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ABSTRACT 
 

A Semiparametric Model for Binary Response and 
Continuous Outcomes Under Index Heteroscedasticity*

 
This paper formulates a likelihood-based estimator for a double index, semiparametric binary 
response equation. A novel feature of this estimator is that it is based on density estimation 
under local smoothing. While the proofs differ from those based on alternative density 
estimators, the finite sample performance of the estimator is significantly improved. As binary 
responses often appear as endogenous regressors in continuous outcome equations, we 
also develop an optimal instrumental variables estimator in this context. For this purpose, we 
specialize the double index model for binary response to one with heteroscedasticity that 
depends on an index different from that underlying the “mean-response”. We show that such 
(multiplicative) heteroscedasticity, whose form is not parametrically specified, effectively 
induces exclusion restrictions on the outcomes equation. The estimator developed below 
exploits such identifying information. We provide simulation evidence on the favorable 
performance of the estimators and illustrate their use through an empirical application on the 
determinants, and affect, of attendance at a government financed school. 
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1 Introduction

The last thirty years have witnessed the introduction of several estimators
for the semiparametric binary response model under minimal distributional
assumptions on the disturbance terms (see for example, Manski (1975, 1985),
Horowitz (1992), Powell et al (1989), Ichimura (1993), and Klein and Spady
(1993)). Much of the focus on relaxing distributional assumptions in the
binary response model was motivated by the fact that maximum likelihood
estimation of discrete choice models would generally lead to inconsistent es-
timates if the underlying distribution was incorrectly chosen.
In addition to the �shape�of the error distribution, it may also be mis-

speci�ed in the manner in which it depends on the explanatory variables. For
example, if the error exhibits multiplicative heteroscedasticity that is not a
function of the �mean�response, then only the above mentioned estimators
of Manski and Horowitz are consistent. However, these estimators will not
recover binary response probabilities. By estimating binary quantile models,
Kordas (2000) obtains interval estimates of the probabilities under general
conditions. One of the main objectives of the present paper is to obtain
these probabilities. We model a binary response probability as depending
on a double index where the distribution of the error may depend on the
explanatory variables through one or both of the indices. For example, this
speci�cation allows for, but is not restricted to, multiplicative heteroscedas-
ticity that depends on one or both indices.
To estimate the binary response model described above, we extend the

estimator in Klein and Spady (1993). The estimator in Klein and Spady
depends on a single index assumption, which in the present context would
imply that it can handle heteroscedasticity only if the "error" distribution
depends on the same index that determines the "mean response". Here we
allow a double index formulation in which the index underlying the "mean
response" may di¤er from that upon which heteroscedasticity depends. Such
an index formulation is particularly important in view of a result due to
Chen and Khan (1998). They consider a binary response model where the
heteroscedasticity depends on an unknown function of the explanatory vari-
ables and does not have an index structure. In this case, they show there
does not exist a

p
N -consistent estimator for the model�s parameters. Here,

we will obtain a
p
N -consistent estimator under an index speci�cation.

It should be emphasized that the estimator developed here depends on
density estimators obtained under estimated local smoothing, where under-
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lying density estimators are based on windows that vary for each observation
in the sample. This is analogous to characterizing a distribution with a his-
togram in which the bin interval is allowed to vary depending on whether one
is in the tails of the unknown density (where observations are sparse) or in re-
gions where the true density is �high�. With such local smoothing, the proofs
for the asymptotic properties of the estimator formulated here substantially
di¤er from those in the literature that employ bias-reducing kernels. We
pursue this strategy �rst because density estimators under local smoothing
have mean-squared-error optimally properties (Abramson (1982)). Second
and most importantly, in the present context we have found that the �nite
sample performance of the estimator for the binary response model is much
improved under local smoothing in contrast to bias-reducing kernels. We also
found further improvements in the �nite sample performance of the estima-
tors by employing dependent kernels that depend on an estimated sample
covariance matrix as advocated by Fukunaga (1972). Accordingly, all proofs
in this paper are for estimation under local smoothing and dependent bivari-
ate kernels.
In adopting the above smoothing strategy, we have found it necessary to

employ a property of the derivative of semiparametric probability function
due to Whitney Newey. Namely, when this derivative is taken with respect
to index parameters and then evaluated at the true parameter values, it co-
incides with the corresponding parametric derivative minus its conditional
expectation (conditioned on the indices). This �residual-type�property of
this derivative function is important below in controlling the bias in gradient
terms in the asymptotic normality argument. As is typical for many semi-
parametric estimators, we will need to downweight (trim) observations where
density denominators become "too small". To exploit the residual property
of the semiparametric derivative, we will employ a trimming strategy that
depends on estimated indices as opposed to the explanatory variables.
The estimator developed here for the binary response model is also related

to those of Ichimura and Lee (1991) and Lee (1995) who examine alternative
multiple index models. While the present paper makes use of several key
identi�cation results of the Ichimura and Lee paper, it di¤ers from both in
several important respects. First, and most important, we have formulated
the estimator and all proofs for the case of estimated local smoothing rather
than bias-reducing kernels. Second, we make use of identi�cation results in
Ichimura and Lee without imposing exclusion restrictions on the indices. We
emphasize that we are not concerned here with recovering the original para-
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meters in the binary response model (which even in the presence of exclusion
restrictions are still only obtained up to location and scale). Rather, we are
interested in estimating those identi�able functions of the parameters that
su¢ ce to identify the semiparametric probability function. It can be argued
that with binary response models, one is generally not concerned with the
parameters themselves but rather with the response probability and marginal
e¤ects. Such marginal e¤ects, which examine how the probability function
changes as the explanatory variables change, are identi�ed once the proba-
bility function is identi�ed. Moreover, while the entire probability function
converges pointwise and uniformly to the true function at a rate below the
parametric rate of

p
N; averaged marginal e¤ects converge at the parametric

rate. The original parameter values of the model are not required for such
identi�cation. In part, for this reason we focus on identifying the probability
function itself rather than index parameters.
While one of our primary objectives is to provide an estimator for this

double index binary choice model,1 we note that applied researchers have be-
come increasingly interested in larger systems in which the choice appears in
another equation as an endogenous regressor. This type of model, frequently
referred to as an endogenous binary treatment model, is at best poorly iden-
ti�ed without an exclusion restriction. The well-known problem here is that
the treatment probability, which would serve as an instrument for estimating
the continuous outcomes equation, is often approximately linear in its argu-
ment. In the absence of an exclusion restriction on the continuous outcome
equation, the instrument is then very close to being linearly related to the
same exogenous variables in the continuous equation of interest. To resolve
this problem here, we consider the case of multiplicative heteroscedasticity in
the binary response equation, which is some function of the explanatory vari-
ablesX. Write this function as S(X). In the next section we show that such
heteroscedasticity may be viewed as inducing exclusion restrictions on the
continuous outcomes equation. With no parametric assumptions on S(X)
(other than that it depends on one or two indices) and with no paramet-
ric assumptions on the distribution of the error term in the binary response
model, below we will develop an estimator that exploits such identifying in-
formation. We will then show that such information is useful both in theory
and in practice (as indicated in a series of monte-carlo experiments and in

1Virtually all of the technical di¢ culties in this paper arise from estimating a double
index speci�cation for the binary response model under estimated local smoothing.
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an empirical application).
For continuous simultaneous equations models, other authors have ex-

ploited heteroscedasticity as an identi�cation strategy. For example, in a
semiparametric formulation, Klein and Vella (2006) exploit such informa-
tion to identify and estimate triangular simultaneous equations models with-
out exclusion restrictions. In parametric formulations, Vella and Verbeek
(1997), Rummery et al (1999), Rigobon (2003) and Lewbel (2004) also exploit
heteroscedasticity as an identi�cation strategy for simultaneous equations.
From the structure of the problem considered here, there is information in
higher order powers of the X 0s that could be exploited to construct instru-
ments for the outcomes equation. Dagenais and Dagenais (1997) and Lewbel
(1997) exploit such information in models with measurement error. In this
paper, since the nature of the heteroscedastic function in the treatment equa-
tion is unknown, it is unclear which higher orders of the X0s should be used
as instruments. Consequently, we pursue an alternative strategy here that in-
volves direct estimation of a double index binary response model. One could
attempt to by-pass estimation of this equation and determine the appropriate
higher orders of X0s to use as instruments by extending Donald and Newey
(2001) to the model considered here. However, as the treatment probability
is itself of direct interest, we pursue an alternative strategy that employs
the estimated treatment probability in estimating the continuous outcomes
equation. In the present context, the conditional treatment probability is an
optimal instrument (Amemiya (1975)).
The next section outlines the model and the estimation methods. In

Section 3 we provide and discuss the assumptions required to establish as-
ymptotic results. When estimating the treatment e¤ect, we note that our
procedure is of particular value when there are no exclusion restrictions which
provide instruments. Accordingly we focus on identi�cation in the absence of
conventional exclusion restrictions. In Section 4 we establish the asymptotic
properties of the estimators for both the binary response and outcome mod-
els. In so doing, we sketch out the proofs, and provide complete technical
details in the Appendix. The proof strategy di¤ers from other arguments
in the literature as it relies on estimated local smoothing. Section 5 pro-
vides simulation evidence. In Section 6 we provide an empirical application
where an individual�s total education level (the outcome) depends in part
on whether or not the individual attended a State �nanced high school in
Australia (the treatment). Section 7 concludes.
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2 Model and Motivation for Estimators

Consider the following model:

Y1i = Xi�0 + �0Y2i + ui (1)

Y2i = fXi�0 + vi > 0g ; (2)

where Y1i is the outcome variable and Y2i is a dummy endogenous variable
de�ned through the indicator function f�g; Xi is a vector of exogenous vari-
ables; �0; �0 and �0 are unknown true parameter values; and ui and vi are
random disturbances. While the treatment e¤ect, �0; is invariant across in-
dividuals, this assumption can be relaxed as in the empirical application.
The disturbances can be characterized as:

vi = S(Xi0)v
�
i (3)

E (uijXi) = 0; (4)

where S(�) is an unknown (positive and non-constant) function; 0 is an
unknown parameter vector, and v�i is a homoscedastic random disturbance
which is independent of the elements of Xi but dependent on ui. The model
allows heteroscedasticity in each equation, though we only model it explicitly
in index form for the binary response model. Note that there may or may not
be known restrictions on the parameters in the above model. For example,
suppose X �

�
X[1]; X[2]

�
; where X[2] contains powers and cross products of

the �basis�elements in X[1]: Then, in some formulations it will be reasonable
to restrict the elements of �0 and �0 so that the �mean e¤ects�only depend
on X[1]: In contrast, one may want to let heteroscedasticity, S, depend on
the basis elements X[1] and the higher order terms X[2]: Alternatively, we
could interpret X itself as containing the �basis variables�for the model and
impose no exclusion restrictions on �0; �0; or 0: Because of the aspects of
the above model in which we are interested, we permit and indeed focus on
this second case of no exclusion restrictions. The estimator developed here
is for a model more general than above, but we will specialize to the above
case for expositional convenience.
For the model in (1-4), the treatment probability has the form:

Pr(Y2i = 1jXi) = Pr(Y2i = 1jXi�0; Xi0) (5)

� P (Zi�0); Z � [Xi=S(Xi0)];
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where P (:) is the distribution function for v�i : We estimate this probability
function in a double index formulation based on local smoothing. The estima-
tor will depend neither on the functional form for S nor on the distribution
of the disturbances.
We can also employ this probability function as an (optimal) instrument

for estimating the continuous outcomes equation. Here we make several
observations. First, if there is no heteroscedasticity in the above model, then
e¤ectively Z = X, in which case the model can be poorly identi�ed because
P is often approximately linear in its argument. When the argument of
P is X�0 (i.e. Z = X), it is still possible to identify the model provided
that P is not linear in X�0. However, this form of non-linearity in the
function P itself will typically occur in the tails of the X 0

is and thus relies on
a small fraction of the sample for identi�cation. In contrast, in the presence of
heteroscedasticity, Z no longer coincides with X and indeed will typically be
linearly independent of the columns of X. Consequently, the Z-variables are
e¤ectively excluded from the continuous outcomes equation. Such induced
exclusion restrictions serve to identify the model even in the region of the
data for which P is linear in Z.

3 Assumptions, Identi�cation, and De�nitions

We now provide the assumptions and de�nitions that we employ to establish
the asymptotic properties for the estimator.

A1. The Data. The data : (Y1i; Y2i; Xi), i = 1; :::; N , are i.i.d. obser-
vations from the model in (1)-(4). With X as the NxK matrix of
observations on the explanatory variables and with 1

¯
as an Nx1 col-

umn vector of ones, the columns of [X 1
¯
] are linearly independent with

probability 1.

A2. Errors. The error in the continuous outcomes equation (1), ui; is
independent over i with E (uij Xi) = 0 and with E [u2i j Xi] uniformly
bounded. The error in the binary response model (2) is given as:

vi � S (Xi0) v
�
i ;

where the unscaled error, v�i ; is i.i.d. with �nite variance. The scaling
function S (�) is �nite, bounded away from zero, and is not constant.
The vector Xi is independent of the unscaled error v�i :
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A3. Parameter Space. The vector of true parameters values for the
model in (1-4) lies in the interior of a compact parameter space, �:

A4. Index Assumptions. Assume that the vector of indices, I, depends
on two distinct (functionally independent) continuous variables, X1

and X2 . With X3 containing all other explanatory variables, write:

I � [I1; I2] � [X1; X2; X3]

�
�c

�31 �32

�
; �c �

�
�11 �12
�21 �22

�
;

and assume that the 2x2 submatrix �c has rank 2.

A5. Reparameterized Model. With � � (�31; �32) ; de�ne:

W � I � ��1c � [W1;W2] � [X1; X2; X3]

24 1 0
0 1
�31 �32

35 � X� (�) :
Under this reparameterization, notice that P (Y = 1jI) = P (Y = 1jW ).
De�ne W � by replacing � above with ��:With x a realized value of X,
write w � x� (�) and w� � x� (��) : Assume:

P (w) � P (Y = 1jW = w) = P (Y = 1jW � = w�) � P � (w�) :

Following Ichimura and Lee (1991), let t � w� = (x1; x2)+x3��3. Then,
write:

P (w) � P (t+ x3 (� � ��)) = P � (t) :
Assume that there exists a set of positive probability on which the
above equality may be di¤erentiated with respect to the continuous
elements of x3 with t held �xed. Further assume that condition (4) of
Ichimura and Lee (1991, Lemma 3) holds.

A6. Densities. Assume that all continuous variables have compact sup-
port. To provide required smoothness conditions, let Xc � (X1; X2)
be the vector of continuous variables in (A5). Then, with f(xcjX3; Y2)
as the indicated conditional density for Xc; denote ri

1r
j
2 f (�j�) as the

ith and jth cross-partial with respect to the elements of xc � [x1; x2] :
Then, with r0

1r0
2 f (xcj�) � f (�j�) ; assume that f (wj�) has positive

support on a compact set A; is bounded away from 0 on any compact
subset of its support, and that on A

��ri
1r

j
2f (�j�)

�� is bounded above
by a positive �nite constant for i+ j � 4:
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Assumptions A1-3 de�ne the index model that we propose to estimate.
An index formulation of low dimension is and important for obtaining rea-
sonable results in �nite samples. Notice that this index assumption permits a
more general error structure than that shown in (A2). Namely, we require
that the binary response probability depend on two indices, but do not oth-
erwise restrict the manner in which the probability depends on the indices.
The particular double index structure implicit in (A2) provides a convenient
motivating case.
With the possible exception of assumptionsA4-5, the above assumptions

are somewhat standard in index models. Assumptions A4-5 essentially pro-
vides identi�cation conditions. To motivate these assumptions, note that
the W -parameterization in (A5) is equivalent to the I-parameterization in
(A4) as both yield the same conditional probability function in x. We em-
ploy the W -parameterization to allow for the possibility that there may not
be exclusion restrictions in the original I-parameterization. In this lower
dimensional parameterization, we then seek to identify the (nuisance) para-
meters �. Before proceeding, we note that these parameters have no natural
interpretation as they are linear functions of the model�s original parameters.
However, if these parameters are identi�ed, we can easily recover the binary
response probability function and identify the marginal e¤ects which measure
how the response probability changes in response to changes in x. Moreover,
asymptotic properties for these estimated marginal e¤ects will readily follow
from those for �̂: Finally, as elaborated below, the probability function is of
interest in estimating a continuous outcomes equation that depends on the
binary response variable.
Having reparameterized the model in (A5) we then assume that the W -

parameterization satis�es the identi�cation conditions in Ichimura and Lee
(1991).2 The condition on discrete variables is that given by Ichimura and

2Ichimura and Lee use this di¤erentiability condition in their proof. We have explicitly
stated it as an assumption, because it can fail when all continuous variables of an index
are functionally related. For example, suppose x3 = x21 and write

t1 = x1 + x
2
1�1:

The derivative condition in (A5) does not hold for this case. Moreover, the model is not
identi�ed as

Pr (Y = 1jW = w) = Pr (Y = 1jX1 = x1;W2 = w2) :

In other words, we are unable to distinguish �31 from ��31 = 0 as both yield the same
binary response probability.
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Lee to identify their coe¢ cients. Note that these identi�cation conditions are
based on the underlying assumption of a double index model. In presenting
simulation results, we will present results both for double and single index
models. If a single index model generates the data, it will not be possible
to identify all of the parameters of a double index speci�cation. However, it
is still possible to identify the probability function of interest. As the focus
of this paper is on a double index speci�cation we defer further discussion of
this issue to the simulation section.
Assumption (A6) provides smoothness conditions. These conditions and

densities satisfying them are discussed in Klein and Spady (1993, p. 393).
It is possible to relax the compact support assumption at some technical
expense in the proofs.3

In addition to the above assumptions, we also need a number of conditions
or de�nitions that de�ne the densities and probability functions of interest.
Throughout, we employ kernel density estimators to estimate the semipara-
metric probability function entering a quasi likelihood. As is standard in this
literature, such density estimators need to have an appropriately low order
of bias. Here, we obtain bias reduction �rst by employing local smoothing
as developed by Abramson (1982) and discussed in Silverman (1986). Such
local smoothing requires that the windows in the �nal kernel density esti-
mator vary by observation and depend on a pilot density estimator. Not
surprisingly, these windows satisfy the intuitive requirement that they be
smaller in the center of the distribution than in the tails. As a second source
of bias reduction, we exploit a property of expected semiparametric proba-
bility derivatives. Namely, such derivatives have expected value zero when
conditioned on the true indices. As will also be discussed below, to improve
the �nite sample performance of the estimators, we estimate the density for
the vector of indices, W , using kernels that depend on the sample covariance

A similar issue arises in the case of single index models. The identi�cation argument
in Klein and Spady (1993) requires that there is a continuous variable that is functionally
independent of other continuous variables in the model. Ichimura (1993) provides weaker
identi�cation conditions by relaxing this assumption. It remains the case, however, that
when the index is a linear in "basis" functions of the same continuous variable, Z, then
the index is not identi�ed.

3This assumption is used in two types of arguments. First, in conjunction with the
parameters being in a compact set, it implies that probabilities are bounded away from
one and zero. In the absence of this simplifying condition, one would need to make a
tail assumption on how fast the probability function tends to one or zero. Second, this
compact support assumption simpli�es various uniform convergence arguments.
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matrix for W . Below, we will �rst de�ne these estimators and then discuss
their properties.

D1. Density Estimators Under Local Smoothing. Let K be a sym-
metric, smooth univariate kernel function satisfying condition C8 in
Klein and Spady (1993, 394). The normal kernel, which is employed
in the simulations and the empirical example, satis�es this condition.
Let T be a matrix such that T 0T = �̂�1s ; the inverse sample covariance
matrix for W given that Y2 = s; s = 0; 1: Partitioning T = [T1 T2]

0

conformably with the ith observation on W : Wi = [W1i W2i]
0, de�ne:

ksj (w;h; �) �
det

�
�̂s

��1=2
[�jh]

2 K (T1 [w �Wj] = [�jh])K (T2 [w �Wj] = [�jh]) :

With gs(w) as joint density for W � [W1;W2] conditioned on Y2 = s;

s = 0; 1; and with Ps as the unconditional probability that Y2 = s;
de�ne an estimator for fs (w) � Psgs(w) as:

f̂1 (w;h; �) �
1

N

X
j

Y2jk
1
j (w;h; �) ; f̂0 (w;h; �) �

1

N

X
j

(1� Y2j) k0j (w;h; �) :

For w = Wi, the above averages are taken over the N-1 observations
for which j 6= i:

D2: Smooth Trimming Functions. De�ne a smooth trimming func-
tions as:

� (z; a) � [ 1 + exp (Na [z])]�1 :

D3. Estimated Local Smoothing Parameters. Referring to (D1),
denote m̂s as the geometric mean of the f̂s (w;h; �)

0 s and let ̂sj �h
f̂s (wj;h; �) =m̂s

i
: Then, for j = 1; :::; N , de�ne estimated local

smoothing parameters as:
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�̂sj � �̂s

�
f̂s (wj;h; �)

�
=
h
d̂sj ̂sj +

�
1� d̂sj

�
=Ln(N)

i�1=2
;

d̂sj � �

�
1

Ln (N)
� ̂sj; :01

�
;

where the parameter a in (D2) is set here to .01.4

D4. Multi-Stage Local Smoothing. Employing (D3), the estimator
for fs (w) is de�ned under several stages of local smoothing as:

f̂s(w) � 1

N

X
j 6=i

Y2jk
s
ij

�
h3; �̂

�
s

�
; s = 1; 0;

�̂
�
sj � �̂sj

�
f̂1

�
wj;h2; �̂sj

�
f̂1 (wj;h1;1)

���
;

where 1 is a vector of ones. With hi = O(N�ri), set r3 = 1=11 and
0 < � < r3=2. Then, set r2 = (r3 � �=2) =2; and r1 = (r3 � �) =4:5

D5. Semiparametric Probability Function. De�ne:

P̂ (�) � f̂ �1 (w)=ĝ� (w) �
h
f̂1(w) + �̂1N

i
=
h
ĝ (w) + �̂N

i
;

where ĝ (w) � f̂1(w) + f̂0(w) estimates the unconditional density
for W: To de�ne the � adjustment-factors, �rst de�ne the smoothed
indicator :

�sN � ĉsN "0
h
1 + exp

�
Na1

h
f̂s(w)�N�a2

i�i�1
;

where a1 � "0r3=4, a2 � "0r3=5; ĉs = Op(1); and �N � �1N +�0N :

4In taking fourth-order Taylor series expansions to examine bias terms, the fourth
derivative will involve N4a: Consequently, it is important that a be "small". Here,
a = (r3 � "a)=8; with "a positive and arbitrarily small. The value a = 1=100 satis�es the
required constraint and is employed in the monte-carlo study.

5In proving Lemma 8, we require r3 < 1=10; 4 (r1 + r2 + r3) > 1=2; and 0 < � < r3=2.
In making a bias calculation (Lemma 3A-C), we will require 0 < r1 < r2 � 2a and
0 < r1 + r2 < r3 � 2a: These conditions are satis�ed with the parameter a set as in (D4),
ri as in (D5), and � as in (D5).
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D6. Pilot Estimator. Let x
¯ k
be the lower �th sample quantile for

the continuous variable Xk (e.g. � = :01) and let �xk be the upper
(1� �)th sample quantile. For the Kc continuous variables, de�ne the
indicators: t̂ik � fx¯ k < xik < �xkg ; k = 1; :::; Kc. In the notation of D1,
de�ne a pilot probability estimator as:

P̂ � (�) � f̂1 (wj; 1=11;1) =
h
f̂1 (wj; 1=11;1) + f̂0 (wj; 1=11;1)

i
:

Then, with �̂xi � �t̂ik; the pilot estimator for �0 is de�ned as:

�̂p � argmax
�

l̂p (�) ;

Q̂p (�) �
X

�̂xi

h
Y2iLn

�
P̂ �i

�
+ (1� Y2i)Ln

�
1� P̂ �i

�i
:

D7: Final Estimator. With �̂p de�ned in (D6), let ŵj �
�
w1j

�
�̂p
�
w2j

�
�̂p
��

denote the vector of estimated indices. Denote w1
�
�̂p
�
as the lower �th

sample quantile for the w1j
�
�̂p
�0
s and let �w1

�
�̂p
�
be the corresponding

upper (1��)th quantile: With � as the trimming function in (D2), the
index trimming function is de�ned as:

�̂wi � �̂ 1i �̂ 2i,

�̂ ki � �
�
w1
�
�̂p
�
� wk

�
�̂p
�
; 1=12

�
�
�
; wki

�
�̂p
�
� wk

�
�̂p
�
; 1=12

�
for k = 1; 2.

Then, with probabilities de�ned in (D5), the �nal estimator for �0 is
de�ned as:

�̂ � argmax
�

l̂ (�) ;

Q̂ (�) �
X

�̂ i

h
Y2iLn

�
P̂j

�
+ (1� Y2i)Ln

�
1� P̂j

�i
:

Before discussing the role of the above de�nitions, as an overview note
that there are two general aspects that need to be addressed in estimating
semiparametric models. First, it is necessary to control the bias in the
underlying density estimators. As discussed below, here we control this
bias by employing local smoothing and exploiting a "residual" property of
semiparametric probability functions. Second, it is necessary to downweight
or trim those observations for which densities become too small. For reasons
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discussed below, we employ a trimming strategy outlined in (D4-6) that is
quite similar to that in Klein and Spady (1993).
In explaining why we have de�ned various estimators as above, turn �rst

to (D1). As discussed by Silverman (1986) and advocated by Fukunaga
(1972) we have employed bivariate Kernels based on a sample covariance
matrix. We �match�this feature of the data as follows. Following Fukunaga
(1972) we specify a density estimate for the vector W by �rst constructing
the standardized vectorW � � TW:With the covariance matrix forW � being
the identity matrix, the density estimator forW � is then somewhat naturally
based on a product of independent kernels. The implied density estimator for
W is then that given above. Fukunaga (1972) documents the performance
of this estimator in a monte-carlo study. Here, we have found that we obtain
�better� estimates of the parameters of interest when we select a density
estimator in this manner.
For known local smoothing parameters (bounded away from zero), Abram-

son showed that the locally-smoothed density estimator is optimal in a mean-
squared error sense. This estimator also has the desired bias reducing prop-
erties. As the local smoothing parameters are not known, they must be
estimated. In using the estimates, we are able to prove that the result-
ing density estimators have desired bias reducing properties when estimated
in several stages. Namely, �rst employ a regular kernel density estimator
(� = 1 in the above notation) to construct estimated local smoothing pa-
rameters. Second, obtain a density estimator using these estimated local
smoothing parameters. Third, and �nally, use this second stage estimator to
reconstruct estimated local smoothing parameters and obtain the �nal den-
sity estimator shown in (D4). We have been able to show "essentially" that
the bias is reduced at each stage. At the third stage, the order of the bias is
O (h23h

2
2h
2
1) : This order is su¢ ciently small to obtain the asymptotic results

below. We note that this order is larger than that would be the case if the
local smoothing parameters were known . For the windows required to ob-
tain the above order for the bias, h23h

2
2h
2
1 > h

4
3; the order that Abramson and

Silverman establish for known local smoothing parameters (bounded away
from zero). For technical reasons, we smoothly trim in (D2) so as to keep
the local smoothing parameters above 1=ln(N).6

6For bias reasons, it is important to let the densities that de�ne these parameters be
closer to zero than the densities upon which the semiparametric probability function is
based. As the likelihood trimming insures that densities have a lower bound of the form
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The proofs exploit a residual-like property of the derivative (with respect
to the parameters) of the true semiparametric probability function , with
this derivative having conditional expectation of zero when evaluated at the
true parameter values By using this property, we can further control for
the bias in the gradient to the objective function, which is essential to es-
tablishing asymptotic normality. To this end, we �rst estimate the model
under X-trimming. The resulting parameter estimates, which we do not
require to be

p
N � convergent, are employed to obtain estimated indices

or index-densities. The model is then re-estimated with trimming based on
estimated indices or their corresponding estimated densities. Such trimming
a¤ords "protection" against small denominators when analyzing the gradient
as it will be evaluated at the true parameter values. However, this type of
trimming is problematic for analyzing the averaged Log-likelihood and the
Hessian matrix as we need to examine these components away from the truth.
As in Klein and Spady (1993), we employ the � adjustment factors in (D5)
above for this purpose. These factors will vanish exponentially provided the
density is not "too small". In this manner, such factors will quickly van-
ish from the gradient where they are not needed, but will serve to control
density denominators when analyzing likelihood and Hessian components.

4 Asymptotic Results

In this section we provide and discuss the asymptotic properties for the esti-
mator for both equations in the endogenous treatment model de�ned above.
The Appendix contains formal proofs for all required intermediate lemmas
and the main theorems given below. For expositional and notational pur-
poses we will consider the more di¢ cult case in which every index in the
model depends on a linear combination of variables in X. In practice there
will certainly be cases in which exclusion restrictions for the various indices
are justi�ed. In what follows, we begin with the binary response model and
establish consistency using standard uniform convergence arguments. We
then turn to the proofs for asymptotic normality.

B > 0, we permit the local smoothing parameters to slowly tend to zero.

14



4.1 Binary Response

To show that the proposed estimator for the binary response model is con-
sistent, denote � � [�1; �2] as the (nuisance) �reduced form� parameters
entering W1 and W2 as above. Then, with the quasi likelihood given by Q̂
above, the estimator for this binary response model is given as:

�̂ = arg sup
�

Q̂ (�) :

With the semiparametric probability function given as P̂i (�) in (D5):

Q̂ (�) � 1

N

NX
i=1

�̂ i

�
Y2iLn

h
P̂i(�)

i
+ [1� Y2i]Ln

h
1� P̂i(�)

i �
;

where �̂ i is a trimming function that is de�ned and discussed in the Appendix.
Obtain Q (�) from Q̂ (�) by replacing P̂i(�) with its uniform probability

limit, Pi(�): It can then be shown (see the Appendix) that

Q̂ (�)�Q (�) p! 0; uniformly in �:

From standard uniform convergence arguments, Q (�) converges in proba-
bility and uniformly in � to its expectation, E [Q (�)] : Under conditions for
identi�cation given above, E [Q (�)] is uniquely maximized at �0: Therefore,
we have established:

Theorem 1 Under (A1-6) and (D1-7):

�̂ = �0 + op(1):

Note that consistency of �̂ will imply that the probability function is
also consistently estimated. It is then also possible to establish consistency
for estimated marginal e¤ects. The asymptotic distribution for marginal
e¤ects readily follows from that for the estimated nuisance parameters. In
the remainder of this section, we outline the normality argument, with the
Appendix providing detailed proofs.
As discussed in the Appendix, we �rst employ �xed trimming on the basis

of the X-variables to obtain a convergence rate for a pilot estimator for the
parameters: �

�̂p � �0
�
= Op

�
N�rp

�
; rp > r3:
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Using �̂p, we then estimate the two W -indices and construct a smooth trim-
ming function based on these indices. With ŵi as the estimator for the in-
dices, denote �̂wi as the estimated trimming function under Index-trimming
(D7). Employing this trimming function , write the objective function as:

Q̂ (�) � 1

N

X
�̂wi

�
Y2iLn

h
P̂i (�)

i
+ (1� Y2i)Ln

h
1� P̂i (�)

i�
.

Denote Ĝ (�) and Ĥ (�) as the Gradient and Hessian for this objective func-
tion. Let Q (�) be the objective function obtained by replacing estimated
with true probability functions (to which the estimated functions uniformly
tend) and denote H (�) as the Hessian for Q (�) : Then, with the Appendix
containing the details, from a standard Taylor series expansion of Ĝ (�̂) about
�o:

p
N (�̂ � �o) = �H

�
�+
��1p

NĜ (�o) + op(1); �
+ � [�̂; �o]

� �H�1
o

p
NĜ (�o) + op (1) ; Ho � E [H (�o)] :

The normality result then follows from an analysis of the gradient term.
To outline the argument for the gradient, de�ne an estimated weight

function

�̂i =

�
@

@�
P̂i (�0)

�
=
h
P̂i (�0)

h
1� P̂i (�0)

i i
:

The gradient to the objective function is then of the form:

N1=2Ĝ = [A1 + A2 �B1 +B2] ;

A1 = N�1=2
X

�wi [ Yi � Pi] �̂i; A2 = N�1=2
X

[�̂wi � �wi] [ Yi � Pi] �̂i

B1 = N�1=2
X

�wi

h
P̂i � Pi

i
�̂i; B2 = N

�1=2
X

[�̂wi � �wi]
h
P̂i � Pi

i
�̂i:

To simplify A1, we �rst show that the estimated weight may be taken as
given by showing:

N�1=2
X

�wi [Yi � Pi] (�̂i � �i) =N = op(1) :

Since Y � P has conditional expectation of zero, a natural strategy would
be to establish the above result by showing that E(A21) converges to zero.
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After simplifying A1; in the Appendix we provide the required mean-square
convergence argument. It then follows that:

A1 = N
�1=2

X
�wi [Yi � Pi] �i=N + op(1):

Employing Lemma 8 in the Appendix, we are able to show that A2 converges
to zero in probability.
Turning to the term in B1, in the Appendix we establish uniform con-

vergence rates under multi-stage local smoothing (to reduce the bias) for
estimated probability functions and their derivatives. In the �rst stage, esti-
mated local smoothing parameters are constructed as functions of a regular
kernel density estimator. These estimated local smoothing parameters are
then employed (as variable windows) to re-estimate the density, which is in
turn used to reconstruct estimated local smoothing parameters, which in the
�nal stage are used to re-estimate the density. When local smoothing para-
meters are unknown, we show in the Appendix that this multi-stage approach
results in increased convergence rates by reducing the order of the bias in the
density estimator. Using these convergence rates, in the Appendix we show:

sup
���P̂i � Pi��� = op �N�r� ; sup j�̂i � �ij = o �N�s� ; r + s > 1=2:

We then have: ���N1=2
X

� 2ip

h
P̂i � Pi

i
[�̂i � �i]

��� =N �

N1=2 sup
h
� ip

���P̂i � Pi���i sup [� ip j�̂i � �ij] = op(1):

From above:

B1 = N
�1=2

X
�wi

h
P̂i � Pi

i
�i + op(1):

Recall that for technical reasons the estimated probability function was de-
�ned as a ratio of adjusted, estimated densities. With the adjustment factors
vanishing exponentially under trimming, we may ignore these adjustments
and replace P̂i with f̂i=ĝi. In the Appendix, (using a uniform convergence
argument similar to that above), it is shown that:

N�1=2
X

� ip

h
f̂i=ĝi � Pi

i
[(ĝi=gi � 1)] �i = op(1):
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It now follows that B1 simpli�es to:

B1 = N�1=2
X

� ip

h
f̂i=ĝi � Pi

i
[(ĝi=gi)] �i + op(1)

= N�1=2
X

Ri + op(1); Ri � � ip
h
f̂i � Piĝi

i
[�i=gi] :

To further analyze B1 above, it is important to show that it is �nearly�
unbiased: E(R) = o

�
N�1=2� : With biased reducing kernels:

E (Ri) � E
� h

f̂i � Piĝi
i
�i=gi

�
= E

�
�i=giE

� h
f̂i � Piĝi

i
jXi

� �
= o

�
N�1=2� ;

because the density estimators are "nearly" unbiased. However, once we
have shown that the gradient has the above form (under locally smoothed
kernels ), we can control the bias by exploiting a property of semiparametric
probability derivatives. Let

� (Wi) � E
� h

f̂i � Piĝi
i
jXi

�
;

where � only depends on index values. Then:

E (Ri) = E [� (wi) �i=gi] = E [� (wi) =giE (�ijWi)] = 0

from the residual property of the semiparametric probability derivative. By
exploiting this property, the Appendix employs a mean-square convergence
argument to show that B1 converges to zero in probability (as does the com-
parable term in single index models). Similar to the analysis for A2, using
Lemma (8) in the Appendix, it can be shown that B2 also vanishes in prob-
ability.
Employing the above results:

p
N (�̂ � �o) = �H�1

o

p
N
X

� iw [Yi � Pi] �i=N + op(1):

Noting that an information equality holds for this problem, a standard central
limit theorem then gives asymptotic normality in the theorem below.

Theorem 2 Under (A1-6) and (D1-7):
p
N [�̂ � �0]

d! Z ~ N
�
0;�H�1

o

�
:
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4.2 The Outcomes Equation

With �o � [�o; �o] and Z � [X; Y2] ; recall that this equation is given as:

Y1 = Z�o + u;

Then, letting Ẑ� (�) �
h
X; P̂ (�)

i
be an instrument for Z, the IV estimator

is given as: :

�̂IV =
h
Ẑ� (�̂)0 Z

i�1
Ẑ
�
(�̂)0 Y1 )

p
N
h
�̂IV � �o

i
�

h�
Ẑ� (�̂)0 Z

�
=N
i�1p

NẐ
�
(�̂)0 u=N:

From Lemma 9 in the Appendix, with Z� � [X; P (�0)] :h
Ẑ� (�̂)0 Z � Z�Z�

i
=N = op(1);

p
N
h
Ẑ� (�̂)0 u� Z�u

i
=N = op(1):

We can now immediately establish that the estimator is consistent and that
it is asymptotically distributed as normal with a covariance matrix having
the standard White heteroscedastic corrected form.

Theorem 3 De�ning û �
�
Y1 � Z�̂IV

�
, D̂ � Diag(û2), and M̂ �

�
Ẑ� (�̂)0 Z

�
=N

let:

̂ � M̂�1

h�
Ẑ
�
(�̂)0 D̂Ẑ

�
(�̂)
�
=N
i
M̂�1:

With 
̂
p! 
, under (A1-5) and (D1-4 ):

p
N
h
�̂IV � �o

i
d! Z ~ N(0, 
)

Note that we have assumed that E (ujX) = 0: If we assume further that
u is independent of these conditioning vectors and let trimming vanish as
the sample size increases, then �̂IV is an optimal IV estimator (see Amemiya
(1975)).
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5 Simulation Evidence

To investigate the performance of the above estimator in a controlled setting,
we conducted a monte-carlo study.7 As the focus of this paper is on a double
index binary response equation, with heteroscedasticity providing the main
motivation, one of the designs below is of this form. It is also of interest
to examine the consequences of a double index speci�cation when the true
binary response model is generated by a single index. Accordingly, we also
present results for this case along with a related discussion of identi�cation
issues.
In formulating a design for the double index case, note that the number

of factors determining the nature of the simulation is very large, precluding
an exhaustive examination of the estimator under all possible conditions.
Accordingly we adopt the following strategy. We consider the worse case
situation where we are unwilling to make any restrictions on which variables
enter the means or the variances. That is, the same variables a¤ect the means
and the variances. With all exogenous variables distributed as standard
normal, the true model with heteroscedastic errors is given as:

vi = Sv(x)v
�
i ; Sv(x) =

�
1 + (1 � x1i + 2 � x2i + 3 � x3i)2

�
(6)

Y2i = fx1i + x2i + x3i > 2vig (7)

ui = Su (x)u
�
i ; Su (x) =

�
5 + Ln

�
1 + (x1i + x2i + x3i)

2��u�i (8)

Y1i = 1 + x1i + x2i + x3i + Y2i + 6ui: (9)

The unscaled errors, v�i and u
�
i ; were generated as normal with expectation

zero. Their variances were selected to insure that the scaled errors, vi and
ui; each had unconditional variance of one. Finally, the unscaled errors were
generated so as to have correlation of approximately .25 with each other.
For the case in which the binary response is generated by a single index, we
set Sv to a constant such that v has the same unconditional variance in both
designs.
Turning to the double-index data generating process, we �rst examine our

ability to recover the reduced form parameters in the binary choice model.
Second, we examine the ability of the IV estimator to estimate the outcome
equation parameters.

7 We set trimming and smoothing parameters as follows: a = :01, r3 = 1=11; � = 1=25
(require � < r3=8), r2 = (r3 � �=2) =2, and r2 = (r3 � �) =4.
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In the �rst experiment we conduct simulations with a sample size of
1000 and with 500 replications. Under the W -parameterization discussed
earlier, x2 is excluded from the �rst index and x1 is excluded from the
second index. The true values for the nuisance parameters (the coe¢ cients
on x3 in each index after re-parameterization) are 2 and -1 respectively.8 In
estimating these parameters we obtained starting values from a coarse grid
search. The average of the estimates for these two parameters are 2.031 and
-1.037 with standard deviations of .469 and .508. Thus the estimates appear
to be unbiased and they are reasonably precisely estimated. In addition to
computing the double index parameters we also estimated a probit model
which does not account for the presence of heteroscedasticity.
We also compared probit, semiparametric, and true probability functions.

As an overall summary comparison, we estimated the correlation between the
true probability that Y2i is equal to 1, given the xi vector, and that from
the double index and probit models. The correlation between the probit
probability and the true probability over the 500 replications was .726 with
a standard deviation of .018. In contrast, the correlation between the true
probability and that from the estimated double index model was .907 with
a standard deviation of .010. In a more detailed comparison of probability
functions, in Tables 1a-b we report the predicted probabilities for each of 5
quantiles.9 These tables not only highlight the superior performance of the
double index model, relative to the probit model, but also suggest that the
estimator is performing very well in estimating the predicted probability.
Using the �rst step estimates we now employ these implied probabilities

which we employ as an instrument for Y2i in estimating the second equa-
tion. In Table 2 we report the second step IV and OLS estimates for the
Y1 equation. We report the estimates for each of the second step variables

8Write the transformed matrix of index coe¢ cients as:24 1 1
1 2
1 3

35� 1 1
1 2

��1
=

24 1 0
0 1
�1 2

35 :
9In constructing this table, probabilities were sorted on the basis of the calculated true

probabilities in each sample. Then, for the �rst N/5 observations, average probabilities
were calculated for the true probabilities, probit probabilities, and double index proba-
bilities. These average probabilities were then averaged over replications (with minimal
monte-carlo sampling error). Similar calculations were made for the each of the other
reported quantiles.
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as each contributes di¤erently in the heteroscedasticity index. When the
semiparametric probability function is employed as an instrument, we refer
to the resulting estimator as SPIV.
Column 1 reports the average value of the OLS estimates from the second

step. Recall that the true value for each coe¢ cient is 1. Each of the coe¢ -
cients for the exogenous variables displays a level of bias in the range of 3.3 to
8.7 percent. The standard errors for the estimates, given below the estimates
in parentheses, indicates the degree of precision of the estimates. We report
these for comparison sake with the adjusted coe¢ cients which follow. The
average estimate for the intercept is 1.205 revealing that the bias is greatly
in�uencing this coe¢ cient. Finally, focus on the estimate of the treatment
e¤ect. The average OLS point estimate is .590 which re�ects a bias in excess
of 40 percent. Clearly the design employed is generating a substantial degree
of endogeneity.
In Column 2 we present the estimates in which we employ arbitrary func-

tions of the explanatory variables as instruments. These included quadratic
and cubic terms and all interactions between the variables, including the lin-
ear terms. Throughout, we use all of the variables in this available set. Col-
umn 2 indicates that this IV procedure reduces the bias on the coe¢ cients
on the exogenous variables and the intercept. The bias for the estimated
treatment e¤ect, however, is still on the order of 12.2 percent although this
represents a marked improvement over the OLS eliminates.
Column 3 presents the estimates from the SPIV procedure. For each

of the parameters on the exogenous variables there is a large reduction in
the bias in comparison to the OLS estimates. The procedure is successfully
eliminating the bias from the endogeneity of the treatment e¤ect. This is
also true for the treatment e¤ect itself which now only displays 2 percent
bias. Note, importantly, that the standard deviation for the treatment e¤ect
is smaller for this estimator than that shown in Column 2.
We now repeat the same exercises after increasing the sample size to 2000.

The �rst step estimates are now 1.986 and -.988 with standard deviations of
.241 and .249 respectively. Thus the estimates continue to be very accurate
and we also see a large decrease in the level of variability. Once again we
compute the correlations described above and we now �nd that the probit
estimate is .727, with a standard deviation of .013, while the correlation
between the truth and the probability from the estimated double index model
is .915 with a standard deviation of .007. In the lower panel of Table 1 we
report the quantiles for the various probabilities. Again the double index
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model not only dominates the probit model, but also produces an excellent
performance in absolute terms.
We now focus on the estimation of the binary treatment model and this

is reported in Table 2b. The SPIV estimator formulated here continues to
dominate the alternative estimators. The estimator using the higher orders
and the cross products of the x0s continues to eliminate some of the bias
but even doubling the sample size has not produced a notable decrease in
the degree of bias. Once again, the SPIV estimator is remarkably accurate
with the estimates seemingly unbiased for all coe¢ cients. Perhaps the most
remarkable feature of Table 2b is the increase in e¢ ciency for this estimator
as it now displays a standard deviation signi�cantly lower than that for the
alternative IV procedure.10

Turn now to the single-index data generating process noting that with
constant Sv the binary response model becomes a probit model. However,
suppose that the single index restriction is not imposed and that we continue
to estimate the binary response in double index form. For this purpose, it
is expositionally convenient to rewrite the model in an equivalent but more
revealing form. Letting C and A be appropriately dimensioned nonsingu-
lar matrices, return to the original parameterization and write the binary
response as:

E [Y2ijXi] = E

0@Y2i j [X1i; X2i; X3i]CC
�1

24 �10 �1
�20 �2
�30 �3

35A
1A

= E ( Y2i j [X1i; X2i; X3i] �0 ) ; �0 �

24 1
�20=�10
�30=�10

35 :
The �rst characterization is the double-index form, while the second follows
from a single index restriction under a conventional normalization : With

�̂ �
h
1; �̂2; �̂3

i0
obtained by imposing the single index restriction (e.g. as in

10 It may be possible to improve this alternative IV procedure by developing a
method for selecting the degree of the approximating polynomial. We have not pursued
this strategy here primarily because the semiparametric probability function is of direct
interest and secondly because this probability function is an optimal instrument.
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Klein and Spady, 1993), de�ne the non-singular matrix C as

C =

24 1 0 0

�̂2 1 0

�̂3 0 1

35 :
Notice that the transformed variables are given as:

XC � [X�
1 ; X2; X3] ;

where X�
1 = X�̂ is the estimated index under a single index restriction.

The transformed parameters corresponding to the above transformed vari-
ables are given as:

C�1

24 �10 �1
�20 �2
�30 �3

35A �
24 ��10 ��1
��20 ��2
��30 ��3

35A:
With ��k not identi�ed, consider the set of �

�
k values such that the upper

block of the transformed parameter matrix is non-singular and, as earlier,
set: A as the inverse of this block.. The following double-index form now
follows::

E [Y2ijXi] = E

24Y2i j [X�
1i; X2i; X3i]

24 1 0
0 1
��1o ��2

3535 :
When the model is generated by a single index, ��1o = 0 is identi�ed.

However, once we condition on the single index, X�
1 ; any additional "infor-

mation" is irrelevant. Namely:

E [Y2ijXi] = E [Y2ijX�
1i] = E [Y2ijX�

1i; (X2i +X3i�
�
2)]

for all ��2: As a result, while the above expectation (probability) is identi-
�ed, ��2 is not identi�ed. Consequently, when the binary response equation
is estimated in double-index form, we expect the estimator for ��1o to be
close to zero and the estimator for ��2 to have a "large" variance. For N =
1000 observations, Table 3 provides results when the binary response model
is estimated in both single and double index forms. Under the single index
constraint, the estimated coe¢ cients have small biases and low variances.
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Furthermore, the distribution of the estimator is such that the mean compo-
nents are close to the corresponding medians. In contrast, the bottom portion
of this table provides results when the model is estimated in double-index
form. On average, the estimator for ��1o (.055) is small as one would expect.
The corresponding standard error of .65 is relatively large, which is mislead-
ing as there were a small number of very large outliers. Notice that the
median of the estimator (.0003) is much smaller than the mean and is con-
sistent with the true value for the coe¢ cient being 0. The other parameter
is not identi�ed, as is re�ected in an extremely large sampling variance.
Table 4 provides results for sample size equal to 2000. Other than there

being less of an outlier issue, these results are similar to those above. Namely,
as one would expect the estimator for the identi�ed parameter is close to
0 and is much more precisely estimated than when the sample size is 1000.
Note that the smaller standard error is due largely to a much better estimated
binary response probability. The sampling variance for the unidenti�ed
parameter is relatively large.
Turning to the outcomes equation, shown in Table 5, the results are as

expected. Note that the estimated probability function converges (pointwise
and uniformly) slowly to the truth in double-index form. As a result, and not
surprisingly, there is only a slight advantage to the SPIV estimator over the
IV estimator. As found earlier, the bias for the OLS estimator is substantial,
ranging up to almost 50% for the treatment e¤ect. At the larger sample size
(N = 2000), the semiparametric probability is better estimated, which is
re�ected in a noticeable improvement of SPIV over IV. In particular, the
standard error for the estimated treatment e¤ect is approximately 20% lower
for the SPIV estimator relative to the IV estimator.
It is also instructive to compare the above results across designs in the

case of the outcomes equation. When a double index really generates the
data, the SPIV estimator has small biases and standard errors. However,
now turn to the case where the model is still estimated in double index form,
but where a single index actually generates the data. In this case, the biases
and standard errors are noticeably larger.

6 Empirical Example

We now employ the estimators formulated here to study two questions of in-
terest. There is a large recent literature on the e¤ect of attendance at private
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schools on educational attainment and subsequent labor market performance
(for recent examples see Evans and Schwab 1995, Neal 1997 and Vella 1999).
This has become an increasingly well studied area due to the common �nding
that attending private and catholic schools increases the number of years of
school acquired and the level of post schooling quali�cations. Unlike previ-
ous papers which examine the e¤ect of catholic schools on education , we
examine the e¤ect of attending a government or state �nanced school. We
begin �rst by estimating the marginal e¤ects of particular variables on the
probability of attendance at a government �nanced school. This allows us to
identify the determinants of the school choice while allowing for general forms
of heteroscedasticity and without making distributional assumptions. Sec-
ond, we examine the impact of attendance at a government �nanced school
on educational attainment. The issue of endogeneity of school type and ed-
ucation level needs little motivation. Schooling represents a form of human
capital investment and the investment can di¤er in terms of duration and
quality. However, as both decisions re�ect human capital investments, albeit
on di¤erent margins, each should be in�uenced by similar factors. As the
unobservable factors are likely to be similar this highlights the endogeneity.
Moreover, as both decisions are likely to be in�uenced by the same observ-
able factors the absence of reasonable exclusion restrictions is immediately
apparent. Despite the simultaneity the triangular structure is reasonable as
the school type is chosen �rst and then the number of years follows from the
individual�s schooling success and the cost of the investment.
We employ data from the Australian Longitudinal Survey for 1985. The

data comprises 5353 observations on youth who have completed their school-
ing. The binary response variable is the school type of the individual which
we denote as Govt and which is a binary indicator function indicating that
the individual attended a government run high school. The mean of this
variable is .808. The outcome variable is the number of years of schooling
which has a mean of 11.639. The model is the following

Schooling = �o + �1 � Age+ �2 � Australian Born+ �3 �Both Parents (10)
Pr esent in Household at Age 14 + �4 �Mother with Degree+
�5 � Father with Degree+ �6 � Siblings+
�7 �Roman Catholic+ �8 �Male+ �9 � Attitudes+
�10 �Govt+ u
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Govt =

�
1 : I1 > v
0 : Otherwise

; (11)

I1 = �o + �1 � Age+ �2 � Australian Born + �3 �Both Parents
Pr esent in Household at Age 14 + �4 �Mother with Degree+
�5 � Father with Degree+ �6 � Siblings+
�7 �Roman Catholic+ �8 �Male+
�9 � Attitudes:

The explanatory variables are those one would expect to in�uence hu-
man capital investment. With three exceptions the variables are indicator
functions. For these indicator functions the variable name re�ects what it
measures. The variable Age is measured in years and Siblings denotes the
number of siblings in the family. The one explanatory variable which requires
some explanation is Attitudes. This variable is constructed from each indi-
vidual�s responses to a series of questions which aim to elicit the individual�s
view of the roles of females in the labor market. Vella (1994) investigates the
role of this variable in the human capital investment for Australian youth
and concludes that the variable captures family forces which in�uence edu-
cational attainment. An important issue in that study, which is equally of
relevance here, is whether this variable can be treated as exogenous to human
capital investment. While Vella (1994) starts with the conjecture that the
attitudes variable is endogenous to human capital investment, that study is
unable to provide any evidence that the attitudes variable is endogenous to
schooling. Employing the same data set, we proceed on the assumption that
the Attitudes is exogenous. The variable takes discrete values from 5 to 35,
where a low score re�ects a very traditional role for females while a higher
score re�ects an attitude of gender equality. We treat this variable and age
as continuous for identi�cation purposes..
Before focussing on the estimates, it is useful to consider why the school-

ing choice equation might exhibit heteroscedasticity. Many of the explana-
tory variables are indicator functions and their inclusion is meant to capture
their average e¤ect on the schooling choice. However, the direction, and
magnitude, of these e¤ects might be expected to vary across individuals.
For example, consider the indicator function capturing that the individual
is Australian Born. This captures the contrast with non Australian born
individuals and for many reasons one might expect that there may be a dif-
ference across groups. However, just as it is likely that those comprising the
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Australian born are very di¤erent in various ways, such as family attitudes
towards education and scholastic abilities, it also true that those comprising
the non Australian born are also heterogeneous. Accordingly, while the in-
clusion of the indicator function captures the mean di¤erence across the two
groups there is likely to be a large variance in the e¤ect depending on which
individuals from the respective groups are compared. Moreover, this di¤er-
ence may not be correlated with the other explanatory variables and thus
it is not easily taken into account. The same type of argument is true for
many of the other explanatory variables. Allowing the explanatory variables
to e¤ect the variance is an attempt to more accurately capture this a¤ect.
We begin by estimating the schooling type decision. In column 1 of Table

6 we present the estimated parameters obtained by probit. In columns 2 and
3 of Table 6 we report the estimates from estimating the double index binary
choice model. The standard error for each estimate is shown in parentheses
under the estimate. Recall that we are able to transform the model to an
equivalent one under a nonsingular linear transformation so as to induce
exclusion restrictions for purposes of estimating probabilities. Further, we
obtain an equivalent model by normalizing the constant term to zero and
one of the coe¢ cients in each index to one. In view of these normalizations,
it is di¢ cult to interpret the coe¢ cients other than to note that many of the
variables have a statistically signi�cant impact. Accordingly, we perform the
following exercise using both parametric and semi-parametric models. We
use the estimates to evaluate the probability of each individual attending a
government school with and without each of the characteristics. We then,
with the exception of age, the attitudes variable and the number of siblings,
compute the average e¤ect of each individual acquiring the characteristic. For
age and attitudes variables, evaluate the impact of a one standard deviation
change while for siblings we increase the variable by one. These are all
reported in Table 7. Without exception, the partial e¤ect for each of the
variables have the same sign across estimation procedures. Perhaps the most
striking di¤erence across the two procedures is the magnitude of the e¤ect of
the variable denoting that the individual is Catholic. In the probit model the
estimated e¤ect is over 50 percentage points while for the double index model
the e¤ect is around 33 percentage points. Thus, while overall the partial
e¤ects are quite similar across models the large di¤erence in the Catholic
e¤ect illustrates the value of the double index approach.
While there are some important di¤erences between the estimated mar-

ginal e¤ects from the probit and double index model, it is valuable to test
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the probit model of Government school attendance for the presence of het-
eroscedasticity and non-normality by employing the conditional moment tests
outlined in Pagan and Vella (1989). The tests are implemented via arti�cial
regressions whereby one regresses the product of the generalized residual and
the single index from the probit model with the explanatory variable poten-
tially causing the heteroscedasticity against the scores from the probit model
and intercept. The test against the null of no heteroscedasticity is a t-test
on the null that the intercept is equal to zero. We conducted this test for
each of the variables which appear in the conditional mean of the Govt equa-
tion and report the results in Table 8. The tests indicated the presence of
heteroscedasticity operating through several of the variables. More precisely
there was a rejection at the 5 percent level for the Age, Aust and Both Par-
ents Present variables and Attitudes at the 10 percent level. Moreover, the
test for the imposed distributional assumptions strongly rejected normality.
Note that the presence of both forms of misspeci�cation makes it di¢ cult
to fully understand the cause of the rejections. Nevertheless, the evidence
suggests that heteroscedasticity is present.
We now examine how the presence of heteroscedasticity can help detect

the e¤ect of exogenous e¤ect of attendance at a government high school. Be-
fore we do so, we report the OLS estimates and also employ two alternative
approaches for accounting for the simultaneity. In Column 1 of Table 9 we
report the ordinary least squares (OLS) estimates of equation (10). They in-
dicate that attending a Government schooling appears to decrease the years
of educational investment by .559 years. The standard error is small indicat-
ing the e¤ect is relatively precisely estimated. This e¤ect is not particularly
large given the large premium associated with attending a private institu-
tion when at high school. For example, in this sample only 47.8 percent of
the individuals attending government schools obtained at least twelve years
of schooling in comparison to 68.3 percent of the non-government students.
Also, while only 2.9 percent of government students obtained a college degree
the corresponding number for the non-government students is 7.3 percent.
The remaining coe¢ cients are also generally statistically signi�cantly di¤er-
ent from zero and are all of a reasonable magnitude although it is di¢ cult
to have strong expectations. The variables capturing the presence of both
parents in the household and the level of each parent�s education capture the
e¤ect of role models as well as higher incomes. The variable re�ecting the
number of siblings has the expected negative sign and is reasonable in mag-
nitude. As found in Vella (1994) the Attitudes variable has a strong positive
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e¤ect on years of education acquired.
From above, the OLS estimated impact of attending a Government school

appears to be too small. Accordingly, we are motivated to consider a model
that incorporates the schooling decision, and does so in a general speci�ca-
tion. However, �rst we employ two procedures which do not directly exploit
the heteroscedasticity. First we perform IV by using the predicted probabil-
ity from the probit model as an instrument for the Government indicator.
The second is to include the Inverse Mills ratio, from this parametric esti-
mation of the Government equation, as an additional regressor in the years
of education equation. Note that the �rst of these estimates is consistent in
the absence of normality while the latter is not. To implement these proce-
dures, it is necessary to employ the probability that the individual attends a
government school from the estimates are reported in Column 1 of Table 6.
The second column of Table 9 presents the estimates of the education

equation when we conduct IV by instrumenting the Govt dummy with the
predicted probabilities from the probit model. As the same variables appear
in the Govt equation and the schooling equation the model is identi�ed from
the non-linear mapping from the explanatory variables. In general the coef-
�cients are similar to those in column 1 although there is a di¤erence with
respect to the school and religion variables. The coe¢ cient on the attendance
at a government school variable is now unreasonable in that it indicates those
who attend a government school, ceteris paribus, will obtain only .05 years of
education less than those at private schools. This is in complete contrast to
the conventional understanding of the a¤ect of attendance at state �nanced
schools. Note, however, that this coe¢ cient is not statistically di¤erent from
zero at the 10 percent signi�cance level. When we adopt the plug in version
of this model we obtain an estimate of the government school e¤ect of -.071
with a standard error of .891.
In Column 3 we report the alternative procedure whereby one includes

the inverse mills ratio from the model in Column 1 of Table 6 as an additional
regressor in the education equation. These results are generally reasonable
in magnitude, in that they are similar to the OLS estimates, although the
government variable�s coe¢ cient is now less than half the OLS estimate in
absolute terms. However, the coe¢ cient on this variable is very imprecisely
estimated.11 Overall the evidence in Columns 2 and 3 con�rms our suspicion

11Note that the standard errors for this column are underestimated as they have not
been corrected to account for the estimation of the inverse mills ratio.
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that there appears to be inadequate non-linearity in the transformations
performed to enable accurate estimation of the model. Also note that as the
t-statistic associated with the inverse mills ratio is low there is no evidence to
support the conjecture that school type is endogenous to years of education.
One suspects that the test has relatively low power given the inaccurate
manner in which the parameters are estimated and the associated collinearity.
In the fourth column of Table 9 we report the estimates from the schooling

equation when we instrument the Govt variable with the estimated proba-
bility from the semi-parametric binary choice model. The estimates are gen-
erally similar to those in the �rst column. The most striking change is the
increase in the magnitude of the Govt school coe¢ cient which now indicates
that the e¤ect is .99 years and is statistically signi�cantly di¤erent from zero
at the 10 percent level. This estimate seems far more reasonable given the
educational behavior of those attending non-government schools. In order to
explore the role of the double index structure in this result we also estimate
the model where we �rst semi parametrically estimated the probability to
employ as an instrument via the single index approach of Klein and Spady
(1993). For this approach we found that the point estimate for the Govt
coe¢ cient was -.852 with a large standard error of .723. While the point
estimate is similar to the double index approach, the increased identifying
power of the double index model provides a di¤erent conclusion regarding
whether the e¤ect is statistically di¤erent from zero at conventional levels of
testing.
Finally we explore the possibility that the treatment e¤ect is not constant.

To this end, denote Xi : 1xK as the ith observation on the K exogenous
variables. Let the treatment variable enter as: Govti � [co +Xi�o]: In this
form, the Govt variable interacts with the individual�s characteristics. We
estimated the resulting model by IV, where we used the predicted probability
from our double index model interacted with the individual�s characteristics
as instruments for these interaction variables. To examine overall whether
or not there is a treatment e¤ect, we considered a Wald test for the joint
null hypothesis: co = 0 and �o = 0: With a P -value of .0058, we reject the
null hypothesis at conventional signi�cance levels. We also calculated the
average treatment e¤ect (at the mean values of the X0s) to be -2.975 with
an associated standard error of 1.162. Accordingly, there would seem to be a
treatment e¤ect whose magnitude is much larger than the average OLS e¤ect
previously reported. Not surprisingly given the above results, we also reject
the null hypothesis of a constant treatment e¤ect (�o = 0) with an associated
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P -value of .0114. 12

7 Conclusions

The primary objective of this paper is to develop a semiparametric estimator
for the binary choice model under the presence of heteroscedasticity. To do
so we present a double index model where the indices capture the conditional
mean and conditional variance respectively. We then estimate the parameters
by maximizing a quasi likelihood function that depends on these two indices.
We note that this procedure that is applicable for any discrete choice models
which is a function of two indices. We also highlight that in providing the
asymptotic properties of our procedure we develop a theoretical argument
which justi�es the use of local smoothing as bias reducing device in discrete
choice models with a double index structure.
The interest in binary response models often follows from the appearance

of the response as an endogenous explanatory variable of some interest in
an other equation. An additional di¢ culty is that it is frequently di¢ cult
to identify variables which determine the response but which do not enter
directly into equation in which the response appears as a regressor. We
illustrate how the presence of heteroscedasticity in the model can provide
identi�cation in such models in such instances. Using the predicted prob-
ability from the binary response model as an instrument for the treatment
variable, we show that one can consistently estimate the treatment e¤ect. We
show that the estimators for both models are consistent and asymptotically
(
p
N) distributed as normal. We provide simulation evidence that illustrates

that both procedures formulated here work well even in the case where the
same variables are driving the conditional means and variances of both the
treatment and outcome equations.
In an empirical investigation we illustrate the utility of both of our pro-

posed estimators. In the �rst step we examine the determinants of the proba-
bility to undertake education at a Government �nanced school. In the second
step we use this probability as an instrument to estimate the impact of at-
tending such a school on the level of education. The evidence suggests that
the estimated �rst step probability is quite di¤erent than that generated by

12While several of the individual interactions were signi�cant, a number were not. Thus,
it would seem reasonable, but beyond the scope of this paper, to further explore variable
treatment e¤ects.
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a probit model assuming homoskedasticity. The second step estimates are
suggestive that the heteroscedasticity in the schooling choice equation may
be an e¤ective means of identifying the e¤ect of the school type on level of
schooling.
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Table 1a: Probability Quantiles, N=1000

True Probit Double Index
:499 :449 :449
:593 :549 :578
:693 :626 :683
:790 :690 :775
:874 :701 :815

Table 1b: Probability Quantiles, N=2000

True Probit Double Index
:500 :500 :500
:593 :550 :580
:694 :626 :686
:791 :690 :779
:875 :700 :822
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Table 2a: Simulation Results, N = 1000

Variable OLS IV SPIV
Intercept 1.205 1.061 1.010

(.063) (.150) (.125)
x1 1.087 1.024 1.003

(.051) (.074) (.071)
x2 1.061 1.016 1.004

(.051) (.062) (.063)
x3 1.033 1.010 1.004

(.046) (.047) (.050)
Y2 .590 .878 .980

(.097) (.289) (.233)

Table 2b: Simulation Results, N = 2000

Variable OLS IV SPIV
Intercept 1.206 1.047 1.009

(.046) (.111) (.088)
x1 1.088 1.019 1.003

(.036) (.055) (.050)
x2 1.057 1.011 1.001

(.035) (.046) (.045)
x3 1.032 1.008 1.003

(.033) (.034) (.036)
Y2 0.592 .908 .987

(.061) (.219) (.168)
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Table 3: Single-Index Binary Response
N = 1000

Single Index Constraint

Coef. True Avg
�
�̂
�

Med
�
�̂
�

X1 1 �� ��

X2 2=3
:6636
(:04225)

:6653

X3 1=3
:3262
(:0368)

:3278

Double Index Constraint

I1

Coef True Avg
�
�̂
�
Med

�
�̂
�

X�
1 1 �� ��

X2 0 �� ��

X3 0
:0551
(:6437)

:0003

I2

Coef True Avg
�
�̂
�

Med
�
�̂
�

X�
1 0 �� ��

X2 1 �� ��

X3 �� �12:2801
(117)

:1456
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Table 4: Single-Index Binary Response
N = 2000

Single Index Constraint

Coef. True Avg
�
�̂
�
Med

�
�̂
�

X1 1 �� ��

X2 2=3
:6630
(0331)

:6611

X3 1=3
:3315
(0295)

:3296

Double Index Constraint

I1

Coef True Avg
�
�̂
�

Med
�
�̂
�

X�
1 1 �� ��

X2 0 �� ��

X3 0
�0:0026
(:0513)

:0016

I2

Coef True Avg
�
�̂
�
Med

�
�̂
�

X�
1 0 �� ��

X2 1 �� ��

X3 �� �:5424
(7)

�:2791
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Table 5: Outcomes Equation
Single Index Treatment, Double Index Constraint

N = 1000
OLS IV SPIV

Intercept
1:2362
(:0657)

1:0393
(:2008)

1:0410
(:1833)

x1
1:1344
(:0508)

1:0123
:1223

1:0242
(:1164)

x2
1:0859
(:0525)

1:0125
:0949

1:0201
(:0972)

x3
1:0474
:0436

1:0108
:0543

1:0120
(:0604)

Y2
:5296
:1166

1:0393
:3954

:9203
(:3594)

N = 2000
OLS IV SPIV

Intercept
1:2342
(:0443)

1:0298
(:1520)

1:0427
(:1217)

x1
1:1332
(:0347)

1:018
(:0927)

1:0259
(:0793)

x2
1:0879
(:0303)

1:0116
(:0725)

1:0208
(:0656)

x3
1:0495
(:0299)

1:0112
(:0418)

1:0149
(:0405)

Y2
:5352
(:5351)

:9439
(:3018)

:9176:
(:2397)
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Table 6: Determinants of Attending a Government School

PROBIT S-P S-P
Govt School Govt School Govt School

Constant 2.726
(.232)

Age -0.017 1
(.008)

Attitudes -0.022 1
(.005)

Both Parents -0.094 -0.294 1.382
(.064) (0.423) (0.831)

Mother/Degree -0.583 5.662 -2.451
(.101) ( 1.455) (3.039)

Father/Degree -0.549 0.865 -0.345
(.078) (0.241) (0.511)

Siblings 0.020 0.165 -0.721
(.011) (0.248) (0.496)

Roman Cath -1.270 3.567 -2.339
(.044) (0.879) (2.021)

Males -0.032 2.961 -6.320
(.045) (1.702) (3.750)

Aust -0.296 -0.740 2.697
(.074) ( 0.810) (1.518)
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Table 7: Partial E¤ects

PROBIT S-P

Age -.010 -.007

Attitudes -.034 -.027

Both Parents -.059 -.052

Mother/Degree -.150 -.162

Father/Degree -.164 -.099

Siblings .004 .002

Roman Cath -.530 -.326

Male -.009 -.020

Aust -.020 -.084

Table 8: Test Values for Heteroscedasticity
Variable Test Value
Age 2.160
Aust 3.801

Both Parents Present 3.313
Mother with Degree 1.398
Father with Degree 0.365

Siblings 0.100
Roman Catholic 1.288

Male 0.820
Attitudes 1.695
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Table 9: The Impact of Government School Attendance on Years of Education

OLS IV CF SPIV
School School School School

Constant 6.025 5.408 5.597 6.897
(0.238) (0.795) (0.578) (0.729)

Age 0.193 0.195 0.195 0.171
(0.008) (0.009) (0.008) (0.009)

Aust 0.030 0.063 0.053 0.002
(0.069) (0.081) (0.075) (0.083)

Both Parents 0.294 0.306 0.303 0.310
(0.062) (0.064) (0.063) (0.070)

Mother/Degree 0.283 0.365 0.340 0.240
(0.119) (0.156) (0.138) (0.162)

Father/Degree 0.659 0.734 0.711 0.600
(0.090) (0.128) (0.110) (0.129)

Siblings -0.117 -0.118 -0.118 -0.120
(0.011) (0.011) (0.011) (0.012)

Roman Cath -0.045 0.129 0.075 -0.202
(0.052) (0.220) (0.158) (0.213)

Male 0.215 0.218 0.218 0.236
(0.045) (0.045) (0.045) (0.048)

Attitudes 0.081 0.084 0.083 0.082
(0.005) (0.005) (0.005) (0.006)

Govt -0.559 -0.050 -.206 -0.986
(0.062) (.626) (.439) (0.591)

Mills Ratio -.200
(.247)
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8 Appendix

The Appendix is organized into two subsections, with the �rst stating and
proving all intermediate lemmas that we require to establish the asymptotic
properties of the estimators. The second subsection employs these lemmas
to prove the main results in the paper.

8.1 Intermediate Results

From (D1-D7) of the Assumptions and De�nitions section, recall that f̂1 (�)
estimates Pr(Y2 = 1)g1(w); where g1(w) is the density for W conditioned
on Y2 = 1: Similarly, f̂0 (�) estimates Pr(Y2 = 0)g0(w); where g0(w) is
the density for W conditioned on Y2 = 0: Throughout, all lemmas ap-
ply to both f̂1 (�) and f̂0 (�) : Accordingly, for notational convenience, we
will simply write f̂ (�) to refer to either of these estimators. In so do-
ing, we will refer to the local smoothing parameters as � without sub-
scripting. Throughout, we will write rk

�f to mean the k
th partial deriv-

ative of f with respect to �; with r0
�f � f: Finally, in terms of nota-

tion, denote Xc and Xd as the vectors of continuous and discrete variables
respectively, with realizations xc �Xc and xd �Xd: With Xc1 as the subset
of Xc on which �x = 1 (see D6 ), de�ne X1 � fx : xc �Xc1; xd �Xdg :
Recalling that w = [x1 + x3�31; x2 + x3�32] � [w1 (�) ; w2 (�)] ; let X2 =
fx : wk < wk (�) < �wk, k = 1; 2g : Finally, letA �fx : x � X1 [ X2g :All uni-
form results will be on A, and, when appropriate, the compact parameter
space. Though not stated explicitly, for all of the results below, we employ
all assumptions in (A1-6) and (D1-7).
The estimated conditional densities above depend on the sample covari-

ance matrix for W . As W depends on the index parameters, �, we denote
this covariance matrix as �̂ (�) :With � (�) as the uniform (in �) probability
limit of �̂ (�) ; Lemma 1 below will enable us to treat this estimated matrix
as if it were known.

Lemma 1: Denote f̂
�
w; �̂ (�)

�
as the estimator de�ned in (D1-3) and

denote f̂ (w; � (�)) as the corresponding estimator with � (�) replacing �̂ (�) :
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De�ne bf0 (�) analogously. Then:
sup
�;�x

���rk
�
bf � �w; �̂ (�)��rk

� f̂ ( �w; � (�))
��� = op �N�1=2� ; k = 0; 1; 2;

where uniformity is over the sets described above.

Proof of Lemma 1: From a Taylor series expansion:���rk
� f̂
�
w; �̂ (�)

�
�rk

� f̂m (w; � (�))
��� � sup

�;x

���r�rk
� f̂
�
w; �̂ (�)

���� sup
�

����̂ (�)� � (�)��� :
Since f̂ converges to f even under an inconsistent estimator for �; it can be
shown that the �rst term above is op (1) : As the second term is Op

�
N�1=2� ;

the result follows.

Employing Lemma 1, we will proceed with � (�) replacing �̂ (�) through-
out. To simplify the argument further, it is also convenient to replace all es-
timated components in local smoothing parameters with their expectations.
From (D2-3) estimated smoothing parameters are given as:

�̂j =
h
d̂j ̂j +

�
1� d̂j

�
=Ln(N)

i�1=2
� �

�
̂j
�
;

where ̂j � [�̂j=m̂] and d̂ is the smoothed indicator:

d̂j �
�
1 + exp

�
�N "

�
̂j �

1

Ln (N)

����1
� d

�
̂j
�
:

De�ne �j � [E (�̂j) =m] ; �dj � d
�
j
�
; and

��j �
�
�j
�dj +

�
1� �d

�
=Ln(N)

��1=2
= �

�
�j
�
:

Write f̂
�
�w; �̂

�
as the estimator of f at w = �x� and let f̂

�
w; ��

�
be the

corresponding estimator with �� replacing �̂: In the next three lemmas, we
examine convergence rates under multi-stage local smoothing. For estimated
densities and �rst derivatives Lemmas 2A�B provide the required interme-
diate results needed to establish convergence rates in the third stage of local
smoothing (Lemma 2C). Throughout, w � �x�:
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Lemma 2A: Stage 1 (No local smoothing). Let �̂1 = 1 Then, for
�x � A � in a compact set, and k = 0; 1; 2:

a) : sup
�x;�

���rk
� f̂ (w;1; h1)� Erk

� f̂ (w;1; h1)
��� = Op �1= �N1=2hk+21

��
b) : sup

�x;�

���Erk
� f̂ (w;1; h1)�rk

�f (w)
��� = Op �h21� :

Proof of Lemma 2A: Standard bias and uniform convergence results
provide the proof (see Klein and Spady(1993)).

Employing the above results without local smoothing, Lemma 2B
below examines convergence rates in which local smoothing is based on the
density estimator in Lemma 2A.

Lemma 2B: Stage 2 (Local Smoothing). Let �̂2 � �
�
f̂ (w;h1;1)

�
;

��2 � �
�
E
h
f̂ (w;h1;1)

i�
; and hi = O(N�ri); i = 1; 2. Assuming r1 < r2;

for k = 0; 1; 2:

a) : sup
�x;�

���rk
� f̂
�
w; �̂2; h2

�
�rk

� f̂
�
w; ��2; h2

���� = Op �1= �N1=2hk+22

��
b) : sup

�x;�

���rk
� f̂
�
w; ��2; h2

�
� Erk

� f̂
�
w; ��2; h2

���� = Op �1= �N1=2hk+22

��
c) : sup

�x;�

���Erk
� f̂
�
w; ��2; h2

�
�rk

�f (w)
��� = Op �h22h21� :

Proof of Lemma 2B. Employing a Taylor series approximation, the
proof for (a) follows from the uniform convergence rate of �̂2i to ��2i (Klein
and Spady, 1993, Lemma 1) and the window condition: r1 < r2: The proof for
(b) is essentially the same as that for (a). To establish (c), write (employing
a dominance condition to di¤erentiate under an integral):

E
�
rk
� f̂

�
w;2 ; h2; ��2

��
= rk

�E
�
f̂
�
w;2 ; h2; ��2

��
� rk

��2;

where the second expectation is taken with respect to the density for w.
Taylor expand �2 in h2 about h2 = 0 and use the symmetry in K about 0
to obtain:

�2 = rk
�h
2
2

h
Ĉ2 � C2

i
+rk

�h
2
2C2 + h

4
2Ĉ4:
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Here, Ĉ2
p! C2; where C2 contains terms (densities and density derivatives)

that would follow from a Taylor series expansion using local smoothing pa-
rameters based on true densities.13 For the �rst term in �2; it consists of
estimated densities and density derivatives. From the rate at which the
expectation of an estimator (density or higher order derivatives) converges
to the truth:

h22

h
Ĉ2 � �C2

i
= Op

�
h22h

2
1

�
:

From Abramson and Silverman, the second term vanishes as C2 = 0: The
argument now follows because in the �nal term: h22Ĉ4 = op (h

2
1) :

14 Referring
to (D2-4), C4 = O (N4a), where a = :01 is a local smoothing parameter.
Under assumptions on smoothing parameters, the �nal term is of smaller
order than the �rst, which completes the argument.15

Lemma 2C: Stage 3 (Local Smoothing). Let �̂3 � �
�
f̂
�
w; �̂2; h2

��
and hi = O(N�ri); i = 1; 2; 3. With ri > 0; assume r1 < r2 and that

r1 + r2 < r3: With ��2 given as above, de�ne ��3 � �
�
f̂
�
w; ��2 ; h2

��
.

13Local smoothing parameters employ separate trimming to keep local smoothing pa-
rameters from becoming smaller than Op (1=Ln(N)) : In taking a Taylor series expansion
about h2 = 0; derivatives of Local-smoothing trimming will appear. However, with den-
sities evaluated at a "target" point for which they are bounded from below by c > 0, then
such derivatives will vanish exponentially (and can therefore be ignored). This deriva-
tive can not be ignored in the �nal term of such an expansion as it is evaluated at an
intermediate point.
14A typical term of �C4 depends on the integral of the product of a term involving the

inverse of a density estimator raised to a power below 4 (T1), the fourth derivative of
a density estimator (T2), the fourth derivative of the smooth trimming function (T3),
the kernel, and the true density. Based on the smooth trimming of local smoothing,
uniformly:

jT1T3j = op
�
N :04Ln(N)

�
Given the uniform rate at which the fourth derivative of a density estimator converges to
the truth and the fact that h22N

:04Ln(N) = o
�
h21
�
; the result follows.

15 With "a > 0 and arbitrarily small, set a = (r3 � "a) =8. Here, a = .01 and
r3 = 1=11: For � < r3=2, set:

r1 = (r3 � �) =4 and r2 = (r3 � �=2) =2:

For these settings, r1 < r2 � 2a:
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Then, for k = 0; 1; 2 :

a) : sup
�x;�

���rk
� f̂
�
w; �̂3; h3

�
�rk

� f̂
�
w; ��3; h3

���� = Op �1= �N1=2hk+23

��
b) : sup

�x;�

���rk
� f̂
�
w; ��3; h3

�
� Erk

� f̂
�
w; ��3; h3

���� = Op �1= �N1=2hk+23

��
c) : sup

�x;�

���Erk
� f̂
�
w; ��3; h3

�
�rk

�f (w)
��� = Op �h23h22h21� :

Proof of Lemma 2C. The proof of (a-b) is the same as that in the
previous lemma. For (c), de�ne �3 as in the previous lemma with ��3
replacing ��2: Then from the same type of Taylor expansion as in the previous
theorem:

�3 = rk
�h
2
3

h
Ĉ�2 � C2

i
+ h43Ĉ

�
3 :

From Lemma 2C, the �rst term above has order h23h
2
2h
2
1. With Ĉ

�
3 = O (N

4a),
similar to the previous lemma, this last term is of smaller order than the �rst
under the assumptions on smoothing parameters, which completes the proof.

Employing the above results, it is now possible to establish uniform rates
of convergence (on compact sets) for estimated probability functions and
derivatives.

Lemma 3 (Estimated Probability Functions).

sup
�x;�

���rk
�P̂ (w; �)�rk

�P (w)
��� = Op �max�1= �N1=2hk+23

�
; h23h

2
2h
2
1

	�
:

Proof of Lemma 3. The proof immediately follows from the lemmas
above.

Below we will establish asymptotic normality by exploiting a "residual"
property of semiparametric probability derivatives. The following lemma
provides this property.

Lemma 4. Let P (�) be the semiparametric probability function, where
P (�0) = Pr (Y2 = 1j X) : Then, with r� = r1

� as the �rst partial operator:

E [r�P (�) j W1 (�1) ; W2 (�2)]� = �0
= 0:
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Proof of Lemma 4. The proof of this result for the single index case is
due to Whitney Newey and is contained in Klein and Spady (1993) and Klein
and Sherman (2002). The extension to the double index case immediately
follows from the same type of argument employed for the single index case.

As a �nal set of intermediate lemmas, we require results to deal with
trimming. As discussed earlier, one trimming strategy below is based on
a trimming sequence de�ned on the X0s. In particular, recall from (D6)
that �̂xi is a trimming indicator that is 1 on the set where each of the con-
tinuous variables is in a region de�ned by sample quantiles (e.g. the lower
1% and upper 99% sample quantiles). We refer to this trimming indicator
as being estimated. Denote �xi as the corresponding trimming indicator
with all sample quantiles replaced by their population counterparts. Lemma
5 provides a useful result relating estimated to known trimming. As such
trimming occurs in normalized sums, the result below is written in this form
to facilitate its subsequent use below.

Lemma 5: X-Trimming. Let ri be random variables with E jrij
bounded. Then, under X-trimming, for any " > 0:����� 1N

NX
i=1

[�̂xi � �xi] ri

����� �
MX
m=1

Rm

NX
i=1

bim jrij =N+op
�
N�1=2� = Op �N�(1=2)+"� ;

where M is �nite, Rm = Op
�
N�(1=2)+"� ; and bim is i.i.d., non-negative, and

bounded.

Proof of Lemma 5. The proof for this lemma is based on an inequality
due to Jim Powell for bounding j(�̂xi � �xi)j from above by a �smoothed�
indicator and is contained in Klein (1993, Lemmas 1-2, and the proof for
Lemma 2). Once the indicator is smoothed, standard Taylor series argu-
ments yield the above result. Here, " is the "penalty" for approximating an
indicator with a smooth function.

We will also be employing a trimming strategy based on the indices.
Denote �̂kp; k = 1; 2; as a matrix pilot estimates of nuisance parameters
(obtained below under X-trimming) and de�ne estimated indices as:

Ŵ1 � X1 +X3�̂1p; Ŵ2 � X2 +X3�̂2p
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Recall that the smoothed trimming function in (D7) depends on �̂kp and
estimated sample quantiles. From (D2), we de�ned an underlying smooth
trimming function as:

� (z; a) � [ 1 + exp (Na [z])]�1 :

The estimated trimming function then applies this smooth trimming function
to each of the k = 1; 2 indices to insure that each indices stays (asymptoti-
cally) between lower and upper sample quantiles . Namely, from (D7),

�̂wi � �̂ 1i �̂ 2i, �̂ ki � L̂kiÛki;
L̂ki � �

�
wk
�
�̂p
�
� wki

�
�̂p
�
; 1=12

�
Ûki � �

�
wki

�
�̂p
�
� wk

�
�̂p
�
; 1=12

�
for k = 1; 2:

Here, wk
�
�̂p
�
is a lower sample quantile of the wki

�
�̂p
�0
s while wk

�
�̂p
�
is the

corresponding upper sample quantile. Letting �0; �kL, and �kU be the prob-
ability limits for �̂p; wk

�
�̂p
�
; and wk

�
�̂p
�
; � i is obtained from �̂ i by replacing

all estimates with their probability limits. Analogously, L and U are de�ned
by replacing all estimators by their population counterparts. To examine
estimated trimming, we require a rate at which estimated quantiles (wk

�
�̂p
�
;

wk
�
�̂p
�
) converge to the corresponding true quantiles. With virtually any

rate su¢ cing, Lemma 6 below provides a rate that is subsequently employed
in Lemma 7 in arguing that estimated trimming can be treated as known.

Lemma 6: Estimated Quantiles. Assuming
�
�̂p � �0

�
= op(N

�r);
r < 1=2 :

wk
�
�̂p
�
� �kL = op

�
N�r+"�

wk
�
�̂p
�
� �kU = op

�
N�r+"� :

Proof of Lemma 6. It su¢ ces to consider the lower �th quantile with
k = 1. With f�g is an indicator on the indicated event, for this case:X�

w1i
�
�̂p
�
< w1

�
�̂p
�	
=N = �:

Employing the same type of smooth approximation argument used in the
proof of Lemma 5 and with " > 0 :X��

w1i
�
�̂p
�
< w1

�
�̂p
�	
�
�
w1i (�0) < w1

�
�̂p
�	�

=N = Op
�
N�(r�")� :
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De�ne w10 such that: X
fw1i (�0) < w10g =N = �:

Then it follows from above that:X��
w1i (�0) < w1

�
�̂p
�	
� fw1i (�0) < w10g

�
=N = Op

�
N�(r�")� :

Letting FN be the empirical distribution for the w1i (�0)�s :

FN
�
w1
�
�̂p
��
� FN (w10) = Op

�
N�(r�")� :

From the uniform convergence of the empirical distribution function to the
the true distribution function, F :

F
�
w1
�
�̂p
��
� F (w10) = Op

�
N�(r�")�)

w1
�
�̂p
�
� w10 = Op

�
N�(r�")� :

The lemma now follows since:��w1 ��̂p�� �1L�� � ��w1 ��̂p�� w10��+ jw10 � �1Lj :
For the case of index-trimming, recall that the trimming function is a

smooth exponential function. In employing Taylor series arguments to ana-
lyze this function, it is important that trimming function derivatives behave
as trimming functions themselves in that they severely downweight the same
observations as the initial trimming function. This follows, because deriva-
tives have the structure of being a bounded function multiplied by the initial
trimming function. For example:

@

@z
� (z) = [� � 1] � ; @2

@z@z
� (z) = [(2� � 1) (� � 1)] � :

The proof of Lemma 7 below, which is essentially the same as that in Klein
and Spady[1993], exploits this replicative property.

Lemma 7: Index-Trimming. Let
�
�̂p � �o

�
= O (N�rp) , and assume

rp > r3; with h3 = Op (N�r3) as speci�ed in (D4). Then, for Rm = op (1) ;
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M is �nite, and bim is i.i.d. and bounded over i for each m.

a) : N�1=2
X

[�̂wi � �wi] [Yi � Pi] �̂ =
MX
m=1

Rm
p
N
X

bim�wi [Yi � Pi] �̂=N + op (1)

b) : N�1=2
X

[�̂wi � �wi]
h
P̂i � Pi

i
�̂i = op (1:)

Proof of Lemma 7. To establish (a), expand the components of �̂wi in
a Taylor series expansion, to obtain

p
N
X
i

[�̂wi � �wi] [Yi � Pi] �̂i=N =
p
N

DX
d=1

Td=N ;

Td �
SdX
sd=1

Rsd
X
i

bisd�wi [Yi � Pi] �̂i; d = 1; :::; D � 1

jTDj �
SDX
sD=1

RsD
X
i

bisD j�̂ij ;

where Sd is �nite, d = 1; :::; D and bisD is i.i.d. over i and bounded. With
D selected such that D (r � a) > 1=2 + 2r3; d and D are both �nite. The
R-terms satisfy:

Rsd = Op
�
N�d(r�a)� ; d = 1; :::; D � 1

RsD = Op
�
N�D(r�a)� ; D (r � a) > 1=2 + 3r3:

The result now follows.

N1=2N�d(r�a) sup �
1=2
i

���P̂i � Pi���X
i

�
1=2
i bisd j�̂ij = op (1)

N1=2N�D(r�a) sup
���P̂i � Pi���N2r3 = op (1) :

The argument for (b) is similar.

To establish asymptotic normality in the next section, we will need to
analyze several components that comprise the gradient. To simplify the ex-
position, we examine these components in Lemmas 8A-B below. In providing
these results, recall that we use the notation �x and �w to refer respectively
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to X-trimming and Index-trimming. We employ the notation � without x or
w subscript for results that hold under either form of trimming. These gra-
dient components have a standard form and depend on an estimated weight
involving probability derivatives (see D5). Denoting this estimated weight
as �̂�i :

�̂�i = r�P̂i(�0)=
h
P̂i(1� P̂i)

i
=
h
r�

�
f̂ �i (�0) =ĝ

�
i (�0)

�i
=P̂i(1� P̂i)

=
ĝ�i (�0)r�f̂

�
i (�0)� f̂ �i (�0)r�ĝ

�
i (�0)

ĝ�2i (�0) P̂i(1� P̂i)
� r̂�i
ŝ�i
;

where from (D5):

P̂ �
h
f̂1 + �̂1

i
=
h
ĝ + �̂

i
� f̂ �1 =ĝ�:

Denote �̂i �
r̂i
ŝi
as the corresponding quantity without ��adjustment factors

(i.e. replace P̂ with f̂1=ĝ): Note that these adjustment factors vanish in
probability even in the absence of trimming, but vanish exponentially under
the trimming employed below.

Lemma 8A: Primary Gradient Components. De�ne:

A1 =
X

� i [ Yi � Pi] �̂i=N ; A2 =
X

[�̂ i � � i] [ Yi � Pi] �̂i=N

Then:

1) : N1=2A1 = N
�1=2

X
� i [ Yi � Pi] �i + op (1)

2) : N1=2A2 = op (1) ; for �̂ i � � i = �̂wi � �wi
3) : N rpA2 = op (1) ; for �̂ i � � i = �̂xi � �xi and rp > r3:

Proof of Lemma 8A. Beginning with A1; in (1), we show that the
estimated weight may be taken as given by showing:

� � N�1=2
X
i

� i [Yi � Pi] [�̂�i � �i] = op(1):
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Write � � �1 + �2; where

�1 = N�1=2
X
i

� i [Yi � Pi] [�̂i � �i] (ŝi=si)

�2 = N�1=2
X
i

� i [Yi � Pi] [�̂i � �i] [(ŝi=si)� 1] :

Here,
j�2j � N�1=2 sup

���� 1=2i [�̂i � �i]
��� sup ���� 1=2i [(ŝi=si)� 1]

��� ;
which is op(1) from Lemma 2C. Therefore, to show that � = op (1), it su¢ ces
to show �1 = op (1) : We have:

�1 = N
�1=2

X
i

� i [Yi � Pi] "i; "i � [si (r̂i � ri)� ri (ŝ� si)] =s2i :

Exploiting the fact that [Yi � Pi] has 0 conditional expectation, we show that
�1 = op (1) by showing that its expected square converges to zero. We have:

E
�
�211
�
= E

"X
i

� 2i [Yi � Pi]
2 "2i =N

#
+X

i6=j

X
E [(� i [Yi � Pi] "i) (� j [Yj � Pj] "j)] =N:

The �rst term is bounded from above by:X
i

E
�
� 2i "

2
i

�
=N;

which converges to zero. Employing the fact that E [Yi � Pi j Xi] = 0; it
can be shown that the second term also converges to zero. The result now
follows.
Turning to (2), the argument for the smooth index-trimming function

is based on a Taylor expansion of �̂wi; the observation that the derivative of
a trimming function behaves as a trimming function, and the proof for A1
above. Lemma 7 contains the details of this argument from which (2) follows.
For (3), the argument is based on a characterization result for indicator X-
trimming in Lemma 5.
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Lemma 8B: Secondary Gradient Components. De�ne

B1 =
X

� i

h
P̂i � Pi

i
�̂i=N ; B2 =

X
[�̂ i � � i]

h
P̂i � Pi

i
�̂=N:

Then:

1) : N1=2B1 = op (1) and N1=2B2 = op (1) for �̂ i � � i = �̂wi � �wi
2) : N rpB1 = op (1) , N rpB2 = op (1) for: �̂ i � � i = �̂xi � �xi; rp > r3:

Proof of Lemma 8B. Beginning with B1 in (1) ; we �rst simplify this
term by showing:

� � N�1=2
X
i

�wi

h
P̂i � Pi

i
[�̂i � �i] = op (1) :

Bounding this term:

j�j = N�1=2

�����X
i

�wi

h
P̂i � Pi

i
[�̂i � �i]

�����
� N1=2 sup

���� 1=2wi hP̂i � Pii��� sup ���� 1=2wi [�̂i � �i]��� ;
which is op (1) from Lemma 3. Therefore:

N1=2B1 = N
�1=2

X
i

�wi

h
P̂i � Pi

i
�i + op (1) :

To further simplifyB1 and show that it is op (1) ; note that under an argument
similar to that above:

N�1=2
X
i

�wi

h
P̂i � Pi

i
�i [(ĝi=gi)� 1] = op (1) ;

which implies:

N1=2B1 = N
�1=2

X
i

�wi

h
P̂i � Pi

i
�i (ĝi=gi) + op (1) :

Next, recall that P̂i =
h
f̂i + �̂1N

i
=
h
ĝi + �̂N

i
: Under � -trimming, the �-

adjustment factors and their derivatives vanish exponentially when evaluated
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at the true densities. Accordingly, under a Taylor series argument, we may
replace P̂i with f̂i=ĝi to obtain:

N1=2B1 = N
�1=2

X
i

�wi

h
f̂i � Piĝi

i
ri + op (1) ; ri � �i=gi:

Noting that ri has expectation conditioned on the indices of 0 (Lemma 4),
employ the same type of mean-square convergence argument used to analyze
A. We have:

E
h�
N1=2B

�2i
=

1

N
E

"X
i

� 2wi

h
f̂i � Piĝi

i2
r2i

#
+ C;

C =
X
i6=j

X
E
h
�wi

�
f̂i � Piĝ

�
�wj

�
f̂j � Pj ĝj

�
rirj

i
=N:

It can readily be shown directly that the �rst term above vanishes for large
N . Turning to the more complicated cross-product terms in C, from iterated
expectations:

C = EE
h
�wi

�
f̂i � Piĝ

��
�wj

h�
f̂j � Pj ĝj

�i
rirj

�
j X
i

= E
h
E
h
�wi

�
f̂i � Piĝ

��
�wj

h�
f̂j � Pj ĝj

�i�
j X
i
rirj

i
:

As the inner expectation only depends on the indices W : Nx2, denote this
inner expectation as H (W ) and write:

C = E [H (W ) rirj] = E [H (W )E [rirj] j W ] = 0;

with the last result directly following from Lemma 4. The proof for B1 in
(1) now follows.
The proof for B2 in (1), which is analogous to that for A2 in Lemma 8A,

part (2), readily follows from Lemma 7. To establish (2), we need to analyze
B1 and B2 under X-trimming, The argument here, which is essentially the
same as that for A2 in Lemma 8A, part 3, follows from Lemma 5.

8.2 Main Results

As in the previous section, throughout this section, all results are provided
under Assumptions (A1-6) and De�nitions (D1-7).
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Theorem 1. With �̂ i = �̂xi or �̂wi; de�ne the quasi-likelihood as in
Section 4.1:

Q̂ (�) � 1

N

NX
i=1

�̂ i

�
Y2iLn

h
P̂i(�)

i
+ [1� Y2i]Ln

h
1� P̂i(�)

i �
and de�ne �̂ � arg sup Q̂ (�) : Then : �̂ p! �0; the vector of true parameter
values.

Proof of Theorem 1. Employing (D5) and deleting the i subscript for
notational simplicity, de�ne the probability functions:

P̂ (�) �
h
f̂1 + �̂1

i
=
h
ĝ + �̂

i
PN(�) � [f1 +�N ] = [g +�N ]

P (�) � f1=g:

With PN(�) replacing P̂ (�) throughout, denote QN (�) as the corresponding
objective function. Finally, denote Q (�) as the objective function obtained
by replacing P̂ (�) with P (�) throughout. Then:���Q̂ (�)�Q (�)��� � ���Q̂ (�)�QN (�)

���+ jQN (�)�Q (�)j :

Employing arguments similar to those in Klein and Spady (1993) and Lemma
4, it can be shown that each of these terms vanish in probability, uniformly
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in �:16 Next, write:

Q (�) � 1

N

NX
i=1

�̂ i [ Y2iLn [Pi(�)] + [1� Y2i]Ln [1� Pi(�)]] � �Q (�) +R;

�Q (�) � 1

N

NX
i=1

� i [ Y2iLn [Pi(�)] + [1� Y2i]Ln [1� Pi(�)]]

R � 1

N

NX
i=1

[ �̂ i � � i] [ Y2iLn [Pi(�)] + [1� Y2i]Ln [1� Pi(�)]] :

It can be shown thatR vanishes in probability, uniformly in �: From standard
uniform convergence arguments:

sup
�

�� �Q (�)� E � �Q (�)��� p! 0:

Employing the identi�cation condition in (A5), E
�
�Q (�)

�
is uniquely max-

imized at �0; which completes the argument.

Theorem 2. De�ning H0 � r2
�E (L (�0)) :

p
N [�̂ � �0]

d! N
�
0;�H�1

0

�
:

Proof of Theorem 2. With the quasi-likelihood de�ned under X-
trimming (see D6) and with �+ � [�̂; �0] ; from a standard Taylor series
expansion:

N rp
�
�̂p � �0

�
= �Ĥ

�
�+
��1

N rpĜ(�0);

Ĥ
�
�+
�
= r2

�L̂
�
�+
�
; Ĝ(�0) = r1

�L̂ (�0) ;

16In analyzing the �rst term, it is important to exploit the fact that the �-adjustment
factors behaving as trimming functions in that they control the rate which denominators
in various expressions tend to zero [see Klein and Spady (1993, proof of lemma 4, p. 414)]
To analyze the second term, it is important to note that from the assumption of bounded

X0s, it follows that P (�o) is strictly bounded away from one and zero. It then follows
that P (�) ; a conditional expectation of P (�o) ; is also strictly bounded away from one
and zero. While the assumption of bounded X0s could be replaced by tail conditions,
this assumption considerably simpli�es the argument for the second term. [see Klein and
Spady (1993, Proof of Theorem 3, p. 415)].
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where we have employed X-trimming. Beginning with the Hessian compo-
nent, as in the previous theorem de�ne the probability functions: P̂ (�);
PN(�); and P (�) : From Lemma 3 and arguments very similar to those em-
ployed to analyze the averaged likelihood in Theorem 1, it can be shown
that:

sup
�

���Ĥ (�)�H (�)��� p! 0:

From standard uniform convergence arguments, H (�) converges in proba-
bility and uniformly in � to its expectation. It follows that Ĥ (�+)�1 =
H�1
0 (�0) + op(1): Therefore, a convergence rate for the pilot estimator, �̂p;

will follow from the rate at which the gradient converges to zero.
In the notation of Lemmas 8A and 8B:

N rpĜ(�0) = N
rp [A1 + A2 ] +N

rp [ B1 +B2]

From Lemmas 8A and 8B, it now follows that:

N rp
�
�̂p � �0

�
= op (1) ; rp > r3:

Employing the �̂p to construct a smooth Index-trimming function, employ
the quasi-likelihood under Index-trimming (D7) and a Taylor series expansion
to obtain:

N1=2 [�̂ � �0] = �Ĥ
�
�+
��1

N1=2Ĝ(�0):

As above, Ĥ (�+)�1 = H�1
0 (�0) + op(1): From Lemmas 8A and 8B:

N1=2Ĝ(�0) = N�1=2
X

�wi [ Yi � Pi] �i + op (1)

� N1=2G(�0) + op (1) ;

where G(�0) is the gradient term with all estimated functions replaced by
their (uniform) probability limits. The theorem now follows from a standard
central limit theorem.

Turning to the outcomes equation, recall that it is given as:

Y1 = Z�o + u;
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�o � [�o; �o] and Z � [X; Y2]. Then, the IV estimator is given as :

�̂IV =
h
Ẑ� (�̂)0 Z

i�1
Ẑ
�
(�̂)0 Y1; Ẑ

� (�) �
h
X; P̂ (�)

i
Consistency and asymptotic normality (Theorem 3 of Section 4.2) will now
be immediate if the conditions given in the next lemma hold.

Lemma 8: With Z� � [X; P (�0)] ; under Assumptions (A1-4) and
De�nitions (D1-5):

1) :
h
Ẑ� (�̂)0 Z � Z�0Z

i
=N = op(1);

2) :
p
N
h
Ẑ� (�̂)0 u� Z�u

i
=N = op(1):

Proof of Lemma 8. The �rst condition follows from Theorem 2 and
Lemma 3. The second condition follows from a standard U-Statistics ar-
gument and is to be expected from Newey and McFadden (Handbook of
Econometrics, vol. 4, Chapter 36, section 6.2 and Theorem 6.2).
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