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and the infeasibility of debt Ponzi schemes eliminate any Pareto-improving role for a 
government in a competitive economy with complete markets? Is there an optimal maturity 
structure of public debt? Using a stochastic Diamond OLG model, we tackle these questions. 
We show that government debt can Pareto-improve upon market allocations through a 
mechanism that resembles a Ponzi scheme. But instead of rolling over safe debt, we can 
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This kind of dynamic risk-sharing can provide insurance against macroeconomic risk. Using 
the widespread welfare concept of interim Pareto optimality, we ensure that all generations 
voluntarily participate in our insurance scheme. Yet, the scheme cannot be replicated on 
capital markets. Exploiting information from the term structure of interest rates, we derive 
testable conditions both for dynamic efficiency and for interim Pareto optimality in terms of 
interest rates. We provide evidence that real world economies, while being dynamically 
efficient, are likely not to be interim Pareto optimal. We conclude that there may be a welfare-
improving role for a well-designed maturity structure of debt. 
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1 Introduction

Public debt issued in bonds is an important policy instrument in modern economies. For

example, bonds enable households to transfer resources to the future in order to save

for their old age. The government in turn can use debt policy to deal with economic

fluctuations. But what is the appropriate amount of debt? And, for a given present value

of debt, does the structure of debt matter, i.e, does it for example matter whether debt

is held by the public in one-period or two-period bonds? Introducing the overlapping

generations model of capital accumulation, Diamond (1965) has shown in a celebrated

contribution that government debt can cure overaccumulation of capital by issuing an

optimal level of debt. However, the OLG paradigm is silent as a theory of the optimal

structure of public debt.1 Furthermore, the empirical relevance of a role of debt policy in

the Diamond model has been questioned, because real world economies are considered to

be dynamically efficient since the influential contribution of Abel, Summers, Mankiw and

Zeckhauser (1989) [AMSZ from here on]. Seemingly related, the prevalent opinion in the

literature has been that debt Ponzi schemes are not sustainable, in spite of a safe interest

rate that has been on average lower than the growth rate of the US economy over the last

century.2

We reconsider the role of government debt in a stochastic version of the Diamond

model. Our contribution is twofold. First, maintaining the important assumption of com-

plete markets, we identify a yet undiscovered insurance role for a well-designed government

debt policy which is ruled out neither by dynamic efficiency nor by the infeasibility of

debt Ponzi schemes. Second, we show how this role is related to the term structure of

interest rates and the design of an optimal maturity structure of public debt.

Our analysis reveals that individuals who have exploited all insurance possibilities on

complete insurance markets and are thus only left with aggregate (macroeconomic) risk,

can be insured against this risk by an optimal debt policy. This debt policy implicitly

provides the individuals with high transfers in economic downturns and low transfers

in booms during their old age, smoothing their old age consumption. Thus, we do not

consider the well-known potential role of a government in providing missing insurance

1The literature on optimal fiscal policy, which has been mainly developed within the Arrow-Debreu
paradigm, has identified public debt as an instrument through which insurance against fiscal shocks can
be provided. Thereby, a well-designed structure of debt can smooth tax distortions across time and states
which arise because an exogenously given tax revenue has to be raised [Barro (1979), Lucas and Stokey
(1983)]. We are not concerned with the necessity of a government to raise taxes and thus tax distortions
are absent in our model.

2See Bohn (1995) and Elmendorf and Mankiw (1999), section 4.2.3, for a concise survey of the
literature.
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markets against the state in which an individual is born [Gordon and Varian (1988),

Blanchard and Weil (1992, 2001), Bohn (1998b)].

But how can a debt policy deal with aggregate risk? The key insight is that the

dynamic structure of the economy allows the government to implement a chain of un-

interrupted intergenerational insurance contracts. Each generation is promised a state-

contingent transfer during old age in order to reduce aggregate consumption risk. The

promise is kept by ensuring that the next generation voluntarily participates in the inter-

generational contract. This is possible by using the standard welfare concept of interim

Pareto optimality. This grand contract is rolled over generation for generation. It is

important to relate this mechanism to the one underlying debt Ponzi schemes. Instead

of rolling over safe debt, our scheme can be interpreted as one that rolls over a dynamic

insurance contract generation for generation. We call this kind of dynamic risk-sharing a

sophisticated Ponzi scheme.

We provide a complete characterization as well as testable criteria when such a scheme

is feasible and welfare-improving. In an abstract form, the necessary information to assess

the feasibility of such a contract is given by the various marginal rates of substitution

between consumption in the state today and the different states in the future. We succeed

in condensing this unobservable information into bond interest rates of different maturity.

Furthermore, in order to avoid the counterfactual assumption of state-contingent debt, we

show how the deliberate choice of the maturity structure of public debt can endogenously

generate state-contingent payoffs necessary to support a welfare improving policy. We

formally relate our approach to the literature on dynamic efficiency [Cass (1972), Zilcha

(1990), Dechert and Yamamoto (1992)]. Furthermore, motivated by the observation of

low bond interest rates over the last century, we precisely disentangle the conceptual

difference between dynamic efficiency and debt Ponzi schemes [see Blanchard and Weil

(1992, 2001) for an important first approach]. We show that under uncertainty, debt Ponzi

schemes are not ruled out by dynamic efficiency. However, neither dynamic efficiency nor

the infeasibility of debt Ponzi schemes rule out the kind of insurance that is at the heart of

our paper. We present evidence that the US economy, while being dynamically efficient,

is still likely to offer a welfare-improving role for a well-designed debt policy. Our results

rehabilitate the Diamond model of overlapping generations as a model that can identify

empirically relevant inefficiencies of competitive equilibria.

As an example of an important field of application of our results consider recent

proposals such as the social security administration’s plan to invest a portion of the

US Social Security Trust Fund in equities. The ongoing discussion is mainly guided
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by arguments contrasting two assets - debt and equity. Our analysis establishes that

models considering debt as a single asset neglect an important source of uncertainty.

The structure of debt matters for providing individuals today with insurance against

macroeconomic risk when they retire. Roughly speaking, our results establish that the

Trust Fund payments to a particular generation should be supplemented in economic

downturns. The debt due to the supplementary payments should be rolled over similar

as in a debt Ponzi scheme, yet in a more sophisticated way. Since the current structure

of debt in the Social Security Trust Fund is not deliberately designed in order to provide

such an insurance, there is likely to be a welfare-improving role in reconsidering the debt

portfolio of the Trust Fund.

The paper is organized as follows. Section 2 describes the stochastic Diamond model.

Section 3 develops a new role for debt in the stochastic Diamond model. Section 3.1 gives

a complete characterization of interim Pareto optimality in a competitive equilibrium.

Section 3.2 derives testable criteria for suboptimality. Section 3.3 considers the full scope

of a government in providing insurance against macroeconomic risk. Section 4 considers

potentially relevant restrictions on the set of Pareto-improving policies. Section 4.1 focuses

on dynamic efficiency, and section 4.2 deals with debt Ponzi schemes. In section 4.3, we

discuss in detail the relationship of our approach to the one adopted by AMSZ. Section 5

presents some empirical evidence about dynamic efficiency and in particular about interim

Pareto optimality of the US economy. Section 6 concludes.

2 The Model

We consider a stochastic version of the Diamond (1965) model. Uncertainty enters the

model via shocks to the production technology. Time is discrete, starts at 0 and extends

infinitely into the future. There is production and a consumption-saving decision at every

point of time.

Production The production technology at time t is described by a function F : R2
+×At →

R+ where F (Kt, Lt, θt) is the output produced at time t, given the capital stock Kt,

labor input Lt and the current stochastic shock θt. The perishable good produced by the

technology is the only good in the economy and is used for production and consumption.

For simplicity, the depreciation rate rate is assumed to be 1.

More specifically, the production function satisfies:

• F (Kt, Lt, θt) is homogeneous of degree 1 in Kt, Lt, strictly increasing, strictly con-

cave and twice continuously differentiable inKt, Lt. Further, F (0, Lt, θt) = F (Kt, 0, θt) =
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0. It also satisfies the Inada conditions lim
Kt→0

FK (Kt, Lt, θt) = ∞ and

lim
Kt→∞

FK (Kt, Lt, θt) = 0. As usual, define f (kt, θt) = F
(
Kt

Lt
, 1, θt

)
, the per capita

production function. It inherits from F the following properties:

f ′ = ∂f
∂k
> 0, f ′′ < 0, f ′ (0, θt) = ∞, f ′ (∞, θt) = 0.

Uncertainty W.l.o.g, for each period in time t ≥ 1, the set of production shocks, At = A,

is assumed to have finite cardinality and A0 is assumed to be single valued.3 We assume

that there is a well-defined system of conditional probabilities qt+1 (θt+1|σ) where σ :=

(θ0, θ1, θ2, ..., θt) and the qt+1 (θt+1|σ) are strictly positive for every θt+1 ∈ At+1.

Since the production shocks are the only source of uncertainty in the economy, it is

possible to describe the uncertainty by a date-event tree, where σ0 = {θ0} is the root and

σ = (θ0, θ1, θ2, ..., θt) is a generic node. If we want to stress the date of a node we write

σt. The set of nodes at time t is therefore A0 × A1 × A2 × ... × At and denoted by Σt.

The date-event tree is denoted by Γ and in slight abuse of notation we will identify it

with the set of its nodes ∪t≥0Σt. Every node σ = (θ0, θ1, θ2, ..., θt) has a unique immediate

predecessor, denoted σ−1, which is equal to (θ0, θ1, θ2, ..., θt−1). σ
− denotes the set of all

predecessor nodes of node σ. σ+ denotes the set of nodes which are immediate successors

of node σ, i.e. the set of all nodes for which σ is the immediate predecessor. A path is

a sequence of nodes {σt}t≥0 such that σt+1 ∈ σ+
t . A generic path will be denoted by σ∞

and σ∞t denotes the t-th coordinate of the path σ∞. t (σ) denotes the period of time at

which event σ ∈ Σt occurs.

Households At each node in the tree one consumer is born who lives for two periods.4

Hence agents are distinguished according to date and state of nature in which they are

born. Therefore, agents can be identified with the node at which they are born, so that

in the rest of the paper the agent born in node σ will be called agent σ or generation σ.

Since time starts at 0 we have one initially, i.e. at t = 0, old agent (born in period

−1 so to speak). This agent has preferences which are strictly monotone in the single

consumption good in period 0. His consumption in period 0 is denoted by co (σ0).

Consider now all other agents. Due to the production shocks they have an uncertain

second period of life. The consumption set of agent σ is R1+S
+ , where S is the cardinality

of A if the agent is born in period t. His von Neumann-Morgenstern preferences are

described by a function Eσ u (c (σ)) :=
∑

θt+1∈A
qt+1 (θt+1|σ) ·u (cy (σ) , co ((σ, θt+1))) . Here

3We could also assume that the cardinality depends on the node as long as it is uniformly bounded
above.

4Thus, there is no population growth. This assumption is only made for the simplicity of exposition.
It can easily, at the cost of some additional notation, be dispensed with. We will consider a growing
economy in section 5.
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we denote by c (σ) =
(
cy (σ) , (co (σ′))σ′∈σ+

)
the consumption vector of agent σ, cy (σ) is his

consumption in his youth, (co (σ′))σ′∈σ+ is his consumption in the different states of nature

in his old age. The Bernoulli function u : R2
+ → R is twice continuously differentiable (in

the interior of its domain), strictly increasing and with negative definite second derivative.

In his youth, each agent receives a wage income w (σ) from inelastically supplying one

unit of labor. In old age, agents receive interest payments from his savings. Given wage

income w (σ) and returns r (σ′) ∈ R++ (σ′ ∈ σ+) to savings s (σ) , the household born in

σ solves:

max
(cy(σ),s(σ),(co(σ′))σ′∈σ+)∈R2+S

+

Eσ u (c (σ)) (1)

s.t. cy (σ) + s (σ) = w (σ)

co (σ′) = r (σ′) · s (σ) .

Since there is only one individual born per node, markets are trivially complete once an

individual is born (sequentially complete markets) [see Dutta and Polemarchakis (1990)].

If there were several agents born per node, we would simply have to assume that markets

are sequentially complete. All our results would still hold.

Firm The firm’s problem is to decide after the shock realization at each node σ how much

capital to invest. This capital is then used to produce output at the successor nodes of σ.

Given the probabilities and returns, the firm maximizes expected profits for some system

of supporting prices ψ (σ) . Let k (σt) denote the investment undertaken by the firm in

state σt. The firm’s problem at a node σ at time t is then as follows:

max
k(σ)≥0

Eσ [ψ (σ′) · f (k (σ) , θt+1)]− ψ (σ) · k (σ) , (2)

where Eσ [ψ (σ′) · f (k (σ) , θt+1)] =
∑

θt+1∈A
qt+1 (θt+1|σ) · ψ (σ, θt+1) · f (k (σ) , θt+1).

Next, we define feasible allocations in this economy, the notion of interim Pareto

optimality and a competitive equilibrium. For notational convenience allocations will

sometimes be simply denoted by (c, k) in the rest of the paper.

Definition 1 A feasible allocation (given initial capital k−1) is a tuple (c, k)

= (co (σ0) ,
((
cy (σ) , (co (σ′))σ′∈σ+

))
σ∈Γ

),
(
(k (σ))σ∈Γ , k−1

)
) such that

1. co (σ0) + cy (σ0) + k (σ0) = f (k−1, θ0),
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2. For σ ∈ Γ : co (σ′) + cy (σ′) + k (σ′) = f (k (σ) , θ) ∀σ′ = (σ, θ) ∈ σ+.

The concept of Pareto optimality adopted in this paper is now introduced [Muench (1977),

Peled (1982)].5

Definition 2 A feasible allocation (c, k) is called interim Pareto optimal if there exists

no other feasible allocation
(
ĉ, k̂

)
such that ĉo (σ0) ≥ co (σ0) and Eσu (ĉ (σ)) ≥ Eσu (c (σ))

for all σ ∈ Γ, with at least one strict inequality.

Note that this definition considers agents born in different states as distinct agents. Then

the usual concept of Pareto optimality is applied to this set of agents. This definition of

optimality is also used in AMSZ. It implies that we do not call an equilibrium suboptimal

if an individual could improve by insurance against the state in which he is born. This is

an important assumption since an individual obviously cannot buy insurance against the

state in which he is born. In this sense markets are naturally incomplete in a stochastic

OLG model opening a source of welfare improvements for a government by providing

insurance against the state in which an individual is born. We do not consider these

improvements by the use of interim Pareto optimality as a welfare criterion. Together with

the fact that markets are sequentially complete we may conclude that complete markets

are an important maintained feature of our setup throughout the paper. This feature of

our model distinguishes our analysis from Gordon and Varian (1988), Blanchard and Weil

(1992, 2001) and Bohn (1998b) who consider ex ante Pareto-optimality and thus have a

setup with incomplete markets opening a much broader insurance role for a government.

Now, we introduce the concept of a competitive equilibrium for the economy. We

define a list of returns (r (σ))σ∈Γ as r and a list of household incomes (w (σ))σ∈Γ as w.

Definition 3 (c∗, s∗, k∗, r∗, w∗, ψ∗) is a competitive equilibrium if

1. (c∗, k∗) is a feasible allocation,

2. given wages w∗ and returns r∗, (c∗, s∗) solves (1) for every household,

3. Eσ [ψ∗ (σ′) · f ′ (k∗ (σ, θt+1))] = ψ∗ (σ) for all σ ∈ Γ and σ′ = (σ, θ) , i.e. firms

maximize profits given ψ∗.

4. k∗ (σ) = s∗ (σ) ∀σ ∈ Γ, r∗ (σ′) = f ′(k∗ (σ) , θt+1), w
∗ (σ) = f (k∗ (σ−1) , θt) −

f ′ (k∗ (σ−1) , θt) · k∗ (σ−1) ∀σ ∈ Γ.

5The term interim Pareto optimal is not used consistently in the literature. We follow the terminology
of Demange and Laroque (2000).
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All conditions in this definition are standard: feasibility, utility maximization, profit max-

imization, market clearing and marginal productivity factor prices. Note that for a given

k∗ the supporting prices in condition 3 are not uniquely determined. Note furthermore,

that the solution to the firm problem will be interior due to the Inada conditions.

A convenient and standard assumption we will make is to assume that the upper bound

on output sup
θ∈A

{k |f (k, θ) = k} is finite, so that our economy is bounded, and therefore,

all allocations will be bounded above.

3 A New Role for a Dynamic Debt Policy

In this section, we will give a complete characterization of cases in which a competitive

equilibrium in our economy is not interim Pareto optimal. We will give an extensive

interpretation of the possible inefficiencies we identify [section 3.1]. We will furthermore

derive a set of sufficient conditions for suboptimality which are particularly simple to

verify empirically since they are only stated in terms of bond interest rates [section 3.2].

Finally, we will explore the full scope of dynamic debt policy by deriving a second welfare

theorem. This leads to the conclusion that in the case of suboptimality, the government

can implement Pareto-improving and Pareto optimal allocations by providing insurance

against macroeconomic risk through a dynamic debt policy although all markets are

complete [section 3.3].

3.1 Characterization of Interim Pareto Optimality

Let us first give the following definition of a transfer pattern. This definition is intimately

related to the theme at the heart of our paper: dynamic insurance through debt policy.

Definition 4 A transfer pattern λ is a function λ : Γ → [0, 1] with the following proper-

ties:

1. There exists a partition of Γ: Γ = Γ+

·⋃
Γ0

·⋃
{σ0} with Γ+ 6= ∅.

2. λ (σ0) = 1.

3. σ ∈ Γ0 if and only if λ (σ) = 0 and σ ∈ Γ0 implies for all σ′ ∈ σ+ that σ′ ∈ Γ0.

4. If σ ∈ Γ+ then
∑

σ′∈σ+ λ (σ′) = 1.
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Let us give an intuitive explanation of the definition. It says that 1. Γ can be divided

into three disjoint subsets, one set of nodes Γ0 where no transfers are assigned, one set of

nodes Γ+ associated with positive transfers and the root σ0. 2. As a convenient convention

transfer weight one is assigned to the root. 3. If no transfers are assigned at one node

then no transfers are assigned at all successor nodes of this node. 4. Most importantly,

once transfers are assigned at one node σ then they are assigned at some successor node(s)

σ′ ∈ σ+. Furthermore, transfers are normalized so that their weights sum up to one. The

value λ(.) of the transfer pattern can be interpreted as follows. Consider λ (σ′) and λ (σ′′)

at two arbitrary nodes σ′, σ′′ ∈ σ+ and let T o (σ′) and T o (σ′′) be the value of transfers

to the old in those nodes. It then holds that λ(σ′)
λ(σ′′)

= T (σ′)
T (σ′′)

. The transfer pattern λ thus

describes the relative size of transfers in different states at one point of time. It will turn

out that from an insurance perspective high λ’s should be chosen for nodes at which a

bad shock realized for the old generation.

In order to present our first result, we need one more piece of notation. We define

the marginal rate of substitution between young age consumption in node σ and old age

consumption in node σ′ = (σ, θ′) ∈ σ+ as

mrs (σ, σ′) =

∑
θ∈A q (θ |σ ) · u1 (cy (σ) , co (σ, θ))

q (θ′ |σ ) · u2 (cy (σ) , co (σ, θ′))
,

where ui denotes the partial derivative with respect to the i-th argument. It specifies the

amount of consumption at node σ′ required to compensate for the loss of one consumption

unit at node σ. A low marginal rate of substitution will be a crucial element in identifying

states where only a low insurance benefit (compensation during old age) has to be paid to

an individual in exchange for one dollar of insurance contribution (payment during young

age).

Now we can state our first main result:

Theorem 5 Let (c∗, s∗, k∗, r∗, w∗, ψ∗) be an interior competitive equilibrium which is bounded

below. Then a necessary and sufficient condition for the competitive equilibrium alloca-

tion not to be interim Pareto-optimal is that there exists a transfer pattern λ and a finite

positive number A such that for every path σ∞ =(σ∞0 ,σ
∞
1 , ...) in the tree

∞∑
t=0

t∏
s=1

λ (σ∞s ) ·mrs
(
σ∞s , σ

∞
s−1

)
≤ A <∞. (3)

The main idea of the proof is to show that a competitive equilibrium is interim Pareto

optimal if and only if there is no possibility of Pareto improvement by joint feasible
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deviations (lower consumption and investment of the young) of the initial competitive

consumption-investment plan. In particular, these joint deviations make redistributive

schemes possible that are not available in the analysis of infinite-horizon production prob-

lems when dynamic efficiency is considered or in pure exchange models. We have to deal

with deviations that do not only involve a steady decrease in the capital stock [as in Cass

(1972) under certainty and Zilcha (1990) under uncertainty] and with deviations that do

not only involve pure transfers from young to old in every period [as in Balasko and Shell

(1980), Okuno and Zilcha (1980) under certainty and the pure exchange analogue to our

result, Chattopadhyay and Gottardi (1999)].

To understand the economic content of this characterization let us highlight how the

transfer pattern will look like in order to identify a suboptimal allocation. This transfer

pattern is part of an intergenerational dynamic insurance contract. Consider first the

static part of this insurance and assume for simplicity that each state occurs with the

same probability. The choice of the transfer pattern should be guided as the choice of any

insurance contract. High benefits should be paid in bad states (states where consumption

without insurance benefits is low), low or no benefits should be paid in good states (states

where consumption without insurance benefits is high). Whether a state σ′ is worse than

another state σ′′ can be inferred by inspecting the marginal rate of substitutionsmrs(σ′, σ)

and mrs(σ′′, σ). Of course, a low marginal rate of substitution indicates low consumption

and thus a bad state. So from a static insurance perspective high transfer should be paid

whenever the marginal rate of substitution is low. Now recall from the interpretation of

a transfer pattern that relatively high transfers correspond to high λ’s. Taking a look at

the characterization in equation (3) shows that this strategy - high λ’s when the marginal

rate of substitution is low and vice versa - is indeed useful in order to achieve convergence

of the sum and thus in order to identify suboptimality of an allocation in our model.

So far we have shown that our argument is consistent with the standard static view of

an insurance. These static considerations taken by themselves cannot indicate any form

of suboptimality since markets are complete in our model. A truly dynamic perspective

enters the picture if one realizes that the insurance benefits of one generation are raised

through contributions from the next generation. Therefore, it may be a good idea to sell

insurance to one generation only if subsequent generations will demand low compensation

for a dollar of contributions raised from them. Let us be more specific.

Consider an individual who has exploited all insurance possibilities on private markets.

He is left with aggregate (macroeconomic) risk during old age. He would be willing to pay

an insurance premium for a further smoothing of his consumption across states during
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old age - for an insurance against macroeconomic risk. Suppose the government promises

to smooth consumption of this individual when he is old, i.e. the government promises to

pay high insurance benefits in bad states and low or no benefits in good states. How can

the government keep this promise? It can try to find a second, younger individual who

himself is willing to pay an insurance premium for a smoother consumption during his

old age. The government then extracts an insurance premium from this second individual

and pays it as an old age benefit to the first individual. When the second individual is

old the government looks for a third individual etc.

Now two things have to be ensured. First, the government has to ensure that the

transfers lead to a smoother consumption of the recipient of the transfer during his old

age. Second, the transfers have to be financed in a way that is feasible in the long run.

The characterization in theorem 5 tells us how this can be achieved. Transfers should be

high along paths with low marginal rates of substitution and vice versa. This strategy

makes transfers cheap in the sense that the promise to a contributor makes him better

off but involves low average benefits during his old age, when he receives benefits in

exchange for the contributions he paid during his young age. This mechanism establishes

an uninterrupted chain of intergenerational insurance contracts. The promise made in

one insurance contract can only be kept if another insurance contract with the following

generation is established. The government ensures - as in a debt Ponzi scheme - that this

chain of contracts is rolled over infinitely into the future.

Compare this scheme to a deterministic setting. There, the role of debt is restricted

to debt Ponzi schemes which roll over safe debt infinitely into the future. The well-

known conditions for dynamic efficiency then rule out this kind of scheme. Uncertainty

adds a new dimension to the role of a government. Debt may additionally serve as

a means of intergenerational risk sharing. The risk that can be insured is aggregate

(macroeconomic) risk. It is crucial that these risk sharing opportunities do not result

from any form of market incompleteness, but from the dynamic structure of the economy.

Thus, risk sharing in our model works through a mechanism that resembles the idea of

a Ponzi scheme, but is more sophisticated. Instead of rolling over debt, we can interpret

our scheme as one that raises contributions and then rolls over an insurance contract in

exchange for the contributions. This mechanism of a sophisticated Ponzi scheme is a form

of dynamic risk sharing and is provided by promises of an infinitely-lived government.
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3.2 Suboptimality and the Term Structure of Interest Rates

The previous theorem is very satisfactory from a purely theoretical point of view since it

gives a complete characterization of Pareto optimal and thus also suboptimal equilibria.

The problem faced by the characterization from a more applied point of view is the fact

that the theorem is not stated in terms of observables. Neither are the marginal rates

of substitution directly observable nor is the transfer pattern specified so that a certain

equilibrium allocation could be tested for Pareto optimality. Furthermore, it is considered

to be problematic to implement state-contingent policies and one would prefer policy

instruments which are less demanding and exist in real world economies [see Aiyagari,

Marcet, Sargent, Seppälä (2001) and Angeletos (2000)].

Our next result meets the shortcomings of the previous theorem and also indicates

how an optimal or improving policy may look like. It highlights the applicability of the

previous theorem since all the results are derived by special choices of a transfer pattern.

This will become clear in the proof and in the interpretation following the theorem.

The observables we choose are n-period bond interest rates and the corresponding policy

instrument is the choice of the maturity structure. So what is the role a portfolio of

non-contingent debt can play?

Consider an example with a simple policy. The government issues two-period bonds

to a young (first) generation and transfers the receipts to the old generation (generation

zero). When the first generation is old, the two period bonds are sold for the endogenous

and state-contingent price of one period bonds to the then young (second) generation

which holds these bonds until maturity. This state-contingency is beneficial for the first

generation whenever the price of one period bonds is high in economic downturns and

low otherwise.6 In this case, issuing two-period bonds and the implicit state contingency

of the resale price helps smoothing consumption in old age. In this example only the first

generation is offered an insurance whereas the second generation transfers income to their

old age with the help of one-period bonds which of course yield equal returns across states.

This overrolling pattern of one-period and two-period bonds is then extended infinitely

into the future.

6We acknowledge that the empirical evidence on the cyclicality of the real interest rates tends to be
in favor of countercyclicality. This in turn implies a positive correlation between bond prices and output.
However, we do not intend to propagate a specific restructuring of the debt portfolio in our example.
Its only objective is to provide the intuition underlying the two results in this section. More elaborate
policies may be chosen whenever one of the criteria indicates suboptimality. If urged to set an example
that fits the data, we could change the above policy slightly by issuing nominal debt instead of real
debt. The reason is that the empirical evidence on nominal debt is in favor of our policy, as nominal
bond interest rates are contemporaneously procyclical and thus the correlation between prices of debt
and output is negative [see e.g. Stock and Watson (1999), King and Watson (1995) and Fama (1990)].
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Consider a second example with a complete overrolling of insurance in the sense that

every generation (not only every second generation as in the previous example) is pro-

vided with an insurance contract. Again the government starts issuing two period bonds

to a young generation. But in the subsequent period the government buys these one-

period bonds, of course at the prevalent market price, and finances this by issuing again

two-period bonds. In this example all generations are provided with insurance against

macroeconomic shocks by rolling over two-period bonds.

It is important that in this scheme the young generation provides insurance against

a risk for the old generation that is undiversifiable on markets. The young generation

in turn obtains insurance during old age by the newly born young generation. Due to

our interim optimality criterion all agents voluntarily participate in this scheme. Of

course, these are only two examples adapted to an environment with simple (negative)

correlation between prices of one period bonds and output. Depending on preferences

and uncertainty, encoded in prices, one can think of much more elaborate designs of debt

portfolios in order to improve welfare.

Our next result states sufficient conditions in terms of observables for suboptimality.

Furthermore, the implementing transfers required to derive these conditions are equal to

the transfers resulting from a thoughtful issuance of multi-period bonds as sketched in

the two examples. Let us first embed the notion of an n-period bond in our framework.

Let p (σ) be the contingent claim price of consumption at node σ. Then the gross rate

of return for n-period bonds can be defined as Rn (σ) = p (σ) /
∑

σ′∈σ+
n
p (σ′), where σ+

n

denotes the set of nodes which succeed the node today σ ∈ Σt in n periods.7 We can now

state:

Theorem 6

1. Uniform Suboptimality If the risk-free gross rate of return for n-period bonds

Rn (σ) is smaller than some constant c < 1 at every node in a competitive equilib-

rium, the equilibrium allocation is not interim Pareto optimal.

2. Overrolling Safe Debt If for every path σ∞ in Γ the expression
∑∞

t=1

∏t
j=0R1

(
σ∞j

)
is uniformly (over all paths) bounded, the competitive allocation is not interim Pareto

optimal.

3. Selective Overrolling of Insurance If for every path σ∞ in Γ the expression∑∞
t=1

∏t
j=0Rn

(
σ∞j·n

)
is uniformly (over all paths) bounded, the competitive allocation

7For notational simplicity, the rate of return is given for the full n periods, not as interest rate per
period.
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is not interim Pareto optimal.

4. Complete Overrolling of Insurance If for every path σ∞ in Γ the expression∑∞
t=1

∏t
j=1

R2(σ∞j−1)
R1(σ∞j )

is uniformly (over all paths) bounded, the competitive allocation

is not interim Pareto optimal.

The proposition highlights that the term structure of interest rates is an important

and simple instrument to link the theoretical possibility of suboptimality to empirically

testable criteria. Alternatively, we could also have derived a different sufficient condi-

tion for suboptimality in terms of contingent claims prices. Since the seminal paper by

Breeden and Litzenberger (1978) it is well-known in financial economics that contingent

claims prices can be recovered from option prices so that such an approach would also

be testable in principle. However, in contrast to bonds, options only exist for a relatively

short period in history. Therefore, we have chosen to extract the information necessary

to assess the suboptimality of the economy from the term structure of interest rates .

Let us discuss the four conditions for suboptimality. Condition 1 can be easily un-

derstood if it is compared to the well-known steady state condition for suboptimality in

the Diamond (1965) model. There, a steady-state equilibrium is suboptimal if and only

if the real net interest rate is smaller or equal to the growth rate of the economy (which

is 0 in our context since we have assumed no growth). Condition 1 which is stated for the

gross interest rate can be interpreted as a generalization that holds uniformly across time

and states. The criterion highlights what we mean by restrictions in terms of observables.

But it is so strong that it is hardly of any empirical relevance.

Consider now condition 2 which is the starting point of our use of the term structure.

The condition stated in terms of one-period bonds is equivalent to the Cass (1972) criterion

for inefficiency under certainty. As is well-known, this criterion is closely related to the

overrolling of risk-free debt in order to improve upon the status quo. Since this not an

insurance scheme we have in mind, we will defer a discussion of this criterion to section

4.2 where we deal with debt Ponzi schemes.

Conditions 3 and 4 make use of the maturity structure of government debt. They

correspond to real intergenerational insurance contracts as described in the previous sec-

tion and in the examples above. Insurance is provided by making use of the endogenous

state-contingency of the market-value of n-period bonds. To see this, recall the overrolling

of two-period bonds as described in the second example above. In this scheme, the young

generation in state σt, i.e. at time t, buys two-period bonds at price R−1
2 (σt). Selling

these bonds to the government after one period, i.e. in t + 1, results in a payoff equal

to the one-period bond price R−1
1 (σt+1) for the then old generation, which is random
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at time t. The return for the household of this policy equals the ratio of these prices

R−1
1 (σt+1)/R

−1
2 (σt) = R2(σt)/R1(σt+1). The key point is that this return from a time t

perspective is state-dependent. It shows up in condition 4 since this condition describes

the overrolling of an insurance contract instead of overrolling safe debt. Therefore R2

R1

appears in condition 4 whereas R1 was the relevant rate of return in condition 2.

Now consider condition 3 for the case n = 2 which corresponds to the first exam-

ple above. Here two-period and one-period bonds are issued in alternating order. The

(stochastic) return for households receiving in σt two-period bonds is R2(σt)/R1(σt+1) as

just described. Households of the next generation receiving one-period bonds in σt+1 get

a state-independent return of one unit of the consumption good in σt+2 whereas they pay

R−1
1 (σt+1) in σt+1. The product of these two returns is R2(σt)/R1(σt+1) · 1/R−1

1 (σt+1) =

R2(σt) which is what shows up in condition 3. This product is what old households in

σt+2 receive per unit of debt issued at σt. Roughly speaking, this term measures the

(stochastic) growth of debt from σt to σt+2.

The feasibility of all our overrolling schemes is guaranteed if the respective condition

in the theorem is met. A prerequisite for assessing the feasibility of any roll-over scheme

is a non-exploding amount of real government debt. As we saw, the growth rate of debt

is closely related to the rate of return corresponding to a particular scheme. This rate of

return was given by R1 for overrolling safe debt, by Rn for selectively overrolling insurance

and by R2/R1 for a complete overrolling of insurance. The reason why R2

R1
appears in some

of the expressions is that what exactly matters for successfully providing insurance are

the relative returns of two-period and one-period bonds. Note that with countercyclical

one-period bond prices, the price of a two-period bond is larger than the expected price

of holding succesively two one-period bonds: R−1
2 (σt) > R−1

1 (σt) · EσtR
−1
1 (σt+1). So

convergence in our examples is more likely than with acyclical or procyclical bond prices.

The lower the price of two period bonds the higher is the insurance implicit in two period

bonds. Of course, one can think of many more elaborate policies making use of the whole

spectrum of n-period bonds. We hope that the general idea and the potential applicability

of our insurance scheme has become clear so far. In the next section, we will explore the

full scope of debt policy.

3.3 The Scope of Government Debt as Insurance against Macroe-

conomic Risk

In the previous sections we have identified the causes for the possible suboptimality of

competitive equilibria and also pointed out some particularly simple instruments to Pareto
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improve upon a competitive equilibrium. In this section, we answer the question how much

a government can achieve if it exploits the full spectrum of government debt policies.

The main result of this section is that any interior suboptimal allocation can be Pareto

improved through a debt policy that leads to an interim Pareto optimal allocation.

A prerequisite for the analysis in this section is the observation that the characteri-

zation in theorem 5 which was derived for an economy without a government debt also

applies for an economy with government debt. Under certainty, this was already men-

tioned by Balasko and Shell (1981). This is important since we want to apply the analysis

to and improve upon equilibria in real world economies in which considerable debt already

exists.

Let us now develop our analysis step by step. First, we introduce the notion of

short-run optimality. We say an allocation (c, k) is short-run optimal if for every τ ≥ 1,

the truncated allocation (c (σ) , k (σ)){σ∈Γ|t(σ)≤τ} is Pareto optimal in the finite economy

generated by truncation of the original economy with preferences of the young agents

born at some node σ at time τ given by u (c (σ) , k (σ)) = c (σ) + k (σ) .

Before we can prove a version of the second welfare theorem, namely that short run

optimal allocations can be supported as a competitive equilibrium with appropriate trans-

fers, we need one more definition. It generalizes the definition of a competitive equilibrium

to a setting with transfers. In the following, T y (σ) is a transfer to the young household,

T o (σ) is a transfer to the old household in node σ and T = (T y, T o) summarizes all

transfers.

Definition 7 A competitive equilibrium with transfers is a tuple (c∗, s∗, k∗, r∗, w∗, ψ∗, T ∗)

such that

1. (c∗, k∗) is feasible,

2. (c∗, s∗) solves

max
(cy(σ),s(σ),(co(σ′))σ′∈σ+)∈R2+S

+

Eσ u (c (σ)) (4)

s.t. cy (σ) + s (σ) = w∗ (σ) + T y∗ (σ)

co (σ′) = r∗ (σ′) · s (σ) + T o∗ (σ′) , ∀σ′ ∈ σ+

3. Eσ [ψ∗ (σ′) · f ′ (k∗ (σ, θt+1))] = ψ∗ (σ) for all σ ∈ Γ and σ′ = (σ, θ) , i.e. firms

maximize profits given ψ∗.
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4. k∗ (σ) = s∗ (σ) ∀σ ∈ Γ, r∗ (σ′) = f ′(k∗ (σ) , θt+1), w
∗ (σ) = f (k∗ (σ−1) , θt) −

f ′ (k∗ (σ−1) , θt) · k∗ (σ−1) ∀σ ∈ Γ.

5. T y∗ (σ) + T o∗ (σ) = 0 ∀σ ∈ Γ.

Let us now turn to our next result, a second welfare theorem:

Proposition 8 Any interior short run optimal allocation can be supported as a competi-

tive equilibrium with transfers.

Since each interim Pareto optimal allocation is obviously short run efficient, the proposi-

tion implies that all interim Pareto optimal allocations can be supported as an equilibrium

with transfers. This second welfare theorem is first of all a theoretical result. However,

its relationship to (possibly non-stationary) government debt as a policy instrument is

straightforward.

Remark 9 Every interim Pareto optimal allocation can be implemented with a govern-

ment debt policy.

In fact, it is shown in the appendix that the necessary transfers when young T y in the

second welfare theorem which are possibly involuntary can be implemented by voluntary

purchases of government bonds. The transfers when old T o in the second welfare theorem

can also be expressed in terms of government debt. They can be decomposed into two

parts. The first part are the proceeds from savings in bonds during young age. The

second part is the non-stationary component of debt. It is a transfer to the old generation

financed through newly issued debt which is then rolled over perpetually, i.e. bought

voluntarily every period.

Now, we want to apply the second welfare theorem in order to answer the question

whether Pareto-improving debt policies exist. Therefore, we need the following proposi-

tion which shows that for each Pareto suboptimal allocation a Pareto-superior and Pareto

optimal allocation exists. If this allocation is interior then, by the second welfare theorem,

it can be decentralized with an appropriate debt policy.

Proposition 10 Let (c, k) be a given Pareto suboptimal allocation. Then there exists

another feasible allocation
(
c̃, k̃

)
such that

•
(
c̃, k̃

)
interim Pareto-dominates (c, k),

•
(
c̃, k̃

)
is interim Pareto optimal.
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The results in this section indicate the full scope for Pareto-improvements through a

dynamic debt policy under uncertainty. If the condition for Pareto optimality in theorem

5 is violated, a well-designed debt policy can improve the allocation of risk relative to the

pure market outcome (or to some initially given government debt structure).

Let us briefly return to our introductory example, the US Social Security Trust Fund.

The Trust Fund is currently held only in bonds. However, the bond composition is

not guided by insurance considerations we developed in this paper. So in the case of

suboptimality, how could a welfare-improving design of the bond composition in the Trust

Fund look like? For example, the Trust Fund could commit to provide insurance to

those generations who receive payments from the Trust Fund when the decumulation

process starts, i.e., when the Trust Fund is melted down (around the year 2015). This

insurance could specify relatively high payments in economic downturns which affect the

retirement generation negatively. In such cases, their income could be supplemented

by extra payments from the Trust Fund. These payments would have to be financed by

issuing government debt with an appropriate maturity to serve the insurance needs during

retirement of a younger generation etc., as described above. Recall that under the testable

conditions we derived, all individuals would voluntarily participate in such a scheme if

the government committed to running it infinitely. Of course, the Trust Fund is just

an example of an existing institution that could be in charge of such a government debt

policy scheme. Such a scheme could of course also be run through the overall government

budget.

Two points are remarkable about our insurance scheme in the Diamond model under

uncertainty. First, our policy scheme provides an insurance that cannot be replicated

on a capital market. In fact, debt may provide insurance against macroeconomic risk

which is often considered to be uninsurable. Second, extending a pure exchange model to

production does not improve the possibilities of risk sharing. This is surprising because,

in comparison to a pure exchange model [as in Chattopadhyay and Gottardi (1999)], the

redistributional possibilities considerably improve by introducing joint consumption and

investment deviations from a competitive equilibrium as a source of Pareto-improvements.

However, this leaves the characterization unaffected.
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4 Restrictions on the Set of Pareto-improving Poli-

cies

The existing literature has developed different approaches to relate the theoretical possi-

bility of Pareto improving debt policies in the OLG model with production to empirically

relevant restrictions on the set of feasible policies. We will develop these ideas in the

unified framework of our model. We will discuss the notion of dynamic efficiency, a

No-Ponzi-Game condition and the net-dividend criterion developed by Abel, Summers,

Mankiw and Zeckhauser (1989). We will show that dynamic efficiency and the infeasibility

of debt Ponzi schemes are two distinct yet only necessary conditions for Pareto optimality.

They can be interpreted in our framework as tests for inefficiency for special choices of a

transfer pattern. Thus, if the test does not indicate inefficiency this does not imply that

we are efficient. We will relate our analysis to Abel, Summers, Mankiw and Zeckhauser

(1989) arguing that the net-dividend criterion is a strong sufficient condition for interim

Pareto optimality in the model of AMSZ but not in our model. We will compare the

models and point out the crucial difference.

4.1 Dynamic Efficiency

The question guiding us in this subsection is: ”What observable characteristic of a growth

path signals capital overaccumulation (or its absence)?” [Cass (1972), p.201]. We will re-

assess a strand of literature in capital theory with a long-standing tradition, the literature

on the possibility of capital overaccumulation (dynamic inefficiency) which was initiated

by Malinvaud (1953) and then extended to growth models by Phelps (1961, 1965) and

more general infinite-horizon production problems by Cass (1972) and Benveniste and

Gale (1975). This possibility turned out to be crucial in the OLG framework of Di-

amond (1965). He showed that the introduction of government debt can cure capital

overaccumulation of competitive equilibria and thus he provided a Pareto-improving role

for government debt. Since then, however, many authors have taken the position that

real world economies are dynamically efficient. This judgement has been considered to

be common knowledge since the influential contribution by Abel, Mankiw, Summers and

Zeckhauser (1989). Incorporating uncertainty in their analysis, they highlighted an impor-

tant distinction that had previously been neglected: which role does the risk-free interest

rate play in comparison to some risky rate of return? In particular, they pointed out

that the mean real risk-free interest rate was historically lower than the real growth rate

of the US economy. This comparison would be suggestive of dynamic inefficiency in a
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model without uncertainty. However, what is important for dynamic efficiency is not the

risk-free interest rate but rather the marginal productivity of capital, or loosely speaking,

the risky interest rate [see also Zilcha (1990) and Dechert and Yamamoto (1992)].

The purpose of this section is also to examine how the concept of dynamic efficiency is

related to interim Pareto optimality under uncertainty and what implication this has in

terms of restrictions on the set of Pareto-improving policy interventions. Under certainty,

the concepts are equivalent, as we will obtain as a special case of one of our results. To

start, we give the definition of dynamic efficiency.

Definition 11 A sequence of investment decisions
(
k (σ)σ∈Γ

)
is dynamically efficient

(given initial capital k−1) if there exists no other sequence of investment decisions
(
k̂ (σ)σ∈Γ

)
such that

∀σ ∈ Γ: f
(
k̂ (σ) , θ

)
− k̂ (σ′) ≥ f (k (σ) , θ)− k (σ′) ∀σ′ = (σ, θ) ∈ σ+

f (k−1, θ1)− k̂ (σ) ≥ f (k−1, θ1)− k (σ) ∀σ ∈ Σ1

with at least one strict inequality.

Dynamic efficiency thus rules out overaccumulation of capital in the sense that a decrease

in savings would allow for a permanently higher aggregate consumption level.8

Let us introduce the risky rate of return r∗, which is defined as r∗ (σ∞s ) = f ′
(
k

(
σ∞s−1

)
, θ

)
,

where
(
σ∞s−1, θ

)
= σ∞s . It can be interpreted as rate of return to the market portfolio.

Furthermore, denote by Γ (σ̂) the tree that has σ̂ ∈ Γ as its root and includes all succes-

sor nodes of σ̂. Thus Γ (σ̂) is a subtree of Γ. We state the following characterization of

dynamic efficiency under uncertainty in our setup.9

Theorem 12 An interior feasible allocation (c∗, k∗) for which k∗ is uniformly bounded

below by 0 is dynamically inefficient if and only if there exists a node στ ∈ Γ and some

C > 0 such that
∞∑
t=1

t∏
s=0

r∗ (σ∞s ) ≤ C (5)

along every path σ∞ =
(
σ∞1 , ..., σ

∞
τ−1, σ

τ
)
, στ ∈ Γ (στ ).

8For dynamic efficiency, necessary and sufficient conditions are usually derived with elasticity condi-
tions on the production function [see Benveniste and Gale (1975), Mitra (1979)]. If we restrict attention
to interior allocations, these conditions are satisfied in our setup.

9Both Zilcha (1990) and Dechert and Yamamoto (1992) deal with dynamic efficiency under uncer-
tainty. Apart from a minor technicality concerning the uniform bound C, our result is similar to the one
given by Zilcha (1990). Therefore, we omit a proof.
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This result can be related to theorem 5 by the choice of a special transfer pattern. There-

fore, the conclusion that interim Pareto optimality implies dynamic efficiency but that

the converse is not true can be derived in a simple way from our characterization [see

the appendix]. Thus, under uncertainty dynamic efficiency is not sufficient for interim

Pareto optimality in a competitive equilibrium. It is a strictly weaker efficiency bench-

mark which is related only to the production side of the economy. Since the difference

between the two concepts lies in the issue of risk-sharing, the concepts coincide under

certainty [see also Bose and Ray (1993)]. To see this more formally in our framework,

note that under certainty the condition for interim Pareto optimality in theorem 5 reduces

to
∞∑
t=1

∏t
s=0 rs = ∞, because the date-event tree is degenerate in this case. This condition

is equivalent to the Cass criterion for dynamic efficiency under certainty.

We summarize our findings:

Remark 13

• Under uncertainty, dynamic efficiency does not rule out (interim) Pareto-improvements.

• Under certainty, the concepts of Pareto optimality and dynamic efficiency are equiv-

alent in a competitive equilibrium.

More details on the first remark are relegated to the appendix. The insight of this sec-

tion is simply that dynamic efficiency neglects possible Pareto improvements through

intergenerational dynamic risk-sharing.

4.2 Debt Ponzi Schemes

There is a vast theoretical and empirical literature on the sustainability of government debt

policies [see for example Hamilton and Flavin (1996) and Bohn (1995) and the citations

therein]. Two classes of models are mainly used to examine government debt policies.

The first class of models are infinite-horizon representative consumer models. The second

class of models are overlapping generations models. In the following discussion we will

restrict attention to stochastic versions of those models [see for example Bohn (1991, 1995,

1999)].10

The infinite-horizon representative consumer model has the property that in any com-

petitive equilibrium, the government debt policy has to satisfy budget balance in a present

value sense [see e.g. Lucas and Stokey (1983)]. Such debt policies are called sustainable

10Bohn (1995) discusses and criticizes deterministic theoretical models and empirical tests about sus-
tainability based on those models.
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[see Bohn (1995)]. This has the implication that debt Ponzi schemes which roll over

non-vanishing debt (in present value terms), cannot occur in equilibrium. The empirical

literature on government debt has thus mainly been concerned with testing necessary

conditions for sustainability derived from infinite-horizon representative consumer mod-

els. The question examined is: was the observed debt policy in a country consistent with

the intertemporal government budget constraint derived from a theoretical model [see

Ahmed and Rogers (1995) and Bohn (1998a)]?

In contrast, in models of overlapping generations, the government does not necessarily

have to respect a present value budget constraint. Thus, no kind of Ponzi scheme can

be ruled out a priori by theoretical reasoning. As is well known from the literature on

OLG models, this fact is closely related to the possible Pareto suboptimality of compet-

itive equilibria. This allows for an interesting question: what kind of debt policies yield

Pareto improvements in cases of suboptimal equilibria? Of course, any (improving) debt

policy has to satisfy allocative feasibility, which is, however, weaker than sustainability.11

Thus, tests derived in a representative consumer setting are invalid in an OLG model.

Surprisingly, we are not aware of any feasibility test for an OLG model.

We will be concerned with the question: when is a perpetual budget deficit (in the

sense of a debt Ponzi scheme) not only sustainable but also Pareto-improving. Our

analysis is based on the second sufficient condition for suboptimality derived in section

3.2,
∑∞

t=1

∏t
s=0R1 (σ∞s ) being uniformly bounded. The transfer pattern which yields an

interim Pareto-improvement can be interpreted as safe government debt in the sense that

it specifies equal compensation across states of the world in the second period of life. This

follows because the boundedness of
∑∞

t=1

∏t
s=0R1 (σ∞s ) allows us to reduce the analysis

to the certainty case by interpreting the uncertain second period of life as certain with

marginal rate of substitution between first and second period equal to the risk-free interest

rate. By doing so, one obtains along each path σ∞ an OLG model under certainty and∑∞
t=1

∏t
s=0R1 (σ∞s ) being bounded is nothing other than the usual Cass (1972) criterion

for efficiency. An improving transfer scheme therefore leads to equal transfers at each

node in the second period of life.12 This argument clarifies that debt Ponzi schemes are

related to the risk-free rate of return whereas dynamic efficiency is related to the risky

11We distinguish sustainable and allocative feasible. It may be the case that perpetual debt is allocative
feasible but not sustainable, i.e. its value does not converge to zero, so that households are not willing
to hold it in a competitive equilibrium in a infinite-horizon representative consumer model. A similar
distinction is also present in Tirole (1985) who distinguishes bubbly equilibria (positive value of debt)
from asymptotically bubbleless equilibria (value of debt converges to zero). Both kind of equilibria are
of course feasible. However, the former are not sustainable in the sense of our definition and thus cannot
occur in a infinite-horizon representative consumer model.

12The existence of an implementing government debt policy follows from the second welfare theorem.
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rate of return. This conceptual difference is hidden in a deterministic setting.

Note that the condition is only a sufficient condition for suboptimality obtained by

the choice of one particular transfer pattern. Thus its verification does not exhaust the

scope for government intervention. Note furthermore that in this section we did not

say anything about Pareto optimality but only about Pareto-improving policies. At first

glance it may be puzzling why tax payers are willing to carry risk that is transmitted by

safe debt as in a debt Ponzi scheme since they face an uncertain income next period. The

point in this section is that a debt Ponzi scheme may Pareto dominate the decentralized

equilibrium. But safe debt is not necessarily optimal. Superior insurance arrangements

as discussed in section 3 will typically be possible.

In summary, the previous two sections have shown that dynamic efficiency, which

is often considered to rule out debt Ponzi schemes (or bubbles, see Tirole (1985)), is

not a decisive feature to assess the role of debt under uncertainty. Furthermore, the

analysis has revealed that dynamic efficiency and the infeasibility of debt Ponzi schemes

are conceptually distinct issues.

4.3 The Net-Dividend Criterion

In this section, we relate our approach to the important and influential contribution by

AMSZ. This comparison is crucial in order to fully understand the scope of our paper.

Note that the criterion for efficiency given in AMSZ is not dynamic efficiency in the sense

of capital theory (our definition). What they call dynamic efficiency is in fact interim

Pareto optimality [see AMSZ, section I.B, p.5].13 Thus, the principal theoretical result

of their paper is not a sufficient condition for dynamic efficiency (in our sense), but a

sufficient condition for interim Pareto optimality. Recall that the criterion states that an

equilibrium is Pareto optimal if in all periods and in all states profits minus investment

over the total value of market shares is uniformly bounded away from zero.

They check this criterion with a univariate time series of data. Under the assump-

tion that one can draw inference from one (realized) path about realizations of random

variables on all other paths they may indeed conclude from their model that real world

economies are indeed Pareto optimal. In the appendix, we will construct an example

where the observation of AMSZ is consistent with a testable sufficient criterion for sub-

optimality derived in our model.

So what is the key difference between the two models? Seemingly, both belong to

13They explicitly write: ”Our criterion is the dynamic analogue of the standard Pareto criterion”
[AMSZ, p.15].
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the class of OLG models. However, our model is the stochastic version of the Diamond

(1965) model and thus exhibits all the well-known features of OLG models. The most

important feature from a theoretical point of view is the fact that in OLG models prices

need not assign a finite value to every consumption bundle. This has the economic

implication that competitive equilibria need not be Pareto optimal [see Geanakoplos and

Polemarchakis (1991)]. The model AMSZ adopt is an OLG model with one important

additional feature.14 Households have to hold shares of the market portfolio the value

of which consists of a stream of dividend payments from an infinitely-lived firm. Loosely

speaking, this infinite stream leads to convergence to zero of contingent claims prices over

time (which implies a high interest rate) so that the net-dividend criterion is sufficient

for Pareto optimality in their model.15 This behavior of prices is not a typical feature of

an OLG model, but of a representative household model. Thus, their criterion for Pareto

optimality is not sufficient in our model to draw the conclusion that real world economies

are Pareto optimal.

In summary, we conclude that restrictions on the set of potentially Pareto-improving

policies, namely the assertion that real-world economies are dynamically efficient or the

assertion that Ponzi games are not sustainable, do not suffice to conclude that there is

no scope for a Pareto improving debt policy. Furthermore, we argued that empirical

evidence provided by AMSZ cannot be interpreted in favor of interim Pareto optimality

in our model.

5 Empirical Evidence

In this section we attempt to develop an empirical procedure to test whether real world

economies are interim Pareto optimal. Our starting point will be a sufficient criterion for

suboptimality derived in section 3.1. Recall that suboptimality follows if for any maturity

n, the sum over the product of the n-period bond interest rates
∑∞

t=1

∏t
s=0Rn (σ∞s ) is

bounded. We will use the interest rates on U.S government bonds with one year to

maturity from 1871 to 1999 as one data source. This bond interest rate series is the

only one that is available over such a long period of time. Since our model did not

14AMSZ write that there are two crucial differences between their model and the standard Diamond
model [AMSZ, page 3]. First, their model incorporates uncertainty and second their model uses a very
general production technology. The fact that their production technology differs from ours is not re-
sponsible for the differences between our results and their results. Our simpler production technology is
without loss of generality. The difference we point out is not mentioned in AMSZ.

15Formally, it can be shown that the net-dividend criterion in the presence of an infinitely-lived firm
implies lim inf

t→∞

∑
σ∈Σt

p(σ) = 0, where the p(σ) are contingent claims prices [see Demange (2001)]. This
is a well-known criterion for Pareto optimality.
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incorporate growth for notational simplicity, we have to normalize the interest rates by

the growth rate of the U.S. economy.16 What matters for the feasibility of roll-over

schemes is the comparison of interest rates and growth rates. This intuition carries over

from the standard Diamond model under certainty to the present model with uncertainty.

Our data source is the same as in Ball, Elmendorf and Mankiw (1998).17 We extended

the data until 1999.

Our procedure consists of two steps. In the first step we model the univariate process

for the normalized interest rate Y := R/(1 + g), where R is the gross interest rate on

government bonds and g is the growth rate of the economy. Our second step then incor-

porates information about this process to deal with the convergence of the sum over the

product of the normalized interest rates.

We will be brief about our first step since it is identical to the analysis in Ball, El-

mendorf and Mankiw (1998). Details about the estimation procedure can be found there.

The most important summary statistic for our purposes is that E[Y ] is 0.989 and thus

below one for our sample. We find that X := log[R/(1 + g)] is well described by an

AR(1) process. The autoregressive coeffcient ranges from 0.21 to 0.47 depending on the

inclusion of dummies for the war periods. These different specifications leave our main

conclusion unaffected. A Dickey-Fuller test clearly rejects the null hypothesis of a unit

root. Furthermore, a Breusch-Godfrey test shows no significant serial correlation of the

residuals.

Our second step takes as given that the stochastic process for the log interest rates is

an AR(1) process. Generalizations to ARMA(p,q) are straightforward. What we actually

only need is that the stochastic process is ergodic.18 We will now show that a sufficient

condition for Pareto suboptimality is E[X] < 0.

Let (Ω,A, P ) denote the probability space on which the εt and Xt are defined. For

each finite family {t1, t2, ..., tn} the joint distribution of εt1 , ..., εtn is denoted by Pεt1 ,...,εtn
(=

⊗n
i=1Pεti

). The Kolmogorov existence theorem implies that there exists an unique prob-

ability measure Pε on (R∞,B∞), where R∞ := ×∞
t=−∞St with St = R and B∞ is the

Borel σ−algebra generated by the product topology on R∞, such that the finite dimen-

sional distributions of Pε are equal to the corresponding joint distributions of εt1 , ..., εtn ,i.e.

Pε
(
π−1
t1,t2,...,tn

)
= Pεt1 ,...,εtn

, where πt1,t2,...,tn denotes the projection map from R∞ to the

coordinates t1, t2, ..., tn.

16Our boundedness assumption at the end of section 2 now applies to the normalized economy. It is
thus w.l.o.g.

17We would like to thank Doug Elmendorf for providing us with the data set.
18The idea underlying this step was introduced by Zilcha (1991) in the context of dynamic efficiency.
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Define the shift mapping T : R∞ → R∞ by πk(Tx) = πk+1 (x) for all k ∈ Z. Under the

assumptions made on ε, the shift mapping T is ergodic on (R∞,B∞, Pε) (see Billingsley

(1995), p.495). Now define a map φ : R∞ → R by

φ (x) =

{ ∑∞
k=0 β

k · π−k (x) for all x for which the series converges

0 otherwise.

φ is B∞−B1−measurable and integrable since
∫
|φ (x)| dPε ≤

∫ ∑∞
k=0 |β|

k·|π−k (x)| dPε =
mon.conv.∑∞

k=0 |β|
k ·

∫
|π−k (x)| dPε =

∑∞
k=0 |β|

k ·
∫
|y| dPε−k

<∞.

Because log interest rates follow an AR(1)-process we have X0(x) = φ(x). Thus, we

know that an AR(1) process is ergodic, i.e., Xt (x) = X0 (T tx). Ergodicity is all we need

to apply the Birkhoff Ergodic Theorem from which it follows:

1

n

n∑
t=1

Xt (x) =
1

n

n∑
t=1

X0

(
T tx

)
−→
n→∞

∫
R∞

X0 (x) dPε a.s.− Pε.

If we thus can show that E[X] :=
∫

R∞ X0 (x) dPε < 0, it follows that

∞∑
t=1

t∏
s=1

Ys (x) =
∞∑
t=1

exp

[
t∑

s=1

ln (Ys (x))

]
=

∞∑
t=1

exp

[
t∑

s=1

Xs (x)

]

converges a.s. − Pε, because then for t sufficiently large
∑t

s=1Xs (x) < −tδ for some

δ > 0,which implies the convergence of
∑∞

t=1 exp
[∑t

s=1Xs (x)
]
.19

We summarize these considerations:

Proposition 14 If the stochastic process for the log of the normalized interest rates

Xt :=log[Rt/(1 + gt)] is ergodic (where R is the gross interest rate and g is the growth

rate of the economy), then E[Xt] < 0 implies
∑∞

t=1 exp
[∑t

s=1Xs (x)
]

converges a.s..

Thus, in order to apply the proposition in order to detect suboptimality, the only thing

we have to show in our data is that the mean of the X’s is below 0. For our data this is

indeed clearly and significantly the case [see also the summary statistics in Ball, Elmendorf

and Mankiw (1998)]. We obtain a mean of -0.014. A standard hypothesis test indicates

that the mean is significantly smaller than zero at a p-value of 0.053, i.e. almost at the

5% level. Thus we can conclude that the US economy is likely not to be interim Pareto

optimal.

19While our theoretical condition from proposition 6 requires uniform convergence, ergodicity gives
only pathwise convergence. However, this implies uniform convergence on set of paths with measure
arbitrarily close to 1, which we regard as sufficent to conclude suboptimality in an empirical analysis.
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Let us briefly mention that we neglected capital taxes in the US in our analysis since

we did not have access to reliable data. Including capital taxes would lower the net rate

of return households earn by holding bonds. This would make our result on suboptimality

even stronger. Thus our comparison of the growth rate and the pre-tax rate of return on

bonds underestimates the scope for welfare improvements of a debt policy.

For the case of dynamic efficiency a similar criterion was derived by Zilcha (1991). It

says that E[log(1 + r)/(1 + g)] > 0 implies dynamic efficiency. The only difference to our

criterion is that the risk-free rate of return is replaced by the risky rate of return. We

use the capital rental rate in the US from 1929-1997 as derived by Mulligan (2001) as the

risky rate of return.20 The average rental rate for that period was 0.083 with a standard

deviation of 0.0178. When compared to the real growth rate over the same period, the

data clearly indicate that the US economy is dynamically efficient. Alternative measures

like stock returns do not change our conclusions.

6 Concluding Remarks

We started out with the question whether there is a role for government debt in a stochas-

tic framework beyond simple Ponzi games. In other words we asked whether the stochas-

tic Diamond OLG model provides us with a theory of a deliberate debt policy, involving

bonds of various maturity instead of just one period bonds as in a deterministic model.

Our first main result (Theorem 5) together with our second welfare theorem (Proposi-

tion 8) described the scope of a welfare improving (and possibly non-stationary) debt pol-

icy. From a theoretical perspective, we gave a complete characterization of interim Pareto

optimality in a stochastic Diamond OLG-model and so worked out conditions implying a

role for debt policy. This result isolates a source of insurance which has been neglected

in the literature so far. We have shown that the dynamic structure of an economy can be

used to provide insurance against macroeconomic risk. This kind of insurance is neither

ruled out by dynamic efficiency nor by the infeasibility of debt Ponzi schemes. Further-

more, it cannot be provided even on complete capital markets, which provide (complete)

insurance only against diversifiable risk but not against aggregate macroeconomic risk.

In addition, this intergenerational insurance contract has the important feature that it

is voluntarily accepted by all individuals once they are born, i.e. not only ex ante. Our

second main result (Theorem 6) provided testable criteria to assess the feasibility of such

insurance. These criteria were stated in terms of bond interest rates and we have shown

20We would like to thank Casey B. Mulligan for providing us with his data set.
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how these criteria relate to an insurance role of multi-period bonds.

By making use of the Diamond model, we rely on the Consumption CAPM, developed

first by Lucas (1978), to price assets and so multi-period bonds. We acknowledge that

this kind of asset pricing is at odds with many empirical contributions. Nevertheless,

we believe that our idea of sophisticated Ponzi schemes is robust to the underlying asset

pricing model. But a conclusive empirical assessment awaits future research on an asset

price model which fits the data better.

Angeletos (2001) considers the role of the maturity structure for fiscal policy in an

important contribution to the optimal fiscal policy literature. He shows that the maturity

structure can substitute for state-contingent debt. Whereas he uses the maturity structure

to provide insurance to the government against fiscal shocks we use the maturity struc-

ture to provide insurance against macroeconomic shocks to the agents directly. These

objectives are conflicting since insurance of the government requires low bond prices in

downturns whereas insurance to the agents requires exactly the opposite. Thus, future

research has to show whether smoothing tax distortions or providing insurance plays the

decisive role in debt management.

Furthermore, future research should add a true monetary perspective. Such an exten-

sion seems to be necessary for a final and conclusive empirical assessment since nominal

bonds are rather the rule than the exception and furthermore, the cyclical behavior of the

price of real and nominal bonds differ.

In summary, we have pointed out a new role for a well-designed dynamic government

debt policy: it can provide insurance against macroeconomic risk.
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Technical Appendix

A Preliminary Results

This appendix contains proofs to our results in the paper. We first prove under the

compactness assumption on competitive allocations that both an upper and lower uni-

form quadratic bound holds (locally) for the change in old age consumption expenditure

expressed in terms of changes of young age consumption expenditure, often called non-

vanishing and bounded Gaussian curvature condition [see Geanakoplos and Polemarchakis

(1991)]. We formulate these conditions in a slightly more general set-up than used later.

Lemma 15 Let K ⊆ Rn
++ be a compact, convex set and Θ be a compact subset of Rm.

Let u : Rn
+ ×Θ → R be C2, strictly increasing with a negative definite Hessian matrix in

Rn
++, i.e. ∀x ∈ Rn \ {0}and y ∈ Rn

++, all θ ∈ Θ we have

x′D2u (y, θ)x < 0.

Assume further that first and second partial derivatives of u are continuous with respect

to θ. Then:

1. There exists a compact convex set K ′ with K ⊆ K ′ ⊆ Rn
++,a constant ρ> 0, such

that for all x∗ ∈ K, x ∈ K ′ and all θ ∈ Θ we have

u (x, θ) ≥ u (x∗, θ) =⇒ Du (x∗, θ) (x− x∗) ≥ ρ (x1 − x∗1)
2

where xi denotes the i-th component of x.

2. There exists a compact convex set K ′ with K ⊆ K ′ ⊆ Rn
++, a constant ρ > 0, and

an ε > 0 such that for all x∗ ∈ K, x′ ∈ K ′ with 0 < x∗1 − x1 < ε and x∗−1 ≥ x−1 =

(x2, ..., xn) and all θ ∈ Θ we have

Du (x∗, θ) (x− x∗) ≥ ρ (x1 − x∗1)
2 =⇒ u (x, θ) ≥ u (x∗, θ) .

Proof.

1. Let x and x∗ be given as in the lemma. Let K ′ be defined as Bε (K), which is defined

as the set of all points having distance less than ε > 0 to K, for ε sufficiently small
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(such an ε exists by compactness of K). Then we have

0 ≤ u (x, θ)− u (x∗, θ) = Du (x∗, θ) (x− x∗) +
1

2
(x− x∗)′D2u (ξ, θ) (x− x∗)

by a Taylor expansion for some ξ ∈ K ′.

By assumption, D2u (x, θ) is negative definite and thus −D2u (x, θ) is positive defi-

nite. Thus there is a strictly positive constant α (x, θ) with−1
2
(x− x∗)′D2u (ξ, θ) (x− x∗) ≥

α (ζ, θ) · ‖x− x∗‖2 where ‖.‖denotes the Euclidian norm. Further, since u is twice

continuously differentiable and derivatives are continuous in θ, it is easy to see that

α (ζ, θ) depends continuously on ζ and θ (follows from Berge maximum theorem).

By compactness of K ′ and Θ there exists some ρ with α (ζ, θ) ≥ ρ > 0 for all ξ ∈ K ′

and θ ∈ Θ. Thus

Du (x∗, θ) (x− x∗) ≥ ρ · ‖x− x∗‖2 .

Using the fact that ‖x− x∗‖2 ≥ |x1 − x∗1|
2 we get

Du (x∗, θ) (x− x∗) ≥ ρ · |x1 − x∗1|
2 .

2. For each x ∈ K and θ ∈ Θ, define mrsi (x, θ) =
∂u(x,θ)

∂xi
∂u(x,θ)

∂x1

, i = 2, ..., n. Since u is

twice continuously differentiable, mrsi (x, θ) depends continuously on x and θ, thus

max
i=2,...,n,x∈K

mrsi (x, θ) is finite. Define µ := 2 · max
i=2,...,n,x∈K,θ∈Θ

mrsi (x, θ) . For each

x ∈ K, θ ∈ Θ, define εi (x, θ), i = 2, ..., n, by

max x̂1

s.t. u (x1 − x̂1, ..., xi + µ · x̂1, ..., xn, θ) ≥ u (x, θ) .

By the implicit function theorem, εi (x, θ) is strictly positive. By the Berge max-

imum theorem ε (x, θ) := min
i=2,...,n

εi (x, θ) depends continuously on x and θ, and

thus ε′ := min
x∈K,θ∈Θ

ε (x, θ) is strictly positive. Define K ′ as above with ε̃. Define ε :=

min {ε′, ε̃} .

Case 1: For a given x∗ ∈ K, consider deviations x that satisfy 0 < x∗1 − x1 < ε

and
∥∥x−1 − x∗−1

∥∥ ≤ µ · (x∗1 − x1) , x−1 ≥ x∗−1, where x−1 = (x2, ..., xn). Note that

‖x− x∗‖ =
(
(x∗1 − x1)

2 +
∥∥x−1 − x∗−1

∥∥2
) 1

2 ≤ |x∗1 − x1| ·
(
1 + 1

µ

) 1
2
.



33

First, we have

u (x, θ)− u (x∗, θ) = Du (x∗, θ) (x− x∗) +
1

2
(x− x∗)′D2u (ζ, θ) (x− x∗)

by a Taylor expansion. By assumption, D2u (ζ, θ) is negative definite, thus by a

routine application of the Weierstrass maximum theorem there is a negative constant

a (ζ, θ) such that

1

2
(x− x∗)′D2u (ζ, θ) (x− x∗) ≥ a (ζ, θ) ‖x− x∗‖2

for all x− x∗ ∈ Rn.

Again, a (ζ, θ) is continuous in ζ and θ, and since the ζ are chosen from the compact

set K ′ ⊆ Rn
++ and θ from the compact set Θ, there is negative real number a with

a (ζ, θ) · ‖x− x∗‖2 ≥ a ‖x− x∗‖2 . Now, using that ‖x− x∗‖ ≤ |x∗1 − x1| ·
(
1 + 1

µ

) 1
2
,

we get

u (x, θ)− u (x∗, θ) ≥ Du (x∗, θ) (x− x∗)− ρ · |x∗1 − x1|2 ,

with ρ :=
∣∣∣a · (1 + 1

µ

)∣∣∣ .
For deviations satisfying 0 < x∗1−x1 < ε and

∥∥x−1 − x∗−1

∥∥ ≤ µ·(x∗1 − x1) , x−1 ≥ x∗−1

we thus have that the validity of

Du (x∗, θ) (x− x∗) ≥ ρ · (x∗1 − x1)
2

implies u (x, θ)− u (x∗, θ) ≥ 0.

Case 2: We next claim that for deviations taking the form 0 < x∗1 − x1 < ε and∥∥x−1 − x∗−1

∥∥ > µ · (x∗1 − x1) , x−1 ≥ x∗−1, the statement u (x, θ) ≥ u (x∗, θ) is always

true for all θ ∈ Θ.

To see this, note that for all xi, i = 2, ..., n, with xi = (x1, x
∗
2, ..., xi, ..., x

∗
n) and

0 < x∗1 − x1 < ε and |x∗i − xi| = µ · (x∗1 − x1) we have by definition of ε and µ that

u (xi, θ) ≥ u (x∗, θ) . By the strict concavity of u (which is a consequence of the nega-

tive definiteness of its Hessian), it follows that u (
∑n

i=2 λix
i, θ) ≥

∑n
i=2 λiu (xi, θ) ≥

u (x∗, θ) for
∑
λi = 1, λi ≥ 0.

Since
∥∥(

∑
λix

i)−1 − x∗−1

∥∥ ≤ ∑
λi

∥∥xi−1 − x∗−1

∥∥ = µ · (x∗1 − x1) , for every deviation

x with 0 < x∗1 − x1 < ε and
∥∥x−1 − x∗−1

∥∥ = µ · (x∗1 − x1) , x−1 ≥ x∗−1 there exists a

convex combination (λ2, ..., λn) of the xi corresponding to x∗1 − x1 (i.e. xi1 = x1) for

which x ≥
∑
λix

i. Thus by monotonicity of preferences we have u (x, θ) ≥ u (x∗, θ)
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for such deviations. For deviations x with 0 < x∗1 − x1 < ε and
∥∥x−1 − x∗−1

∥∥ >

µ · (x∗1 − x1) , x−1 ≥ x∗−1 monotonicity applied again gives u (x, θ) ≥ u (x∗, θ). This

completes the proof.

The lemma can now be used to derive the non-vanishing and bounded Gaussian cur-

vature conditions needed for the proof of our main theorem.21 Preferences are given by

U=U (c (σ)) = Eσ u (c (σ)) =
∑

θt+1∈A
qt+1 (θt+1|σ) · u (cy (σ) , co ((σ, θt+1) ; σ)) . The pa-

rameter space Θ is here assumed to be a compact subset of the S − 1 dimensional unit

simplex which does not include the boundary. With this interpretation of Θ and the

assumptions made on u, it is easy to see that the assumption of the lemma are satisfied

for U .22

Given an expression of the form

DU (c∗ (σ)) (c (σ)− c∗ (σ)) ≥ α · (c∗y (σ)− cy (σ))2

with α > 0, denote by DU (c∗ (σ))1 the first partial derivative with respect to youth

consumption, DU (c∗ (σ))−1 the vector of partial derivatives from the S states in old age.

Similarly we will by (c (σ))−1 denote the vector of old age consumption bundles. Then we

have:

DU (c∗ (σ))−1 (c (σ)− c∗ (σ))−1 ≥ −DU (c∗ (σ))1 (cy (σ)− c∗y (σ))+α · (c∗y (σ)− cy (σ))2 .

Since competitive allocations are from a compact set we have γ ≥ DU (c∗ (σ))1 for all c∗

and some γ. Now

DU (c∗ (σ))−1

DU (c∗ (σ))1

(c (σ)− c∗ (σ))−1 ≥ − (cy (σ)− c∗y (σ)) +
α

γ
· (c∗y (σ)− cy (σ))2 .

Multiplying with the contingent-claims-price p (σ) > 0, we get

∑
p (σ′)·(co (σ′)− c∗o (σ′)) ≥ −p (σ) (cy (σ)− c∗y (σ))+ρ· 1

p (σ)
·|p (σ) (c∗y (σ)− cy (σ))|2 .

21In the proof we only use the non-vanishing Gaussian curvature condition. The bounded Gaussian
curvature condition is needed to show that the condition stated in the main theorem implies the existence
of Pareto improvements.

22That D2U (x (σ)) is negative definite follows from a straightforward computation, since
z′D2U (x (σ)) z for any z ∈ RS+1 equals the convex combination of the corresponding quadratic forms
for the u (x (σ;σ) , x (σ, θ) ;σ) for all θ ∈ A.
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with ρ = α
γ
. Here we use the fact that the relative contingent-claims-prices equal marginal

rates of substitution in a competitive equilibrium. This is the desired form of the equation

leading to the Gaussian curvature conditions below. Since the set of competitive alloca-

tions is compact and bounded below in the positive orthant, by identifying K with the

convex hull of competitive allocations allows us to derive the non-vanishing and bounded

Gaussian curvature condition from the primitives of the model.

• non-vanishing Gaussian curvature: there exists a ρ> 0 and a δ > 0, such

that for any interior competitive equilibrium (c∗, k∗, p∗) , for all feasible allocations

(ĉ, k∗) ∈ K ′, where K ′ = Bδ (K) , when K is the convex hull of the set of competitive

allocations, ∀σ ∈ Γ,

Uσ (ĉ (σ)) ≥ Uσ (c (σ))

=⇒
∑
σ′∈σ+

δ2 (σ′, σ) ≥ −δ1 (σ) + ρ
(δ1 (σ))2

p∗ (σ)

where δ1 (σ) = p∗ (σ) · [ĉy (σ)− c∗y (σ)] and δ2 (σ′, σ) = p∗ (σ′) · [ĉo (σ′)− c∗o (σ′)] for

σ′ ∈ σ+. ρ is called the lower curvature coefficient.

• bounded Gaussian curvature: there exists a ρ > 0 and a δ′ > 0 such that for any

interior competitive equilibrium (c∗, k∗, p∗) for all feasible allocations (ĉ, k∗) ∈ K ′,

where K ′ = Bδ′ (K) , when K is the convex hull of the set of competitive allocations,

with ĉo (σ′) ≥ c∗o (σ′) for all σ′ ∈ σ+, we have for all σ ∈ Γ

∑
σ′∈σ+

δ2 (σ′, σ) ≥ −δ1 (σ) + ρ
(δ1 (σ))2

p∗ (σ)

=⇒ Uσ (ĉ (σ)) ≥ Uσ (c (σ))

where δ1 (σ) = p∗ (σ)·[ĉy (σ)− c∗y (σ)] < 0 and δ2 (σ′, σ) = p∗ (σ′) · [ĉo (σ′)− c∗o (σ′)]

for σ′ ∈ σ+. ρ is called the upper curvature coefficient.

Next, we state a technical lemma which follows from a standard elasticity condition

about the production function [see Mitra (1979)]. We will show and use in the proof of

the following lemma that such a condition is satisfied in our context. The lemma gives

a quadratic term lower bound for changes in the value of production due to changes in

investment behavior similar to the non-vanishing Gaussian curvature assumption for the

utility functions.
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Lemma 16 Given the boundedness of the economy, the following holds for all sufficiently

small 0 < δ < k (σ) < sup
θ∈A

{k |f (k, θ) = k} for all σ ∈ Γ and a price system p consistent

with k (σ):

∑
σ′∈σ+

p (σ′) · [f (k (σ) , θt+1)− f (k (σ)− δ, θt+1)] ≥ p (σ) · δ + c · (p (σ) · δ)2

p (σ)

for some constant c > 0.

Proof. ∑
σ′∈σ+

p (σ′) · [f (k (σ) , θt+1)− f (k (σ)− δ, θt+1)]

=
∑
σ′∈σ+

p (σ′) · f ′ (k (σ) , θt+1) · δ ·
[
1 +

f (k (σ) , θt+1)− f (k (σ)− δ, θt+1)

f ′ (k (σ) , θt+1) · δ
− 1

]

≥
∑
σ′∈σ+

p (σ′) · f ′ (k (σ) , θt+1) · δ ·
(

1 +
m · δ
k (σ)

)

= p (σ) · δ ·
(

1 +
m · δ
k (σ)

)
≥ p (σ) · δ + c · (p (σ) · δ)2

p (σ)
,

where the last inequality follows from the fact that the capital stock is bounded below

and the last equality follows from the first order condition of the firm.

To see that f(k(σ),θt+1)−f(k(σ)−δ,θt+1)
f ′(k(σ),θt+1)·δ −1 ≥ m > 0, note that for some ξ (σ) ∈ (k (σ)− δ, k (σ))

f (k (σ)− δ, θt+1) = f (k (σ) , θt+1)− f ′ (k (σ) , θt+1) · δ +
1

2
· f ′′ (ξ (σ) , θt+1) · δ2.

This implies that

f (k (σ) , θt+1)− f (k (σ)− δ, θt+1)− f ′ (k (σ) , θt+1) · δ

=
1

2
· −f

′′ (ξ (σ) , θt+1)

f ′ (k (σ) , θt+1)
· k (σ) · f

′ (k (σ) , θt+1)

k (σ)
· δ2.

Now note that 1
2
·−f ′′(ξ(σ),θt+1)

f ′(k(σ),θt+1)
·k (σ) ≥ −f ′′ (ξ (σ) , θt+1)· 12 ·

k

f ′(k,θ)
and since ξ (σ) is bounded

above and away from zero (this follows because by strict convexity of the economy we can

w.l.o.g. assume that the improving allocation is bounded away from zero) , there is some

m > 0 such that −f ′′ (ξ (σ) , θt+1) · 1
2
· k

f ′(k,θ)
≥ m.
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B Theorem 5

Proof. If condition (3) in the theorem holds, then with the previous lemma it is straight-

forward from Chattopadhyay and Gottardi (1999) that the allocation is not interim Pareto

optimal. To prove the result of the theorem it therefore remains to be shown that joint

deviations from the equilibrium allocation, i.e. deviations involving redistribution and/or

changes in the production plan, cannot be Pareto-improving. The proof is completed by

the following three steps. Step 1 and step 2 we use short run optimality to show that an

improving allocation does w.l.o.g. not involve an increase in saving and young age con-

sumption. Step 3 then uses a generalized Cass type argument to show that nonoptimality

implies condition (3).

Step 1: We will show that we can w.l.o.g. assume that an improving allocation has

no increase in saving at any point of time at any node in the tree. We first show that

by short run optimality we can w.l.o.g. assume that an improving allocation never begins

with an increase in saving. Then we show inductively that we can restrict attention to

improving allocations for which there is also no increase in saving at later nodes.

Suppose there is an increase in savings at time t at node σ = (θ0, ..., θt) and that node

σ is among the first nodes (in terms of time) at which there is an increase in saving.

Consider the individual born at this node with utility function Eσu (c (σ)) . Then there

must be a decrease in the youth consumption of this individual which is defined by the

amount of increase in saving. So let ĉy (σ) denote the youth consumption in node σ after

the increase in saving and let c∗y (σ) denote the equilibrium consumption when young.

Similarly, let k̂ (σ) be the capital stock in the deviating allocation and let k∗ (σ) be the

competitive equilibrium capital stock. Since the new allocation is supposed to be Pareto-

improving, we must have for a sufficiently small change by the non-vanishing Gaussian

curvature condition: ∑
σ′∈σ+

δ2 (σ′, σ) ≥ −δ1 (σ) + ρ
(δ1 (σ))2

p (σ)
. (6)

Noting that k̂ (σ)−k∗ (σ) = − (ĉy (σ)− c∗y (σ)) > 0, using the first order condition of the

firm problem and neglecting the last term on the right hand side gives:

∑
σ′∈σ+

p (σ′) · [ĉo (σ′)− c∗o (σ′)] >
∑
σ′∈σ+

p (σ′) · f ′ (k∗ (σ) , θ) ·
[
k̂ (σ)− k∗ (σ)

]
.
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Thus, due to the strict concavity of the production function, we have

∑
σ′∈σ+

p (σ′) · [ĉo (σ′)− c∗o (σ′)] >
∑
σ′∈σ+

p (σ′) ·
[
f

(
k̂ (σ) , θ

)
− f (k∗ (σ) , θ)

]
.

The value of the necessary increase in tomorrow’s consumption is strictly larger than the

increase in tomorrow’s production induced by the increase in saving. This result shows

that a Pareto-improving new allocation w.l.o.g. never begins with an increase in saving.

Now suppose that there has been no increase in saving at the predecessor nodes of

node σ. Thus the output f
(
k̂ (σ−1) , θ

)
is less than or equal to f (k∗ (σ−1) , θ) . If we

have k̂ (σ) > k∗ (σ) and ĉy (σ) ≥ c∗y (σ), then it will also be a feasible improvement to

set the deviating allocation equal to the (c∗, k∗) allocation at successor nodes of σ. If

k̂ (σ) > k∗ (σ) and ĉy (σ) < c∗y (σ) with − (ĉy (σ)− c∗y (σ)) ≤ k̂ (σ)− k∗ (σ) , then taking

the (c∗, k∗) allocation for successor nodes of σ and giving k̂ (σ)−k∗ (σ)+(ĉy (σ)− c∗y (σ))

to the old generation at σ is also feasible and improving.

In the remaining case k̂ (σ) > k∗ (σ) and ĉy (σ) < c∗y (σ) with − (ĉy (σ)− c∗y (σ)) >

k̂ (σ)− k∗ (σ) , consider the allocation
(
c̃, k̃

)
with c̃y (σ) = ĉy (σ) + k̂ (σ)− k∗ (σ),

c̃o (σ′) =

 ĉo (σ′) + f (k∗ (σ) , θ)− f
(
k̂ (σ) , θ

)
if this expression is ≥ c∗o (σ′)

c̃o (σ′) = c∗o (σ′) otherwise

and keeping savings at the original level k∗ (σ), i.e. k̃ (σ) = k∗ (σ) , returning to the (c∗, k∗)

allocation for nodes σ′ ∈ σ+ for which c̃o (σ′) = c∗o (σ′), and staying at the deviating

allocation
(
ĉ, k̂

)
for the remaining nodes of σ+. This new allocation

(
c̃, k̃

)
is feasible.

Furthermore c̃y (σ) < c∗y (σ) and c̃o (σ′) ≥ c∗o (σ′) , σ′ ∈ σ+. Therefore, if m̃rs (σ′, σ)

denotes the marginal rate of substitution between σ′ and σ at the
(
c̃, k̃

)
allocation,

by strict concavity of the utility function, we have 1
m̃rs(σ′,σ)

< p(σ′)
p(σ)

. By concavity of the

production function, we have f
(
k̂ (σ) , θ

)
−f (k∗ (σ) , θ) ≤ f ′ (k∗ (σ) , θ) ·

[
k̂ (σ)− k∗ (σ)

]
.

Combining this with the first order condition for the firm problem, we obtain

k̂ (σ)− k∗ (σ) =
∑
σ′∈σ+

p (σ′)

p (σ)
· f ′ (k∗ (σ) , θ) ·

[
k̂ (σ)− k∗ (σ)

]
.

>
∑
σ′∈σ+

1

m̃rs (σ′, σ)
·
[
f

(
k̂ (σ) , θ

)
− f (k∗ (σ) , θ)

]
Since k̃ (σ) = k∗ (σ), the marginal rate of transformation in the

(
c̃, k̃

)
allocation
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remains the same as in the original allocation. Since 1
m̃rs(σ′,σ)

< p(σ′)
p(σ)

, it follows by a short

run optimality argument similar to the one used to prove that a deviating allocation can

never begin with an increase in saving that any increase in saving cannot be improving

for an agent born in node σ. At nodes σ′ ∈ σ+ at which c̃o (σ′) = c∗o (σ′) , the young

generation gets the same as in the original (c∗, k∗) allocation, at the other nodes from σ+,

the young generation gets the same as under the
(
ĉ, k̂

)
allocation. (Note that the saving

k̂ (σ′) is still feasible for such nodes.) So w.l.o.g. we can assume that there is no increase

in savings.

Step 2: But then it follows that we can also w.l.o.g. assume that youth consumption

never increases when an improving allocation exists. This follows from short run opti-

mality of the competitive equilibrium by a similar argument as in the first part of step

1.

Step 3: Assume a Pareto improvement is possible. Since the economy is bounded

above and strictly convex, we can assume that the deviating allocation lies coordinatewise

in a compact set Bδ (K) , where K is the set of competive allocations, for some δ >

0 sufficiently large.23 Consider the following identity, which follows from the resource

constraint co (σ′) + cy (σ′) + k (σ′) = f (k (σ) , θ) ∀σ′ = (θ, σ) ∈ σ+:

−∆cy (σ′)−∆k (σ′) = ∆co (σ′)−∆f (k (σ) , θ) , (7)

where ∆co (σ′) = (ĉo (σ′)− c∗o (σ′)) etc. if (c∗, k∗) is the initial competitive equilib-

rium allocation and
(
ĉ, k̂

)
is the new interim Pareto-improving allocation. If we de-

fine ∆ε (σ′) = −∆k (σ′) ≥ 0 as the dissaving at node σ′ when changing to the new

allocation, which is by the argument made above (Step 1) always nonnegative, and

∆a (σ′) = −∆cy (σ′) ≥ 0 as the decrease in youth consumption (Step 2) when chang-

ing to the new allocation, we have as transfers to the old ∆a (σ′) + ∆ε (σ′) ≥ 0 and

thus

∆a (σ′) + ∆ε (σ′) = ∆co (σ′)−∆f (k (σ) , θ) . (8)

Consider all nodes σ′ ∈ σ+ for which ∆a (σ′)+∆ε (σ′) > 0. Since the improving allocation(
ĉ, k̂

)
must at some node σ̃ be different from the initial one we must have ∆a (σ̃) +

∆ε (σ̃) > 0. Consider now the successor nodes σ′′ ∈ σ̃+ for which ∆a (σ′′) + ∆ε (σ′′) > 0.

It is easy to see that if we continue this way we inductively define a subtree, called Γσ̃.

Recall that the subtree Γσ̃ is tree with σ̃ as root and which contains all sucessor nodes of

23A careful reading of the proof deriving non-vanishing Gaussian curvature reveals that the set Bδ (K)
can be chosen as large as necessary.
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σ̃. Multiplying with contingent prices p (σ′) and summing over σ′ ∈ σ+ ∩ Γσ̃ gives

∑
σ′∈σ+∩Γσ̃

p (σ′) · [∆a (σ′) + ∆ε (σ′)] =
∑

σ′∈σ+∩Γσ̃

p (σ′) · [∆co (σ′)−∆f (k (σ) , θ)] .

Using now the non-vanishing Gaussian curvature condition for preferences and the lemma

above for production functions, we get24

∑
σ′∈σ+∩Γσ̃

p (σ′) · [∆co (σ′)−∆f (k (σ) , θ)] ≥ (9)

−δ1 (σ) + ρ
(δ1 (σ))2

p (σ)
+ p (σ) ·∆ε (σ) + c · (p (σ) ·∆ε (σ))2

p (σ)
,

where δ1 (σ) is defined as above.

Replacing ∆co (σ′)−∆f (k (σ) , θ) by ∆a (σ′) + ∆ε (σ′) gives

∑
σ′∈σ+∩Γσ̃

p (σ′) · [∆a (σ′) + ∆ε (σ′)] ≥ −δ1 (σ) + ρ
(δ1 (σ))2

p (σ)
+ p (σ) ·∆ε (σ)

+ c · (p (σ) ·∆ε (σ))2

p (σ)
. (10)

Similar to Chattopadhyay and Gottardi (1999), we define a function λ : Γ → [0, 1] by

λ (σ′) =
p (σ′) · [∆a (σ′) + ∆ε (σ′)]∑

σ′∈σ+∩Γσ̃

p (σ′) · [∆a (σ′) + ∆ε (σ′)]
. (11)

when σ′ ∈ Γσ̃, and by

λ (σ) = 1 for σ ∈ σ̃− ,λ (σ) = 0 elsewhere

By construction of λ, it satisfies
∑

σ′∈σ+∩Γσ̃

λ (σ′) = 1. Furthermore, it has all the properties

in the definition of a transfer pattern.

Now we consider an arbitrary path σ∞ in the subtree Γσ̃. Define γ = min
{
c, ρ

}
. Equation

(10) can then be written as

1

λ (σ′)
· p (σ′) · [∆a (σ′) + ∆ε (σ′)] ≥ (12)

24Note that the inequality in (9) holds if we sum the left-hand side over σ+ and therefore also holds
by summing over the strictly positive terms, what is done in (9).
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p (σ) ·∆a (σ) + γ
(p (σ) ·∆a (σ))2

p (σ)
+ p (σ) ·∆ε (σ) + γ

(p (σ) ·∆ε (σ))2

p (σ)
.

Inverting both sides of this equation we obtain

λ (σ′)

p (σ′) · [∆a (σ′) + ∆ε (σ′)]
≤ (13)

1

p (σ) ·∆a (σ) + γ (p(σ)·∆a(σ))2

p(σ)
+ p (σ) ·∆ε (σ) + γ (p(σ)·∆ε(σ))2

p(σ)

for all σ ∈ Γσ̃.

This is equivalent to
λ (σ′)

p (σ′) · [∆a (σ′) + ∆ε (σ′)]
≤ (14)

1

p (σ) · [∆a (σ) + ∆ε (σ)]

·

1−
γ

p(σ)
·
[
(p (σ) ·∆a (σ))2 + (p (σ) ·∆ε (σ))2]

p (σ) ·∆a (σ) + γ (p(σ)·∆a(σ))2

p(σ)
+ p (σ) ·∆ε (σ) + γ (p(σ)·∆ε(σ))2

p(σ)

 .

Further algebraic manipulations on the right-hand side give

λ (σ′)

p (σ′) · [∆a (σ′) + ∆ε (σ′)]
≤ (15)

1

p (σ) · [∆a (σ) + ∆ε (σ)]

− 1
(p(σ)·[∆a(σ)+∆ε(σ)])2

γ
p(σ)

·[(p(σ)·∆a(σ))2+(p(σ)·∆ε(σ))2]
+ p (σ) · [∆a (σ) + ∆ε (σ)]

so that we finally obtain

λ (σ′)

p (σ′) · [∆a (σ′) + ∆ε (σ′)]
≤ (16)

1

p (σ) · [∆a (σ) + ∆ε (σ)]
− γ

p (σ)

1
[∆a(σ)+∆ε(σ)]2

(∆a(σ))2+(∆ε(σ))2
+ ∆a (σ) + ∆ε (σ)

.

We want to show next that the expression [∆a(σ)+∆ε(σ)]2

(∆a(σ))2+(∆ε(σ))2
+ ∆a (σ) + ∆ε (σ) , which by

the assumptions made on the subtree Γσ̃ is strictly positive, is also bounded above. By
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the resource constraint and the assumption that the economy is bounded, ∆a (σ)+∆ε (σ)

is clearly bounded above. Rewrite [∆a(σ)+∆ε(σ)]2

(∆a(σ))2+(∆ε(σ))2
as

(∆a (σ))2

(∆a (σ))2 + (∆ε (σ))2 +
2∆a (σ) ∆ε (σ)

(∆a (σ))2 + (∆ε (σ))2 +
(∆ε (σ))2

(∆a (σ))2 + (∆ε (σ))2 . (17)

The first and the third term are bounded above by 1 and so is the middle term because

2∆a (σ) ∆ε (σ)

(∆a (σ))2 + (∆ε (σ))2 =
2

∆a(σ)
∆ε(σ)

+ ∆ε(σ)
∆a(σ)

(18)

and the function x+ 1/x is bounded below by 2 on the positive real line.

So there is a constant K > 0 such that [∆a(σ)+∆ε(σ)]2

(∆a(σ))2+(∆ε(σ))2
+ ∆a (σ) + ∆ε (σ) ≤ K. Inserting

this into (16) gives

λ (σ′)

p (σ′) · [∆a (σ′) + ∆ε (σ′)]
≤ 1

p (σ) · [∆a (σ) + ∆ε (σ)]
− γ

p (σ)

1

K
. (19)

If we now iterate this inequality along σ∞ starting with σ̃, we obtain

λ (σ∞T ) ...λ
(
σ∞t(σ̃)

)
p (σ∞T ) · [∆a (σ∞T ;σ∞T ) + ∆ε (σ∞T )]

+
γ

K

T−1∑
t=t(σ̃)

λ (σ∞t ) · ... · λ
(
σ∞t(σ̃)

)
p (σ∞t )

≤ 1

p (σ̃) · [∆a (σ̃) + ∆ε (σ̃)]
, (20)

so that lim
T→∞

∑T−1
t=t(σ̃)

λ(σ∞t )·...·λ(σ∞t(σ̃))
p(σ∞t )

as being increasing in T must converge to a positive

real number, call it A′. Note that with the normalization p (σ0) = 1 we have p (σ∞t ) =∏t
s=1

1

mrs(σ∞s ,σ∞s−1)
. Given our definition of the transfer pattern λ, this implies the existence

of a positive real number A such that in the case when an interim Pareto improvement is

possible, (5) would hold. This completes the proof.

C Proposition 6

Proof.

1. see 3.

2. see 3.

3. For notational simplicity the proof of the first claim will be given for two period
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bonds. The result immediately generalizes as shown below. Assume without loss

of generality that the series
∑∞

t=0

∏t
s=0R2 (σ∞2s) converges uniformly along all paths

σ∞. For odd t define now λ (σ∞t ) =

∑
σ′∈(σ∞t )+

p(σ′)∑
σ̃∈(σ∞t−1)

++ p(σ̃)
, and for even t we define λ (σ∞t ) =

p(σ∞t )∑
σ′∈(σ∞t−1)

+ p(σ′)
. Note that now

λ
(
σ∞2t−1

)
· λ (σ∞2t ) =

p (σ∞2t )∑
σ̃∈(σ∞2t−2)

++ p (σ̃)
.

Consider∏2t
i=1 λ (σ∞i )

p (σ∞2t )
=

1

p (σ∞2t )
· p (σ∞2 )∑

σ̃∈(σ∞0 )
++ p (σ̃)

· ... · p (σ∞2t )∑
σ̃∈(σ∞2t−2)

++ p (σ̃)
.

=
p
(
σ∞2t−2

)∑
σ̃∈(σ∞2t−2)

++ p (σ̃)
· ... · p (σ∞0 )∑

σ̃∈(σ∞0 )
++ p (σ̃)

=
t−1∏
s=0

R2 (σ2s)

If we consider now
∏2t

i=1 λ(σ∞i )
p(σ∞2t )

and define λ
(
σ∞2t+1

)
arbitrary between 0 and 1 and

all others λ as above, we get∏2t+1
i=1 λ (σ∞i )

p
(
σ∞2t+1

) =
1

p
(
σ∞2t+1

) · p (σ∞2 )∑
σ̃∈(σ∞0 )

++ p (σ̃)
· ... · p (σ∞2t )∑

σ̃∈(σ∞2t−2)
++ p (σ̃)

· λ
(
σ∞2t+1

)

=
p (σ∞2t ) · λ

(
σ∞2t+1

)
p
(
σ∞2t+1

) ·
t−1∏
s=0

R2 (σ2s) .

Since by interiority of the competitive allocation the price ratio
p(σ∞2t )
p(σ∞2t+1)

is bounded

and λ
(
σ∞2t+1

)
≤ 1, the convergence condition in the main theorem holds for this

choice of λ if and only if the series with two period bond interest rates converges.

The condition for n-period bonds can be derived similarly. For t = k · n +m with

0 ≤ m < n and k ∈ N we have for the right choice of λ

∏t
i=1 λ (σ∞i )

p (σ∞t )
=

p (σ∞kn)

p
(
σ∞k·n+m

) · m∏
i=1

λ
(
σ∞kn+i−1

)
·
k−1∏
j=0

Rn

(
σ∞jn

)
.
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By the same argument as above convergence in the main theorem holds if and only

if the corresponding series for n-period bonds converges.

4. For the last claim suppose the certain interest rate is larger than 1 everywhere. For

any subtree Γσ̂ and any system of weight functions λΓσ̂
defined on it we have for

any node σ ∈ Γσ̂ and for some σ′ ∈ σ+
n ∩ Γσ̂ that λnΓσ̂

(σ′) · p (σ) ≥ p (σ′) where λn

is the n−fold product of the transfer pattern λΓσ̂
defined on Γσ̂. This is so because

otherwise p (σ) =
∑

σ′∈σ+
n ∩Γσ̂

λΓσ̂
(σ′) · p (σ) <

∑
σ′∈σ+

n ∩Γσ̂
p (σ′) ≤

∑
σ′∈σ+

n
p (σ′) ,

which contradicts the assumption on Rn (σ) . But this implies the existence of a path

σ∞ ∈ Γσ̂ for which
∞∑

t=t(σ̂)

∏t
s=1 λΓσ̂

(σ∞s )

p(σ∞t )
diverges, because λnΓσ̂

(σ′) · p (σ) ≥ p (σ′) ⇐⇒

1
p(σ)

≤ λnΓσ̂
(σ′)

p(σ′)
.

5. For all σ∞t define λ (σ∞t ) =

∑
σ′∈(σ∞t )+

p(σ′)∑
σ̃∈(σ∞t−1)

++ p(σ̃)
. With this transfer pattern, we have

∏t
i=1 λ (σ∞i )

p (σ∞t )
=

∑
σ′∈(σ∞t )+ p (σ′)

p (σ∞t )
·

p
(
σ∞t−1

)∑
σ̃∈(σ∞t−1)

++ p (σ̃)
·

∑
σ′∈(σ∞t−1)

+ p (σ′)

p
(
σ∞t−1

) ·...· 1∑
σ̃∈(σ∞0 )

++ p (σ̃)

=
t∏
i=1

R2

(
σ∞i−1

)
R1 (σ∞i )

,

where for the first equality we use the normalization p (σ∞0 ) = 1.

So with this transfer pattern, the convergence in the condition of the main theorem

occurs if and only if
∑∞

t=1

∏t
i=1

R2(σ∞i−1)
R1(σ∞i )

is uniformly bounded for every path σ∞.

This proves the last claim.

D Remark 13

Proof. In the following example we construct a generic competitive equilibrium allocation

that is dynamically efficient without being intertemporal exchange efficient or interim

Pareto optimal respectively. Consider an economy with two possible shocks each period

of time. Let (αi)
∞
i=0 be a sequence of real numbers 0 < αi < 1 with the property

∞∏
i=0

αi > 0,

which is equivalent to
∑∞

i=0 (1− αi) < ∞. Suppose there is a sequence of shocks (θt)
∞
t=0

with θt ∈ At for all t such that αi = qi (θi |θi−1, ..., θ0 ) . In other words, there exists

a path in the tree which has strictly positive probability. Suppose further that along
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the path σ∞ = (θ0, θ1, ...) we have ψ (σi) = 3i and hence
∞∑
i=0

1/ψ (σi) < ∞. Assume

furthermore that for every node σ in the tree there exists a path σ̃∞ with σ ∈ σ̃∞ such

that
∞∑
i=0

1/ψ (σ̃i) = ∞.

Clearly the economy described above is not dynamically inefficient although the series
∞∑
i=0

1
ψ(σi)

converges (and is therefore in this case uniformly bounded) on a set of strictly

positive measure, since there is no node in the tree at which a dissaving is possible without

a later decrease in consumption.

However, an interim Pareto-improving pure redistribution is possible. We have
t∏
i=0

αi ·

ψ (σt) ≥
(

T∏
i=0

αi

)
· (1− ε)t−T · ψ (σt) for every ε > 0 and some T when t > T. Since

for an ε sufficiently small we have
∑∞

t=T+1

1

(1−ε)t−T

ψ(σt)
=

∑∞
t=T+1

1

(1−ε)t−T

3t < ∞, the claim

follows immediately by choosing the degenerate subtree consisting of the path σ∞ and by

applying theorem 5.

To make the example more concrete, suppose that preferences of the consumers along the

convergent path σ∞ are of the form uσt (c (σ)) = ln cy (σ) + b (σt) · αt ln co (σ′1) + b (σt) ·
(1− αt) ln co (σ′2) , where b (σt) is a positive real number. Let the technology be given by

f (k, θ) = a (θ) · kβ,

where β will be chosen to satisfy a certain condition and 0 < β < 1.

Suppose the individual born in σt faces given interest rates of 3 and 1
3

in the two

possible events in his second period of life. The individual’s problem is then

max ln cy (σt) + b · αt ln co (σ′1) + b · (1− αt) ln co (σ′2) (21)

s.t. cy (σt) + s (σt) = w (σt) ,

co (σ′1) =
1

3
· s (σt) ,

co (σ′2) = 3 · s (σt) .

It follows that s (σt) = g ·w (σt), where we define g = b
1+b

. Given the savings decision

s (σt) , in order for 3 and 1
3

to be equilibrium interest rates we must have

f ′ (s (σt) , θ1) = a (θ1) · β · (s (σt))
β−1 =

1

3
, (22)
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f ′ (s (σt) , θ2) = a (θ2) · β · (s (σt))
β−1 = 3.

We know w (σt) = (1− β) · a (θ) · (k (σt−1))
β where σt = (θ, σt−1) . Thus,

s (σt) = g (σt) · (1− β) · a (θ) · (k (σt−1))
β .

The function f (x) = g · (1− β) · a (θ) · xβ has for fixed a (θ) a nonzero fixed point,

which we call k∗. We can now solve, for an arbitrary given k∗, for the corresponding a,

which is given by a = [1
g
· (1−β)] · (k∗)1−β . Plugging k∗ for s (σt) and [1

g
· (1−β)] · (k∗)1−β

for a (θ1) into (22), k∗ cancels out and the resulting condition for β is

1

g
· β

1− β
=

1

3

or equivalently

β =
1
3
· g

1 + 1
3
· g
.

If we choose a (θ2) = 9 · a (θ1) , the second equation above is also satisfied.

Up to now we have constructed a k∗, so that a capital stock of k∗ is maintained if

along the path σ∞ the same shock always occurs. It is clear from our construction that

once we deviate from this path, agents have a higher wage income. Hence, since g remains

fixed, households save more. Hence, if the same shocks occur each period, higher capital

stock means higher wages and therefore higher savings etc. Thus the capital stock off

the path will never fall below k∗. Furthermore, by a (θ2) · kβ = k ⇐⇒ k = a (θ2)
1

1−β , an

upper bound on the maximal possible capital stock is given. Since a (θ1) and therefore

a (θ2) depend on the choice of k∗ as described above, k∗ can be chosen sufficiently large to

ensure a (θ2) · β · a (θ2)
β

1−β , the lowest possible interest rate when the ”high” shock a (θ2)

occurs, to be strictly larger than 1. Given this lower bound on interest rates for ”good

states”, the economy is dynamically efficient. We fix the probabilities of shocks off the

path equal to (1/2, 1/2).

Overall, the examples display all the features described in the first few paragraphs of

this section. Furthermore, all assumptions made in our main theorem are satisfied: capital

stock is bounded away from zero, because of the fixed saving rate and the boundedness

of capital stock, also consumption is bounded away from zero.
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E Proposition 8

Proof. Let (c∗, k∗) be a given interior short run optimal allocation. Short run optimality

implies (by the second welfare theorem for finite economies) that for each consumer σ,

k∗ (σ) is a solution to the following problem

max
s(σ)

Eσu (c (σ))

s.t. cy (σ) + s (σ) ≤ w (σ) + T̃ (σ)

co (σ′) ≤ f (s (σ) , θ) + T̃ (σ′;σ)

for some transfers T̃ . It now follows from the first order conditions of this problem that

it is then also a solution to

max
s(σ)

Eσ u (c (σ))

s.t. cy (σ) + s (σ) ≤ w∗ (σ) + T ∗y (σ)

co (σ′) ≤ r∗ (σ′) · s (σ) + T ∗o (σ′) , ∀σ′ ∈ σ+

for appropriate transfers T ∗ if r∗ (σ′) = f ′ (k∗ (σ) , θ) . Therefore every short run optimal

interior allocation can be supported.

F Remark 9

We will show the equivalence of transfers and government debt. By the second welfare

theorem, every competitive allocation can be implemented using appropriate transfers

T y (σ) and T o (σ′) . We will show how the competitive allocation with these transfers can

be implemented in an Arrow-Debreu equilibrium with government debt.

Given the allocation associated to the equilibrium with transfers T , there exist contingent-

claims prices p and transfers T̃ such that the allocation is also the solution of the household
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problem in Arrow Debreu form

max
c(σ),c(σ′)

Eσu (c (σ) , c (σ′))

s.t. p (σ) · c (σ) +
∑
σ′∈σ+

p (σ′) · c (σ′) = w (σ) + T̃ (σ) .

and the firm problem

max
k(σ)≥0

∑
σ′∈σ+

p (σ′) · f (k (σ) , θ)− p (σ) · k (σ) .

We will now show that T̃ (σ) = p (σ) · T y (σ) +
∑

σ′∈σ+ p (σ′) · T (σ′) .

The first order conditions for the Arrow Debreu problem are

Eσu1 (c (σ) , c (σ′)) = λ · p (σ)

q (σ′ |σ ) · u2 (c (σ) , c (σ′)) = λ · p (σ′) for all σ′ ∈ σ+,

where λ > 0 is the Lagrange multiplier of the budget constraint.

The first order condition for the firm is

∑
σ′∈σ+

p (σ′)

p (σ)
· f ′ (k (σ) , θ) = 1.

If we consider the original saving problem with transfers

max
(cy(σ),s(σ),(co(σ′))σ′∈σ+)∈R2+S

+

Eσ u (c (σ))

s.t. cy (σ) + s (σ) = w (σ) + T y (σ)

co (σ′) = r (σ′) · s (σ) + T o (σ′)

where Eσ u (c (σ)) :=
∑

θt+1∈A
qt+1 (θt+1|σ) ·u (cy (σ) , x ((σ, θt+1) ; σ)) , the first order con-

dition is

Eσu1 (w (σ) + T y (σ)− s (σ) , r (σ′) · s (σ) + T o (σ′)) =

Eσ [u2 (w (σ) + T y (σ)− s (σ) , r (σ′) · s (σ) + T o (σ′)) · r (σ′)] .
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We note that r (σ′) = f ′ (k (σ) , θ) and if we define p(σ′)
p(σ)

= q(σ′|σ )·u2(w(σ)+T y(σ)−s(σ),r(σ′)·s(σ)+T o(σ′))
Eσu1(w(σ)+T y(σ)−s(σ),r(σ′)·s(σ)+T o(σ′))

,

the relative Arrow Debreu prices that support the Pareto optimal allocation, we see that

the first order conditions of the Arrow Debreu problem will hold for an appropiate choice

of λ. Furthermore,

p (σ) · [w (σ) + T y (σ)− s (σ)] +
∑
σ′∈σ+

p (σ′) · (r (σ′) · s (σ) + T o (σ′))

= p (σ) · w (σ) +

[
−p (σ) +

∑
σ′∈σ+

p (σ′) · r (σ′)

]
︸ ︷︷ ︸

=0

· s (σ) + p (σ) · T y (σ) +
∑
σ′∈σ+

p (σ′) · T (σ′)

= p (σ) · w (σ) + T̃ (σ) .

This shows that the Arrow Debreu formulation of the consumer problem with income

w̃ (σ) = p (σ) · w (σ) + T̃ (σ) and relative contingent-claims prices equal to the marginal

rates of substitution in the corresponding allocation has the same solution as the original

saving problem.

Given the contingent-claims prices, the real returns for government debt, denoted

rm (σ) , have to satisfy the following arbitrage condition:

p (σ) =
∑
σ′∈σ+

rm (σ′) · p (σ′) .

We can now define the price for government bonds at node σ∞t , denoted as pm (σ∞t ) as:

pm (σ∞t ) =
t∏
i=1

rm (σ∞i ) · p (σ∞t ) .

With this definition, the following relation holds:

pm (σ) =
∑
σ′∈σ+

pm (σ′) .

If the outstanding government debt at node σ is denoted by m (σ) , the budget constraint

of the consumer under a non-stationary debt policy becomes

p (σ) · c (σ) +
∑
σ′∈σ+

p (σ′) · c (σ′) = w (σ)− pm (σ) ·m (σ) +
∑
σ′∈σ+

pm (σ′) ·m (σ′) .



50

If now m is chosen such that T̃ (σ) =
∑

σ′∈σ+ pm (σ′) ·m (σ′)− pm (σ) ·m (σ) for all nodes

σ, the non-stationary government debt policy implements by the definition of T̃ and p

the optimal allocation. In the case of a stationary debt policy (a debt Ponzi scheme), we

have m (σ′) = m (σ) for all σ′ ∈ σ+,. Therefore, it follows T̃ (σ) = 0.

Note that T y (σ) = −pm(σ)
p(σ)

·m (σ) . The transfers in old age are then given by T o (σ′) =

rm (σ′) · (−T y (σ)) +4T (σ′) , where 4T (σ′) is just difference between the return to gov-

ernment bonds and the transfer T o (σ′) . Thus m (σ′) = p(σ′)
pm(σ′)

·T o (σ′) . The last equations

allow us to interpret the (negative) transfers in young age as the amount spend in gov-

ernment bonds. The transfer in old age is the return on the government bonds bought

when young plus (or minus) an additional transfer or tax 4T (σ′) .

G Proposition 10

Proof. The proof is an application of Zorn’s lemma. By our assumption that the economy

is bounded (end of section 2), we can w.l.o.g. assume that the total amount of the single

commodity available at each node σ is bounded above by some constant y. Let Y := [0, y]3

be the threefold product of the [0, y] interval. Define Y :=
∏
σ∈Γ

Y. By the Tychonoff Product

Theorem Y is compact in the product topology. The set of feasible allocations, which

we denote by F, is closed in the product topology and contained in Y . Therefore it is also

compact. Furthermore, by extending the utility functions in the canonical manner to Y ,
they are continuous with respect to the product topology. Now let the feasible allocation

(c, k) be given.

Define a preorder � on F by setting
(
ĉ, k̂

)
�

(
c̃, k̃

)
⇐⇒ x̂ (θ0,−1) ≥ x (θ0,−1) and

uσ
(
ĉy (σ) , (ĉo (σ′))σ′∈σ+

)
≥ uσ

(
cy (σ) , (co (σ′))σ′∈σ+

)
for all σ ∈ Γ.

Consider the set

V(c,k) :=
{(

ĉ, k̂
)
∈ F

∣∣∣ (
ĉ, k̂

)
� (c, k)

}
.

Clearly, V(c,k) is non-empty since it contains (c, k) . Furthermore, it is closed and therefore

compact. Define

V :=
{
V ⊆ V(c,k)

∣∣V 6= ∅,
(
c̃, k̃

)
∈ F and

(
c̃, k̃

)
�

(
ĉ, k̂

)
for some

(
ĉ, k̂

)
∈ V imply

(
c̃, k̃

)
∈ V

}
.

Maximal elements with respect to reverse set order on V are Pareto-optima and weakly

preferred to (c, k) in the preorder � .

To show that maximal elements exist, it suffices by Zorn’s lemma to show that every

chain has an upper bound. Let Vα, α ∈ Λ be a given chain, where Λ is the index set.

Consider the set W :=
⋂
α∈Λ

Vα. We have to show that this set is non-empty. Since the

Vα sets are closed subsets of the compact space Y , by the finite intersection property it
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suffices to show that any finite intersection of the Vα sets is non-empty. But this follows

immediately from the fact that the Vα form a chain. We have W ⊆ Vα for all α ∈ Λ and

therefore an upper bound for the chain. Thus by Zorn’s lemma, there exists a maximal

element V ∗ 6= ∅ in V with respect to ⊆. All (c∗, k∗) ∈ V ∗ are Pareto optimal allocations

and satisfy (c∗, k∗) � (c, k) .

H Example AMSZ

The example consists of consumers with logarithmic preferences and firms with Cobb-

Douglas technology. There are two states of the world which correspond to different

shocks to the production technology. Formally this means that production is given by

f (k, ωi) i = 1, 2 with f (k, ωi) = ωi · kα, 0 < α < 1, ω1 = 1 and ω2 > 1, where ω1 and ω2

are the two shocks. The utility functions with parameter a are given by:

u = ln cy + a [p ln co1 + (1− p) ln co2] ,

where p is the probability of shock ω1.We will construct a set of equilibria for this economy

which all have three different risk-free interest rates, one larger than one and two of them

smaller than one, which may appear in arbitrary order along each path, i.e. there are

three numbers R1 > 1, R2 < 1 and R3 < 1 such that at every node in the tree the risk-free

interest rate may equal either R1, R2 or R3. If R2 and R3 appear sufficiently often along

each path, our sufficent condition for inefficiency will be met. On the other hand, if the

high shock ω2 has occured, for any level of investment for the next period chosen, the net

dividend criterion will be satisfied. In case of the low shock ω1, the low investment level

which leads to R1 has to be chosen if we want the net dividend criterion to hold. So if

one observes a path with sufficiently many of the high shocks ω2, it may well be possible

that the net dividend criterion will be satisfied along this path, but the overall economy

is nevertheless inefficient.

Note first, tha the wage is given by w (ωi, k) = (1− α)·ωi·kα.Given relative contingent-

claims prices q1 and q2 the household solves

max
cy ,co1,c

o
2

ln cy + a [p ln co1 + (1− p) ln co2]

s.t. cy + q1c
o
1 + q2c

o
2 = w.
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From the first order conditions we obtain

ap

q1
=
co1
cy

and
a (1− p)

q2
=
co2
cy
.

We can also consider the household problem if we formulate it as a saving problem:

max
cy ,co1,c

o
2,s

ln cy + a [p ln co1 + (1− p) ln co2]

s.t. cy + s = w

r1 · s = co1, r2 · s = co2,

where ri is the return to investment in state i. The first order condition is now:

1

w − s
= pa

1

s
+ (1− p) a

1

s
.

Solving for s yields:

s =
a

1 + a
· w. (23)

This gives r1 · a
1+a

· w = co1, r2 · a
1+a

· w = co2 and cy = 1
1+a

· w.
To obtain this solution in the first problem we have to set relative contingent-claims

prices equal to

q1 =
p

r1
, q2 =

1− p

r2
.

Three different levels of capital stock shall occur in the equilibria we consider, k1, k2, k3.

Instead of working with the ki , we consider instead r̃i := αkα−1
i . So let r̃1, r̃2 and r̃3 be

given. The risky interest rate if contemporary capital stock is ki and current shock is ωj

is thus given by rij := ωj · r̃i. The risk-free interest rates Ri are computed according to

Ri =
1

qi1 + qi2

with qi1 = p
ri1

and qi2 = 1−p
ri2
.

Let w.l.o.g. r̃1 > r̃2 > r̃3 (i.e. k1 is the lowest capital stock etc.). First, the r̃i have to

be such that given the wage generated by the lowest capital stock k1 and the low shock

(ω1) it is still possible that consumers with a certain parameter a chose the highest capital
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stock k3 as their savings. In this case consumers have the lowest possible wage and are

supposed to choose the highest possible capital stock. Note that given the form of the

savings function (23), it suffices to require that the wage resulting from k1 and ω1 is larger

than k3. Expressed in terms of the r̃i this amounts to

(1− α)

(
r̃1
α

) α
α−1

≥
(
r̃3
α

) 1
α−1

⇐⇒
(

α

1− α

)1−α

· r̃α1 ≤ r̃3. (24)

If the condition is satisfied for r̃1and r̃3, then it necessarly also holds for all other combi-

nations of capital stocks.

Now Ri can be expressed in terms of the corresponding r̃i:

Ri =
1

p
r̃i

+ 1−p
ω2r̃i

=
ω2

ω2p+ (1− p)
· r̃i. (25)

We want to have that R3 and R2 are less than 1 and R1 > 1. Since ω2

ω2p+(1−p) > 1, we see

that this necessarily requires r̃3, r̃2 < 1.

The criterion of AMSZ for efficiency, considered along a path in the framework of this

example, requires that factor payments to capital are strictly larger than saving for the

next period:

α · ωj · kαi > kl,

where the current capital stock is ki, the current shock is ωj and the next period’s capital

stock kl. Expressed in terms of r̃i,this gives

α · ωj ·
(
r̃i
α

) α
α−1

>

(
r̃l
α

) 1
α−1

⇐⇒ ωα−1
j · r̃αi < r̃l. (26)

Again it suffices to require the inequality for r̃1 on the lhs and r̃3 on the rhs.

Note that for α = 1
3

and ω2 = 2, we have 1−α
α

=
2
3
1
3

= 2, and thus conditions (26)

and (24) coincide in this case. If we choose additionally p = 1
2
, we see from (25) that

Ri = 2 · 2
1+2

· r̃i = 4
3
· r̃i.

Thus, we must have r̃3, r̃2 <
3
4
. In order to show that in this case a r̃1 with r̃1 > r̃2 > r̃3
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exists that satisfies (24) (and thus equivalently (26)), it suffices to check whether

1

2
2
3

· r̃
1
3
1 <

3

4

has a solution r̃1 > 1. For ω1 = 1 the inequality (26) becomes r̃αi < r̃l and will then be

satisfied for i = 2, 3 and l = 1. But the condition is equivalent to

r̃1 <

(
3

4

)3

· 4.

The last term is greater than 1 and thus the desired conclusion follows.

In general, one has to check whether given the parameters α, p and ω2, there exist

r̃1 > 1 > r̃2 > r̃3 that satisfy the inequalities (24), (26) for ω2 and all possible indices,

(26) for ω1 = 1 and for i = 2, 3 and l = 1,and Ri = ω2

ω2p+(1−p) · r̃i < 1, i = 2, 3, R1 =
ω2

ω2p+(1−p) · r̃1 > 1 simultaneously.

In this case one can construct economies with arbitrary risk-free interest rate se-

quences, in which the net-dividend criterion will be satisfied on all paths on which in case

of the low shock ω1 the current capital stock is k2 or k3 and k1 is chosen for the next

period or the current capital stock is k1 and k1 is chosen for the next period.

Suppose we construct an equilibrium in which R2 and R3 appear sufficiently often to

make the economy interim Pareto suboptimal. If we observe a path which contains many

more ω2 than ω1 shocks, then the preceding results imply that the frequent appearance

of R2 and R3 is entirely consistent with the observation that net dividends are strictly

positive along this path.
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