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1 Introduction

The signaling model of Spence (1973) has provided a seminal impulse for ground-breaking research in

game theory and econometrics. On the one hand, the multiplicity of equilibria in Spence’s model has

been a motivation for the vast literature on refinement concepts. On the other hand, econometricians

have devised ingenious tests about unobservable characteristics in order to assess the importance of

signaling for schooling. In spite of their common roots, these two strands of literature have followed

diverging paths. The theoretical literature focuses on the signaling stage and generally ignores learn-

ing in the labor market.1 Econometric research places more emphasis on the learning process but

typically relies on Informational equilibria, rather than Perfect Bayesian (Nash) equilibria, to analyze

the signaling game.2 This paper proposes to reconcile these two views by embedding Spence’s model

into a dynamic framework with Bayesian learning on the side of firms.

As in Spence (1973), workers of different abilities can acquire education before entering the labor

market. While workers know their productivity with certainty, firms ignore the actual ability of job

applicants. This is why high-types have an incentive to acquire education in order to avoid being

confused with low-types. They may prefer, however, to save on education costs by choosing to reveal

their ability while being on-the-job. This alternative strategy is particularly attractive if there is a

strong correlation between a worker’s ability and his observable performance.

Spence’s model does not take into account this countervailing incentive because it is based on the

premise that all information is collected prior to the entry into the labor market. We assume instead

that employers make use of observed employee performance to update their beliefs. Hence, workers’

types are gradually revealed over time. Our model therefore proposes a synthesis of the signaling and

job matching literatures. We find that the two dimensions interact with each other: the equilibria of

the signaling game are affected by the learning process and the labor market outcomes are influenced

by the signaling stage.

In order to make the model suitable for aggregation, we assume that workers’ abilities are either

high or low. Although this simplification is not crucial and can easily be relaxed in the original model,3

it plays a key role in our enlarged set-up as it allows us to characterize the cross-sectional distribution

of beliefs in closed-form. Our analysis bears similarities to Moscarini’s (2005) matching model since

we assume that workers’ outputs are drawn from a Gaussian distribution and that firms learn in

continuous time. The problem is complicated by the fact that uncertainty is not match-specific, as

in Jovanovic (1979) and Moscarini (2005), but instead worker-specific. One contribution of the paper

1The paper by Gibbons an Katz (1991) is a notable exception.
2Informational equilibria are not Nash equilibria. See Riley (1979a) for details.
3Allowing for more than two types though, leads to well-known difficulties in the application of the Intuitive Criterion.
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is to show that the matching model with asymmetric information remains tractable. An appropriate

change of variable enables us to analytically characterize pooling equilibria and to derive new findings

about the robustness and properties of separating equilibria.

We show that the Intuitive Criterion proposed by Cho and Kreps (1987) does not necessarily rule

out all but one separating equilibrium. This stands in contrast to the model without employer learning

where all pooling equilibria fail the Intuitive Criterion. The key difference between the two models is

that, even when pooling is the equilibrium outcome, learning yields higher asset values for talented

workers. The gap increases with the speed of learning as low and high-types become respectively

less and more optimistic about future prospects. Hence, while the incentive for low-types to send

misleading signals increases with the speed of employer learning, the incentive for high-types to signal

their ability decreases.4 When learning is efficient, high-types prefer working until their ability is

recognized to paying the education costs. In other words, they find it optimal to pool with low-types.

We further analyze the model’s implications for the relationship between the speed of employer

learning and education. We find that the separating education level does not depend on the efficiency

of the learning process. Given that education levels fully reveal types, signaling makes learning

redundant. We also consider an extended model where workers are uncertain about their productivity.

In this model, learning occurs also in separating equilibria. This extension illustrates that symmetric

uncertainty is the crucial element linking education with the efficiency of the learning process.

As explained by Riley (1979b), if low-types are more easily detected, smaller levels of education

should be sufficient to discourage them from trying to masquerade as high-types.5 Several papers have

tested this implication by assessing whether average years of schooling are lower in occupations where

employers can better infer the ability of their employees. The current consensus is that inter-industry

data do not substantiate such a correlation, a finding that is widely interpreted as evidence against

the importance of job market signaling.6

We suggest instead a more ambivalent interpretation. In line with Riley’s prediction, our model

generates a positive correlation between the separating level of education and the noise hindering

the learning process. Our results, however, also imply that higher returns to ability facilitate signal

extraction. Since they raise the incentive to acquire education, signaling can be consistent with the

data if learning is faster in some occupations, not because productivity is easier to observe, but because

returns to talent are higher. This leads us to the conclusion that one would need precise information

4A recent working paper by Haberlmaz (2006) proposes a partial equilibrium model which also underlies the ambiguity

of the relationship between the value of job market signaling and the speed of employer learning.
5See Kaymak (2006) for a signaling model with Bayesian learning that leads to a similar implication.
6See Lange and Topel (2006) for an overview of the empirical literature and Section 4 in this paper for more references.
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about the two components of the signal/noise ratio in order to test conclusively whether or not job

market signaling is empirically relevant.

The paper proceeds as follows. Section 2 characterizes the lifetime incomes of workers and the

distribution of wages in pooling equilibria. It describes the signal extraction problem and obtains

closed-form solutions for the workers’ asset values. In Section 3, we analyze the conditions under

which the Intuitive Criterion bites. Section 4 lays-out the extended model where workers are also

uncertain about their productivity. It details the model’s implications for the relationship between

educational attainment and the speed of employer learning. Section 5 concludes. The proofs of the

Propositions and Lemmata are relegated to the Appendix.

2 Pooling Equilibria

2.1 Signal extraction

The main ingredient of our model is information asymmetry. Workers differ in their innate abilities.

They can be of different types which determine their productivity. While a worker knows his ability

with certainty, his employer has to infer it. In this section, we concentrate on pooling equilibria, i.e.

equilibria where all workers choose the same education level so that signalling carries no information.

In Spence’s (1973) static framework, the employer is left with no information at all because the game

ends as the worker enters the labor market.

Contrary to Spence (1973), and in line with the recent literature on labor markets, we consider

a dynamic framework where the output realizations for a given type of worker are not deterministic.

Rather, they are random draws from a Gaussian distribution centered on the worker’s average pro-

ductivity. The variance of the shocks σ is common knowledge and independent of the worker’s type.

Thus the employer can update his belief on the worker’s type from the observation of realized outputs.

Obviously, the employer’s ability to identify the mean of the output distribution is hindered by the

variance of the realizations. Accordingly, we will hereafter refer to the inverse variance, 1/σ, as signal

precision.

We restrict our attention to the case where there are only two types of workers, i = h (high) or

i = l (low). For simplicity, we also assume that the expected productivity of a given worker remains

constant through time7 and is equal to µh for the high-type and to µl < µh for the low-type. The

cumulative output Xt of a match of duration t with a worker of type i = h, l, follows a Brownian

7It would be reasonable to assume that workers accumulate general human capital. However, this would substantially

complicate the aggregation procedure without adding substantial insights.
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motion with drift

dXt = µidt + σdZt ,

where dZt is the increment of a standard Brownian motion. The cumulative output 〈Xt〉 is observed

by both parties. The employer uses the filtration
{
FX

t

}
generated by the output sample path to revise

his belief about the worker’s average productivity. Starting from a prior p0 equal to the fraction of

high ability workers in the population (identified with the ex ante probability that a randomly sampled

worker is of the high-type), the employer applies Bayes’ rule to update his belief pt ≡ Pr
(
µ = µh| F

X
t

)
.

His posterior is therefore given by

p (Xt, t| p0) =
p0gh(Xt, t)

p0gh(Xt, t) + (1 − p0)gl(Xt, t)
. (1)

where gi(Xt, t) ≡ e−
(Xt−µit)2

2σ2t is the rescaled8 density for the worker of type i.

The analysis is simplified by the change of variable Pt ≡ pt/(1 − pt). Pt is the ratio of “good” to

“bad” belief. Since pt is defined over ]0, 1[, Pt takes values over the positive real line. It immediately

follows from (1) that

P (Xt, t|P0) = P0
gh(Xt, t)

gl(Xt, t)
= P0e

s
σ (Xt−

1

2
(µh+µl)t) . (2)

where s ≡ (µh − µl)/σ is the signal/noise ratio of output. The higher s, the more efficient is the

learning process. By Ito’s lemma, the law of motion of the posterior belief ratio is

dP (Xt, t|P0) =
∂P (Xt, t|P0)

∂Xt
dXt +

∂2P (Xt, t|P0)

∂X2
t

σ2

2
dt +

∂P (Xt, t|P0)

∂t
dt

= P (Xt, t|P0)
( s

σ

)
[dXt − µldt] . (3)

Replacing in (3) the workers’ beliefs on the law of motion of Xt, i.e. dXt = µidt + σdZt, yields the

following stochastic differential equations:

(i) High ability worker : dPt = Pts (sdt + dZt) ,

(ii) Low ability worker : dPt = PtsdZt .

Since the signal/noise ratio s is a positive constant, the posterior belief Pt increases in time for

high-types and follows a martingale for low-types.9 In both cases, an increase in σ lowers the variance

of beliefs since larger idiosyncratic shocks hamper signal extraction.

8The factor [σ
√

2πt]−1 is omitted because it simplifies in (1).
9It may be surprising that the belief ratio Pt does not drift downward when the worker is of the low-type. The

technical reason is that the belief ratio Pt is a convex function of the posterior belief pt. Reversing the change of variable

shows that the belief pt is a strict supermartingale when the worker’s ability is low.
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2.2 Asset values

After a worker enters the labor market, his cumulative output is publicly observed in continuous time.

Employers compete à la Bertrand so that wages w(p) are equal to the expected worker’s productivity:

pµh + (1 − p)µl. Workers are risk neutral and discount the future at rate r. We further assume that

workers leave the labor market at a constant rate δ.10

Although high and low ability workers earn the same wage for a given cumulative output, their

asset values differ because high ability workers are more optimistic about future prospects. Moreover,

workers’ expectations also differ from those of their employers. Accordingly, three different asset values

are associated to the same cumulative output. Using the laws of motion of beliefs given above, we

derive the two Hamilton-Jacobi-Bellman (HJB henceforth) equations satisfied by the workers’ asset

values Wi(P ):

rWh (P ) = w(P ) + Ps2W ′
h (P ) +

1

2
(Ps)2 W ′′

h (P ) − δWh (P ) ,

rWl (P ) = w(P ) +
1

2
(Ps)2 W ′′

l (P ) − δWl (P ) .

These two ordinary differential equations have (somewhat cumbersome) closed-form solutions which

are detailed in the following Proposition. Plots of these value functions for a particular numerical

example and several values of σ are presented in Figure 1. It illustrates two things. First, for any

given belief p ∈]0, 1[, high-types have higher expected lifetime incomes than low-types. Second, the

gap increases as learning becomes more efficient.

Proposition 1. The expected lifetime income of workers as a function of the belief ratio P are given

by

Wl (P ) =
2σ

s∆

(
Pα−

∫ P

0

1

(1 + x)xα− dx + Pα+

∫ ∞

P

1

(1 + x) xα+
dx

)
+

µl

r + δ

and

Wh (P ) =
2σ

s∆

(
P γ−

∫ P

0

1

(1 + x)xγ− dx + P γ+

∫ ∞

P

1

(1 + x) xγ+
dx

)
+

µl

r + δ

where α+ = 1
2(1 + ∆), α− = 1

2(1 − ∆), γ+ = 1
2(−1 + ∆), γ− = 1

2(−1 − ∆), and ∆ =
√

1 + 8
(

r+δ
s2

)
.

10Allowing δ to be an increasing function of labor market experience would improve the realism the model. Such a

specification would greatly complicate the derivations by making the asset values non-stationary. We leave this task for

future research.
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Figure 1: Workers value functions. Parameters: r = δ = 0.1, µl = 0, µh = 1.

2.3 Wage distribution

Wages are a linear function of beliefs since w(p) = p (µh − µl) + µl. Thus the wage distribution

follows from the distribution of beliefs by a location transformation. In order to derive the ergodic

distribution, we use the Kolmogorov forward equation to characterize the evolution of the cross-

sectional density of beliefs f(p). The expected law of motion for employers’ beliefs is obtained replacing

dXt = (ptµh + (1 − pt)µl) dt + σdZt, where Zt is a standard Brownian motion with respect to the

filtration
{
FX

t

}
, into (3). Using Ito’s lemma to reverse the change of variable from Pt to pt yields

dpt = pt (1 − pt) sdZt, so that the Kolmogorov forward equation reads

df (p)

dt
=

d2

dp2

(
1

2
p2 (1 − p)2 s2f (p)

)
− δf(p) . (4)

The first term on the right-hand side deducts, for any given belief, the outflows from the inflows. The

second term takes into account the fact that workers leave the labor market at rate δ. The ergodic

density is derived imposing the stationarity condition: df (p) /dt = 0. As shown in the Appendix,

the general solution involves solving for two constants of integration. They are pinned down by the

normalization,
∫ 1
0 f (p) dp = 1, and continuity, f

(
p−0
)

= f
(
p+
0

)
, requirements.
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Proposition 2. The ergodic distribution of beliefs is given by

f (p) =





K0fpη−2(1 − p)−1−η if p ∈ (0, p0)

C1fpη−2(1 − p)−1−η if p ∈ [p0, 1)

,

where η = 1
2

(
1 +

√
1 + 8

(
δ
s2

))
, ξ = 1

2
s2

δ

√
1 + 8

(
δ
s2

)
, K0,f = 1

ξ
1

P η−1

0
(1+P0)

, and C1,f = 1
ξ

P η
0

(1+P0) .

The ergodic distribution is piecewise and composed of two Beta functions. Depending on the values

of the parameters, the wage distribution can be either U-shaped or hump-shaped. Empirically, the the

second case seems to be more realistic. It occurs for sufficiently high values of the ratio δ/s2. Then

the right-tail of the distribution decreases at a slower rate than the Gaussian distribution from which

underlying shocks are sampled. Hence, the model can replicate the heavy tail property of empirical

wage distributions. As noticed by Moscarini (2005), another specific implication of the learning model

is that the dispersion of beliefs is decreasing in the variance of shocks. This is of course different

from models without signal extraction where the uncertainty of the economic environment naturally

generates more inequality. To the contrary, when firms have to filter the noise from the observations, a

higher degree of uncertainty reduces the rate at which information is acquired. This is why the inertia

in belief revisions is stronger when there is more noise, which in turn implies that wage dispersion is

decreasing in the degree of uncertainty.

3 Employer Learning and the Intuitive Criterion

We now consider the full model where workers signal their types by acquiring education before entering

the labor market. Given that workers are also able to reveal their ability after the signaling stage,

our framework extends the job market-signaling model of Spence (1973).11 As in the previous section,

nature assigns a productivity µ ∈ {µl, µh} to the worker (sender), with µh > µl. The worker then

chooses an education level e ∈ [0, +∞). To isolate the effect of signaling, we assume that education

does not increase the labor productivity of the worker. Thus its only use is to signal the worker’s

ability which is initially unobserved by the industry (receiver).

It is well known that one can find a plethora of Perfect Bayesian Equilibria (hereafter PBE) in

Spence’s (1973) model. As shown by Cho and Kreps (1987), the refinement concept known as the

Intuitive Criterion rules out all but one separating equilibrium, thus conferring a predictive power to

the model. The purpose of this section is to show that this does not hold true when signal extraction

11Spence’s (1973) model corresponds to the limit case where the signal/noise ratio s is equal to 0.
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also takes place on-the-job. More precisely, we prove that all pooling PBE also satisfy the Intuitive

Criterion when the signal precision 1/σ exceeds a given threshold.

Let the cost function c : R
+ × R

+ → R
+ specify the cost of acquiring education. That is, c(e, µ)

is the cost that a worker with innate productivity µ has to pay in order to acquire education level

e.12 The cost function is assumed to satisfy ce(e, µ) > 0 and cee(e, µ) > 0, thus it is strictly increasing

and strictly convex in the level of education. This ensures the existence of an interior optimum. As

commonly assumed in the literature, we also consider that total and marginal costs of education are

strictly decreasing in the worker’s ability, so that cµ(e, µ) < 0 and ceµ(e, µ) < 0. The last requirement

ensures that low-types have steeper indifference curves than high-types.

The industry sets the wage w ∈ [0, +∞). In the classic signaling model, the payoffs of the worker

are given by w − c(e, µ). As a proxy for either a competitive labor market or a finite number of firms

engaged in Bertrand competition for the services of the worker,13 the industry always offers a wage

equal to the expected productivity. In a signalling PBE:

(a) The worker selects an education level which maximizes expected utility given the industry’s offer;

(b) The industry offers a starting wage equal to the expected productivity of the worker given the

industry’s beliefs;

(c) The industry’s beliefs are derived from Bayes’ rule for any educational attainment e that is

selected with a positive probability.

We depart from Spence’s model as follows. Once the worker has accepted a wage and been matched

to a firm, i.e. after the signalling game has been played out, production starts. The firm initial belief

about the type of the worker is the equilibrium belief. Afterwards, the employer revises his prior as

in Section 2. Hence, the worker payoff is not simply w − c(e, µ) but rather Wi(p0) − c(e, µ), where

Wi(p0) is the expected lifetime income of the worker (i = l, h) as a function of the firm prior p0.

In separating equilibria, the ability of the worker is perfectly revealed by his education: depending

on the education signal, the initial belief of the firm is either zero or one. As can be seen from the

definition of pt in equation (1), firms do not update their beliefs when p0 ∈ {0, 1}. This implies that

the asset values of high and low ability workers in separating equilibria are WSep
h = µh/(r + δ) and

WSep
l = µl/(r + δ), respectively. Comparing these asset values with the ones derived in Section 2,

12 Even though workers will only have productivity levels in {µl, µh}, it is convenient to consider the cost function to

be defined on all potential productivities.
13If we explicitly model Bertrand competition among multiple firms, the equilibrium concept has to be refined to

include the additional condition that, given an education level, all firms have the same beliefs about the worker.
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it is possible to verify that, for some parameter configurations, all pooling equilibria do not fail the

Intuitive Criterion. We now show this formally.

As shown by Lemma 1, sequential rationality is satisfied as long as the “participation constraint”

for the low-type is fulfilled. This substantiates the claim made at the beginning of this section that

the model admits a continuum of PBE.

Lemma 1. A pooling PBE where both types educate at level ep exists if and only if ep ∈ [0, e], where

e is given by

Wl(P0) − c(e, µl) = WSep
l − c(0, µl) .

In order to refine the set of potential equilibria, we impose further restrictions on out-of-equilibrium

beliefs. The Intuitive Criterion requires that, after receiving an out-of-equilibrium signal, firms place

zero probability on the event that the sender is of type i whenever the signal is equilibrium-dominated

for type i. In our set-up, a pooling equilibrium with education level ep fails the Intuitive Criterion if

and only if there exists an education level eSep such that:

WSep
h − c(eSep, µl) < Wl(P0) − c(ep, µl), equilibrium dominance for the low-type, (ED)

WSep
h − c(eSep, µh) > Wh(P0) − c(ep, µh), high-type’s participation constraint. (PC)

The argument is as follows. The equilibrium dominance condition (ED) implies that, even in

the best-case scenario where the worker could forever deceive his employer, deviating to eSep is not

attractive to the low-type. The firm can therefore infer by forward induction that any worker with

an off the equilibrium signal eSep is of the high-type. But the participation constraint (PC) implies

in turn that credibly deviating to eSep is profitable for the high-type. Thus ep is not stable14 or, in

other words, fails the Intuitive Criterion.

Combining conditions (ED) and (PC), it is straightforward to show analytically that all pooling

equilibria fail the Intuitive Criterion in the model without learning. Let e∗(ep) denote the minimum

education level that does not trigger a profitable deviation for low ability workers, so that (ED) holds

with equality at e∗(ep). Analogously, let e∗∗(ep) be such that (PC) holds with equality.15 These two

thresholds always exist because c(e, µ) is continuous and strictly increasing in e. Conditions (ED) and

14We follow the terminology of Cho and Kreps (1987) by referring to equilibria that satisfy the Intuitive Criterion as

stable equilibria.
15Note that, since Wl(P0) < W Sep

h and ce(e, µ) > 0, condition (ED) implies that e∗(ep) > ep. Similarly, condition

(PC) implies that e∗∗(ep) > ep.
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(PC) above reduce to e∗(ep) < eSep < e∗∗(ep). Now assume that ep is stable, so that condition (PC)

is not satisfied at e∗(ep). This can be true if and only if

Wh(P0) − Wl(P0) ≥ c(e∗(ep), µl) − c(ep, µl) − [c(e∗(ep), µh)) − c(ep, µh)] . (5)

Abusing notation, we refer to the case without learning as σ = ∞. When there is no learning, the

lifetime incomes of workers in a pooling equilibrium do not depend on their abilities, i.e. Wh(P0|σ =

∞) = Wl(P0|σ = ∞). Thus the left hand side of equation (5) becomes zero, while the right-hand side

is strictly positive since cµe(e, µ) < 0. This contradiction shows that, in the basic signaling model, one

can always find a credible and profitable deviation for the high-type.

When workers’ abilities are also revealed on-the-job, the premise leading to a contradiction is

not anymore true. With learning, high-ability workers have an higher asset values even in a pooling

equilibrium.16 Hence Wh(P0|σ) > Wl(P0|σ) for all σ < ∞ and equation (5) can hold true for some

parameter configurations. Obviously, the lower σ is, the bigger the difference between the workers’

asset values. This suggests that a pooling equilibrium is more likely to be stable when signal extraction

is efficient. Proposition 3 substantiates this intuition.

Proposition 3. For any arbitrary pooling level of education ep, there exists a threshold variance σ∗(ep)

such that ep fulfills the Intuitive Criterion for any σ ≤ σ∗(ep).

Figure 2 illustrates the mechanism behind Proposition 3. It displays the high and low-types’

indifference curves in the limit case σ → ∞ (abusing notation, we write simply σ = ∞) and when

σ = σ∗(ep). The dotted curves correspond to the latter case, the undotted ones to the former case, that

is the Spence model without learning. The level of education e∗(ep|σ) where condition (ED) holds with

equality is given by the point where the low-type indifference curve crosses the horizontal line with

intercept WSep
h . Similarly, the level of education e∗∗(ep|σ) where condition (PC) holds with equality is

given by the point where the high-type indifference curve crosses the same horizontal line. As discussed

above, the pooling equilibrium ep fails the Intuitive Criterion if and only if e∗(ep) < e∗∗(ep). Thus we

can conclude that ep is not stable when the low-type’s indifference curve intersects the horizontal line

with intercept WSep
h before the high-type’s indifference curve.

First of all, consider the basic model without learning. At the pooling level of education ep, the

two types enjoy the same asset value W (P0|σ = ∞) ≡ Wh(P0|σ = ∞) = Wl(P0|σ = ∞). The single-

crossing property therefore implies that e∗(ep|σ = ∞) lies to the left of e∗∗(ep|σ = ∞), as shown by

the undotted indifference curves in Figure 2. This illustrates that any pooling equilibrium fails the

16See Figure 1 for an illustration of this property.
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Figure 2: Workers’ indifference curves.

Intuitive Criterion when the signal/noise ratio s = 0. Now, consider what happens when σ decreases.

Since high-types are more quickly recognized, their asset value increases and so their indifference curve

shifts up. Conversely, the indifference curve of low-types shifts down when σ decreases because they

are more rapidly detected. These opposite adjustments obviously shrink the gap between e∗(ep|σ) and

e∗∗(ep|σ). The threshold variance σ∗(ep) is identified by the point where this gap vanishes as the two

indifference curves concurrently cross the horizontal line with intercept WSep
h . One can always find

such a point for any given ep since limσ→0 Wh(P0|σ) = WSep
h . It is also clear from Figure 2 that σ∗(ep)

is unique.

By checking that (ED), (PC) and the low-type’s “participation constraint” given in Lemma 1 are

simultaneously satisfied, one can establish whether or not ep is a stable pooling PBE. This approach

solely yields local results. We now show that an additional assumption on the cost function allows for

a global characterization of the region where the Intuitive Criterion fails to select a unique separating

equilibrium.

Proposition 4. When the marginal cost of education ce(e, µ) is weakly log-submodular, there exists a

unique level of noise, which we denote σp, such that

(a) For all σ ∈ [σp,∞), the Riley separating equilibrium is the only PBE satisfying the Intuitive

12



Criterion.17

(b) For all σ < σp, ∃ε(σ) > 0 such that the pooling equilibrium meets the Intuitive Criterion for any

education values e ∈ [0, ε(σ)). As σ goes to zero, ε(σ) converges to zero.
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Figure 3: Graphical interpretation of Proposition 4. A pooling equilibrium with education level e

exists if and only if e ≤ e(σ). It satisfies the Intuitive Criterion if and only if e ≤ ẽ(σ). Parameters: r

= δ = 0.1, µl = 0.5, µh = 1, p0 = 0.5 and c(e, µ) = exp(e/µ) − 1.

The economics behind Proposition 4 is quite intuitive. When the signal/noise ratio is high, firms

easily infer the actual type of their employees. Then the benefits derived from ex-ante signaling are

not important. Symmetrically, when the signal/noise ratio is low, firms learn little from observing

output realizations. This leaves fewer opportunities for high-types to reveal their ability while being

on-the-job and so raises their incentives to send a signal. In the extreme case where signal precision

goes to zero, all the relevant information is collected prior to the entry into the labor market. This

situation corresponds to the signaling model of Spence (1973). Thus, it should not be surprising that

we recover, as a limit case, the well known result according to which all PBE but one separating

equilibrium fail the Intuitive Criterion when there is no learning.

17For separating equilibria, our model coincides with Spence (1973). Thus the Riley equilibrium is the only separating

equilibrium fulfilling the Intuitive Criterion.
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In order to derive Proposition 4, we have imposed slightly stronger restrictions on the cost of

education: we assume that the log of the derivative of c(e, µ) with respect to e has weakly increasing

differences in (e, µ) or, in other words, that ce(e, µ) is weakly log-submodular. Although the weak

log-submodularity of ce(e, µ) might seem quite restrictive, it is actually satisfied by the distributions

commonly used to illustrate the single crossing property, such as power and exponential functions. The

requirement is sufficient but not necessary to ensure that the single crossing property is satisfied. It

is more stringent since it implies that, not only total educational costs, but also marginal educational

costs diverge. If that property is not satisfied, there are cases where an increase in the level of education

restores the stability of a pooling equilibrium.18 Hence, when ce(µ, e) is not weakly log-submodular,

equilibrium stability does not generally divide the (σ, e) space into two non-overlapping regions, as

done in Figure 3 by the ẽ(σ) locus.19

We finish this Section with a remark on equilibrium refinements. The Intuitive Criterion is of

course not the only available refinement for signaling games. However, it is well known that more

sophisticated criteria generally have a bite only for more than two types. Banks and Sobel (1987)

introduce the concept of Universal Divinity, which is a strengthening of the Intuitive Criterion based

on the elimination of pairs of types and signals (education levels) such that the set of receivers’ answers

(wages) making the type weakly prefer the signal to the equilibrium one is contained in the set of

receivers’ answers making another type strictly prefer the signal to the equilibrium one.20 In our

framework, the identification of such signals for the low-type boils down to condition (5). Thus, the

pooling equilibria identified in Proposition 3 also satisfy Universal Divinity. Proposition 4 would also

be unaffected by the application of Universal Divinity, because the Riley equilibrium always satisfies

this latter refinement.

4 Educational Attainment and the Speed of Learning

While the previous section focused on pooling equilibria, we now turn our attention to separating

equilibria and how they vary with the speed of employer learning. This connects our analysis to the

long lasting debate about the empirical content of job market signaling. One drawback of signaling

theory is that it shares most of its testable predictions with human capital theory. This makes it

18See Claim 2 in the Proof of Proposition 4.
19Notice that the ẽ(σ) locus is vertical in the knife-edge case where the cost function is log-linear, e.g. c(e, µ) = e2/µ.

See the proof of Proposition 4 for a discussion of this point.
20Cho and Kreps (1987) refer to this as Condition D1. Actually, with more than two types, Universal Divinity is based

on their Condition D2, where the pair is eliminated if the referred set is included in a union of sets across several other

types. This makes no difference in our case.
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particularly difficult to distinguish the two approaches using data from a single labor market.21

To circumvent this problem, Wolpin (1977) and Riley (1979b) have proposed to exploit differences

in the speed of learning across occupations and industries. Riley notices that the expected payoff

from masquerading as a high-type is larger when learning is difficult. This implies that workers

employed in occupations with faster learning should have the following characteristics: lower average

education and higher ability for a given level of education. In other words, high wage industries and

occupations should employ a labor force with relatively less education. Unfortunately that prediction

is not supported by the data. Murphy and Topel (1990) and more recently Lange and Topel (2006)

document that workers with higher schooling tend to work in industries and occupations that reward

more unobserved characteristics. They interpret this finding as evidence against the importance of

signaling in labor markets.

In our model, however, the separating level of education does not depend on the efficiency of the

learning process. Low-types choose the minimum education requirement (normalized to zero in our

set-up), whereas high-types select the lowest education level which allows them to credibly signal their

ability. Thus the separating investment eSep is such that

c
(
eSep, µl

)
− c(0, µl) = WSep

h − WSep
l .

The right-hand side is equal to WSep
h − WSep

l = (µh − µl)/(r + δ), which does not vary with σ.

Since the cost function c(e, µ) is also independent of σ, Spence’s signaling model does not generate

any correlation between schooling and signal precision. This is because, when uncertainty is purely

asymmetric, workers’ types are perfectly revealed in separating equilibria. Firms put full weight on

the belief that the ability of educated workers is high and do not revise their prior.

To ensure that signaling does not make learning redundant, we extend the model by allowing for

uncertainty on the workers’ side. We continue to assume that average productivity can take only

one of two values, namely µh or µl. Let πh and πl denote the objective probabilities that a worker’s

productivity equals µh when his educational ability is respectively high or low.22 As in the standard

model, we assume that educational and labor market abilities are correlated, so that πh > πl. The case

21 There exists, however, a strand of literature that directly measures the speed of employer learning. The identifying

assumption is that econometricians have access to a correlate of workers’ abilities that is not available to employers

(generally Armed Forces Qualification Test scores of workers). Farber and Gibbons (1996) and Altonji and Pierret

(2001) document that the impact of this correlate on wages increases with labor market experience. Although this result

indicates that employers learn over time, it does not distinguish between symmetric and asymmetric learning. Hence, it

does not test job market signaling. Nevertheless, as explained by Lange (2007), the estimated speed of employer learning

can be used to place an upper-bound on the contribution of signaling to the gains of schooling.
22Hence, the distinction between low and high types now refers to their schooling abilities.
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where πh = 1 and πl = 0 obviously corresponds to the model analyzed in the previous sections. For

other parameter values, there is a positive probability that a talented student has a low productivity

in the labor market. This is why firms revise their beliefs even in separating equilibria. Notice that,

since workers ignore the move of nature, they also try to infer their actual productivity. The filtering

problems faced by firms and their employees are similar except that they do not necessarily share the

same prior: in pooling equilibria, workers have private information and thus more accurate priors than

their employers. It follows from equation (2) that

P (Xt, t|P0) =

(
P0

P i
0

)
P i
(
Xt, t|P

i
0

)
, for i = h, l , (6)

where P i(·) is the posterior and P i
0 is the prior of type i. Equation (6) shows that the initial difference

in belief between an employer and his employee is preserved for any employment history. Reinserting

the worker’s belief about the law of motion of Xt into (3) and using (6) yields

dPt = Pts

[
s

(
Pt

P0/P i
0 + Pt

)
dt + dZt

]
.

Using this law of motion and following the same steps than in the proof of Proposition 1, one can

derive the following closed-form solution.

Proposition 5. The expected lifetime income of a worker of type i = h, l, as a function of the current

belief ratio P and of the firm prior P0, is given by

Wi (P |P0) =
2σ

s∆

(
Pα−

P0/P i
0 + P

∫ P

0

P0/P i
0 + x

(1 + x) xα− dx +
Pα+

P0/P i
0 + P

∫ ∞

P

P0/P i
0 + x

(1 + x)xα+
dx

)
+

µl

r + δ
,

where ∆, α− and α+ are as in Proposition 1.

Distinguishing pooling and separating equilibria is a simple matter of defining initial beliefs. In

pooling equilibria, firms form their prior based on their knowledge of the share, χh, of workers with

low educational costs, so that p0 = χhπh + (1 − χh)πl. In separating equilibria, a worker’s private

information is revealed. Then employers and employees share the same prior, that is P0 = P l
0 =

πl/(1− πl) when the worker education e = 0, and P0 = P h
0 = πh/(1− πh) when the worker education

is equal to the separating level eSep. A separating profile is an equilibrium when it is not profitable

for low-types to send the high-types’ signal

Wl

(
P h

0

∣∣∣P h
0

)
− c(eSep, µl) ≤ Wl

(
P l

0

∣∣∣P l
0

)
− c(0, µl) . (7)

The key difference with the purely asymmetric information model is that low-types have a stronger

incentive to deviate when σ increases. This property allows us to establish the following Proposition.
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Proposition 6. If πh < 1, the separating level of education eSep is an increasing function of the

variance σ of output realizations.

Proposition 6 illustrates that Riley’s prediction holds true in our extended set-up but also that it

crucially hinges on the introduction of symmetric uncertainty. Thus, strictly speaking, it cannot be

interpreted as a test of the basic Spence’s model. Another important caveat is that the relationship

between the speed of learning and schooling is unambiguously negative solely when it is driven by

an increase in signal precision. Conversely, the effect on schooling of more informative signals is

ambiguous.

To see this, consider an increase in the return to ability µh. It obviously raises the signal/noise

ratio and so the speed of learning. For the same reasons than before, this lowers the future gains

from masquerading as a high-type. On the other hand, for any given belief, the immediate gains from

masquerading are higher. The overall effect of an increase in µh is therefore ambiguous. As shown

in Figure 4, when signal precision is relatively low, the second effect dominates because low-types are

able to deceive their employers for a longer period.
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Figure 4: Separating level of education as a function of µh. Parameters: r = δ = 0.1, µl = 0.5,

πl = 0.1, πh = 0.9, χ = 0.5 and c(e, µ) = exp(e/µ) − 1.

Given that the speed of learning is increasing in µh, Figure 4 illustrates that its relationship with
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the separating level of education is ambiguous. This implies that predictions about inter-industry dif-

ferentials are implicitly based on the premise of constant returns to ability. Consider for example the

positive correlation between average schooling and industry wage differentials (Murphy and Topel,

1990). When signal precision is high, as in the lower curve of Figure 4, education is decreasing in

returns to ability which obviously reinforces the effect described in Riley (1979b). On the other hand,

when signal precision is low, as in the upper curve of Figure 4, the correlation goes in the opposite

direction. Moreover, the relationship is concave because the negative learning effect grows stronger

while the positive effect on wages remain constant.23 Hence, the productivy/education gradient is

higher in sectors where educated workers have more schooling, that is precisely the opposite to what

happens when σ varies across industries. For brevity, we do not explicitly model how workers allocate

themselves across sectors since reasonable mechanisms would imply that talented workers sort them-

selves into industries with higher returns to ability.24 Accordingly, the average educational attainment

in these industries will also be higher. Thus, for the parameter of the upper curve in Figure 4, re-

turns to ability generate a positive correlation between average schooling and wage differentials, as

documented in the data.

Similarly, it is easily seen that the relationship between schooling and residual wage dispersion is

ambiguous. The aggregate wage distribution of the model with symmetric uncertainty is composed of

two underlying density functions, that is one for each level of education. Both densities are given by

the expression in Proposition 2 with p0 = πl when e = 0, and p0 = πh when e = eSep. As explained

in Section 2.3, inequality is increasing in the speed of employer learning. One can therefore infer

from Proposition 6 that schooling and residual wage dispersion should be negatively correlated across

occupations as long as these occupations differ solely with respect to the observability of workers’

types. Instead, if occupations have different returns to ability, the sign of the relationship can go

either way.

We have shown in this section that returns to ability and signal precision may have opposite and

potentially countervailing effects on the relationship between education and the speed of learning.

This makes it difficult, if not impossible, to draw conclusive evidence from inter-industry data without

disentangling the two components of the signal/noise ratio. Obviously, one could avoid this difficulty

by maintaining the premise that returns to ability are constant across industries. Empirical evidence,

however, points to the opposite. Murphy and Topel (1990) illustrate that sorting on abilities is

23More precisely, ∂w(πh)/∂µh = ∂(πh(µh − µl) + µl)/∂µh = πh.
24For example, it would be relatively straightforward to introduce a sorting mechanism similar to the one in Kaymak

(2006) where workers choose their occupations on the basis of personal tastes. Assuming that the average worker is

indifferent would imply that industries with higher returns to ability attract more high-types.
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a primary determinant of observed occupational wage differentials. Moreover, recent findings by

Gibbons et al. (2005) suggest that this sorting pattern is largely explained by higher returns to skills

in high wage occupations.

5 Conclusion

We have postulated an analytically tractable model where education plays a role as a job-market

signal and worker productivity is revealed on-the-job as the result of Bayesian updating on the part

of the firms. The addition of this realistic element causes the failure of standard arguments, such as

the unavoidable selection of the ’Riley’ separating equilibrium via the Intuitive Criterion.

The separating equilibrium, though, still plays a key role provided learning is not too fast. We find

that the separating level of education does not depend on the output variance when, as in Spence’s

(1973) model, workers know their innate ability with certainty. Introducing some uncertainty on

the side of the worker generates a potentially negative correlation between the speed of learning and

educational attainment. But the relationship can also be positive when returns to ability increase.

We see our framework as a stepping stone to the integration of asymmetric uncertainty into dy-

namic models of the labor market. Its tractability makes it amenable to several extensions. Introducing

search frictions would bridge the gap with modern theories of the labor market and make it possible to

characterize the interactions between signaling and unemployment. Another natural extension would

combine worker with match-specific uncertainty. Actually, if πh and πl are interpreted as match-

specific, Section 4 already contains the asset values for such a model. The only remaining challenge

consists in characterizing the optimal separation of matches.

APPENDIX: Proofs

Proof of Proposition 1: The wage does not directly depend on the worker’s type, but solely on the

current belief P . It is equal to the expected output µ(P ) ≡ (µh − µl)
(

P
1+P

)
+ µl.

For a low ability worker, dPt = PtsdZt and thus the asset value solves the HJB equation

(r + δ)Wl (P ) −
1

2
(Ps)2 W ′′

l (P ) = (µh − µl)

(
P

1 + P

)
+ µl ,

which is a second order non-homogenous ODE with non-constant coefficients. An Euler equation allow

to obtain the solution to the associated homogenous problem,

WH
l (P ) = C1lP

α−

+ C2lP
α+

,
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where α− and α+ are the negative and positive roots of the quadratic equation

α (α − 1)
s2

2
− r − δ = 0 .

Thus α− = 1
2(1 − ∆) and α+ = 1

2(1 + ∆) with ∆ = 1
s

√
s2 + 8(r + δ). Notice that α+ − α− = ∆ and

α+ + α− = 1.

To solve for the non-homogenous equation we use the method of variations of parameters. The

non-homogenous term is composed of a non-linear function of P plus a constant term. Thus we can

assume that the particular solution is of the form

WNH
l (P ) =

[
y1 (P ) Pα−

+ y2 (P ) Pα+
]

+
µl

r + δ
.

Standard derivations yield the system of equations

(
Pα−

Pα+

α−Pα−−1 α+Pα+−1

)(
y′1 (P )

y′2 (P )

)
=

(
0

− 2σ
(1+P )Ps

)
.

The Wronskian of the two linearly independent solutions is

Pα−

α+Pα+−1 − Pα+

α−Pα−−1 = α+ − α− = ∆ .

Therefore

y1 (P ) =
2σ

s∆

∫
1

(1 + x)xα− dx and y2 (P ) =
2σ

s∆

∫
1

(1 + x)xα+
dx .

Thus the general form of the particular solution reads

WNH
l (P ) =

2σ

s∆

(
Pα−

∫
1

(1 + x)xα− dx + Pα+

∫
1

(1 + x)xα+
dx

)
+

µl

r + δ
. (8)

The bounds of integration and constants C1l and C2l of the homogenous solution are pinned down by

the boundary conditions

Wl (P ) −−−→
P→0

µl

r + δ
and Wl (P ) −−−−→

P→∞

µh

r + δ
. (9)

Let us first consider the homogenous solution. Since Pα−
→ ∞ as P ↑ 0, the first boundary condition

can be satisfied if and only if C1l equals zero. Similarly, since Pα+

→ ∞ as P ↑ ∞, the second

boundary condition allows us to set C2l equal to zero. All that remains is to determine the integration

bounds in equation (8). Consider the following function

Wl (P ) =
2σ

s∆

(
Pα−

∫ P

0

1

(1 + x) xα− dx + Pα+

∫ ∞

P

1

(1 + x)xα+
dx

)
+

µl

r + δ
. (10)
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Let us examine first the limit when P ↑ 0. Given that Pα−
→ ∞ and

∫ P
0 [(1 + x)xα−

]−1dx →

0 as P ↑ 0, we can apply l’Hôpital’s rule to determine the limit. Straightforward calculations

show that Pα− ∫ P
0 [(1 + x)xα−

]−1dx → −P/[(1 + P )α−] → 0 as P ↑ 0. A similar argument yields

Pα+ ∫∞
P [(1 + x)xα+

]−1dx → P/[(1 + P )α+] → 0 as P ↑ 0.25 Hence, (10) satisfies the first bound-

ary condition in (9). Now, consider the limit when P ↑ ∞. We can again use l’Hôpital’s rule since

Pα−
→ 0 and

∫ P
0 [(1 + x)xα−

]−1dx → ∞ as P ↑ ∞, so that Pα− ∫ P
0 [(1 + x)xα−

]−1dx → −1/α− as

P ↑ ∞. Similarly, we obtain Pα+ ∫∞
P [(1 + x) xα+

]−1dx → 1/α+ as P ↑ ∞. Hence we have

lim
P→∞

Wl (P ) =
2σ

s∆

(
1

−α−
+

1

α+

)
+

µl

r + δ
=

2σ

s

(
−1

α−α+

)
+

µl

r + δ
=

µh

r + δ
,

where the last equality follows from α−α+ = −2(r + δ)/s2. Hence we have established that (10) also

satisfies the second boundary condition in (9), which completes the derivation of Wl(P ).

The asset value of the high-type is derived similarly. For a high ability worker, dPt = Pts (sdt + dZt)

and thus the asset value solves

(r + δ)Wh (P ) − Ps2W ′
h (P ) −

1

2
(Ps)2 W ′′

h (P ) = (µh − µl)

(
P

1 + P

)
+ µl .

The homogenous solution is

WH
l (P ) = C1hP γ−

+ C2hP γ+

,

where γ− and γ+ are the negative and positive roots of the quadratic equation

γ (γ + 1)
s2

2
− r − δ = 0 ,

so that γ− = 1
2(−1 − ∆) and γ+ = 1

2(−1 + ∆). The non-homogenous solution is of the form

WNH
h (P ) =

[
z1 (P ) P γ−

+ z2 (P ) P γ+
]

+
µl

r + δ
,

where the functions z1 (P ) and z2 (P ) satisfy
(

P γ−
P γ+

γ−P γ−−1 γ+P γ+−1

)(
z′1 (P )

z′2 (P )

)
=

(
0

− 2σ
(1+P )Ps

)
.

Following the same steps as before yields the solution in Proposition 1. �

Proof of Proposition 2: The dynamics of the transition density of beliefs is captured by the Kol-

mogorov forward equation given in equation (4). By definition, the ergodic density satisfies the

stationarity condition df (p) /dt = 0. The general solution of f (p) reads

f (p) = Cj(p)fp−1−η(1 − p)η−2 + Kj(p)fpη−2(1 − p)−1−η ,

25Notice that
∫∞

P
[(1 + x) xα+

]−1dx <
∫∞

P
x−α+−1dx = P−α+

/α+. Thus
∫∞

P
[(1 + x) xα+

]−1dx is bounded for all P > 0

and the asset equation is well defined.
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where j(p) = 1{p≥p0} and η is as given in the statement. The value of C0f can be set to zero since
∫ 1
0 f (p) = 1, whereas

∫ p0

p x−1−ηdx → ∞ as p ↑ 0. Similarly K1f = 0 since
∫ p
p0

(1 − x)−1−ηdx → ∞ as

p ↑ 1. The values of the two remaining constants are pinned down by the following requirements: (i)
∫ 1
0 f (p) dp = 1, (ii) limp→p−

0

f (p) = limp→p+

0

f (p). Condition (ii) yields

(
pη−2
0 (1 − p0)

−1−η
)

K0f =
(
p−1−η
0 (1 − p0)

η−2
)

C1f

thus

C1f =

(
p0

1 − p0

)2η−1

K0f . (11)

Condition (i) can be expressed analytically by integration of the ergodic density and use of the

change of variable P = p/ (1 − p) to obtain
∫ p0

0
f (p) dp = K0f

∫ p0

0
pη−2(1 − p)−1−ηdp

= K0f

∫ P0

0
P η−2(1 + P )dP = K0f

(
P η−1

0

η − 1
+

P η
0

η

)
,

and ∫ 1

p0

f (p) dp = C1f

∫ 1

p0

p−1−η(1 − p)η−2dp = C1f

(
P−η

0

η
+

P 1−η
0

η − 1

)
.

Thus conditions (i) translates to
(

P η−1
0

η − 1
+

P η
0

η

)
K0f +

(
P−η

0

η
+

P 1−η
0

η − 1

)
C1f = 1 .

And using (11) yields

K0f

(
P η−1

0 + P η
0

)( 1

η − 1
+

1

η

)
= 1.

The proof is completed observing that 1
η−1 + 1

η = ξ. �

Proof of Lemma 1: In a pooling equilibrium, no information is revealed by the education level ep.

Hence, firms’ initial beliefs are equal to the proportion of high-ability worker in the population, that

is p0. Define

L(e) = Wl(P0) − c(e, µl) − WSep
l + c(0, µl).

By definition, e is such that L(e) = 0. In a pooling equilibrium, the low-type’s “participation con-

straint” is satisfied when

Wl(P0) − c(ep, µl) ≥ WSep
l − c(0, µl),

i.e. L(ep) ≥ 0. Actually, the condition L(ep) ≥ 0 is necessary and sufficient for the existence of

a pooling equilibrium at level ep. For, if L(ep) ≥ 0, we can specify weakly consistent beliefs, e.g.
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P (ep) = P0 and P (e) = 0 for e 6= ep. It follows that WSep
l − c(0, µl) > WSep

l − c(e, µl) for all

e 6= 0, ep; and thus ep is sequentially rational for the low-type. Since Wh(P0) > Wl(P0), we have

that Wh(P0) − c(ep, µl) > WSep
l − c(0, µl). Thus the “participation constraint” for the high-type is

also satisfied, which in turn implies sequential rationality for the high-type with the given equilibrium

beliefs.

All that remains is to notice that, since L′(e) = −ce(e, µl) < 0, L(e) is a strictly decreasing

function, and hence L(ep) ≥ 0 if and only if ep ∈ [0, e]. �

The following pure-calculus property will be useful in the proof of Proposition 3.

Lemma 2. Let H :]0, +∞[→ R be a twice continuously differentiable real function and let C :]0, +∞[→

R+ be a continuous real function such that

(H1) limx→0 H(x) = limx→∞ H(x) = 0, and

(H2) whenever H(x) ≤ 0, it follows that H ′′(x) + C(x)H ′(x) < 0.

Then H(x) > 0 for all x ∈]0, +∞[ (in other words, condition (H2) can only be fulfilled vacuously).

Proof. By contradiction, let H(x1) ≤ 0 for some x1 ∈]0, +∞[. Suppose first that H ′(x1) > 0. We start

by establishing that H ′(x) is strictly decreasing in ]0, x1[. (H2) implies that H ′′(x1) < −C(x1)H
′(x1) ≤

0. By continuity of H ′′, if H ′′(x) is not strictly negative in ]0, x1[, there is a “last inflexion point before

x1”, i.e. x0 < x1 such that H ′′(x0) = 0 but H ′′(x) < 0 for all x ∈]x0, x1[. This implies that H ′ is

strictly decreasing on [x0, x1] and thus (since H ′(x1) > 0) strictly positive. This implies in turn that

H is strictly increasing on [x0, x1] and thus (since H(x1) ≤ 0) strictly negative on [x0, x1[. It therefore

follows from (H2) that

0 = H ′′(x0) < −C(x0)H
′(x0) = −C(x0)

(
H ′(x1) −

∫ x1

x0

H ′′(x)dx

)

= −C(x0)H
′(x1) + C(x0)

∫ x1

x0

H ′′(x)dx ≤ 0

a contradiction which shows that H ′′(x) < 0 for all x ∈]0, x1]. But this implies that for all x ∈]0, x1[

H(x) = H(x1) −

∫ x1

x
H ′(x)dx ≤ −

∫ x1

x
H ′(x1)dx = −(x1 − x)H ′(x1) < 0 ,

Hence limx→0 H(x) ≤ −x1H
′(x1) < 0 which contradicts (H1). This proves that there exists no x1 > 0

such that H(x1) ≤ 0 and H ′(x1) > 0.

Suppose now that H ′(x1) < 0. Then there exists ε > 0 such that H(x) < 0 for all x ∈]x1, x1 + ε].

If there exists some x > x1 + ε such that H(x) = 0, by continuity of H there exists a “first zero
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after x0”, i.e. x∗ such that H(x∗) = 0 but H(x) < 0 for all x ∈]x1, x
∗[. But then it follows that

H ′(x2) > 0 for some x2 ∈]x1, x
∗[ (else H is decreasing on ]x1, x

∗[ and thus 0 = H(x∗) ≤ H(x1 +ε) < 0,

a contradiction). That is, we have found x2 > 0 such that H(x2) < 0 and H ′(x2) > 0. This contradicts

our previous finding. It follows that H(x) 6= 0 for all x > x1 + ε. By continuity of H, this means that

H(x) < 0 for all x > x1. But then there must exist some x2 > x1 such that H ′(x2) > 0. For, if not,

H is strictly decreasing on [x1 + ε, +∞[ and thus bounded above by H(x1 + ε) < 0, a contradiction

with the boundary condition limx→∞ H(x) = 0. Again we have found x2 > 0 such that H(x2) < 0

and H ′(x2) > 0, contradicting our previous finding.

We conclude that H ′(x1) = 0 for all x1 ∈]0, +∞[ with H(x1) ≤ 0. If there exists any x1 with

H(x1) < 0, since limx→0 H(x) = 0 by continuity there must exist 0 < x′ < x1 with H(x′) < 0 and

H ′(x′) < 0, a contradiction. Thus H(x) ≥ 0 for all x. But, if H(x1) = 0 for some x1 ∈]0, +∞[, we also

have H ′(x1) = 0. By (H2) this implies that H ′′(x1) < 0 so that H ′(x) < 0 on an interval ]x1, x1 + ε′[,

a final contradiction. �

Proof of Proposition 3: Define for i = h, l

Ii(e, ep) = WSep
h − c(e, µi) − Wi(P0) + c(ep, µi) . (12)

As explained in Section 3, the pooling equilibrium ep fails the Intuitive Criterion if and only if

there exists an education level eSep such that Il(e
Sep, ep) < 0 and Ih(eSep, ep) > 0. Let e∗(ep) denote

the minimum education level that does not trigger a profitable deviation for the low-type, so that

Il(e
∗(ep), ep) = 0. Since Ih(e, ep) is strictly decreasing in e, the pooling equilibrium is stable when

Ih(e∗(ep), ep) < 0. To show that one can always find an output variance σ below which this requirement

is fulfilled, we need the following claim.

Claim 1: The asset values of high-ability and low-ability workers are respectively decreasing and

increasing functions of σ for all P ∈ (0,∞).

The claim is most easily established reversing the change of variable from Pt to pt to obtain26

(i) High-type’s expectation: dpt = pt (1 − pt) s (s (1 − pt) dt + dZt) ,

(ii) Low-type’s expectation: dpt = pt (1 − pt) s (−sptdt + dZt) .

By definition

Wi (pt) = Ept

[∫ +∞

t
e−(r+δ)(τ−t)w(pτ )dτ

∣∣∣∣µi

]
(13)

=

∫ +∞

t
e−(r+δ)(τ−t)Ept [ w(pτ )|µi] dτ , for all pt ∈ (0, 1) and i = h, l ,

26Notice that when pt goes to zero or one, its stochastic component vanishes which provides us with the boundary

conditions described in equation (9).
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where the second equality follows from Fubini’s theorem. When the worker is of the high-type, so that

µi = µh, we know from condition (i) above that pt has a positive deterministic trend: pt (1 − pt)
2 s2.

Since w (pt) = pt(µh − µl) + µl is a linear function of pt, it follows that Ept [ w(pτ )|µh] > w(pt) for

all τ > t, and so Wh (pt) > w(pt)/(r + δ). Similarly, condition (ii) above shows that pt has a negative

deterministic trend when the worker is of the low-type, so that Wl (pt) < w(pt)/(r + δ).

We first establish the claim for low-types. Consider two different values of σ such that σ > σ. We

define the function Hl(P |σ, σ) = Wl (P |σ = σ) − Wl (P |σ = σ). The HJB equation implies that for

all P ∈ (0,∞)

H ′′
l (P ) =

2

(Ps(σ))2
[(r + δ)Wl (P |σ = σ) − w(P )] −

2

(Ps(σ))2
[(r + δ)Wl (P |σ = σ) − w(P )]

<
2(r + δ)

(Ps(σ))2
[Wl (P |σ = σ) − Wl (P |σ = σ)] ,

where the second equality follows from Wl (P ) < w(P )/(r + δ) and s(σ) < s(σ). Thus Hl(P ) satisfies

property (H2) in Lemma 2 for the trivial case where C(P ) = 0. Since (H1) follows from the boundary

conditions (9), it must be the case that Hl(P ) > 0, that is Wl (P |σ = σ) > Wl (P |σ = σ), for all

P ∈]0, +∞[. The property for high-types is established in the same fashion considering Hh(P ) =

Wh (P |σ = σ) − Wh (P |σ = σ) and applying Lemma 2 with C(P ) = Ps2.

We are now in a position to prove the Proposition. Recalling the definition of Ih(e, ep), we have

lim
σ→0

Ih(e∗(ep), ep) = lim
σ→0

(WSep
h − Wh(P0)) + lim

σ→0
(c(ep, µh) − c(e∗(ep), µh)) .

We first show that the second term on the right-hand side is negative. Given that Wl(P0|σ = ∞) <

WSep
h and ce(e, µ) > 0, the relation Il(e

∗(ep), ep) = 0 requires that e∗(ep|σ = ∞) > ep. Claim 1 implies

that e∗(ep|σ) > e∗(ep|σ = ∞) for all σ < ∞, which in turn yields limσ→0(c(ep, µh)−c(e∗(ep), µh)) < 0.

But limσ→0(W
Sep
h − Wh(P0)) = 0. Hence, one can always find a sufficiently low output variance to

ensure that Ih(e∗(ep), ep) < 0.

Finally define σ∗(ep) to be the unique variance such that Ih(e∗(ep), ep|σ) = 0 if Ih(e∗(ep), ep|σ =

∞) > 0, and σ∗(ep) = ∞ otherwise. The proposition is established noticing that, since Ih(e, ep|σ) is

decreasing in e and e∗(ep|σ) is decreasing in σ, Ih(e∗(ep), ep|σ) < 0 if and only if σ < σ∗(ep). �

Proof of Proposition 4: For ease of notation, we denote Ii(e) = Ii(e
∗(e), e). Recall that a pooling

equilibrium with education level ep fulfills the Intuitive Criterion if and only if Ih(ep) ≤ 0. In order to

characterize the region where this requirement is fulfilled, we prove the following claim.

Claim 2: When ce(e, µ) is weakly log-submodular, if the pooling equilibrium fails the Intuitive

Criterion for a given level of education, this is also true for any education level above it.
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To prove this claim, we differentiate the equality defining e∗(ep) to obtain

de∗(ep)

dep
=

ce(ep, µl)

ce(e∗(ep), µl)
,

hence de∗(ep)/dep ∈ (0, 1). Differentiating Ih(e) with respect to e yields

dIh(ep)

dep
= −ce(e

∗(ep), µh)

(
de∗(ep)

dep

)
+ ce(ep, µh)

=
ce(ep, µh)ce(e

∗(ep), µl) − ce(ep, µl)ce(e
∗(ep), µh)

ce(e∗(ep), µl)
.

When ce(e, µ) is weakly log-submodular, the last expression is larger than or equal to zero. Thus

dIh(ep)/dep ≥ 0 and so, if Ih(ep) > 0 for a given ep, this is also true or any education level above it,

as stated in Claim 2.

We now prove the Proposition. Let ẽ(σ) denote the lowest education level such that I(ẽ(σ)) = 0,

if it exists. According to Claim 2, the region where pooling equilibria fulfill the Intuitive Criterion

should be below ẽ(σ). In the no-learning case σ = ∞, we have that I(0) > 0 and so all pooling

equilibria fail the Intuitive Criterion. To characterize how ẽ changes with σ, consider the derivative

of Ih(ep|σ) with respect to σ. Claim 1 implies that

∂Ih(ep|s)

∂σ
= −

∂Wh(P0|σ)

∂σ
− ce (e∗(ep), µh)

∂e∗(ep)

∂σ
> 0 .

Differentiating the equality I (ẽ(σ)) = 0 with respect to σ therefore yields

dẽ(σ)

dσ
= −

∂Ih(ẽ(σ))/∂σ

∂Ih(ẽ(σ))/∂e
< 0 .

Hence the function ẽ(σ) is strictly decreasing.27 In the limit

lim
σ→0

Ih(e|σ) = −c (e∗(e), µh) + c(e, µh) ,

since Wh(P0|σ) converges to WSep
h as σ goes to zero. It follows that limσ→0 e∗ (ẽ(σ)) = ẽ(σ). From

the definition of e∗(·) and the convexity of the educational costs, this can be true if and only if

limσ→0 ẽ(σ) = ∞.

All that remains is to recall that, as shown in Lemma 1, ep is a PBE if and only if ep ≤ e. But e is

strictly increasing in σ because ∂Wl(P0|σ)/∂σ > 0. Furthermore, since Wl(P0|σ) converges to WSep
l

as σ goes to 0, it must be the case that limσ→0 e(σ) = 0. We can therefore conclude that e(σ) and

ẽ(σ) eventually intersect for sufficiently high values of σ. �

27Notice that when the cost function is log-linear, e.g. c(e, µ) = e2/µ, dIh(e)/de = 0 for all e. Then dẽ(σ)/dσ becomes

infinite, because the ẽ(σ) locus is vertical.
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Proof of Proposition 5: Since the proof is essentially similar to that of Proposition 1, the exposition

can be brief. The HJB equation for type i is

(r + δ)Wi (P ) −
(Ps)2

P0/P i
0 + P

W ′
i (P ) −

(Ps)2

2
W ′′

i (P ) = (µh − µl)

(
P

1 + P

)
+ µl .

Direct verification shows that the homogenous solution reads

WH
i (P ) = A1i

(
Pα−

P0/P i
0 + P

)
+ A2i

(
Pα−

P0/P i
0 + P

)
,

where α− and α+ are defined in Proposition 1. Hence the particular solution is of the form

WNH
i (P ) =

[
v1 (P )

Pα−

P0/P i
0 + P

+ v2 (P )
Pα+

P0/P i
0 + P

]
+

µl

r + δ
,

Standard derivations yield the following system of equations



P α−

P0/P i
0
+P

P α+

P0/P i
0
+P

(α−−1)P α−
+(α−)P α−−1

P0/P i
0
+P

(α+−1)P α+
+(α+)P α+−1

P0/P i
0
+P



(

v′1 (P )

v′2 (P )

)
=

(
0

− 2(µh−µl)
(1+P )Ps2

)
.

The particular solution reads

WNH
i (P ) =

2(µh − µl)

s2 (α+ − α−)

(
Pα−

P0/P i
0 + P

∫
P0/P i

0 + x

(1 + x)xα− dx +
Pα+

P0/P i
0 + P

∫
P0/P i

0 + x

(1 + x)xα+
dx

)
+

µl

r + δ
,

Finally, l’hospital’s rule allows one to establish that the boundary conditions (9) are satisfied by the

expression in Proposition 5. �

Proof of Proposition 6: In the ’Riley’ separating equilibrium, low ability workers choose the min-

imum level of education, i.e. zero. Given that c(0, µl) can be normalized to be zero without loss of

generality, eSep such that

c
(
eSep, µl

)
= Wl

(
P h

0

∣∣∣P h
0

)
− Wl

(
P l

0

∣∣∣P l
0

)
.

First, notice that evaluating the expression in Proposition 5 yields Wl

(
P l

0

∣∣P l
0

)
= µl/(r + δ), which is

independent of σ. This is because the posterior belief p follows a martingale when the worker’s and

firm’s priors coincide. Since the wage is an affine function of the belief and workers are risk-neutral,

their asset values do not depend on the volatility of beliefs.

Conversely, Wl

(
P h

0

∣∣P h
0

)
varies with σ. An argument similar to the one in Claim 1 of Proposition 3

shows that Wl

(
P h

0

∣∣P h
0

)
is indeed an increasing function of σ. First, we establish that Wl

(
P |P h

0

)
<

w(P )/(r + δ). Reversing the change of variable from Pt to pt yields

dpt = s2p2
t

[
1 − pt

(P0/P i
0)(1 − pt) + pt

− (1 − pt)

]
dt + (1 − pt)pts

2dZt .

27



Thus the deterministic trend of pt is negative when the worker is of the low-type, so that P i
0 = P l

0, and

the initial belief P0 = P h
0 . As shown in Claim 1, this implies that Wl

(
P |P h

0

)
< w(P )/(r + δ). The

proof that Wl

(
P |P h

0

)
is a decreasing function of s can now easily be established as in Claim 1, i.e. by

showing that the functions Hl(P ) = Wl

(
P |P h

0 , σ = σ
)
− Wl

(
P |P h

0 , σ = σ
)

and C(P ) =
(Ps)2

P0/P l
0 + P

satisfy properties (H1) and (H2) in Lemma 2. �
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