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ABSTRACT 
 

Sibling Death Clustering in India:  
State Dependence vs. Unobserved Heterogeneity*

 
Data from a range of different environments indicate that the incidence of death is not 
randomly distributed across families but, rather, that there is a clustering of death amongst 
siblings. A natural explanation of this would be that there are (observed or unobserved) 
differences across families, for example in genetic frailty, education or living standards. 
Another hypothesis of considerable interest for both theory and policy is that there is a causal 
process whereby the death of a child influences the risk of death of the succeeding child in 
the family. Drawing language from the literature on the economics of unemployment, the 
causal effect is referred to here as state dependence (or scarring). This paper investigates 
the extent of state dependence in India, distinguishing this from family-level risk factors 
common to siblings. It offers a number of methodological innovations upon previous 
research. Estimates are obtained for each of three Indian states, which exhibit dramatic 
differences in socio-economic and demographic variables. The results suggest a significant 
degree of state dependence in each of the three regions. Eliminating scarring, it is estimated, 
would reduce the incidence of infant mortality (among children born after the first child) by 
9.8% in the state of Uttar Pradesh, 6.0% in West Bengal and 5.9% in Kerala. 
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1. INTRODUCTION  

Data from a range of different environments indicate that the incidence of childhood death is 

not randomly distributed across families but, rather, that there is a positive association of 

sibling deaths- or death clustering (see, for example, Zenger (1993), Guo (1993), Curtis et al 

(1993), Miller et al (1992), DasGupta (1990), Bean et al (1988) and Hobcraft et al (1985)). A 

natural explanation of this would be that families in which child deaths are concentrated are 

poorer or share genetic or environmental risk factors that predispose all of their children to 

higher death risks. In other words, families are different or there is inter-family heterogeneity 

in risk. To the extent that these differences are observed (e.g. maternal education), they can be 

captured by including these variables as regressors in a model of child mortality. Recent 

research has gone further in incorporating unobservable heterogeneity (like genetic traits or 

maternal ability) by allowing for a family-level random effect. In this paper we investigate 

whether, in addition to the positive correlation of sibling deaths arising from shared traits, 

there is a causal process set off by the event of death of a child that results in an elevation of 

the risk of death of the next child in the family. Borrowing language from the literature on the 

economics of unemployment, this causal process is called state dependence or scarring. This is 

formally defined in section 3. Heuristically, the idea is that the death of one child “scars” the 

family, making the next child in that family more vulnerable. In this paper, we analyse infant 

mortality, that is, mortality in the first year of life. This definition applies to both the index 

child and its preceding sibling.   

 So as to clarify the notion of causality, consider what mechanisms might drive scarring 
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effects. One causal mechanism is that which operates by the death of an infant shortening the 

time to the next birth. As it can take up to 24 months for the mother to recuperate 

physiologically from a birth, a short preceding birth interval for the index child elevates this 

child’s mortality risk. For previous evidence of such effects, see, for instance, Hobcraft et al 

(1983), Cleland and Sathar (1984), Koenig et al (1990), Gribble (1993), Zenger (1993), Nath 

et al (1994). The reason that it can take a mother time to recuperate from a previous 

pregnancy, especially if she is under-nourished, is that a new pregnancy requires 

replenishment of vital nutrients like calcium and iron that are needed to support foetal 

development (e.g. DaVanzo and Pebley 1993). The process by which a child death leads to a 

shorter birth interval may operate in either of two ways. One possibility is that the death of an 

infant results in the mother ceasing to breastfeed and, thereby, being able to conceive sooner 

than otherwise (see Bongaarts and Potter (1983), Cantrelle et al (1978), Chen et al (1974).) 

Henceforth, this is referred to as the fecundity hypothesis. An alternative possibility is that the 

death of a child leads parents to (intentionally) conceive sooner in a desire to “replace” their 

loss (e.g. Preston 1985). This is the replacement hypothesis. A further possibility, hitherto 

unrecognised in this literature, is that a child death leaves the mother depressed, as a result of 

which her subsequent child’s health is compromised, both in the womb and in early infancy 

(see, for example, Steer et al. 1992, Rahman et al. 2004). This is referred to here as the 

depression hypothesis.   

 It is plausible that there are learning effects, which result in the mortality risk of the 

index child falling on account of the death of the preceding sibling. For instance, if the older 
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sibling died of diarrhoea, the mother may rush to learn how to prevent diarrhoea-related infant 

death. Any positive degree of scarring that is identified is then net of learning effects. 

Although it is of policy significance to establish which mechanism or mechanisms underlie 

scarring and there is little definitive research in this area, this paper does not attempt to offer 

any conclusive results in this direction. The examples provided are only illustrative. This 

paper is concerned primarily with the prior task of identifying whether there are any scarring 

effects after controlling for observed and unobserved heterogeneity. 

This paper contributes to previous research in this area in two main ways. First, it 

introduces the notion of intra-family scarring which is conceptually distinct from inter-family 

heterogeneity in death risk. Second, in suggesting how robust estimates of scarring may be 

obtained, it offers methodological improvements on previous research. While Zenger (1993) 

describes causal mechanisms that stem from the death of a child and impact on the death risk 

of the next sibling, the models that she estimates include either the previous child’s survival 

status or unobserved heterogeneity but, in no case, both. A few earlier studies do include the 

survival status of the preceding sibling in the model, while also allowing for unobserved 

heterogeneity (e.g. Curtis et al 1993, Guo 1993, Sastry 1997a & 1997b, Bolstad and Manda 

2001). However, they do not interpret these effects in terms of causality and correlation 

respectively. Further, for reasons elaborated in section 4.1, the estimated coefficient on the 

survival status of the previous sibling is likely to be biased in all of these studies.  

The analysis is conducted for infant mortality in three Indian states, and we find 

evidence of significant scarring. Results are presented to show the percentage of observed 
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persistence in child death that can be explained by scarring (i.e. by the survival status of the 

preceding sibling), and the reduction in mortality that would be achieved if scarring were 

eliminated. By virtue of generating inertia in the mortality process, scarring will tend to 

exercise a drag on the rate of mortality decline. This makes it important to recognise scarring 

and estimate its significance. Evidence of scarring immediately raises the payoff to policy 

interventions that reduce mortality because it implies that preventing the death of a child also 

contributes to preventing the death of siblings of that child.   

The next Section describes the data used, the overall incidence of infant death and the 

extent of sibling death clustering. The statistical model is set out in Section 3, where scarring 

is formally defined and distinguished from unobserved heterogeneity. Issues that arise in the 

estimation of the model given the nature of the available data are discussed in Section 4, 

which further delineates the relation of this paper to previous research. Section 5 describes the 

empirical model and defines the variables. The results are set out in Section 6. The sensitivity 

of the estimated scarring effect to alternative specifications and procedures used in the existing 

literature is investigated in Section 7. This section demonstrates the potential for bias in 

previous research and, at the same time, suggests how it might be addressed. Section 8 

concludes with a discussion of the findings and limitations of this study.  

2. THE DATA AND DEATH CLUSTERING IN INDIA 

This paper uses the second round of the National Family Health Survey of India (NFHS-II), 

which interviewed 92300 ever-married women aged 15-49 in 1998-99 and recorded complete 
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fertility histories for the 73,775 mothers amongst them, including the time and incidence of 

child deaths. There are 248,785 children in the sample, the mean number per mother being 3.4 

and the median number 3. NFHS-II was conducted in 26 Indian states and covered more than 

99 percent of India's population. For details on sampling strategy and context, see IIPS and 

ORC Macro (2000). The data are in the public domain and can be downloaded from 

www.macrodhs.com.  

In a companion paper, we investigate scarring for each of the 15 major states of India 

and find evidence of scarring effects in 14 of the 15 states (see Arulampalam and Bhalotra 

2004). As the current paper has a methodological emphasis, with alternative specifications 

being explored in section 7, the analysis here is restricted to the three states of Uttar Pradesh , 

West Bengal and Kerala. These states describe the spectrum of conditions within India. They 

exhibit remarkable differences in social, demographic, economic and political development 

(see Dreze and Sen 1997). Uttar Pradesh is the largest Indian state with social and 

demographic indicators that put it below the Indian average. Kerala is an exceptional state that 

leads India in almost every index of human development. West Bengal lies between the two in 

social-demographic development while exhibiting better economic indicators (level of per 

capita income, poverty incidence) than the other two states. A profile of the three states is 

presented in Table 1. Of every 1000 births in India, 82 die before the age of 12 months. There 

is remarkable inter-state variation. The corresponding numbers are 116 in Uttar Pradesh, 76 in 

West Bengal and 35 in Kerala (see Table 1). These figures are averages over the data sample. 

As this contains complete retrospective fertility histories, it includes children born across three 
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decades, 1968-1999. The average number of infant deaths per 1000 live births in India in 2001 

is estimated to have been 67 (UNDP 2003). 

 The top panel of Table 2 shows the raw data probabilities of infant death conditional 

on the survival status of the preceding sibling. This is a useful description since, in the formal 

analysis conducted in this study and also in some previous studies, a first-order Markov model 

is specified in which, conditional on the survival status of the preceding child, the survival 

status of earlier children does not influence the survival status of the index child (see Section 

3). Consider, for illustration, the state of Uttar Pradesh. The probability of infant death is 

higher by 0.16 (i.e. it is 0.25 rather than 0.09) if the preceding sibling died as an infant. An 

alternative expression of the relative risk is that an infant in Uttar Pradesh is 2.7 times as likely 

to die if the preceding sibling died rather than survived. Since the model presented in this 

paper is a logit, we also present the relative odds associated with the death of the preceding 

sibling (row [7] of Table 2).  For example, in Uttar Pradesh, the relative odds of an infant 

dying in a family where the preceding sibling has died are 3.1 times higher than for a family in 

which the preceding sibling has survived infancy. The figures for West Bengal and Kerala are 

4.2 and 6.3. Overall, the Indian data exhibit a remarkable degree of death clustering. Without 

further analysis, however, it is impossible to say whether this reflects scarring or whether it 

merely reflects risks common to siblings on account of shared family characteristics 

(heterogeneity).  
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3.  THE STATISTICAL MODEL 

This Section sets out a statistical model that permits identification of state dependence 

(scarring), taking account of the potentially confounding effects of unobserved inter-family 

heterogeneity.  

Let there be ni children in family i.  For child j  (j=2,…,ni) in family i (i=1,2,…, N), the 

unobservable propensity to experience an infant death, yij
*, is specified as 

 yij
* = xij

′β + γyij-1 + αi  + uij        (1) 

where x is a vector of strictly exogenous observable child and family specific characteristics 

that influence yij* and β is the vector of coefficients associated with x. An infant is observed to 

die when his or her propensity for death crosses a threshold; in this case, when yij* > 0, and 

this binary outcome is denoted as yij=1. The term αi captures unobserved heterogeneity. It 

accounts for all time-invariant unobserved and, possibly, unobservable family characteristics 

that influence the index child’s propensity to die. This will include genetic characteristics and 

variables such as innate maternal ability. The null of no state dependence implies γ=0.  The 

estimated parameter γ should be interpreted as the ‘average’ effect over the time period 

considered. In work in progress we investigate whether scarring has declined over time.   

The model is dynamic in that it allows the unobservable propensity of death of the 

index child to be a function of whether the previous child died in infancy or not (i.e. yij-1=1 or 

0). Defining a state as a realisation of a stochastic process, one may think of state dependence 

in terms of the mortality risk facing a child being dependent upon the state (died in infancy or 
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not) revealed for the previous child in the family. Since time is implicit in the sequencing of 

children, models that include the previous child’s survival status are analogous to dynamic 

models. Note that, in principle, the preceding sibling may die after the index child. This can 

happen if, for example, the birth interval between them is 9 months and the first child dies at 

11 months while the second child dies in the first month of life. There were no such cases in 

the data. 

 In this model, conditional on yij-1, xij and αi, the history of infant deaths amongst older 

siblings other than the immediately preceding child is assumed to have no impact on yij
*. If 

child (j-2) died in infancy then, in our model, this will affect the risk of death of child (j-1) 

and, thereby, affect the risk of death of child j. This is the first-order Markov assumption 

common in models of this sort (see Zenger (1993), for example). Moreover, a model restricted 

to first-order effects is consistent with the mechanisms that we suggest might drive scarring 

(Section 1). Of course, risk factors common to all siblings are captured by αi. 

For an account of dynamic (causal) models with unobserved heterogeneity in the 

econometrics literature, see Hsiao (1986), Wooldridge (2002). The distinction made in this 

paper between scarring and unobserved heterogeneity has been made in other contexts in both 

statistics and economics (see Heckman 1981a, 1981b, 1981c) although its relevance to death 

clustering has not formerly been recognised. For example, in the literature on the economics of 

unemployment, scarring refers to the effect of a past episode of unemployment on the future 

probability of experiencing unemployment, after controlling for all observable (e.g. education) 
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and unobservable (e.g. ability) individual characteristics. 

 Given the above assumptions, and dropping x and the index i for convenience, the joint 

probability of the observed sequence of binary outcomes is 

 P(yn,….,y2,y1|α)=P(yn|yn-1, α) P(yn-1|yn-2, α)... P(y2|y1, α) P(y1| α)    (2) 

and therefore requires a specification for P(y1| α). If there were no unobserved heterogeneity  

αι , then the initial condition y1 could be treated as exogenous, and the model given by 

equation (1) could be estimated using the sample of children j (j=2,…,n). Alternatively, even 

in a dynamic model that incorporates unobserved heterogeneity, the initial conditions problem 

is avoided if the time dimension of the panel (ni) is large (Hsiao (1986), pp170.). However, ni 

in our model is given by the number of births of mother i, and this cannot be assumed to tend 

to infinity. As a result, consistent estimation requires that we endogenise (and model) the 

initial condition. This is done by specifying an equation for the mortality risk of the first-born 

child of each mother as    

 yi1
* =zi

’λ  + θ αi  +  ui1    i=1,....,N           (3) 

where zi  is a vector of exogenous covariates. In principle, the vector of covariates in x and z 

need not be the same, and θ need not equal one. Equations (1) and (3) together specify a 

complete model for the infant survival process.    

 Assuming that uij for j=2,.., ni as well as ui1, are independently distributed as logistic, 

the joint conditional probability for the observed sequence of binary indicators for family i is 
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where Λ denotes the CDF of the logistic.  Marginalising the likelihood with respect to αi gives 

the likelihood function for family i  

 ( )( ) ( )( )1 1
2

'λ θα 2 1 'β γ α 2 1  (α ) α
in

i i i ij ij ij i ij i
j

L y y y−
=

⎛ ⎞
⎡ ⎤ ⎡ ⎤= Λ + − Λ + + −⎜ ⎟⎣ ⎦ ⎣ ⎦

⎝ ⎠
∏∫ z x f d      (5)                 

where f(α) is the probability density function of the unobservable family-specific 

heterogeneity. Following the literature, we assume that αi is independently and identically 

distributed as normal with zero mean and variance 2
ασ , but subject to the following restriction.  

Referring back to equations (1) and (3), a very large positive (negative) value for αi will give a 

very large (small) value for yij
* and hence a very large (small) probability of observing death 

of the index child. Infant deaths are a rare occurrence, and some families never experience any 

infant deaths. As seen in section 2, there is also a tendency towards sibling death clustering, as 

a result of which some families may lose all of their children in infancy. Probability masses 

implied by the normal heterogeneity distributional assumption may not be sufficient to 

accommodate this phenomenon. This is the well-known mover-stayer problem (Blumen, et. al. 

1955). In order to account for this, we follow the literature and allow for defectiveness at the 

two extremes by allowing empirically-determined masses at plus and minus infinity of the 

Normal mixing distribution. See Narendranathan and Elias (1993) for an application of this 

distributional assumption in the context of modelling individual unemployment and Barry et.al 
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(1989) for relevant software (though we program the estimation in STATA because of the 

presence of equation (3)). 

 The likelihood for family i is thus given by 

 * 0 1

1 10 1 0 1 0 1

ψ ψ(1- )
1+ψ +ψ 1+ψ +ψ 1+ψ +ψ

i in n
i

i ij
j j

L
ijL y

= =

⎡ ⎤ ⎡
= + +⎢ ⎥ ⎢

⎣ ⎦ ⎣
∏ y

⎤
⎥
⎦

∏     (6) 

where Li is given by equation (5) and ψ0 and ψ1 are the unknown end-point parameters. The 

first term in the above sum allows for a mass point at minus infinity (yij=0, ∀j, for these 

families since they are assumed to experience no infant deaths) and the third term allows for a 

mass point at plus infinity (yij=1, ∀j, for these families since all children are assumed to die in 

infancy). Thus, the estimated proportion of families predicted to be located at -∞ and +∞ are  

given by p0 and p1 respectively, where, 

 0
0

0 1

ψ
1+ψ +ψ

p =  and    1
1

0 1

ψ
1+ψ +ψ

p = .      (7) 

In order to ensure the non-negativity of ψ, it was parameterised as exp(κ) and κ was estimated. 

In practice, the data may not contain enough variation in order to allow us to estimate ψ1 and 

this is, indeed, what was found in this study (see Table 1 where the proportion of families that 

lose all or none of their children in infancy is reported). 

 Given the binary nature of the observed data, a normalisation is required in order to 

identify the parameters. A conventional practice is to fix the scale of the distribution of the 

error term, u.  Even if we set θ=1 initially, if the variance of u1 was different to that of the 

other u terms, the scale normalisation can imply a non-unit value for θ.   Although we report 
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results for the logistic case, we also estimated the model under the assumption of normality 

and the results were very similar after allowing for scale differences in the coefficient 

estimates (Amemiya, 1981).  

In addition to mother-specific unobserved heterogeneity, community-level random 

effects were included in the model to account for the sampling design, which involved 

clustering at the community level. Failure to allow for community-level unobserved 

heterogeneity in the likelihood maximisation would provide consistent parameter estimators 

but inconsistent standard errors (e.g. Deaton 1997, chapter 2). Although the model is multi-

level, we have chosen to treat the community-level effect as a nuisance parameter. This is 

because we cannot interpret a time-invariant community-level effect in any meaningful 

manner. To the extent that families migrate or the infrastructure of different communities 

develops at different rates, the assumption of a time-invariant community effect is restrictive: 

we expect that children of the same mother, born at different dates, may experience different 

community-level effects. In any case, in this paper, the focus is not on estimation of the 

variance associated with mothers vs communities but rather, on robust estimation of the 

scarring effect, captured in the parameter, γ.  

 A test of H0: σα
2=0 is a test that there are no unobservable family characteristics in the 

model. This can be tested using a likelihood ratio (LR) (or a standard normal test statistic) but 

the test statistic will not have a standard χ2 (or a standard normal) distribution since the 

parameter under the null is on the boundary of the parameter space. The standard LR (normal) 
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test statistic has a probability mass of 0.5 at zero and 0.5χ2(1) (0.5 N(0,1)) for positive values. 

Thus a one-sided 5% significance level test requires the use of the 10% critical value (Lawless 

(1987), Andrews (2001)). 

 Although equation (1) is a standard dynamic random effects logit model (with three 

levels), the inclusion of equation (3) in the estimation (to account for initial conditions) makes 

it non-standard.  Hence a routine (available on request from the authors) was written in Stata  

(2000) using Stata’s maximisation procedures, to obtain parameter estimates. Gaussian-

quadrature was used to approximate the integral in (5).   

4. ISSUES OF MODEL SPECIFICATION AND TESTING 

This Section describes potential problems that arise in an empirical specification of the model, 

indicating how common biases in parameter estimators may be avoided. Problems discussed 

include those of left-truncation, endogeneity, measurement error and time-inconsistency.  

4.1  The Initial Conditions Problem 

In our survey, women aged 15-49 in 1998/99 were interviewed and retrospective data on their 

birth histories were collected. A well-recognised problem with retrospective data, when an age 

cut-off is used to select the interviewees, is a selectivity issue. The interviewees may be a 

representative sample as of the survey date, but will not be so for earlier years (Rindfuss, et. 

al., 1982). For this reason and for reasons of recall bias, a common practise in previous 

research has been to discard information on children born before an arbitrarily selected date, 

such as five, ten or fifteen years before the date of the survey (e.g., Guo 1993, Curtis, et al 
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1993, Madise and Diamond 1995, Sastry 1997a & 1997b, Bolstad and Manda 2001, Bhargava 

2003). This left truncation of the data by calendar time occurs at different points in the birth 

history of different households, creating additional complications. Many studies also discard 

the first-born child in every family. This can also result in a severe loss of information (see the 

number of observations recorded in rows 1-4 of Table 3).  

 Moreover, left truncation of the data, whether by calendar time or by birth-order of 

child, results in the problem that the start of the sample does not coincide with the start of the 

stochastic process under study. On account of the presence of family unobservables, αi, in 

equation (1), the survival status of the previous child, yij-1, is endogenous. Thus, discarding 

observations at the beginning of the sample produces an endogenously truncated sample. In 

other words, since αi is a family-specific term, it will appear in the equation for every child in 

the family. In particular, it will appear in the equation for yij* and also in the equation for yij-1*. 

Therefore, in the equation for yij*, the regressor, yij-1, is necessarily correlated with the error-

component, αi. This is what is meant by endogeneity of yij-1 and, left unaddressed, it will tend 

to produce a (positive) bias on the coefficient estimate of yij-1, which provides an estimate of 

scarring effects.   

This is an instance of the ‘initial conditions problem’ in dynamic models with 

unobserved heterogeneity (e.g. Heckman (1981c)). Intuitively, the problem is that the model 

describes a dynamic process, and we need to allow for how it starts. The death risk of the third 

child in a family depends upon whether the second child died and the death risk of the second 
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child depends upon whether the first child died, but information on whether the first child died 

is missing if the data are left-truncated or if information on first-borns is discarded. This 

information is especially relevant because the first child shares unobservable traits (αi) with 

her younger siblings.   

 In order to address the initial conditions problem, we use the complete birth histories 

of the women in our sample, and specify equation (3) to describe mortality risk for the first-

born child of each mother. In this way, we model the start of the dynamic process that operates 

within families, with the death of one sibling impacting upon the death risk of the next sibling. 

Availability of information on the start of the process is an unusual feature of the series of 

Demographic and Health Surveys of which the Indian survey we use is one. In many other 

applications of dynamic models with unobserved heterogeneity, data on the start of the process 

are unavailable. For example, in studying unemployment spells of individuals, researchers 

would ideally like to have data on school-leavers but must often make do with left-truncated 

data, that is, data that do not include the first spell of unemployment for each individual.  

There are two suggested techniques in the literature that enable one to account for 

endogeneity of the initial conditions in the estimation.  Heckman (1981c) suggests using an 

equation such as (3) as an approximation for the initial condition yi1.  An alternative strategy 

proposed by Wooldridge (2005) is to approximate the distribution of αi conditional on yi1 

rather than the distribution of yi1 conditional on αi, as suggested by Heckman (see equation 

(2)).  In the absence of guidance from economic theory, there are no a priori reasons to expect 
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one method to be superior to the other. Although the main specification in this paper involves 

avoiding left truncation altogether, in Section 7 we discuss how the initial conditions problem 

can be mitigated in situations in which the nature of the data or the nature of the research 

favour using left-truncated data. We have chosen to use Heckman’s suggested method to 

illustrate this point as this procedure is the more natural one to compare with the case in which 

full birth-histories are used in the estimation.  

The fact that left truncation can create a bias if not properly accounted for in the 

estimation has not been previously recognised. This is true of all of the relevant demographic 

research that we are aware of. The only study that reflects awareness of the endogeneity 

problem arising via the correlation of the survival status of previous children and family 

unobservables is Bhargava (2003). That study left-truncates the data and attempts to address 

the endogeneity problem by imposing the restriction that household possessions and the 

number of boys and girls born before the index child influence the number of surviving older 

children but, conditional on this variable, have no influence on the mortality risk of the index 

child. Also, Bhargava (2003) is not concerned with scarring effects. Our analysis confirms the 

importance of addressing the initial conditions problem. Section 6 provides statistical tests on 

the parameter θ (see equations 3 and 4) that are useful in assessing the empirical relevance of 

the initial conditions problem. Furthermore, estimates of alternative models presented in 

Section 7 indicate the direction and size of the bias induced by left-truncation.  

 The available data are right-censored in the sense that, at the time of the survey in 
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1998/9, some of the women who were interviewed had not completed their fertility. This 

creates a different problem, which is that we have in our sample a disproportionately large 

representation of children of older mothers. Although mother’s age is included as an intercept 

effect, it is not interacted with yij-1. Therefore our estimates of scarring may not be 

“representative”- that is, including all children of younger mothers in the sample may reduce 

the estimated scarring effect. We have not selected mothers with completed fertility histories 

because completion of fertility involves a choice – selecting on a choice variable can produce 

endogenous selection bias, addressing which would demand the joint modeling of fertility and 

mortality. 

4.2 Measurement Error 

A reason that previous studies have left-truncated the data is that this minimises recall error in 

the recorded date of child death, which is assumed to be larger the further away the mother is 

from the event (e.g. Sastry 1997a). It may seem implausible, a priori, that mothers ever forget 

the date of death of a child but the data do exhibit some age-heaping. In particular, the Indian 

data that are used in this study show heaping at six-month intervals (also see IIPS and ORC 

Macro 2000: Section 6.2). What effect is this expected to have on estimates of our model? 

Since the model has infant death on both sides of the equation, with the index child’s risk a 

function of the preceding child’s survival status, positively correlated measurement error in 

these variables will tend to create an upward bias in the scarring coefficient. This potential 

problem is addressed as follows. The dependent variable and the survival status of the 

preceding child are both coded as binary variables that are unity if the child dies before the age 
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of 12 months and zero otherwise. To investigate sensitivity of the estimates to age-heaping at 

12 months the models were re-estimated with these variables defined to include deaths 

occurring at 12 months. The results were very similar (and so are not shown but available on 

request).  

4.3.  Time Inconsistency  

Survey data used to study childhood mortality typically contain retrospective histories of 

births and child deaths experienced by ever-married women aged 15-49 at the time of the 

survey. They also typically gather information on variables such as household assets, toilet 

facility, electricity or access to piped water at the date of the survey. The data we use for India 

are similar. A woman aged 49 in 1999 may have experienced a birth and an infant death as 

long ago as 1968. The time-inconsistency problem is that, in such cases, data that pertain to 

the date of the survey are less  informative, the further from the date of survey is the event of 

interest (e.g. childhood death).  The practice of left-truncation limits this problem, even if it 

remains somewhat questionable given that growth, migration and structural change can occur 

quite rapidly in developing countries. In the current analysis, where the entire birth history of 

each mother is used, the problem is more severe. We therefore do not include any current-

dated variables as regressors. 

Another, less-recognised problem with some of these variables is that they are 

endogenous. For example, families will tend to simultaneously decide what resources to 

allocate to the purchase of assets (a bicycle, a TV), and what resources to spend on inputs into 
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child health that will reduce child mortality risk (see Becker 1991, for example). Alternatively, 

access to facilities like piped water will be endogenous if families migrate to regions with 

piped water.   

4.4.      Specification of Scarring and Birth Interval Effects 

As discussed in Section 1, earlier studies of death clustering were not specifically looking to 

identify scarring effects as distinct from unobserved heterogeneity across families. This is 

reflected in the specifications that they employ. Most previous analyses of death clustering 

model unobserved heterogeneity alone, although a few include variables related to the scarring 

process. For example, Bhargava (2003) and Muhuri and Preston (1991) include the number of 

surviving older siblings instead of the survival status of the previous child. This is a compound 

indicator of fertility and mortality in the family. Moreover, it is insensitive to sequencing- and 

so it does not reflect ‘scarring’ as defined in Section 3- as that involves a causal relation 

between the death of one child and the risk of death of the next child in the family.  

A handful of previous studies follow a specification similar to that in this paper in that 

they include the survival status of the previous sibling in the model (Curtis et al 1993, Guo 

1993, Sastry 1997a & 1997b, Bolstad and Manda 2001). However, an important difference in 

specification is that all of these studies also include the preceding birth interval as a regressor. 

In Section 1 it was argued that the fecundity and replacement mechanisms are two plausible 

causal processes by which scarring effects may appear, and both involve the birth interval as a 

proximate variable. To the extent that the previous child’s survival status, yij-1, impacts on the 

index child’s death risk, yij
*, by altering the length of the birth interval, conditioning on the 
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birth interval will tend to weaken the coefficient on yij-1. As a result, the degree of scarring will 

tend to be under-estimated. In other words, to include the birth interval along with an indicator 

for the death of the preceding sibling (yij-1) in our model would amount to including both the 

ultimate and the proximate cause. The reason we prefer to include yij-1 and not the birth 

interval is that scarring may occur for reasons that do not create a short birth interval. One 

example of this possibility is the depression mechanism referred to in section 1. So our 

strategy implies that the total scarring effect is captured in the coefficient on yij-1. If the birth 

interval is included as an additional regressor then the coefficient on yij-1 will denote only a 

partial scarring effect (ie that part of scarring that is not attributable to short birth intervals). 

Another problem with the specification used in previous studies is that the birth 

interval is an endogenous variable (that is, potentially chosen by the family) and one for which 

valid instruments may be difficult to find. Although uptake of contraception is a choice 

variable (endogenous), the availability of contraception is a potential instrument for birth 

interval, not considered in the previous literature. Since information on contraception in the 

NFHS data is limited to recent births and using it would involve endogenous left truncation of 

the data (see Section 4.1), exploration of this is left to future work. Previous research does not 

appear to have acknowledged the potential for endogeneity bias in estimates of the effects of 

birth intervals on mortality (although see Bhalotra and van Soest (2004) for a recent attempt at 

this in the context of neonatal mortality).  

There are also measurement problems with birth intervals as they may be shorter on 

account of premature birth (e.g., Gribble 1993) or longer on account of miscarriage (e.g. 
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Madise and Diamond 1995). If these events are sufficiently common in the data, the 

coefficient on birth interval will reflect a compound of these effects. 

In this paper, the scarring effect is captured entirely by the coefficient on previous 

sibling’s survival status (γ). To allow comparison with previous studies and, for the Indian 

data, to assess the impact on γ, results are presented, in Section 7, for a variant of the model in 

which preceding birth interval is included as an additional regressor. Of course, in the absence 

of controls for the endogeneity of birth spacing, these results are only indicative. 

5.  THE EMPIRICAL MODEL  

The dependent variable, yij, is defined as unity if the child is observed to die before the age of 

12 months and zero otherwise (infant death). The regressor of interest, yij-1, is similarly 

defined as the infant survival status of the preceding sibling. As discussed in Section 4.2, 

sensitivity of the results to “heaping” in the reported age of death was also investigated. 

Children who have not had 12 months exposure (i.e. who are younger than 12 months) at the 

time of the survey are dropped from the sample. When the index child is not a singleton but, 

instead, a twin (or triplet) then care is taken to ensure that the preceding sibling is correctly 

identified and is the same for each twin.  When the previous child is one of a multiple birth, 

then yij-1 is defined as unity if all children of that multiple birth died in infancy and as zero 

otherwise. This is the relevant assumption if the mechanism underlying scarring is the 

fecundity mechanism since the mother is only likely to stop breastfeeding if both twins (or all 

three triplets) die. We have confirmed that altering this definition so that yij-1 is defined, as 
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unity when at least one of the multiple births dies does not change the results. This is 

unsurprising since multiple births are uncommon (see Table 1).  

 The rest of this Section describes the variables in the vector xij, which are assumed to 

be identical to the variables zij in the first-child equation. Means and standard deviations of all 

variables in the model are in Appendix Table 1. Covariates often used in previous research 

that are time-inconsistent or endogenous are avoided. The only potentially endogenous 

variable in the model is yij-1 and, as discussed in Sections 3 and 4.1, addressing this potential 

problem is an important part of the statistical approach taken here. Since this involves using 

retrospective histories that go back several years in time, cohort effects are introduced into the 

model.  

Child-specific regressors in the equation are child birth-order, gender and an indicator 

for whether the child is one of a multiple birth (twin, triplet, etc). The age of the mother at 

birth of the index child is included to reflect the physiological condition of the mother at a 

relevant time. Since several studies show child mortality risk to be U-shaped in mother’s age, 

this is specified as a quadratic. Education of the mother is denoted by a set of dummy 

variables for level of education attained. This is relatively flexible, allowing for non-linear 

effects (Cleland and van Ginneken (1989) and Hobcraft (1993) provide reviews of the effects 

of maternal education on childhood mortality; also see Rosenzweig and Schultz (1982)). A 

similar set of indicators for educational level of the father is included. This is likely to be an 

important control for socio-economic status to the extent that fathers are the main earners 

(available data on household assets are not used because of the time inconsistency problem). 
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Other family-level observable variables included in the model are religion and caste. These 

allow for “sociological” influences on child death risks.  

Cohort effects are modelled by including dummy variables for year of birth of the 

mother. Mothers in the sample are born between 1948 and 1984. Roughly equal frequency 

groups are created by defining dummy variables for births during 1948-1959, 1960-1969 and 

1970-1984. The cohort effects are expected to pick up any secular decline in death risks over 

time, other things equal. Note that the child’s date of birth is effectively in the model since it 

also includes the age of the mother at the birth of the index child. To see this, consider a 

woman who was born in 1940 and gave birth to the index child in 1960 so that age of the 

mother at birth of the child is 20.  The model includes “20” and “1940” and so it implicitly 

includes “1960”. 

 There were missing values for religion, caste and parental education. In most cases, 

less than half a percent of observations had missing values, but caste information was missing 

for 4.8% of cases in Uttar Pradesh and father’s education was missing for 0.08% in West 

Bengal (see Appendix Table 1) How one treats these depends on the assumptions one is 

prepared to make regarding the structure of the missing data; whether it is: missing at random, 

missing completely at random, ignorable or nonignorable, for instance (see Cameron and 

Trivedi 2005, Chapter 27). Alternative methods for dealing with missing data, including single 

and multiple imputation techniques, are discussed by these authors and also in Rubin (2004). 

In this paper, we assume that the missing data mechanism is ignorable, that is, the missingness 

in the variable does not depend upon its value and the parameters of the missing data-
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generation process are unrelated to the model parameters of interest. Under this assumption, 

one can proceed with the estimation by only including observations without any missing 

values.  In this paper, we proceed with this assumption.  However, we report the results from 

an alternative, more ad hoc approach, and check the sensitivity of our results to the approach 

taken. The alternative approach involves creating binary variables to pick up the cases with 

missing values, which are then included as additional regressors in the model.  In cases where 

the number of observations with missing data are too small for a coefficient on the missing-

value dummy to be precisely estimated (e.g. father’s education is missing for 8 families in 

Kerala), we combine the missing cases with the omitted category (which, for the case of 

father’s education, for example, is fathers with no education). The results were not sensitive to 

the imposition of this restriction. For the cases (caste in UP and father’s education in WB) 

where we are able to estimate coefficients on these dummies, we find that they are 

insignificant. The reported results are based on this second approach. The following estimates 

obtain when, instead, missing values in these cases are dropped: γ̂ (standard error): for Uttar 

Pradesh, 0.686 (0.070) and for West Bengal, 0.428 (0.171). We will see that these are very 

similar to the results reported in the following section.  

6. RESULTS 

The main result is that we find evidence of scarring in each of the three Indian states, after 

controlling for a number of exogenous child and family-specific characteristics and for all 

unobserved differences between families (row [12] Table 2). A full set of results for other 
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covariates is available on request from the authors. 

 In the logit model, the log-odds ratio is a linear function of the explanatory variables.  

Thus, for instance, exp(γ) is the effect of the previous infant’s death on the relative odds of the 

index child’s death. We also present the marginal effect associated with γ.  This is computed 

as the difference between the sample averages of the probability of death predicted by the 

estimated model when yij-1=0 and when yij-1=1, which is approximately equivalent to the first 

partial derivative of the conditional probability of death of the index child with respect to yij-1. 

This is what we call state-dependence or scarring in this paper.  

 Comparing the estimated scarring effect with the difference and ratio of the “raw data 

probabilities” discussed in Section 2 (and reported in the top panel of Table 2) affords an 

estimate of the percentage of raw persistence (or clustering) that is explained by scarring, 

using the model specified in Section 3. Scarring explains about 40% of the clustering observed 

in the data in Uttar Pradesh; the corresponding proportions being 14% for West Bengal and 

21.5% for Kerala (row [14], Table 2). As discussed, previous research has identified clustering 

with unobserved heterogeneity- these estimates show that in fact, almost half of observed 

clustering in Uttar Pradesh is attributable to scarring, after holding constant unobserved 

heterogeneity.  

 Comparing the averaged model predicted probability of death (excluding first borns) 

with that of the averaged predicted probability of death setting γ=0 offers an estimate of the 

reduction in mortality that would be achievable if scarring were eliminated- a useful 
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alternative expression of its significance. The estimates suggest that, in the absence of 

scarring, mortality rates among children born after the first, would fall by 9.8%, 6.0% and 

5.9% in Uttar Pradesh, West Bengal and Kerala respectively.   

 The Table (row [17]) reports a test of the null hypothesis that θ=0 in equation (3). This 

is a test of the hypothesis that the initial sample observation (child) within a family can be 

treated as exogenous (as in previous research). Clearly, if θ=0 then unobservables in the 

equation for the first observation are uncorrelated with unobservables in the [dynamic] 

equations for subsequent observations. In this case, the model described by (1) and (3) reduces 

to a simple random effects model and a separate specification of the equation for the initial 

sample observation is unnecessary. The null that θ=0 is decisively rejected in the case of Uttar 

Pradesh and West Bengal, which confirms the importance of specifying a distinct reduced 

form equation for the first child that is estimated jointly with the dynamic equations for other 

children.  

The proportion of the variance attributable to family-level unobservables (αi) is 

estimated to be 11% in Uttar Pradesh, 21% in West Bengal and 7% in Kerala (row [19], Table 

2). The estimates decisively reject the null of no family-level unobservables for the states of 

Uttar Pradesh and West Bengal. This and the finding that exclusion of αi from the model 

results in over-estimation of scarring (results not shown but available) underline the 

importance of controlling for αi. 

 Many of the covariates in the vector xij are estimated to be significant determinants of 
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mortality (results available upon request). The end-point of the α distribution at -∞, p0, is 

insignificant in Uttar Pradesh and West Bengal, but significant in Kerla. This end point mass 

is included in the model to pickup families that never experience an infant death. As expected, 

in Kerala, which had the lowest incidence of infant mortality and small family sizes, the model 

predicts that about 54% of the families are in this category.  There was insufficient variation in 

the data for p1 to be determined (these terms are defined in Section 4.5). Of course, the 

additional flexibility allowed by introducing mass points at the two extremes of the 

distribution may turn out to be important in other data sets. 

7. SENSITIVITY OF ESTIMATED SCARRING EFFECT  

7.1 Estimates obtained on a left-truncated sample  

As discussed in Section 4.1, previous studies left-truncate the sample without seeming to 

recognise that, if the survival status of the preceding child is amongst the regressors, then this 

will result in a (positive) bias in its estimated coefficient. To confirm this prediction and to 

establish the extent of the bias, estimates of the model are obtained under these conditions 

(Table 3) and compared with the estimates reported in Table 2. Three specifications are 

investigated. 

First, the first-born child in each family is discarded from the sample. This is relevant 

because previous studies do not model the survival status of first-borns. As expected, the 

resulting ‘initial conditions’ problem creates a positive bias. The scarring effect increases in 

all three states, the percentage increase in West Bengal and Kerala being quite dramatic (row 
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2, Table 3).  

The next experiment follows the previous literature in discarding all children born 

before a certain calendar year. Most previous studies discard observations 5 or 10 years before 

the date of the survey. This again introduces the initial conditions problem and, therefore, a 

positive bias (Section 4.1). However, if scarring has been decreasing over time, then a smaller 

scarring effect may be observed in the sub-sample of children born 5 or 10 years before the 

survey date as compared with the full sample of children in the data, who were born over a 

span of 36 years. So as to focus on the initial conditions problem and minimise time effects, 

the left-truncation performed in this second experiment is pushed further back in time. Data 

are discarded for children born before 1971 so that information for 28 years is retained, with 

only the initial eight years of data, corresponding to 3.0% of children, being discarded. In this 

now truncated sample, yij-1 is, of course, undefined for the first-observed child in each family. 

In line with previous research, these children are also excluded from the estimated model 

(results in row 3). The scarring parameter shows the expected upward bias, and it is of roughly 

similar magnitude to that obtained in row 2. Rows 2 and 3 of Table 3 establish that in the few 

existing papers that implicitly contain estimates of scarring, these are likely to be over-

estimates (e.g. Curtis et al 1993, Guo 1993, Sastry 1997a & 1997b, Bolstad and Manda 2001).  

What can be done to mitigate these biases in situations in which left-truncation is 

necessary? Thus, for example, information on breastfeeding or antenatal care may be essential 

to the purpose of a study and these data are only available (in the Indian NFHS and also in 

several other DHS surveys) for the 3-5 years preceding the survey. Consistent estimators may 
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be obtainable from an endogenously truncated sample if a reduced form equation for the first-

observed child in the truncated sample is specified and estimated (Heckman 1981c). Results 

are in Row-4. The scarring estimates are similar to the preferred estimate in row-1, indicating 

that this strategy goes a fair way towards redressing the initial conditions problem. Also, θ=0 

is again rejected for Uttar Pradesh and West Bengal, which confirms the relevance of 

modelling the first-observed child. This result is likely to be of considerable practical 

importance. 

7.2 Introducing preceding birth interval as a regressor 

Refer Section 4.4 where it was argued that the preferred model is one without the birth interval 

but that a model including this variable both indicates the bias in the scarring parameter in 

previous research. It also offers insight into the mechanism underlying scarring. In this Section 

we present, for comparison, results obtained when birth interval is included as an additional 

explanatory variable in the model.  

The preceding birth interval for the index child is defined as a set of dummy variables 

for 8-17, 18-23, 24-29 and more than 29 months; unsurprisingly, there are no observations 

with a value of less than 8 months (the average birth interval is reported in Table 1). A set of 

four intervals is preferred to a quadratic in the birth interval because the distribution exhibits a 

long tail, which the quadratic form would exaggerate. The choice of intervals is guided by 

examination of the distribution of the variable and by the demographic literature. It is set to 

zero for first-born children. The data were coded to ensure that all children in a multiple birth 
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have the same preceding birth interval.  The birth interval dummies are positive and 

significant and their inclusion is seen to reduce the scarring effect in each of the three states 

(see row 5 Table 3). In Uttar Pradesh, the scarring coefficient (γ) remains significant but, in 

West Bengal and Kerala, it is rendered insignificant. The results suggest that a mechanism 

generating short birth intervals is one part of the scarring story but that, at least in Uttar 

Pradesh, there is also some other scarring mechanism at work. As discussed in Section 4.4, 

these results are only tentative since the endogeneity of the birth interval has not been 

addressed in this experiment.  

8.  CONCLUSIONS 

This paper has investigated the clustering of sibling infant deaths in India. In a departure from 

previous research in this area, the main aim of the paper was to introduce the idea of scarring 

as a causal process that might contribute, together with inter-family heterogeneity, to the 

phenomenon of death clustering.  Scarring is of considerable theoretical interest, contributing 

to understanding the inter-relations of family behaviour, fertility and mortality. It is also 

clearly of interest to policy-making. As indicated in Section 1, evidence of scarring raises the 

payoff to interventions that reduce mortality. It can also be useful in targeting interventions at 

the most vulnerable households. Previous analyses of death clustering have equated death 

clustering with unobserved heterogeneity. This has been thought to represent genetic traits 

(e.g. Sastry 1997a, 1997b) or maternal ability (e.g. DasGupta 1990).  There is not a lot that 

policy can do in these cases: it is difficult to engineer genetic change or to influence maternal 
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ability beyond education. As scarring is a causal process, there is immediate scope for 

intervention. For example, if the causal process works through the fecundity mechanism (see 

Section 1) then policies that improve uptake of contraception are likely to reduce death 

clustering. More specific policy insight depends upon identifying the mechanism underlying 

scarring. A further reason that scarring is interesting is that it generates inertia or short-term 

persistence in the mortality process, as a result of which it will tend to exert a drag on the rate 

of mortality decline.  

The statistical issues raised in this paper are expected to be widely applicable in further 

demographic research. The Indian National Family Health Survey analysed here is one of 

about 69 Demographic and Health Surveys (DHS) available for low and middle income 

countries. The DHS data typically contain information on all children of a mother including 

the first-born. Data on first-born children have quite consistently been thrown away and it is 

argued here that this not only constitutes a considerable loss of information but is also a source 

of bias in dynamic models with unobserved heterogeneity. A set of testable restrictions on the 

model confirms the importance of some of the statistical innovations that are made. Estimation 

of some variants of the preferred model shows the extent of bias in the scarring parameter that 

would arise if some of the specification issues highlighted here were ignored. 

The main result is that there is a significant degree of scarring in all of the three Indian 

states for which data were analysed. In order to assess the size of this effect, it is useful to 

consider the reduction in mortality (excluding first-born children from the sample) that could 

be achieved if scarring were set to zero by a hypothetical policy intervention. Among second 
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and higher birth-order births to mothers born between 1949 and 1984, this is estimated to be 

9.8% in Uttar Pradesh, 6.0% in West Bengal and 5.9% in Kerala. The fact that Kerala and 

West Bengal have smaller families (and a higher proportion of first-born children) probably 

limits the overall impact of scarring in these states: the raw data also clearly indicate a greater 

degree of clustering in families with a larger number of children. It would be interesting to 

investigate, in future work, whether the degree of scarring is increasing in birth order and 

whether it varies with the gender of the preceding sibling. Also, as indicated earlier, these 

estimates reflect average behaviour over the period under consideration. Further work 

investigating whether scarring has declined over time and comparing the rate of decline across 

states is merited. 

Preliminary investigation of alternative mechanisms driving scarring suggests that 

shorter birth intervals following the death of a child in the family constitute an important part 

of the story, although birth spacing alone does not entirely account for scarring, particularly in 

the state of Uttar Pradesh. Further research into the processes underlying scarring is merited. 
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Table 1: Descriptive Statistics 
 Uttar 

Pradesh 
West 

Bengal 
Kerala 

Demographic variables    
Probability of infant death [all live births] 0.116 0.076 0.035 
Probability of infant death excluding first borns 0.111 0.073 0.033 
Age of mother in 1998/9 34.9 35.0 37.0 
Age of mother at first marriage 15.7 16.2 18.9 
Age of mother at first birth 18.1 18.1 20.3 
% women that have never used any method of 
contraception 

55.0 16.8 15.9 

% women who can read and write 10.5 25.7 52.5 
Total children ever born per mother 5.5 4.2 3.3 
 % women with 1-2 children 27.8 51.0 59.1 
 % women with 3-4 children 33.7 32.3 33.4 
 % women with 5 or more children 38.5 16.7 7.5 
Mean (median) birth interval in months(v) 30.8 (26) 33.3 (28) 35.4 (29) 
% families with no infant deaths 69.6 84.3 92.6 
% families in which all births die in infancy 1.22 0.60 0.42 
% multiple births 1.37 1.53 1.54 
% first-born children 24.2 34.1 39.3 
Probability of infant death amongst first-borns 0.131 0.080 0.038 
Economic & infrastructure variables    
Rank in per capita income 12 6 8 
Growth rate 2.2 3.2 3 
Poverty incidence 40.2 26 29.2 
Toilet facility 26.7 45.1 85.2 
Electricity 36.6 36.7 71.8 
Population and sample size    
Population share 17.1 7.91 3.2 
Population in millions 171.5 79.3 32.4 
Number of mothers in sample 6901  3547  2332  
Number of live births in sample 29426 10627 5950 
Notes:  
(i) The demographic variables and the sample sizes are authors’ calculations from the Indian NFHS-II 

and refer to the period spanned by the entire fertility history of women aged 15-49 in 1998-9. 
Unless otherwise indicated, figures are sample averages.  

(ii) The economic variables are from World Bank (2000). Poverty incidence is for 1994, the growth 
rate of economy is for the period 1991-2 to 1996-7 and the ranking of states by per capita income is 
for 1996-97. The growth rate and rankings use the 1980/81-based GDP series.  

(iii) The toilet and electricity data are from the NFHS-II Fact Sheets in the NFHS-II final report (2000).  
(iv) Population is as recorded by the Registrar-General’s Office of the 2000 Census on 1 July 2000.  
(v) This is the average preceding birth interval and so it is calculated on a sample excluding first-born 

children.  
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 Table 2: Clustering and Scarring in Sibling Infant Deaths 
  Uttar 

Pradesh 
West Bengal Kerala 

 Panel 1: Raw Data     
[1] Incidence of infant death 0.116 0.076 0.036 
[2] Incidence of infant death excluding first-borns 0.111 0.073 0.033 
[3] Prob(yij=1|yij-1=1) 0.249 0.221 0.159 
[4] Prob(yij=1|yij-1=0) 0.093 0.064 0.029 
[5] Persistence due to yij-1 (difference measure)([3]-[4]) 0.156 0.157 0.130 
[6] Persistence due to yij-1 (ratio measure) ([3]/[4]) 2.68 3.45 5.48 
[7] Relative odds ratio  3.10 4.18 6.30 

 Panel 2:  Estimates    
[8]  (standard error) γ̂ 0.662 (0.068) 0.429 (0.171) 0.687 (0.401) 

[9] Exp( ) γ̂ 1.94 1.54 1.99 

[10] Prob(yij=1|yij-1=1, .) 0.146 0.069 0.060 
[11] Prob(yij=1|yij-1=0, .) 0.083 0.047 0.032 
[12] Persistence due to yij-1 (diff measure) ([10]-[11]) 0.063 0.022 0.028 

[13] Persistence due to yij-1 (ratio measure) ([10]/[11]) 1.759 1.468 1.880 
     

[14]  % Raw persistence explained ([12]/[5]) 40.4 14.0 21.5 
[15] Predicted probability of infant death excluding first borns 0.092 0.050 0. 034 
[16] % reduction in mortality if γ=0 (with respect to [15]) 

([11]*100/[15]) 
9.78 6.00 5.88 

[17] θ [z: θ=0]  [z: θ=1] 0.695 [3.68] 0.944 [2.51] 1.795 [0.61] 
  [-1.61] [-0.21] [0.27] 

[18] Variance of family level heterogeneity [standard error] 0.387 (0.07) 0.885 (0.24) 0.253 (0.50) 
[19] % variance explained by family level heterogeneity 10.36 21.17 7.14 
[20] Probability mass at -∞ = p0 (standard error) 0.000 (0.000) 0.000 (0.000) 0.538 (0.081) 
[21] Maximised value of log likelihood -10072.5 -2600.01 -818.7 
[22] Number of women in sample 7297  3606  2340  
[23] Number of children 29937 10627 5950 
Notes:  
 (i) The relative odds ratio in [7] is calculated as the ratio of the odds of an infant death when the previous sibling dies to not 

dying. This is equivalent to the interpretation of the coefficient on yj-1 in the logit model. 
(ii) In addition to the previous child’s survival status the equations also include child gender, mother’s education, father’s 

education, an indicator for whether the child is one of a multiple birth, dummy variables denoting the birth order of the 
index child, indicators of ethnicity and religion, a quadratic in the age of the mother at the birth of the index child and 
cohort dummies. A full set of results is available from the authors. The dependent variable yij is 1 if child j in family i 
died before the age of 12 months and zero otherwise. 

(iii)[10] is obtained by using the estimated parameters to predict yij for each observation under the condition that yij-1=1, and 
then averaging over all observations excluding the first-borns. [11] is similarly obtained by setting yij-1=0.  

(iv) For [17], see equation (3) and Section 4.1.  For [18] and [19] see Section 3. For [20] see equations (6) and (7).   
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Table 3 

Scarring Estimates Under Alternative Sample Selections and Specifications  

 
Specification Uttar Pradesh West Bengal Kerala 

1. Preferred model 

(Table 2,  [12] and [9] ) 

0.063 [1.94]**  

(29937) 

0.022 [1.54] ** 

(10627) 

0.028 [1.99]* 

(5950) 

2. Drop first-borns 0.074 [2.14]** 

(22640) 

0.049 [2.09]** 

(7021) 

0.046 [2.97]** 

(3610) 

3. Left truncate  & drop first 

observation 

0.073 [2.11]** 

(22026) 

0.055 [2.26]** 

(6709) 

0.038 [2.70]** 

(3466) 

4. Left truncate but model first 

observation 

0.067 [2.02]** 

(29316) 

0.025 [1.61]** 

(10302) 

0.025 [2.26]** 

(5801) 

5. Add birth interval 0.048 [1.70] ** 

(29937) 

0.015 [1.34] 

(10627) 

0.021 [1.75] 

(5950) 

Notes: Refer discussion in Section 7 of the text. Reported figures are marginal effects of 
scarring computed by the difference measure (see Notes to Table 2), and the corresponding 
relative odds ratios are in brackets [ ]. **, *  indicate significance of the estimated coefficient, 
γ, at the 5%  and 10% levels respectively.  Figures in parentheses are the number of 
observations used in the estimation. 
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 Appendix: Table 1  

Means (Standard Deviations) of Variables Used in the Analysis 
 

 INDIA Uttar Pradesh West Bengal Kerala 

 Infant mortality 0.08 (0.27) 0.12 (0.32) 0.08 (0.26) 0.04 (0.19) 
 Infant mortality (sibling) 0.07 (0.25) 0.10 (0.30) 0.07 (0.25) 0.03 (0.16) 
 Female children 0.48 0.47 0.49 0.48 
 Multiple birth  0.01 0.01 0.02 0.02 
 Birth order 1  0.30 0.24 0.34 0.39 
 Birth order 2  0.25 0.21 0.26 0.32 
 Birth order 3  0.18 0.17 0.17 0.16 
 Birth order 4  0.12 0.13 0.10 0.07 
 Birth order 5  0.07 0.09 0.06 0.03 
 Birth order >5  0.08 0.13 0.07 0.03 
 Hindu 0.77 0.84 0.79 0.52 
 Muslim 0.12 0.15 0.19 0.31 
 Other religion 0.11 0.01 0.02 0.17 
 Scheduled caste 0.17 0.19 0.22 0.09 
 Scheduled tribe 0.12 0.02 0.05 0.01 
 Caste data missing 0.01 0.05 0.00 0.00 
 Ma education missing 0.00 0.00 0.00 0.00 
 Ma no education 0.52 0.69 0.40 0.08 
 Ma incomplete primary ed 0.10 0.05 0.18 0.16 
 Ma complete primary education 0.07 0.08 0.06 0.08 
 Ma incomplete secondary education 0.16 0.08 0.21 0.33 
 Ma secondary, higher 0.15 0.10 0.15 0.35 
 Pa education missing 0.00 0.00 0.01 0.00 
 Pa no education 0.27 0.29 0.25 0.06 
 Pa incomplete primary education 0.11 0.06 0.19 0.16 
 Pa complete primary education 0.08 0.10 0.05 0.11 
 Pa incomplete secondary education 0.23 0.21 0.24 0.33 
 Pa secondary education 0.13 0.14 0.08 0.20 
 Pa higher education 0.18 0.21 0.18 0.14 
 Age ma at birth of index child 22.8 (5.1) 23.2 (5.5) 22.0 (5.0) 23.3 (4.5) 
 Number of mothers 73775 7297 3606 2340 
 Number of children 248785 29937 10627 5950 

 
Source: Authors’ calculations based on NFHS-2 (1998-99).  
Notes: ma=mother, pa=mother.  Caste, Religion and Education variable means are calculated over 
the sample of motheres and the rest over the children. 
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