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Survey, Implementation and Extension*
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important assumptions or consequences of assumptions of economic functionals to be 
estimated. Recent research has seen a renewed interest in imposing constraints in 
nonparametric regression. We survey the available methods in the literature, discuss the 
challenges that present themselves when empirically implementing these methods and 
extend an existing method to handle general nonlinear constraints. A heuristic discussion on 
the empirical implementation for methods that use sequential quadratic programming is 
provided for the reader and simulated and empirical evidence on the distinction between 
constrained and unconstrained nonparametric regression surfaces is covered. 
 
 
JEL Classification: J20, J30, C14 
  
Keywords: constraint weighted bootstrapping, Hessian, concavity, identification, 

earnings function 
 
 
Corresponding author: 
 
Daniel J. Henderson 
Department of Economics 
State University of New York 
Binghamton, NY 13902 
USA 
E-mail: djhender@binghamton.edu       
 
                
 

                                                 
* The research on this project has benefitted from the comments of participants in seminars at Cornell 
University, the University of California, Merced, the University of California, Riverside, the University of 
Nevada, Las Vegas, and the State University of New York at Albany as well as participants at the 5th 
annual Advances in Econometrics Conference held at Louisiana State University and the 3rd Annual 
New York Camp Econometrics. All GAUSS 8.0 code used in this paper is available from the authors 
upon request. 

mailto:djhender@binghamton.edu


2 DANIEL J. HENDERSON AND CHRISTOPHER F. PARMETER

1. Introduction

Nonparametric estimation methods are a desirable tool for applied researchers since economic
theory rarely yields insights into a model’s appropriate functional form. However, when paired
with the specific smoothness constraints imposed by an economic theory, such as monotonicity of
a cost function in all input prices, this often increases the complexity of the estimator in practice.
Access to a constrained nonparametric estimator that can handle general, multiple smoothness
conditions is desirable.1 Fortunately, a rich literature on constrained estimation has taken shape
and a multitude of potential suitors have been proposed for various constrained problems. Given
the potential need for constrained nonparametric estimators in applied economic research and the
availability of a wide range of potential estimators, coupled with the dearth of detailed, simultaneous
descriptions of these methods, a survey on the current state of the art is warranted.

In empirical studies on games, such as auctions, monotonicity of players strategies is a key as-
sumption used to derive the equilibrium solution. This monotonicity assumption thus carries over
to the estimated equilibrium strategy. And while parametric models of auctions have monotonicity
‘built-in’, their nonparametric counterparts impose no such condition. Thus, using a nonparametric
estimator of auctions which allows monotonicity to be imposed is expected to be more competitive
against parametric alternatives than an unconstrained estimator. Recently, Henderson, List, Mil-
limet, Parmeter & Price (2008) have shown that random samples from equilibrium bid distributions
can produce nonmonotonic nonparametric estimates for small samples. This suggests that being
able to construct an estimator that is monotonic from the onset is important for analyzing auction
data.

Analogously, convexity is theoretically required for either a production or cost function and the
ability to impose this constraint in a nonparametric setting is thus desirable given that very few
models of production yield reduced form parametric solutions. Cost functions are concave in input
prices and outputs, nondecreasing and homogeneous of degree one in input prices. Thus, estimating
a cost function requires the imposition of three distinct economic conditions. To our knowledge
applied studies that nonparametrically estimate cost functions (Wheelock & Wilson 2001) do not
impose these conditions directly. Thus, at the very least there is a loss of efficiency since these
constraints are not imposed on the estimator. Moreover, since the constraints are not imposed, it
is impossible to test whether these conditions are valid or not.

Before highlighting the potential methods available we aim to gauge the necessity of imposing
smoothness constraints via a primitive example. Consider the univariate data generating process:

yi = ln(xi) + εi, i = 1, 2, . . . , n,

1An additional benefit of imposing constraints in a nonparametric framework is that it may provide nonparametric
identification, see Matzkin (1994). Also, Mammen, Marron, Turlach & Wand (2001) show that when one imposes
smoothness constraints on derivatives higher than first order the rate of convergence is faster than had the constraints
not been imposed.
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which is monotonic and concave. If we generate random samples under a variety of sample sizes and
distributional assumptions for the pair (xi, εi), we can gain insight into the need for a constrained
estimator. Tables 1 and 2 provide the proportion of times, out of 9, 999 simulations, a local-constant
kernel estimator, in unconstrained form, provides an estimate that is either monotonic or concave
uniformly over a grid of points on the interior of the range of x. We use three different bandwidths
for our simulations. Generically, we use bandwidths of the form h = cσxn−1/5 where c is a user
defined constant, σx is the standard deviation of the regressand, and n is the sample size being
used. A traditional rule-of-thumb bandwidth is obtained by setting c = 1.06. We also use c = 0.53
(lesser-smoothed) and c = 2.12 (greater-smoothed) to gauge the impact the bandwidth has on the
ability of the unconstrained estimator to satisfy the constraints without further manipulation.

We see that as the sample size is increased from 100 to 200 to 500 the proportion of trials where
monotonicity is uniformly found over the grid of points approaches unity. However, concavity is
violated much more often. There are many instances, especially when the bandwidth is relatively
small, where there are no cases where concavity is found uniformly over the grid of points. This
result may be unexpected to some given that we have nearly ten-thousand replications. Further,
we see that as we increase the error variance, this leads to large decreases in the number of cases
of both monotonicity and concavity.

Even with these alarming results we note that larger scale factors (c) increase the incidence of
concavity. Somewhat surprising is that we do not always see that increasing the sample size leads to
higher incidences of concavity. While increasing n increases the number of cases of concavity when
we have large bandwidths, we often find the opposite result when c = 1.06. This conflicting result
likely occurs because of two competing forces. First, the increase in the number of observations
leads to more points in the neighborhood of x. This should lead to more cases of concavity. The
second effect counteracts the first because increasing the number of observations decreases the
bandwidth as h ∝ n−1/5. Finally, we note that the design of the experiment also has a noticeable
effect on the likelihood of observing monotonicity or concavity without resorting to a constrained
estimator. For instance, generating the regressor from the Gaussian distribution as opposed to
the Uniform brings about much larger proportions of concave estimates when the bandwidth is
relatively large (likely due to more data in the interior of x).2

The results from these tables suggest that constrained estimators are necessary tools for nonpara-
metric analysis as in even very simple settings direct observation of an unrestricted estimator that
satisfies the constraints is by no means the norm. One can imagine that with multiple covariates,
multiple bandwidths and a variety of constraints to be imposed simultaneously that the likelihood
the constraints are satisfied de facto are low.

In general, a wide variety of constrained nonparametric estimation strategies have been proposed
to incorporate economic theory within the estimation procedure. While many of these estimators

2We also looked at the proportion of times a single point on the interior of the grid produced a monotonic or concave
result. For example, when setting this value of x equal to the expected mean of each series, the incidence of both
monotonicity and concavity increased. This percentage increase proved to be much larger for concavity. These results
are available from the authors upon request.
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Table 1. Likelihood of an Estimated Monotonic Regression (9,999 trials)

ε ∼ N(0, 0.1) ε ∼ N(0, 0.2)
100 200 500 100 200 500

x ∼ U [0.5, 1.5]
c = 0.53 0.996 0.999 1.000 0.731 0.825 0.933
c = 1.06 1.000 1.000 1.000 0.999 1.000 1.000
c = 2.12 1.000 1.000 1.000 1.000 1.000 1.000
x ∼ N(1, 0.25)
c = 0.53 0.978 0.993 0.999 0.584 0.699 0.841
c = 1.06 1.000 1.000 1.000 0.997 1.000 1.000
c = 2.12 1.000 1.000 1.000 1.000 1.000 1.000

Table 2. Likelihood of an Estimated Concave Regression (9,999 trials)

ε ∼ N(0, 0.1) ε ∼ N(0, 0.2)
100 200 500 100 200 500

x ∼ U [0.5, 1.5]
c = 0.53 0.000 0.000 0.000 0.000 0.000 0.000
c = 1.06 0.021 0.033 0.040 0.016 0.016 0.014
c = 2.12 0.016 0.004 0.008 0.022 0.007 0.003
x ∼ N(1, 0.25)
c = 0.53 0.000 0.000 0.000 0.000 0.000 0.000
c = 1.06 0.027 0.019 0.014 0.019 0.010 0.003
c = 2.12 0.445 0.527 0.683 0.397 0.427 0.498

are designed myopically for a specific smoothness constraint, a small but burgeoning literature has
focused on estimators which can handle many arbitrary economic constraints simultaneously. Of
note are the recent contributions of Racine, Parmeter & Du (2009) who develop a constrained
kernel regression estimator and Beresteanu (2004) who developed a similar type of estimator but
for use with spline based estimators.3 In addition to providing a survey of the current menu of
available constrained nonparametric estimators, we also shed light on the quantitative aspects for
empirical implementation regarding the constrained kernel estimator of Racine et al. (2009). While
they mention the ability of their method to handle general constraints, their existence results and
simulated and real examples all focus on linear (defined in the appropriate sense) restrictions.
We augment their discussion by providing existence results as well as heuristic arguments on the
implementation of the method. Simulated and empirical evidence targeting imposing concavity on
a regression surface is provided to showcase the full generality of the method.

The rest of this paper proceeds as follows. Section 2 reviews the literature on constrained
nonparametric regression. Section 3 discusses imposing general, nonlinear constraints, specifically

3We should also recognize Yatchew & Bos (1997) who also developed a general framework for constrained nonpara-
metric estimation in a series based setting. See also the recent application of their method in Yatchew & Härdle
(2006).
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concavity, using constraint weighted bootstrapping and shows how it can be implemented compu-
tationally. Section 4 presents a small scale simulation and an empirical discussion of estimation
of an age-earnings profile. Section 5 presents several concluding remarks and directions for future
research.

2. Available Constrained Estimators

Consider the standard nonparametric regression model

(1) yi = m(xi) + εi, for i = 1, . . . , n,

where yi is the dependent variable, m(·) is the conditional mean function with argument xi, xi is a
k × 1 vector of covariates and εi is a random variable with zero mean and unit variance. Our goal
is to estimate the unknown conditional mean subject to economic constraints (e.g., concavity) in a
smooth framework.

Imposing arbitrary constraints on nonparametric regression surfaces, while not new to economet-
rics, has not received as much attention as other aspects of nonparametric estimation, for instance
bandwidth selection, at least not in the kernel regression framework. Indeed, one can divide the
literature on imposing constraints in nonparametric estimation frameworks into two broad classes:

(1) Developing a nonparametric estimator to satisfy a particular constraint. Here the class of
monotonically restricted estimators is a prime example.

(2) Developing a nonparametric estimator (either smooth or interpolated) that satisfies a class
of constraints.

Our goal is to highlight the variety of existing methods and document the differences across the
available techniques to guide the reader to an appropriate estimator for the problem at hand.

2.1. Isotonic Regression. The first constrained nonparametric estimators were nonsmooth and
fell under the heading of ‘isotonic regression’, initially proposed by Brunk (1955). Brunk’s (1955)
estimator was a minmax estimator that was designed to impose monotonicity on a regression
function with a single covariate, while Hansen, Pledger & Wright (1973) extended the estimator to
two dimensions and provided results on consistency of the estimator. To explain the estimator of
Brunk, let CB be the discrete cone of restrictions in Rn:

{(z1, z2, . . . , zn) : z1 ≤ z2 ≤ · · · ≤ zn} .

We let y∗i be a solution to the minimization problem

min
(y∗1 ,...,y∗n)∈CB

n∑

i=1

(yi − y∗i )
2.

This minimization problem has a unique solution that is expressed succinctly by a min-max formula.
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Use X(1), . . . , X(n) to denote the order statistics of X and y[i] the corresponding observation of
X(i). Then our ‘isotonized’ fitted values can be represented as

(2) y∗i = min
s≥i

max
t≤i

t∑

j=s

y[j]/(t− s + 1),

or

(3) y∗i = max
s≤i

min
t≥i

t∑

j=s

y[j]/(t− s + 1).

In Brunk’s (1955) approach there is no attempt to smooth the estimation results to values of x

between the observation points. A simple approach would be to extend flatly between the values of
xi but this has been criticized for the presence of too many flat spots and a slow rate of convergence.4

Interestingly, Hildreth (1954) introduced a related method to that in Brunk (1955), but geared
towards estimating a regression function that is restricted to be concave. His procedure amounts
to conducting least-squares subject to discretized concavity restrictions. Similar to Brunk (1955),
let CH be the discrete cone of restrictions in Rn:

{
(z1, z2, . . . , zn) :

zi+1 − zi

xi+1 − xi
≥ zi+2 − zi+1

xi+2 − xi+1
, i = 1, . . . , n− 2

}

then y∗i is a solution of.

(4) min
(y∗1 ,...,y∗n)∈CH

n∑

i=1

(yi − y∗i )
2.

An iterative procedure is required to solve the minimization as no closed form solution exists.
However, unlike the monotonically constrained estimator of Brunk (1955), the concave restricted
estimator of Hildreth (1954) extends between observation points linearly, thus falling into the
classification of a least-squares spline estimator.

While both of these estimators construct restricted regression estimates predicated on simple
concepts, they are not ‘smooth’ in the traditional sense. The classic isotonic regression estimator
of Brunk (1955) was smoothed by Mukerjee (1988) and Mammen (1991a). An alternative way to
characterize their estimators is to say that they forced the traditional Nadaraya-Watson regression
smoother to satisfy a monotonicity constraint. The key insight was to use a two-step estimator
that consisted of a smoothing step and an isotonizing step. Mukerjee (1988) proved that one could
preserve the isotonization constructed in the first step by using a log-concave kernel to smooth
in the second step. Thus, after one uses either (2) or (3) to isotonize the regressand, a smooth,

4Slower than conventional nonparametric rates.
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nonparametric estimate of the unknown conditional mean is constructed as

(5) m̂(x) =

n∑
i=1

K((x−X(i))/hn)y∗i
n∑

i=1
K((x−X(i))/hn)

,

where hn is the bandwidth.5 One does not need to use a special kernel, however, as a second order
Gaussian kernel is log concave, thus making this method easy to implement. Mammen (1991a)
proved that asymptotically the order of the steps is irrelevant. No equivalent estimator exists for
the concave variant introduced by Hildreth (1954) and as such the generalizability of smoothing
isotonic type estimators is unknown. Moreover, multivariate extensions to the traditional isotonic
regression estimator are difficult to implement and often not available in closed form solutions.

2.2. Constrained Spline/Series Estimation. Both spline and series based functions provide
the researcher with a flexible set of basis functions with which to construct a regression model that
is linear in parameters, which is intuitively appealing. Early methods using splines or series based
methods, designed to impose general economic constraints, include Gallant (1981, 1982) and Gallant
& Golub (1984) who introduced the Fourier Flexible Form estimator (FFF), whose coefficients could
be restricted to impose concavity, homotheticity and heterogeneity in a nonparametric setting.6

Constrained spline smoothers were proposed by Dierckx (1980), Holm & Frisen (1985), Ramsay
(1988), and Mammen (1991b), to name a few early approaches.

In what follows we describe the basic setup for constrained least-squares spline estimation.7 We
define our spline space to be S.8 Our least-squares spline estimate is a function m which represents
a linear combination of spline functions from S that solves:

(6) min
s∈S

n∑

i=1

(yi −m(xi))2.

To impose constraints we note that positivity of either the first or second derivative at a given
point x̃ of the function m(·) can be written equivalently as positivity of a linear combination of the
associated parameters with respect to the chosen basis. Thus, monotonicity or concavity can be
readily imposed on a discretized grid of points where each point adds additional linear constraints
on the spline coordinates with the associated basis. It is a natural step to include these linear
constraints directly into the least-squares spline problem.

Similar to isotonic regression, the literature appears to have focused on concavity first (Dierckx
1980) and then monotonicity (Ramsay 1988). In what will be a common theme in constrained
nonparametric regression, Dierckx (1980) used a quadratic program to enforce local concavity or

5This has connections with both data sharpening (Section 2.5) and constraint weighted bootstrapping (Section 2.6).
6Monotonicity is not easily imposed in this setting.
7For a more detailed treatment of either series or spline based estimation we refer the reader to Eubank (1988) and
Li & Racine (2007, chapt. 15).
8Unlike kernel smoothing where smoothing is dictated by a bandwidth, in series and spline based estimation, the
smoothing is controlled by the dimension of the series or spline space.
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convexity of a spline function. His function estimate, using normalized B-splines (see Schumaker
1981) with basis Nj , is

m̂(x) =
k∑

j=−3

c∗jNj(x).

Here k denotes the total number of knots. The values c∗j solve the quadratic program

(7) min
k∑

j=−3
dj,lcjej≤0

n∑

i=1


yi −

k∑

j=−3

cjNj(xi)




2

.

The ej in equation (7) determine the type of constraint being imposed on the function locally. That
is, ej = 1 if the function is locally convex at knot `, ej = 0 if the function is unrestricted at the `th

knot and ej = −1 if the function is locally concave at knot `. The numbers dj,l are derived from
the second derivatives of the basis splines at each of the knots and have simple formula. We have

dj,l =0 if j ≤ l − 4 or j ≥ 4

dl−3,l =
6

(tl+1 − tl−2)(tl+1 − tl−1)

dl−1,l =
6

(tl+2 − tl−1)(tl+1 − tl−1)

dl−2,l =− (dl−3,l + dl−1,l),

where tl refers to the lth point under consideration. Ramsay (1988) developed a similar monotoni-
cally constrained spline estimator using I-splines. I-splines have a direct link to the B-splines used
by Dierckx (1980). An I-spline of order M is an indefinite integral of a corresponding B-spline of
the same order. Ramsay (1988) used I-splines because he was able to establish that they had the
property that each individual I-spline is monotonic and that any linear combination of I-splines
with positive coefficients is also monotonic. This made it easy to construct the associated mono-
tonic spline estimator. Both of the aforementioned estimators can also be placed in the smoothing
spline domain as well.

Yatchew & Bos (1997) develop a series based estimator that can handle general constraints.
This estimator is constructed by minimizing the sum of squared errors of a nonparametric function
relative to an appropriate Sobolev norm. The basis functions that make up the series estimation
are determined from a set of differential equations that provide ‘representors’. Representors of
function evaluation consist of two functions spliced together, where each of these functions is a linear
combination of trigonometric functions. In essence, one can ‘represent’ any function in Sobolev
space through this process (see Yatchew & Bos 1997, Appendix 2). Let R be an n×n ‘representor’
matrix whose columns (equivalently rows) equal the representors of the function, evaluated at the
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observations x1, . . . , xn.9 Then, arbitrary constrained estimation of a nonparametric function

(8) min
f∈F

n−1
n∑

i=1

(yi −m(xi))2 s.t. ‖m‖2
Sob ≤ L,

can be recast as

(9) min
c

n−1
n∑

i=1

(yi −Rc)2 s.t. c′Rc ≤ L, c′R(1)c ≤ L(1), c′R(2)c ≤ L(2), . . . , c′R(k)c ≤ L(k).

Here L denotes the upper bound on the squared Sobolev norm of our constrained function, c is an
n×1 vector of coefficients and F is our constrained function space which we are searching over. Since
we are interested in constraints that relate directly to the derivatives of the nonparametric function
we are estimating, R(1), . . . , R(k) represent the appropriate derivatives of the original representor
matrix and L(1), . . . , L(k) are the corresponding bounds. For example, if one wished to impose
monotonicity, L(1) = 0 and R(1) represents the representor matrix with each of the representors
first order differentiated with respect to the corresponding column’s variable (i.e., the fifth column of
R(1) corresponds to the fifth covariate so the representors are first order differentiated with respect
to that variable). Again, this is a quadratic programming problem with a quadratic constraint.10

Beresteanu (2004) introduced a spline based procedure that can handle multivariate data and
impose multiple, general, derivative constraints. His estimator is solved via quadratic programming
over an equidistant grid created on the covariate space. These points are then interpolated to
create a globally constrained estimator. He employed his method to impose monotonicity and
supermodularity of a cost function for the telephone industry. His estimation setup is similar
to the approaches described above and involves putting together a set of appropriately defined
constraint matrices for the shape constraint(s) desired and solving for a set of coefficients, then
interpolating these points to construct the nonparametric function which satisfies the constraints
over the appropriate interval. In essence, since Beresteanu (2004) is constructing his estimator first
based on a grid of points and then interpolating, this estimation procedure can be viewed as a
two-step series based equivalent of the isotonic regression discussed earlier (Mukerjee 1988).

2.3. The Matzkin Approach. The seminal work of Matzkin (1991, 1992, 1993, 1994, 1999) con-
sidered identification and estimation of general nonparametric problems with arbitrary economic
constraints. One of her pioneering insights was that when nonparametric identification was not
possible, imposing shape constraints tied to economic theory could provide nonparametric identifi-
cation in certain estimation settings. Her work laid the foundations for a general operating theory
of constrained nonparametric estimation. Her methods focused on standard economic constraints

9For more on the construction of representor matrices see Wahba (1990) or Yatchew & Bos (1997, Appendix 2).
10See the work of Yatchew & Härdle (2006) for an empirical application of constrained nonparametric regression using
the series based method of Yatchew & Bos (1997). Yatchew & Härdle (2006) focus on nonparametric estimation of
an option pricing model where the unknown function must satisfy monotonicity and convexity as well as the density
of state prices being a true density (positivity and integrates to 1).
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(monotonicity, concavity, homogeneity, etc.) but facilitated in more general settings than regres-
sion. Primarily, her work focused on binary-threshold crossing models and polychotomous choice
models, although her definition of sub-gradients equally carried over to a regression context. One
can suitably recast her estimation method in the regression context as nonparametric constrained
least-squares.

For example, to impose concavity on a regression function she created ‘subgradients’, T j , which
were defined for any convex function m : X → Rk where X ⊂ R is a convex set and x ∈ X

any vector T ∈ Rk such that ∀y ∈ X m(y) ≥ m(x) + T (y − x).11 We use the notation T j to
denote that the subgradients are calculated for the observations. Matzkin (1994) showed how to
use the subgradients to impose concavity and monotonicity simultaneously. Using the Hildreth
(1954) constraints for concavity of a regression surface, Matzkin (1994) rewrites them as

m(xi) ≤ m(xj) + T j(xi − xj), i, j = 1, . . . , n.

She solves the minimization problem in (4) but the minimization is over m(xi) ∀i and T j ∀j.
To impose monotonicity one would add the additional constraint that T j > 0 ∀j. Algorithms to
solve the constrained optimization problem were first developed for the regression setup by Dykstra
(1983), Goldman & Ruud (1992) and Ruud (1995) and for general functions by Matzkin (1999),
who used a random search routine regardless of the function being minimized.

Implementation of these constrained methods is of the two-step variety (see Matzkin 1999). First,
for the specified constraints, a feasible solution consisting of a finite number of points is determined
through optimization of some criterion function (in Matzkin’s choice framework set-ups this is a
pseudo-likelihood function). Second, the feasible points are interpolated or smoothed to construct
the nonparametric surface that satisfies the constraints. These methods can be viewed in the same
spirit as that of Mukerjee (1988), but for a more general class of problems.

2.4. Rearrangement. Recent work on imposing monotonicity on a nonparametric regression func-
tion, known as rearrangement, is detailed in Dette, Neumeyer & Pilz (2006) and Chernozhukov,
Fernandez-Val & Galichon (2007). The estimator of Dette et al. (2006) combines density and re-
gression techniques to construct a monotonic estimator. The appeal of ‘rearrangement’ is that no
constrained optimization is required to obtain a monotonically constrained estimator, making it
computationally efficient compared to the previously described methods. Their estimator actually
estimates the inverse of a monotonic function, which can then be inverted to obtain an estimate of
the function of interest.

To derive this estimator let M denote a natural number that dictates the number of equi-spaced
grid points to evaluate the function. Then, their estimator is defined as

(10) m̂−1(x) =

x∫

−∞

1
Mh

M∑

j=1

K

(
m̂(j/M)− u

h

)
du,

11When m(x) is differentiable at x the gradient of x is the unique subgradient of m at x.
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where m̂(x) is any unconstrained nonparametric regression function estimate (kernel smoothed,
local polynomial, series, splines, neural network, etc.). The intuition behind this estimator is
simple; the connection rests on the properties of transformed random variables.

Note that m(xi) is a transformation of the random variable xi. The estimator

1
nh

n∑

i=1

K

(
m(xi)− u

h

)
,

represents the classical kernel density of the random variable u = m(x1) which has density

g(u) = f(x1)|(m−1)′(x1)|.
The integration in (10) is that of a probability density function and as such a CDF is constructed,
which is always monotonically increasing. The equi-space grid is used for estimation since the
evaluation points are then treated as though they came from a uniform density, making f(j/M) =
I[a, b], where a and b denote the lower and upper bounds of the support of X, respectively. Thus, the
integration in this case amounts to integrating |(m−1)′(x1)| over its domain, which gives us m−1(x1).
Once this has been obtained, it is a simple matter to reflect this estimate across the y = x line
in Cartesian 2-space to obtain our monotonically restricted regression estimator. Chernozhukov
et al. (2007) discuss implementation of this estimator in a multivariate setting and show that the
constrained estimator always improves (reduces the estimation error) over an original estimate
whenever the original estimate is not monotonic.

The name rearrangement comes from the fact that the point estimates are rearranged so that
they are in increasing order (monotonic). This happens because the kernel density estimate of
the first stage regression estimates sorts the data from low to high to construct the density, which
is then integrated. This sorting, or rearranging, is how the monotonic estimate is produced. It
works because monotonicity as a property is nothing more than a special ordering and the kernel
density estimator is ‘unaware’ that the points it is smoothing over to construct a density are from
an estimate of a regression function as opposed to raw data.

One issue with this estimator is that while it is intuitive, computationally simple and easy to
implement with existing software, it requires the selection of two ‘bandwidths’.12 Additionally, the
intuition underlying the ease of implementation does not readily extend itself to general constraints
on nonparametric regression surfaces. No such transformation is obtainable to impose concavity
using the same insights, for example.

2.5. Data Sharpening. Data sharpening derives from the work of Friedman, Tukey & Tukey
(1980) and Choi & Hall (1999). These methods are designed to admit a wide range of constraints and
are closely linked to biased-bootstrap methods (Hall & Presnell 1999). Data sharpening is inherently
different than biased-bootstrapping and constraint weighted bootstrapping (to be discussed later)

12We use the word bandwidth loosely here as the first stage does not have to involve kernel regression. One could
use series estimators in which case the selection would be over the number of terms. Or, if one uses splines then the
number of knots would have to be selected in the first stage.
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as it alters the data, but keeps the weights associated with each point fixed, whereas biased-
bootstrapping and constraint weighted bootstrapping change the weights associated with each
point, but keep the points fixed. Both of these methods, however, can be thought of as data tuning
methods which in some sense alter the underlying empirical distribution to achieve the desired
outcome. We discuss the method of Braun & Hall (2001) in what follows.

Let our original data be {x1, . . . , xn} and our sharpened data be {z1, . . . , zn}. Define the distance
between original and sharpened points as D(xi, zi) ≥ 0. We choose Z = {z1, . . . , zn}, our set of
sharpened data, to minimize

D(X ,Z) =
n∑

i=1

D(xi, zi),

subject to our constraints of interest. Once the sharpened data have been obtained we apply our
method of interest, in this setting nonparametric regression, to the sharpened data.

More formally, our kernel regression (local-constant, say) estimator is

m̂(x|X ,Y) =

n∑
i=1

K ((xi − x)/h) yi

n∑
i=1

K ((xi − x)/h)
=

n∑

i=1

Ai(x)yi.

We want to impose an arbitrary constraint on the function, monotonicity for example, by ‘sharp-
ening’ the y’s. Thus, we minimize

(11) D(Y,Q) =
n∑

i=1

D(yi, qi),

for a preselected distance function, subject to the constraints

(12) m̂′(x|X ,Q) =
n∑

i=1

A′i(x)qi > 0.

Notice the conditioning set for which the estimator is defined over has changed from Y to Q. Thus,
we construct our restricted estimator while simultaneously minimizing our criterion function. If one
chose D(r, t) = (r − t)2, we would have a standard quadratic programming problem provided the
constraints were linear (which they are in our monotonicity example). Compared to rearrangement,
given the fact that the data is smoothed, even though the response variables are moved around, the
corresponding constrained curve is as smooth as the unconstrained curve. The rearranged curve
will have ambiguous low order kinks where the non-monotonic portion of the curve is ‘forced’ to
be monotonic resulting in a curve that is less smooth than its unconstrained counterpart.

2.6. Constraint weighted bootstrapping. Hall & Huang (2001) suggests an alternative smooth,
monotonic nonparametric estimator that admits any number of covariates. Racine et al. (2009)
have generalized the method to accommodate a variety of ‘linear’ constraints simultaneously. Start
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again with the standard local-constant least-squares estimator

(13) m̂(x) =

n∑
i=1

K ((xi − x)/h) yi

n∑
i=1

K ((xi − x)/h)
=

1
n

n∑

i=1

Ai(x)yi,

where Ai(x) = nK ((xi − x)/h) /
∑n

i=1 K ((xi − x)/h). Even though we are choosing to use the
local-constant least-squares framework, this setup can be immediately extended to other types of
kernel and local polynomial estimation routines. As it stands the regression estimator in (13) is
not guaranteed to produce a monotonic estimator. Hall & Huang’s (2001) insight was to introduce
observation specific weights pi instead of the 1/n that appears in (13). These weights can then be
manipulated so that the estimator satisfies monotonicity. To be clear,

m̂(x|p) =
n∑

j=1

piAi(x)yi,

is the constraint weighted bootstrapping estimator. It is not necessarily monotonic unless we
properly restrict the weights.

In the unconstrained setting we have p = (p1, . . . , pn) = (1/n, . . . , 1/n) which represents weights
drawn from a uniform distribution. If the bandwidth chosen produces an estimate that is already
monotonic, the weights should be set equal to the uniform weights. However, if the function by itself
is not monotonic then the weights are diverted away from the uniform case to create a monotonic
estimate. In order to decide how to manipulate the weights a distance metric is introduced based
on power divergence (Cressie & Read 1984):

(14) Dρ(p) =
1

ρ(1− ρ)
[n−

n∑

i=1

(npi)ρ], −∞ < ρ < ∞.

where ρ 6= 0, 1. One needs to take limits for ρ = 0 or 1. They are given as

D0(p) = −
n∑

i=1

log(npi); D1(p) =
n∑

i=1

pi log(npi).

This distance metric is quite general. If one uses ρ = 1/2, then this corresponds to Hellinger dis-

tance, whereas nD0(p)+n2 log(n) is equivalent to Kullback-Leibler divergence
(
−

n∑
i=1

n log(pi/n)
)

.

This metric is minimized for a selected ρ subject to the constraint that

m̂′(· | p) =
n∑

j=1

piA
′
i(·)yi ≥ ε,

on a grid of selected points. Here ε ≥ 0 can be used to guarantee either weak or strict monotonicity.
A nice feature of this estimator is that the kernel and bandwidth are chosen before the weights
are selected. This means that the user can choose their desired kernel estimator and bandwidths
selector to construct their nonparametric estimator and then constrain it to be monotonic. This
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leaves the door open to straightforward modification of the estimator. In fact, there is nothing
special about monotonicity for the method of Hall & Huang (2001) to work. Any constraint that
is desired, could, in principle, be imposed on the regression surface.

Note that the monotonic constraint imposed in Hall & Huang (2001) can be written in the more
general form:

(15)
n∑

i=1

pi

[∑

s∈S

αsA
(s)
i (x)

]
yi − c(x) ≥ 0,

where the inner sum is taken over all vectors S that correspond to our constraints of interest
(monotonicity, say), αs are a set of constants used to generate various constraints and c(x) is a
known function. S indexes the order of the derivative associated with the kernel portion of the
regression estimator. In our example of monotonicity, s = ej is a k-vector (since we have x ∈ Rk)
with 1 in the jth position and zeros everywhere else, αs = 1 ∀s ∈ S and c(x) = 0.13 Racine et al.
(2009) provide existence and uniqueness for a set of weights for constraints of the form (15). They
call these constraints linear since they are linear with respect to the weights, pi ∀i. Additionally, to
make the constrained optimization computationally simple, they use the L2 norm with respect to
the uniform weights (1/n), as opposed to the power divergence metric. This condenses the problem
into a standard quadratic programming problem which can be solved using existing packages in
almost all standard econometric software.

Note the subtle difference between the data sharpening methods discussed previously and the
constraint weighted bootstrapping methods here. When one chooses to sharpen the data the actual
data values are being transformed while the weighting is held constant. Here, the exact opposite
occurs, the data is held fixed while the weights are changed. At the end of the day however, the
two estimators can be viewed as ‘visually’ equivalent. That is, both estimators can be looked at as

(16) m̂(x) =
n∑

j=1

Ai(x)y∗i ,

where y∗i corresponds to either the sharpened values or piyi obtained from the constraint weighted
bootstrapping approach. The difference between the methods is how to obtainy∗i .

14 Also, note
that both constraint weighted bootstrapping and data sharpening are vertically moving the data
whereas rearrangement methods horizontally move the data.

2.7. Summary of Methods. While our discussion of existing methods has indicated a number of
choices for the user, there does not exist one clear cut method for imposing arbitrary constraints on
a regression surface for every given situation. Each of the methods discussed has computational or
theoretical drawbacks when considered against the set of all available methods. Additionally, several
of the key differences across the methods focuses on the choice of operating in a kernel, spline, or

13The notation A(s) refers to the order of the derivative of our weight function with respect to its argument.
14An interesting topic for future research would be to compare the performance of these methods across a variety of
constraints.
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series based framework, the selection of smoothing parameters, the smoothness of the estimator,
the adaptability/generalizability of the method, whether to impose global or discrete constraints,
and the ability to use the method to conduct inference on the constraints being imposed.

2.7.1. Spline, Series and Kernels. Given that the above constrained estimation methods discussed
above use vastly differing nonparametric methods, this choice cannot be overlooked. Kelly & Rice
(1990) mention that if the coefficients in the B-spline bases are nondecreasing, then so is the
function (if one was imposing monotonicity) and Delecroix & Thomas-Agnan (2000) discuss that
splines are defined as the solution to a minimization problem in general lend support for their use
in constrained settings. However, given the prevalence of discrete data in applied settings, the
seminal work of Racine & Li (2004) highlighting the fact that smoothing categorical data can lead
to substantial finite sample efficiency gains, lends support for adopting a kernel based method.
Alternatively, given the ease with which one may construct and employ series based methods, it is
easy to advocate that these constrained methods are computationally easy to employ.

Given the adaptability of the methods of Yatchew & Bos (1997) (which is series based), Beresteanu
(2004) (which is spline based) and Racine et al. (2009) (which is kernel based), we cannot advocate
for a particular type of nonparametric method based on imposing general smoothness constraints.
Nor do we advocate on behalf of the particular type of nonparametric smoothing one should engage
in. However, given the ease with which one can implement a constrained estimator, we remark that
the easiest method for which a researcher can incorporate the constraints should be used. Addi-
tionally, if a researcher traditionally uses a type of nonparametric method (spline say), then they
may have more familiarity with employing one set of constrained methods over another which is
an obvious benefit.

2.7.2. Choice of Smoothing Parameter. As with all nonparametric estimation methods, the choice
of smoothing parameter plays a crucial role to the performance of the estimator both in practice
and theory. No mention was given to the appropriate level of smoothing in the aforementioned
constrained methods. Few results exist suggesting how the optimal level of smoothing should be
imposed. For many of the methods described previously one could engage in cross-validation simul-
taneously with the constraint imposition. This may actually help in determination of the optimal
smoothing parameter. The simulations of Delecroix & Thomas-Agnan (2000) show that the mean
integrated square error (typically used in cross-validation) as a function of the smoothing param-
eter typically had a wider zone of stability around the optimal level of the smoothing parameter,
suggesting it may be easer to determine the optimal level. It is well known that various forms of the
cross-validation function are noisy, making determination of the optimal level difficult in certain
settings.

However, engaging in cross-validation and constraint imposition simultaneously is unnecessary
in particular methods. For example, the constraint weighted bootstrapping methods of Hall &
Huang (2001) and Racine et al. (2009) show that the constrained kernel estimator should use a
bandwidth of the standard, unconstrained optimal order. In this setting both the restricted and
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unrestricted smooths will have the same level of smoothing. Further, tuning could be performed
by cross-validation after the constraint weights have been found and simple checks to determine if
the constraints were still satisfied (similar to that described above).

2.7.3. Method Complexity. The methods discussed above range from simple computation (rearrange-
ment and univariate isotonic regression) to involving quadratic or nonlinear program solvers. These
numerical methods may dissuade the user from adopting a specific approach, but we note that with
the drastic reductions in computation time and the availability of solvers in most econometric
software packages, these constraints will continue to lessen over time. Indeed, part of this survey
discusses in detail the implementation of a sequential quadratic program to showcase its implemen-
tation in practice. Also, given the ease with which a quadratic program can be solved with linear
constraints, the method of Racine et al. (2009) addresses the critique of Dette & Pilz (2006, Page
56) who note “[rearrangement offers] substantial computational advantages, because it does not
rely on constrained optimization methods.” We mention here that rearrangement requires slightly
more sophistication when one migrates from a univariate to multivariate setting and so this concern
is lessened in applied work.

2.7.4. Numerical Comparisons. Very little theoretical work exists to showcase the performance of
one method against a set of competitors. Indeed, even numerical comparisons are scant. The most
comprehensive study between methods is that of Dette & Pilz (2006) who conduct a Monte Carlo
comparison of smooth isotonic regression, rearrangement, and the method of Hall & Huang (2001)
for the constraint of monotonicity, in the univariate setting for a bevy of DGPs. Their findings
suggest that rearrangement has desirable/equivalent finite sample performance compared to the
other methods across all of the DGPs considered.

3. Imposing nonlinear constraints

We discuss a further generalization of Racine et al. (2009) that can handle general nonlinear
constraints and discuss in detail the computational method of sequential quadratic programming
required to implement nonparametric regression in this setting. Our choice for a deeper, prolonged
discussion of this methods hinges on the necessity of sequential quadratic programming methods in
several of the methods mentioned prior. Very rarely are the methods to obtain a solution discussed
at length and given the use of these methods in both data sharpening and constraint weighted
bootstrapping, we feel it requisite to highlight the implementation of this technique.

While we discuss general constrained estimation in the face of arbitrary nonlinear constraints, to
cement our ideas we focus on the specific example of concavity. Concavity is a common assumption
used in the characterization of production functions. Concavity of the production function implies
diminishing marginal productivity of each input.15 This assumption is widely agreed upon by
economists and failure to impose it may lead to conclusions which are economically infeasible.

15Quasi-concavity does not imply diminishing marginal productivity to factor inputs. However, under constant
returns to scale, quasi-concavity does guarantee diminishing marginal products. This is because quasi-concavity
combined with constant returns to scale yields concavity. That being said, a major issue with constant returns to
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In the case of a single factor, a twice continuously differentiable function m(x) is said to be
concave if m′′(x) ≤ 0 ∀x ∈ S(x). Extending this result to the case of multiple x’s is relatively
straight forward. Concavity implies that the Hessian matrix

H(m(x)) =




m11 m12 · · · m1k

m21 m22 · · · m2k

...
. . .

...
mk1 mk2 · · · mkk




,

where mlk ≡ ∂2m(x)
∂xl∂xk

, must be negative semi-definite. In other words, all the lth (l = 1, 2, . . . , k)
order principal minors of H are less than or equal to zero if l is odd and greater than or equal to
zero if l is even (alternatively, all the eigenvalues of this matrix are negative). We could, instead,
choose to impose concavity via the constraints given in Hildreth (1954), however, many formal
definitions of concavity are linked to the Hessian and as such we enforce concavity using this.

Following Hall & Huang (2001), we have the following constrained nonlinear programming prob-
lem:

(17) minDρ(p) s.t. H(m(x|p)) is negative semi-definite ∀x ∈ S(x), pi ≥ 0 ∀i, and
n∑

i=1

pi = 1.

To solve this or any other constrained optimization problem in the spirit of Hall & Huang (2001)
we need to use sequential quadratic programming.

3.1. Sequential quadratic programming. Although the steps to constructing a constrained
nonparametric estimator seem straight forward, implementing these types of programs are often
not discussed in detail in econometrics papers. In this sub-section we outline sequential quadratic
programming (SQP).

Consider the inequality constrained problem

(18) minD(z) subject to ri(z) = 0, i ∈ E , and cj(z) ≥ 0, j ∈ I.

Where D : Rqo → R, ri : Rqo → Rq1 and cj : Rqo → Rq2 can all be nonlinear, but we require that
all the functions are smooth in the argument z. The idea behind SQP is to convert the nonlinear
programming problem in (18) into a conventional quadratic programming (QP) problem. To do
this we need to ‘linearize’ our constraints and ‘quadracize’ our objective function. Before doing
this we introduce some additional concepts.

The Lagrangian of our problem is defined as

(19) L(z, λr, λc) = D(z)− λ′rri(z)− λ′ccj(z).

Also, define Br(z)′ = [∇r1(z),∇r2(z), . . . ,∇rn(z)] and Bc(z)′ = [∇c1(z),∇c2(z), . . . ,∇cn(z)]. Now
pick an initial z, z0, and an initial set of vectors of Lagrange multipliers, λr,0 and λc,0. Lastly,

scale is that it implies that both the average and marginal productivities of inputs are independent of the scale of
production. In other words, they depend only on the relative proportion of inputs.
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define ∇2Lzz(z, λr, λc) = ∇2D(z)−∇Br(z)′λr −∇Bc(z)′λc. We are now ready to describe how to
solve our SQP problem.

Our QP at step 0 is

(20) minD(z0) +∇D(z0)′q +
1
2
q′∇2

zzL(z0, λr,0, λc,0)q,

subject to

(21) Br(z0)q + r(z0) = 0 and Bc(z)q + c(z0) ≥ 0.

The solution of this standard quadratic program, q0, `r,0, and `c,0 can be used to update z0, λr,0,
and λc,0 as follows: z1 = z0 + q0, λr,1 = `r,0, and λc,1 = `c,0. These updated values can then be
plugged back into the SQP to repeat the whole process until convergence. SQP requires nothing
more than repeated evaluation of the levels, first and second order derivatives of the objective and
constraint functions. It is a simple matter to determine these derivatives, thus this simplification
process requires nothing more than taking derivatives of a set of functions.

3.2. Existence and uniqueness of a solution. When the following assumptions hold:

(1) The constraint Jacobians, Br(z) and Bc(z), have full row rank,
(2) The matrix ∇2

zzL(z, λr, λc) is positive definite on the tangent space of constraints,

our SQP has a unique solution that satisfies the constraints. Essentially, this result comes from
the fact that one could have used Newton’s method to solve the constrained optimization and the
result here is obtained from the associated iterate from running Newton’s method instead. These
two assumptions are enough to guarantee that a unique solution holds if one were to use Newton’s
method instead of the one we outlined. However, Nocedal & Wright (2000, pgs. 531-532) show
that these two procedures, in this setting, are equivalent. For more on existence of a local solution
we direct the interested reader to Robinson (1974).

Additionally, since we have converted our general nonlinear programming problem into a QP
problem, the conditions required for existence of a solution in QP problems are exactly the con-
ditions we need to hold, at each iteration, to guarantee a solution exists in this setting. Thus,
the results established in Racine et al. (2009) carry over to our setting, provided our nonlinear
constraints are first order differentiable in the p’s and satisfy our assumptions listed above, which
are easily checked. Moreover, if the forcing matrix (∇2

zzL(q, λr, λc)) in the quadratic portion of
our ‘quadricized’ objective function is positive semidefinite and if our solution satisfies the set of
linearized equality/inequality constraints then our soluation is the unique, global solution to the
problem (Nocedal & Wright 2000, Theorem 16.4). Positive semi-definiteness guarantees that our
objective function is convex which is what yields a global solution. We note that this only shows
uniqueness but does not guarantee a solution will even exist.

However, it should be noted that because the constraint weights are restricted to be nonnegative
and sum to one, this implies that it may be difficult to impose a constraint that is ‘far away’
from being satisfied. In essence, the constraints imposed on the problem may be inconsistent if
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a nonnegative weight or a weight greater than one is needed to satisfy the constraints of interest.
However, the conditions needed to determine how far away is ‘far away’ are not investigated here.
Our conjecture is that the distance from an observation and the underlying function is dependent
on the error process that perturbs the data generating process.

In essence the weights act as vertical scaling factors and if the amount of scaling is restricted
then it can be difficult to find a solution. Hall & Presnell (1999) note the difficulty in finding the
appropriately sharpened points using essentially the same technique described here in roughly 10%
of their simulations. They advocate for an approach similar to simulated annealing that always
was able to arrive at a solution although that procedure was computational more intensive than
SQP. An alternative, not followed here, would be to dispense with the power divergence metric
and all constraints on the weights if no solution is found in the SQP format. In this setting one
could use the L2 norm of Racine et al. (2009) and linearize (provided the nonlinear constraints are
differentiable) the nonlinear constraints, again engaging in an iterative procedure to determine the
optimal set of weights which can be shown to always exist in this setting.

3.3. SQP imposing concavity. If we use the power divergence measure of Cressie & Read (1984):

Dρ(p) =
1

ρ(1− ρ)

{
n−

n∑

i=1

(npi)ρ

}
,

for −∞ < ρ < ∞ and ρ 6= 0, 1, as our objective function to minimize, then we have the following
set of functions that need to be estimated prior to solving our QP at any iteration (`th):

(i) Dρ(p`) ≡ 1
ρ(1−ρ)

{
n−

n∑
i=1

(npi,`)ρ

}
.

(ii) ∇Dρ(p`) = vec
[
−n
1−ρ(npi,`)ρ−1

]
.

(iii) ∇2Dρ(p`) = diag
[
n2(npi,`)ρ−2

]
.

(iv) r(z) ≡
n∑

i=1
pi,` − 1.

(v) Br(p`) = [1, 1, . . . , 1], an n-vector of ones.
(vi) ∇Br(p`) which is an n× n matrix of zeros.

Our objective function is defined in (i) whereas (ii) and (iii) are the first and second partial
derivatives of our objective function, respectively. Our equality constrained function (ensuring the
weights sum to 1) is defined in (iv) and the first and second partial derivatives of this function are
given in (v) and (vi).

Additionally, we have to calculate our inequality constrained functions as well as their first and
second partial derivatives, which can be broken into two pieces. First, we focus directly on the
linear inequality constraints, pi ≥ 0 ∀i. For this we have

(i) Bc,1(p`) = [e1, e2, . . . , en], where ej is an n−vector of zeros with a 1 in the jth spot.
(ii) ∇Bc,1(p`) which is an n× n matrix of zeros.

We also have to calculate the first and second derivatives of the determinants of the principal
minors of our Hessian matrix for each point we wish to impose concavity. In a local-constant
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setting, the Hessian matrix is calculated as follows. Assume that we have q continuous covariates
and we are smoothing with a standard product kernel with second order, individual Gaussian
kernels. Then, defining

Ki(x) ≡ (2π)−q/2
q∏

j=1

h−1
j e

−(xj−xji)
2

2h2
j

we can derive

(22)
∂Ki(x)

∂xs
= −

(
xs − xsi

h2
s

)
Ki(x),

and we can easily determine that

(23)
∂2Ki(x)
∂xs∂xr

=
[(

xs − xsi

h2
s

)(
xr − xri

h2
r

)
+ δsr

1
h2

s

]
Ki(x),

where δsr = 1 when s = r and zero otherwise.

Recalling that Ai(x) = nKi(x)/
n∑

i=1
Ki(x), we have

∂Ai(x)
∂xs

=
n∂Ki(x)

∂xs

n∑
i=1

Ki(x)− nKi(x)
n∑

i=1

∂Ki(x)
∂xs

[
n∑

i=1
Ki(x)

]2

= Ai(x)

[
n−1

n∑

i=1

Di(xs)Ai(x)−Di(xs)

]
= Ai(x)Ms(x),(24)

where Di(xs) = xs−xsi
h2

s
. Similar arguments show that

∂2Ai(x)
∂xs∂xr

=
∂Ai(x)

∂xr
Ms(x) + Ai(x)

∂Ms(x)
∂xr

= Ai(x)Ms(x)Mr(x) + Ai(x)

[
Mr(x)n−1

n∑

i=1

Di(xs)Ai(x)

]

= Ai(x)Mr(x) [2Ms(x) + Di(xs)] .(25)

Our first order partial derivatives of our local-constant smoother are

(26)
∂m̂(x|p)

∂xs
=

n∑

i=1

piyi
∂Ai(x)

∂xs
=

n∑

i=1

piyiAi(x)Ms(x).

Note that we cannot pull Ms(x) through the summation since it has a Di(xs) inside of it so that it
depends on the counter. To determine the second order partial derivatives of our smooth regression
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function we use our results from equation (25) to obtain

∂2m̂(x|p)
∂xs∂xr

=
n∑

i=1

piyi
∂2Ai(x)
∂xs∂xr

=
n∑

i=1

piyi [Ai(x)Mr(x) (2Ms(x) + Di(xs))]

= 2
n∑

i=1

piyiAi(x)Mr(x)Ms(x) +
n∑

i=1

piyiAi(x)Mr(x)Di(xs).(27)

One can save computation time by noting that terms required for calculation of Ms(x), Mr(x) and
Di(xs) are all calculated when Ai(x) is calculated. We suggest using numerical techniques in the
user’s preferred software to calculate the first and second derivatives of the Hessian matrix to then
pass to the SQP.16 For k covariates, if one imposes concavity for each of the n points then this
requires construction of n k × k Hessian matrices. There are k determinants of principal minors
(or k eigenvalues) to be calculated for each Hessian representation, resulting in nk constraints to
go with the n + 1 constraints placed on the weights. This results in a total of n(k + 1) + 1 total
constraints.17 As noted in the introduction, imposing concavity over the entire support of the data
may be burdensome since near the boundaries it will be harder to enforce the constraints. However,
using an interior hypercube of the data will lessen the burden on the SQP since concavity will be
less likely to be violated (assuming concavity holds in the limit) on the interior of the support.

4. Demonstration

4.1. Simulated Examples. This section uses Monte Carlo simulations to examine the finite sam-
ple performance of the nonlinearly constrained estimator described above. Following the focus on
concavity, we choose to perform our simulations imposing concavity in models which should be
concave. We consider the following data generating process used to motivate our problem in the
introduction:

(28) y = ln (x) + u

where x is generated as uniform distribution from 0.5 to 1.5 and u is generated as normal with mean
zero and variance equal to 0.1. Note that this data generating process produces a theoretically
consistent concave function. However, both the unknown error and finite sample biases of the
estimator itself may cause the kernel estimate to exhibit ranges of non-concavities.

We consider samples of n = 100 and 500 for each of our 999 Monte Carlo replications. We present
results using ρ = 0.5, but note that other choices for ρ do not significantly change the results. We
use local-constant least-squares and a Gaussian kernel with h = 1.06σxn−1/5. The weights (p) are
found using the sequential quadratic programming routine SQPSolve in the programming language

16An alternative would be to solve analytically for all of these derivatives, perhaps with the assistance of a numerical
software such as Maxima, Maple, or Mathematica.
17If one can also assume monotonicity, then to impose concavity all one requires is that the second order derivatives
are negative thus only 2n constraints need to be imposed which is always fewer constraints than imposing concavity
without monotonicity.
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GAUSS 8.0. While our problem is not a quadratic programming problem, this type of solver uses
a modified quadratic program to find the step length for moving in the direction of a minimum.

Figure 1. Simulation for n = 100 corresponding to 95th percentile of D1/2(p) for
999 simulations.
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The simulation results for (28) are given in Figures 1 and 2 for n = 100 and 500, respectively.
Each of the curves correspond to the 95th percentile of the distance metric for each sample size.18

The dashed line in panel (a) of each figure is the corresponding unconstrained local-constant least-
squares estimator and the solid line is the constrained local-constant least-squares estimator. We
note that in each case the constrained estimator deviates from the unconstrained estimator where
the second derivative is positive. This difference is shown by positive values for the distance metric.
Specifically, in Figures 1 and 2 the values of the distance metric are 0.111 and 0.069, respectively.
Note that the distance metric decreases with the sample size. It is easy to see that as the sample size
increases that the incidence of concavity increases and the constrained and unconstrained estimator
appear to be more similar. Recall that the distance metric reaches its minimum of 0 when each
weight is set equal to 1/n, or in other words, the estimated function is de facto concave.

In panel (b) of each figure is the corresponding set of weights. The unconstrained estimator sets
each of the weights equal to 1/n. It is obvious that the unconstrained estimators show regions where
the second derivative is positive. Our constrained estimator corrects for these non-concavities by
changing the probability weights. Where the weights are larger than 1/n these points are given a
greater influence in the construction of the estimate and where the weights are less than 1/n these
observations are given a lesser influence in the construction of the estimate.

4.2. Empirical Application. The seminal work of Jacob Mincer on human capital suggested that
the logarithm of a worker’s earnings is concave in her age (potential work experience). Concavity
is consistent with the investment behavior implied by the optimal distribution of human capital
investment over a worker’s life cycle. A voluminous literature within labor economics has generally
specified age-earnings profiles as quadratic (Heckman & Polachek (1974)), consistent with concavity.
Murphy & Welch (1990) challenged the conventional empirical strategy of specifying a quadratic in
age for an age-earnings profile. Their work suggests that a quadratic specification in age understates
early career earnings growth by 30-50% and overstates midcareer earnings growth by 20-50%. An
analysis of residual plots from their estimated quadratic relationships (as well as several statistical
tests) reveal patterns suggesting substantial differences from this specification. They advocate
on behalf of a quartic age-earnings profile and find that this specification yields a substantial
improvement in fit relative to the common quadratic relationship.

Given that the human capital theory of Mincer does not suggest a particular empirical rela-
tionship, Pagan & Ullah (1999, Section 3.14.2) considered the use of nonparametric regression
techniques to shed light on the appropriate link between income and ages. They provided an ex-
ample using the 1971 Canadian Census Public Use Tapes consisting of 205 individuals who had
13 years of education. Fitting a local-constant kernel regression function (see their Figure 3.4)
they found a visually substantial difference between the common quadratic specification and their
nonparametric estimates. A ‘dip’ in the age-earnings profile around age 40 suggested that the

18It should be noted that the number of times that the unconstrained estimator was concave over the grid was very
small. Specifically, out of the 999 Monte Carlo simulations for each scenario, the unconstrained estimator was concave
20 and 37 times when n = 100 and 500 observations, respectively.



24 DANIEL J. HENDERSON AND CHRISTOPHER F. PARMETER

Figure 2. Simulation for n = 500 corresponding to 95th percentile of D1/2(p) for
999 simulations.
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relationship was neither quadratic nor concave. Pagan & Ullah (1999) argue that this ‘dip’ may
occur because of generational effects present in the cross-section, specifically, pooling workers who
have differing earnings trajectories.

Given the need to conform to theory in applied work, partnered with the findings of Murphy
& Welch (1990) and Pagan & Ullah (1999) we fit a concavity restricted age-earnings profile. This
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approach will adopt the theoretical restrictions but relax the functional form specifications primarily
used in the empirical labor economics literature. Panel (a) of figure 3, plots the unrestricted
nonparametric regression estimator of Pagan & Ullah (1999) (using bandwidth h = σ̂Agen

−1/5), the
concave restricted estimator with identical bandwidth and the common quadratic specification.19

The corresponding weights are provided in panel (b).
We see that the concavity restricted estimator still has a visually distinct difference from the

quadratic specification around age 40 (as does the unrestricted nonparametric estimator), yet the
concave restricted estimator does not have the ‘dip’ found in Pagan & Ullah (1999), consistent with
the core interpretation of Mincer’s human capital theory. Additionally, the unrestricted estimator
appears to have a slight nonconcavity around age 25, further highlighting the need to impose
concavity.

To focus on the importance of the bandwidth in examining this relationship we plot our the
unrestricted estimator of Pagan & Ullah (1999) using their bandwidth as well as the optimal band-
width found using least-squares cross-validation along with their corresponding concavity restricted
fits. These plots are provided in Figure 4, panel (a). The ‘dip’ presented in Pagan & Ullah (1999)
now takes on the appearance of a trough. Again, both unconstrained estimators are nonconcave.
The estimator using the cross-validated bandwidths produces a distance metric value of 0.005272,
almost double that found using the rule-of-thumb bandwidth. In addition to the nonconcave area
around age 40, the cross-validated curve has a region of nonconcavity around age 33 which is more
distinct that that for the curve of Pagan & Ullah (1999) which has a slight area of nonconcavity
around age 25. The constraint weights, presented in panel (b) of Figure 4, bear this out as well. An
interesting feature of this comparison is that the constraint weights for the cross-validated curve
appear to be rougher than those for the rule-of-thumb curve whereas the cross-validated bandwidth
is smaller than the rule-of-thumb bandwidth (1.89 vs. 4.22).

While we have not statistically tested for a difference between our concave restricted nonparamet-
ric estimator and the unconstrained estimator, our example shows that we can think more soundly
about the implementation of nonparametric estimators in the presence of economic smoothness con-
ditions. We mention again that the ability to impose theoretically consistent smoothness constraints
on an economic relationship paired with the ability to relax restrictive functional form requirements
provides the researcher with a serious set of tools with which to investigate substantive economic
questions.

5. Conclusion

This chapter has surveyed the existing literature on imposing constraints in nonparametric regres-
sion, described a plethora of methods and discussed computational implementation. This survey
included recent research that has not been discussed previously in the literature. We also described
a novel method to impose general nonlinear constraints in nonparametric regression that can be
implemented using only a standard quadratic programming solver. We illustrated this method

19Our restricted estimator was calculated using ρ = 1/2 and at the optimum we had D1/2(p̂) = 0.003806.
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Figure 3. Unrestricted, Restricted and Quadratic Fits of the Age-Earnings Profile,
CPS 1971 data.
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with a small simulated example focusing on concavity and a detailed example from the empirical
labor economics literature. Our results showcased that constrained nonparametric methods can
still uncover detail in the data overlooked by rigid parametric models while maintaining theoretical
consistency.

Overall future research should determine the relevant merits of each of the methods described
here to narrow the set of potential methods down to a few which can be easily and successfully
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Figure 4. Unrestricted and Restricted with Differing Bandwidths of the Age-
Earnings Profile, CPS 1971 data.
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used in applied nonparametric settings. Given the dearth of detailed simulation studies comparing
the available methods highlighted here (notwithstanding Dette & Pilz 2006), an interesting topic
for future research would be to compare the varying methods (kernel, spline, series) across various
constraints to discover under which settings which methods perform the best. Additionally, we feel
that our description of the available methods should help to further research in extending these
ideas to additional nonparametric settings, most notably in the estimation of quantile functions
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(Li & Racine 2008), conditional densities, treatment effects (Li, Racine & Wooldridge 2008), and
structural estimators (Henderson et al. 2008).
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