t

*
2t

ε z  = (1 – )*
1t

ε e , we rewrite (D3) as 

 1
F

1

2

W
t

∂
∂

 = z (1 – t2)ε[1 – F( z )]{ 2

2

1 (1 )
1

t
t
ε− +

−

( )

[1 ( )]

M

z
zdF z

z F z−
∫  – 1} (D9) 

Given (D6), if we replace ( )
M

z

zdF z∫ /{ z [1 – F( z )]} by e2/ e , the right hand side of 

(D9) must increase. Hence we have [1 – (1+ε) ]e*
2t 2 – (1 – )*

2t e  > 0. It implies 

  < *
2t 2

2(1 )
e e

e eε
−

+ −
       (D10) 

 25



Combining  (D8) and (D10), we find impossible to have  >  if  *
2t

*
1t

 1

1 1 /(1 )
e e

e e E Fε
−

− + −
 ≥ 2

2(1 )
e e

e eε
−

+ −
     (D11) 

(D11) reduces to e [(1 – F)e2 + E1) ≥ e2[(1 – F)e1 + E1]. As (1 – F)e2 = E2 and E1 = 

Fe1, we have e E ≥ e2e1.  

Appendix E, Proof of Proposition 5:  

Differentiating e1/e2 with respect to e , it is positive if and only if e2
1e

e
∂
∂

 ≥ e1
2e

e
∂
∂

. 

Recall that e1 = E1/F( e ), e2 = E2/[1 – F( e )], ∂F/∂ e  = f( e ) and ∂E1/∂ e  = e f( e ) = 

−∂E2/∂ e . Hence ∂e1/∂ e  = [ e f( e )F( e ) – E1f( e )]/F( e )2 = f( e )[ e  – e1]/F( e ). Also, 

∂e2/∂ e  = f( e ){E2 – [1 – F( e )] e }/[1 – F( e )]2 = f( e )[e2 – e ]/[1 – F( e )]. We 

substitute theses into the inequality. Given f( e ) > 0, the inequality holds if E2( e  – e1) 

≥ E1(e2 – e ). We can write it as E e  ≥ E1e2 + E2e1 = F( e )e1e2 + [1 – F( e )]e2e1 = e1e2. 

Appendix F, Proof of Proposition 6:  

As this proof is very similar to Appendix D, we only present it briefly. The argument 

regarding  is identical to the earlier case. We focus on . Substitute (D1) into (13), 

and differentiate, we get the first-order condition: 

*
2t

*
1t

   (1 – t1)1−ε 3

1

W
t

∂
∂

 = –(1 – t1) e  + [1 – (1+ε)t1][E1 + e (1 – F)] + t2ε e [1 – F( z )] = 0(F1) 

If  > , we have [1 – F(*
2t

*
1t

*
2t z )] > (1 – F) (Appendix D). Replacing [1 – F(*

1t
*
2t z )] 

by (1 – F) must lowers (F1). So –(1 – )  + [1 – (1 + ε) ][E*
1t

*
1t e *

1t 1 + e (1 – F)] + 

ε e *
1t (1 – F) < 0. Solving this inequality we get: 

  > *
1t 1

1

(1 )
(1 ) (1 )

E e F e
E e Fε e
+ − −

+ + − −
        (F2) 

As shown in Appendix D,  < (e*
2t 2 − e )/[(1+ε)e2 − e ], so  >  is impossible if *

2t
*
1t

 1

1

(1 )
(1 ) (1 )

E e F e
E e Fε
+ − −

+ + − − e
 ≥ 2

2(1 )
e e

e eε
−

+ −
    (F3) 

One can see that (F3) holds if and only if e E ≥ e2 e . 
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Appendix G (not for publication), Proof that the Assumption holds in the five cases: 

Case 1: f(z) = βzβ−1, where β > 0, 0 ≤ z ≤ 1. Since F(z) = zβ, we have zf(z)/[1 – F(z)] = 

βzβ/(1 – zβ). It always rises with z, so the Assumption holds.  

 

Case 2: f(z) = (α −1)z−α, where α > 2, z ≥ 1. Since F(z) = 1 – z1−α, we get a constant 

zf(z)/[1 – F(z)] = α − 1. So the Assumption holds. 

 

Case 3: (i) f(z) = ( 1)( 1)α β
β α

+ +
−

(zα – zβ), where β > α > 0, 0 ≤ z ≤ 1. We first find F(z) 

= ( 1)( 1)  − 
1

1
zβ

β

+

+
). It suffices to show the following ratio rises in z.   α β

β α
+ +

−

1

1
zα

α

+

+
(

 ( )
1 (

zf z
F z− )

 = (zα+1 − zβ+1)[
11

1
zα

α

+−
+

 − 
11

1
zβ

β

+−
+

]−1    

 = [1 – zβ+1 – (1 – zα+1)][
11

1
zα

α

+−
+

 − 
11

1
zβ

β

+−
+

]−1    (G1)  

Let x ≡ (1 – zα+1)/(1 – zβ+1), we can write (G1) as (1 – x)(
1

x
α +

 − 1
1β +

]−1. Obviously, 

(G1) falls with x. Hence it rises with z if x decreases with z, which we will show next. 

Differentiating x, we find dx/dz < 0 if –(1 + α)(1 – zβ+1)zα + (1 + β)(1 – zα+1)zβ < 0, or 

–(1 + α)(1 – zβ+1) + (1 + β)(zβ−α – zβ+1) = (1 + β)zβ−α – (β – α)zβ+1 – 1 – α  < 0. This 

function monotonically increases with z, and is equal to zero when z = 1. So the 

inequality holds for any z < 1. Thus (G1) rises with z, and the Assumption holds.  

 

(ii) f(z) = 
1 1z (1 )
( , )

z
B

α β

α β

− −− , where β, α > 0, 0 ≤ z ≤ 1. F(z) = 1
( , )B α β

1 1

0
(1 )

z
x x dα β− −−∫ x . 

 ( )
1 (

zf z
F z− )

1 =  zα(1 – z)β−1[B(α,β) − 1

0
(1 )

z
x x dα β− −−∫ x ]−1  (G2) 

If α(1 – z) ≥ z(β – 1), (G2) must increases since zf(z) is non-decreasing with z. So we 

only need to consider the case of α(1 – z) < z(β – 1). Differentiating (G2), we see that 

it increases with z if and only if  
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 [B(α,β) − 1

0
(1 )

z 1x x dα β− −−∫ x ][α(1 – z) – z(β – 1)] + zα(1 – z)β > 0 (G3)  

Since α(1 – z) < z(β – 1), (G3) holds if and only if  

 L = B(α,β) − 1 1

0
(1 )

z
x x dα β− −−∫ x  + (1 )

(1 ) ( 1)
z z

z z

α β

α β
−

− − −
< 0  (G4) 

Differentiating (G4) with respect to z, we get  

dL
dz

= { −1 + 2

[ (1 ) ( 1)][ (1 ) ] ( 1) (1 )
[ (1 ) ( 1)]

z z z z z z
z z

α β α β α β
α β

− − − − − + + − −
− − −

}zα−1(1 – z)β−1

 = 2

( 1)
[ (1 ) ( 1)]z z

β
α β

−
− − −

zα(1 – z)β−1

The condition α(1 – z) < z(β – 1) implies β > 1. So L increases with z. But when z = 1, 

L is zero. Hence it must be negative given 1 > z > α/(α + β – 1), and (G3) holds. 

 

Case 4: f(z) = ( 1)( 1)β α
β α
− −

−
(z−α  − z−β), where β > α > 2, z ≥ 1. We obtain F(z) = 1 + 

( 1)( 1)β α
β α
− −

−

1

1
z β

β

−

−
 − 

1

1
z α

α

−

−
). So (

 ( )
1 (

zf z
F z− )

 = (z1−α  − z1−β)[
1

1
z α

α

−

−
 − 

1

1
z β

β

−

−
]−1  

 = (zβ−α  − 1)[
1

zβ α

α

−

−
 − 

1
1β −

]−1         (G5) 

Given β > α, (G5) rises with z, hence the Assumption holds.  

 

Case 5: (i) f(z) = 1
2zσ π

exp[–
2

2

(ln )
2
z µ
σ
− ]  where z and σ > 0, −∞ < µ < ∞. 

We obtain F(z) = 0.5[1 + erf( ln
2
z µ

σ
− )], where erf(w) is defined as 2

π
2

0

w te dt−∫ . So 

 ( )
1 (

zf z
F z− )

 = 
2

σ π
exp[–

2

2

(ln )
2
z µ
σ
− ][1 − erf( ln

2
z µ

σ
− )]−1  (G6) 

When lnz < µ, f(z) increases with z, the Assumption always holds. Hence, we let w = 

(lnz – µ)/( 2 σ). To show (G6) rises with z, we just need to show that function L = 

exp(w2)[1 − erf(w)] falls with w for w > 0. Differentiating L, we need to show that   
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 dL
dw

= 2w×exp(w2)[1 − erf(w)] – 2
π

 ≤ 0 or  

 S = w[1 − erf(w)] – 1
π

exp(–w2) ≤ 0     (G7) 

Further differentiating function S with respect to w, we get  

dS
dw

= 1 − erf(w) – w×exp(–w2) + 2w
π

 exp(–w2) = 1 − erf(w) + ( 2
π

 − 1)w×exp(–w2). 

Since erf(w) ≤ 1 and 2 > π ,  we know dS/dw > 0. Using l’Hopital’s rule, we see that 

w[1 − erf(w)] goes to zero when w approaches infinity. Since S is zero when w is 

infinite, and dS/dw > 0, we know that (G7) holds for any w.  

 

(ii) f(z) = 
1

( )
zα

αα θ

−

Γ
exp(– z

θ
), where z, α and θ  > 0. F(z) = 1

( ) αα θΓ
1

0
exp( )

z xx dxα

θ
−∫ .  

 ( )
1 (

zf z
F z− )

 =  zαexp(– z
θ

)[ ( ) αα θΓ  − 1

0
exp( )

z xx dxα

θ
−∫ ]−1  (G8) 

If z ≤ αθ, (G8) must rises with z as zf(z) is non-decreasing. We only need to consider 

the case of z > αθ. Differentiating (G8), we see it increases with z if and only if  

 [ ( ) αα θΓ  − 1

0
exp( )

z xx dxα

θ
−∫ ] zαθ

θ
−  + zαexp(– z

θ
) > 0  (G9)  

Since z > αθ, (G9) holds if and only if  

 L = ( ) αα θΓ  − 1

0
exp( )

z xx dxα

θ
−∫  + 

z
θ

αθ −
zαexp(– z

θ
) < 0  (G10) 

Differentiating (G10) with respect to z, we get  

 dL
dz

= −zα−1exp(– z
θ

) + 
1

2( )
z

z

αθ
αθ

−

−
exp(– z

θ
)[(αθ – z)(α – z

θ
) + z]  

 = 2( )
z

z

αθ
αθ −

exp(– z
θ

) > 0. 

Hence L is increasing for all z > αθ. But when z approaches infinity, L is zero. So it 

must be negative for all finite z > αθ, and (G8) cannot decrease with z. 
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