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ABSTRACT

The Evaluation of Community-Based Interventions:
Group-Randomization, Limits and Alternatives"

The context of community-based interventions presents formidable problems for any evaluation
analysis. Group-randomized studies do possess ideal properties in theory, but in practice, group-
randomization might not be a feasible alternative at all or group-randomized studies might be
contaminated. Thus, the decisive advantage of randomized controlled trials, that they and only
they provide for a completely convincing identification strategy in the presence of observable
and unobservable confounders, is lost. There are alternative strategies for the identification of
treatment effects also in the case of unobservable confounders, however, although they
specifically require unverifiable a priori information to be available. Moreover, when using non-
experimental data, one can often easily extend sample size at low cost, and thus estimate
parameters very precisely; therefore, for any particular situation the relative attractiveness of
experimental and non-experimental approaches should be explored.
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1. Background

Community-based interventions are interventions that provide smultaneous access to a given form
of trestment to dl individuas within a community, even though the intendty of exposure to actud
treetment may vary across community members. Examples are water supply and sanitation
programs to reduce diarrhoeal diseases (Blum and Feachem 1983), vitamin A supplementation to
reduce childhood mortality (Sommer et a. 1986), health education to reduce heart diseases
(Farquhar et a. 1990, Fortmann et a. 1995, Green et d. 1995, Murray 1995). Since such
interventions are costly endeavors competing for substantiad shares of the limited hedth budget, the
evauation of their effect on heath outcomes is imperative.

Initsforma gpproach to the evauation of community-based interventions, the epidemiologica
literature concentrates on the probabilistic characterization of group-randomized controlled trids
(eg. Murray 1997, 1998). The presence of within-community correlaion of individud outcomes
and the difficulty to sample a Szeable number of communities are recognized herein as important
idiosyncrases of community-based interventions. Suggested remedies are the adaptation of the
variance formulae (Cornfield 1978, Donner et a. 1981) and the dtatistical control for observable
confounding factors via regresson or matching (Donner 1985, 1987, Hseh 1988, Shipley et 4d.
1989).

Yet, it is dso wel known that for many community-based interventions a randomized
controlled triad might not be a feasble gpproach at dl, for politica, ethicd, logigtic, or financid
reasons, or that a randomized trid might be contaminated by influences beyond the control of the
researcher designing the study (Altman 1986, Smith 1987, Hall and Aaby 1990, Smith and Morrow
1991, Kirkwood et d. 1997). In that case epidemiologica contributions usually resort to a quasi-
experimental approach: it is hoped that the statistical control for observable basdline differences
between non-experimenta trestment and control communities both in the levels and in secular trends
might approach the balancing of confounders that is the am of randomized treatment assgnment in
an experiment (Fortmann et a. 1995, Murray 1995).

More generdly, it is suggested that researchers assemble ahost of corroborating evidence, for
ingtance on pre/post, treatment/control, and adopters/non-adopters comparisons (Kirkwood et al.
1997), dthough none of these comparisons would by itsdf provide for a convincing evauation
drategy. Since it appears that the problem of unobservable confounders cannot be addressed, it



trangpires that the only hope is to smply involve more communities in future trias (Fortmann et d.
1995). By contrast, the recent literature in statistics and econometrics (e.g. Angrist et a. 1996,
Heckman 1997) has developed aternative Strategies for the analysis of non-experimenta data which
can be successful in the presence of unobservable confounders, building on a priori information
about various aspects of the process, for insgance on the determinants of the choice of treatment
regime.

This paper explores the potentid of such aternative non-experimenta evaluation Strategies in
the context of community-based interventions. To this end, it formaly andyzes the datidtical
evauation problem when interventions are community-based and discusses the limits of randomized
controlled trids. It is argued here that for community-based interventions the decisive advantage of
randomized controlled trids, that they and only they provide for a completely convincing
identification strategy in the presence of observable and unobservable confounders, is logt.
Moreover, when using non-experimenta data, one can often easly extend sample sze at low cogt,
and thus estimate parameters very precisaly; therefore, it will be argued here that for any particular
Stuation the relative attractiveness of experimental and non-experimental approaches should be
explored.

The second section of the paper provides a formal statement of the evaluation problem for
community-based interventions, the third section discusses group-randomized controlled trias as the
typica epidemiologica approach when interventions are community-based, the fourth section
andyzes the methodologicd problems with this evauation strategy and suggests dternative
evaduation approaches, and the fina section argues for the existence of a meaningful trade-off

between experimenta and non-experimental evauation Strategies.

2. Community-Based I nterventions. The Evaluation Problem

The evaluation of the impact of community-based interventions on individua hedth outcomes
inevitably requires more data than could be available in any andyds, a censoring problem. Idedly,
one would like to measure for each individua i under study, the potential outcome Y;; that would be
realized if the individua received the trestment, and compare this to the potential outcome Y;; that
would be redized if the individud remained untreasted. This, however, is obvioudy impossble,
irrespective of whether one wants to andyze experimental or non-experimental data. What is



observed, ingtead, is the actual outcome Y, which corresponds to Y;; if the individud is trested and
to Y, otherwise!.

Despite the unavoidable problem of observability at the individud level, one might till be able
to assess average gains from treatment. Let T; be an indicator variable that takes the vaue unity if
individud i receives trestment and zero otherwise. Then the mean effect of treatment on the

treated,

(1) D ° E(Y]jTi:l) - E(YOiTi=l),

appropriately summarizes individud gains Yy, - Yy, for dl individuds who receive trestment®. Given
that our interest is in this population parameter, two conceptudly distinct questions have to be
addressed, identification and statistical inference. Firgtly, would it be possible to infer the correct
parameter with infinite precison by (of course hypotheticaly) collecting abundantly many
obsarvations from the underlying populaion? — Then, this population parameter is sad to be
identified from observable data®. Secondly, what are the properties of any estimator of this entity
in asample of limited Sze?

Following this terminology, the mean outcome of treated individuas E(Y;;|T;=1) is identified
from observable data, while their mean outcome had they not recaeived trestment E(Yy|T;=1) is not.
Even an abundantly large sample on trestment participants would never be able to reved anything on
their potentia outcomes had they not participated. The evaluation problem is the problem of

1

This approach to conceptualizing the evaluation problem is known as the Rubin Causal Model in the statistics
literature (Rubin 1974) and as the Switching Regression Model (Quandt 1972) in the econometrics literature, and
has predecessors also in epidemiology (Greenland and Robins 1986); for a discussion of these parallel
developments see Angrist et al. 1996 and the comments by Heckman and Moffitt. An early seminal contribution
to the evaluation literature in econometrics is Heckman and Robb (1985). In this paper, we take the outcome
measure as given, although problems of defining an appropriate outcome measure may be quite relevant for
applied work.

2

Alternatively, one might be interested in other evaluation parameters such as the mean effect of treatment on

individuals randomly drawn from the population, 5o E(Y) . E(Y ) Concentration in much of the

evaluation literatureison D .

3

In statistical terms, this first question asks whether we can find any consistent estimator for the parameter at all.
Please note that an unbiased estimator does not have to be consistent, while a biased estimator might very well
be consistent.



finding an entity tha is identified from observable data which can replace the unidentified
E(Yy|T,=1) in the congtruction of an estimate for expression (1).

It might be that the mean outcome of individuas who do not receive treetment E(Yy|T;=0)
could serve as this entity, if sdection into treatment is Satistically independent of its effects. This
property is ensured in an individua-leve dlinica trid by randomizing some individuds out of the
potentia trestment group into a control group and by preserving the composition of trestment and
control groups by close monitoring as the tria proceeds. When working with non-experimenta data,
however, individuals who received trestment and those who did not have been sdlected into these
two groups by a process that might, among other aspects, reflect individua gains from treatment.

Consequently, using in applied work an estimate of E(Y|T;=0) in the comparison group of
those not receiving the trestment as a replacement for the estimate of E(Yy|T;=1) in the construction
of expresson (1) for the treatment group, might be a very poor evauation strategy. This is the
principal reason for the clear preference for experimenta evauation strategies in the epidemiologica
literature. 1t will be discussed below, however, that more sophisticated approaches to observationa
data than this primitive cadculation of the comparison-group mean might provide for superior
evauation drategies.

To give further gructure to the discusson, presume that the underlying digtribution of the
potentia outcomes Y;; and Yy across the population is characterized by a conditiona (on individua
and community characteridtics X;) probability distribution, and that the available data comprise, in
addition to observed outcomes Y, and characteristics X, the indicator of treatment T, and a further
indicator Z;. Think of this latter varigble as shifting the cost of participation such that it is a predictor
of participation, abeit an imperfect one (Z,=1 represents low cost, Z;=0 high cog, ceteris paribus).
In effect, while the indicator Z; does affect observed outcomes Y, only via its impact on whether
treatment is received or nat, it is nevertheless related to the assgnment to treatment and control
groups. Consequently, Z; isunrelated to potential outcomes conditiona on the actud treatment status

captured by T;.



This variable is referred to as an instrumental variable in the remainder of the paper®. It
could for instance measure the distance to the treatment site (=1 reflecting comparatively easy
access). In acommunity context, it might reflect the availability of adminigtrative saff from a previous
intervention (Z,=0 implying that a new saff would have to be hired and trained). — In these
examples, this variable would typicaly be one out of severd determinants of trestment participation.
Another example would be an indicator taking the vaue unity for dl individuas in a controlled
randomized trid who are assigned to trestment, and zero otherwise (Heckman 1996b) — then, Z,=0
would indicate the prohibitively high cost involved in circumventing the assgnment to the control
group. Hence Z=T,.

Based on this setup, the next sections of the paper will discuss the two fundamenta questions
of any evaduation analyss, identification, and statistical inference. This discusson will be shaped
by the particular context of community-based interventions: the assgnment to and the reception of
trestment will be on the community level, but outcome measurement will be on the levd of
individuas. We will argue that this particular context makes the congderation of the possible trade-
off between the risk of identification failure and precison imperative®. Perhgps even more
dramatically, the attempt to proceed as in a randomized controlled trid, athough underlying

theoretical conditions are not met, might lead to failure dso in larger samples.

3. Community-Based I nterventions. The Received Wisdom

Since the exposure to a community-based intervention varies across the members of the community
and since it is typicaly very difficult to assess if and to what degree an individua has been exposed
to the program, a completely individua-based evauation of the intervention would make little sense,
Instead, the most promising gpproach to evaluation is to exploit the variation of trestment Status
across communities — the treatment indicator T, takes the identica vaue for dl individuds in the

4

The special case of a dichotomous instrument is discussed here for illustrative purposes; the arguments pre-
sented are unaltered in their substance when the instrument is continuous or when there are several instruments.

5

This is not to say that sample size considerations are irrelevant for the evaluation of individual-level
interventions, but in that context it is easy to justify theisolated discussion of identification.

5



same community — while retaining outcome messurement at the leve of the individua (Murray
1997, 1998).

It is undisputable that, when congdering interventions delivered on the individual level, a
complete balancing on observable and unobservable characteristics between treatment and control
groups is achieved by randomization and subsequent monitoring of compliance, if only the sample
szeislarge enough. Inits unequivocaly preferred choice of concrete evauation strategy, the current
epidemiologica literature adapts this idea of a randomized controlled trial (RCT) to the
community-level context (Murray 1997, 1998). Formdly, the instrumentd variable Z; is taken to be
an indicator of randomly determined — at the community level — assgnment status and the conditional
treatment probabilities are P(T;=1|Z;=1)=1 and P(T;=0|Z;=0)=1, respectively.

Such group-randomized studies intend to approach the desirable properties of randomized
controlled studies performed a the individud levd: by baancing various sources of bias on aspires
to infer the average treatment effect from the difference of the average outcomes of individuas in
randomly sdected participating communities and of individuds in randomly sdlected control

communities,

@ D = E(Y]Z=1) - E(Y|Z=0).

That is, the identification assumption made here is E(Y;|Z=1) = E(Yy|Z=0) where dl observations
are on individuas in communities which gpplied for treetment but then were assigned to treatment or
control groups by a random mechanisf. Whereas the gpplied literature documents many obstacles
arisng to group-randomization in practice (Altman 1986, Smith 1987, Hdl and Aaby 1990, Smith
and Morrow 1991, Kirkwood et a. 1997), the formal epidemiologica literature generdly builds on
this paradigm of group-randomization and the fundamenta possibility of successful identification via
group-randomization is typically not questioned further. This perspective implies that by increasing
the number of communities involved in the trid, the correct trestment effect will be reveded
eventudly with infinite precigon.

6

Note that all individuals in the treatment group have been randomized into this group, that is Z=1, and that all
individualsin the control group have been randomized out, that is Z=0. The comparison in (2) can therefore also
be written with indicator Z replaced by T..



Quedtions of precison are recognized in the epidemiologica literature to be of importance,
though, as a consequence of limited sample sizes (Smith and Morrow 1991). Much of the discussion
concerns the possible presence of observable confounding factors X;, that is factors that influence
potentid outcomes and that — due to sample sze limitations — are not baanced completely by the
process of randomization. This balancing is desirable, however, since the populaion means are
weighted averages of conditiona means, for instance E(Yy[Ti=1) = Lyt E(YyulXi, Ti=1), with Iy
denoting integration over the distribution of observable confounders as it is displayed by the
individuds for whom T,=1.

An imbalance of observable confounders in the sample used for analysis would not provide
for the correct weighting of conditional means in the trestment and control groups. The remedy
suggested for this problem is the datistical control for these confounders via regresson or matching
(Donner 1985, 1987, Hsaeh 1988). However, due to the application of group-randomization, if
sample size were to grow beyond any limit, randomization would serve to eiminate this problem
completely, even without particular attention to observable confounders.

A second problem of precison concerns any remaining imbalance of unobservable
confounders in a sample of limited sze, snce individua outcomes are likely to be corrdated within
communities. In a group-randomized study this is also a problem of inference, not of identification:
this problem would diminish as sample size were growing to be large’. Since intervention ddivery is
at the community level, however, the possble number of communities involved in the study is
necessarily restricted in practice. The suggested remedy for this problem is to dlow for random
community effectsin the satistica modd; the mgjor implication is an adaptation of the corresponding
variance formulae to account for the loss in the precison of point estimates (e.g. Cornfield 1978,
Donner et a. 1981).That, nevertheess, many applied researchers obviousy mistake observations on
individuds within the same community as providing independent information on the process has been
criticized in along series of epidemiologicd articles (Donner et a. 1990, Loevinsohn 1990, Smpson
et al. 1995).

7

If observations on outcomes are available for the same individuals in two or more time periods, it might be
possible to difference out the time-persistent components of these unobservable confounders. Any remaining
unobserved components are then time-dependent and may or may not be unrelated to choice of treatment. For
the sake of clarity of presentation of the arguments, thiswill be left implicit in this paper.

7



In the current epidemiologica literature, the clear but mistaken concluson from baancing
these advantages and disadvantages of pursuing the group-randomization approach as compared
with non-experimental studies seems to be that one should always favor experimental over non-
experimental gpproaches, since only they would ensure identification and since there are Strategies to
successfully address smdl sample problems. However, the next section will collect severa reasons
why we are not assured that randomization indeed works outside of the reddm of individud-level
clinica trids, irrespective of the number of communities involved in the analyss.

Where group-randomized trials are not feasible, the literature (Fortmann et a. 1995, Murray
1995, Kirkwood et d. 1997) suggedts as the only available, but conceptudly inferior dternative to
proceed with the non-experimenta data, replacing the unidentified E(Yy|T;=1) in the congtruction of
an estimate for expression (1) by Iyr-1 E(Yq|X;, T;=0). This, of course, would be a satisfactory
drategy only under the presumption that al unobservable confounders are baanced across
treatment and comparison groups. Since the implied absence of any unobservable confounders is
rarely pdatable, any non-experimental approach a evauation therefore appears as a weak
competitor with low scientific merit. The only hope, then, seems to be increasing the number of
communities involved in the trial (Fortmann et a. 1995, Murray 1995) in order to at least reduce
problems of statistical inference.

However, within the satistica framework built up in the previous sections, and contrary to the
presumption displayed by the epidemiologica literature, it will be argued beow that non-
experimentad sudies are not confined to baancing observable confounders. Instead, an
instrumental variables approach is suggested as a remedy for an imbaance in unobservable

confounders.

4. Identification Problemsin Group-Randomized Studies

Problems

The particular context of community-based interventions generates serious problems for the
identification strategy thet is generdly favored by the literature, the adaptation of the RCT paradigm
fromits clinicd origins to the group-randomized setting. These problems extend beyond the usudly
recognized limitation of sample size. In essence, while individua patients a a trestment center can
hardly control whether they will be assgned to the treatment or the control group, and while the

8



compliance of members of both groups can be monitored easly, randomization and monitoring
quickly reach their limits of practica feasibility when the units to be randomized are politica entities.

First, group-randomization might Smply not be a feasble srategy from the outset, for ethicdl,
paliticd, logigtic, and financid reasons. For ingtance, the gpplied literature on the evauation of
community-based interventions documents serious ethica objections againgt group-randomization: In
the evduation of treatments that have a high probability of being effective, it may be consdered
unethica to carry out an evauation study involving a control group or area from which the effective
intervention iswithheld (Kirkwood et d. 1997). Then, the only feasible choice is a non-experimenta
study.

Randomization of communities might also face strong political objections — communities are
not smply large-szed individuds, their decisons are rather the consegquence of the complex
aggregation of their members preferences. Thus, it might be sgnificantly more difficult to generate
the widespread pre-intervention support for the randomized study across a Sizeable number of
communities that would be the prerequisite for a group-randomized design and that is so easily
ensured with individua patients in a clinicad sating. Furthermore, the political influence on the
assgnment process can aso take more subtle forms (Fortmann et d. 1995): communities that suffer
more from a particular problem or smply more wedlthy communities will lobby for better access to
promising interventions. In addition, there might be strong indirect influence of political pressure
through the influence of the status quo on the assgnment choice. Adminigtrators might fed tempted
to assign those communities to the treatment group which display favorable characteristics such as
nutritiona status, the participation in a previous trid or a well-developed infrastructure. This is not
merdly a problem of sample sze and, thus, cannot be solved by involving more communities in the
trid.

Moreover, whenever the program is to be ddivered a alarge scde, it may be impossible for
logidic reasons to generate a setting in which neighboring communities can actualy be assigned to
treatment and control groups by a random process. For instance, consider the case of mass-media
campaigns that have to be ddivered a aregiond leve. Again, thisis not Smply a problem of sample
size. Findly, one might smply not be able to acquire the gopropriate sample Sze: in many Stuations
the cogt of assuring randomization of sufficently many units & the community level might be
prohibitive, particularly when evauating interventions in developing countries. For indtance, in their

9



survey of community-based trids Donner et a. (1990) typicaly document a low number of
communities involved. If for any of these reasons randomization cannot be atempted serioudy to
begin with, gppedling to any superior theoretical properties of group-randomized tridsis not of any
vauefor actua gpplications.

Second, even where one can engage into group-randomization, the community context can
work againgt the construction and preservation of randomized trestment and control groups. That is,
what is set up as a group-randomized study might be contaminated by processes beyond the
control of the researcher designing the analysis. Such problems arise at various stages of trestment
assgnment and intervention delivery, since compliance with the assgnment and the program are
difficult to monitor. At every stage of the process, communities might explicitly decide to drop out
from treatment or control groups altogether or they might reduce or increase their effort in
supporting the ddlivery in aless conspicuous fashior?.

In terms of the forma setup, as a consequence of both these fundamental problems of
randomization or subsequent contamination the assumption underlying impact estimetion in group-
randomized sattings, E(Y|Ti=1) = E(Y|T;=0), is no longer judtified. The sdlection process might
depend predictably on characteristics of the community; then, modding the process generating
participation and continued compliance might be a viable dternative to increased monitoring efforts
and one might base the andysis on a conditiona independence assumption E(Yy|X;, T,=1) =
E(YX, T,=0) ingead. If the sdection process depends on unobservable community
characterigtics, though, this identification srategy will no longer be successful, irrespective of dl
attempts to account for within-cluster corrdations. As a consequence, identification of treatment

effects might not be ensured in a group-randomized setting.

Alternative Strategies
The fact that — even conditiona on observable confounding factors — the most obvious identification
drategies, (8) the comparison of means of individuad outcomes in trestment and control groups

based on group-randomization, and (b) the comparison of means of individua outcomes in trestment

8

For the sake of the brevity of presentation, we do not discuss further sources of contamination: for instance,
there might be a spillover of treatment across treatment and control communities, or the reality of being involved
in arandomized trial might change behavior.

10



and non-experimental comparison groups, might both be unable to ensure identification, does not
preclude identification of treatment effects completely. Instead, researchers might ill be able to
sdect a more promisng approach. Such dterndive evauation drategies necessarily involve
additional a priori information such as functiona form assumptions in a behaviord modd of the
participation process, redtrictions on the variability of the impact of the intervention across the
trestment group, or excluson redrictions in the determination of outcomes in an instrumental
variables gpproach.

To illustrate our arguments, we will concentrate here on a sngle dternative identification
drategy, the use of instrumental variables (1V). In the forma setup of section 2, the ingrument Z,
was introduced as a variable that is (i) being unrelated to potentia outcomes given the treatment
assgnment — conditional mean independence —, but (ii) related to receiving the treetment. In section
3 this instrument was specificdly taken to be synonymous with an indicator of randomization which
led to a successful solution to the evauation problem. In this section, however, it was argued that the
assumptions underlying the RCT paradigm, P(T;=1|Z;=1)=1 and P(T,=0|Z;=0)=1 might fal to
hold in a community context®. As long as our data contains any variable with properties (i) and (ii),
however, one might modify the comparison madein (2) to reflect the fact that now P(T;=1|Z,=1)<1
and P(T;=0|Z;=0)< 1, respectively®.

For a congtant treatment effect, for instance, it is easy to demondtrate that the ratio
E(YZ=1) - E(Y[z=0
3 D= Ll L]

P(Ti :1‘Zi =1) - P(Ti :1‘Zi =0)

identifies the mean effect of treatment on the trested, Snce

9

For the sake of keeping the presentation as simple as possible, we do not explicitly condition on observable
characteristics X, in the subsequent formulae. It should be kept in mind that in most cases arising in practice one
would want to control for such observable factors; the properties of the instrumental variable discussed here are
then meant to hold conditional on X;, not unconditional properties.

10

Of course, the indicator of randomization in a contaminated experiment might serve as an instrument in the IV
approach, if information is available on outcomes for individuals whose communities were randomized into
treatment and control groups but which subsequently did not comply with that assignment.

11



E(\g‘zi =1) - Eq‘zi =0) =
E(YQ‘ +Ti(Y1i - YQ_)‘Zi =1) - E(Y(] +Ti(Y1i - YO_)‘Zi =0) =
4 E(Yli - Y(] ‘TI =1) XP(TI :]_‘Zi =1) -
E(Yli - YOi ‘1; :1)><P(Ti :]_‘Zi =0) =

E(Y]j - YQ_ ‘TI :1)>{P(Ti :l‘Zi =1) - P('I'i :]"Zi =0)].

That is, the comparison between mean outcomes of individuas in the treatment group and in the
control group is replaced by a comparison of mean outcomes of groups distinguished by the vaue of
the instrument; the denominator of equation (3) scales this difference to account for the imperfect
correlation of the trestment indicator with the instrument ™.

While the IV approach has a long tradition in econometrics, its potentid to identify trestment
effects is a matter of recent debate in the statistics and econometrics literature (Imbens and Angrist
1994, Angrist et d. 1996, Heckman 1997). Under the mild condition of a non-negligible impact of
the ingrument on the choice of treatment regime, the IV estimator identifies the mean effect of
trestment on the treated (expresson (1)) when the treatment effect is constant across individuas.
Identification of this parameter is aso achieved when the response to treatment varies among
individuds, if the choice of the trestment regime does not depend on the unobserved gain from

entering treatment2. As a conseguence, as long as a researcher is able to detect a plausible

11

It is easy to verify that in the special case of an uncontaminated randomized controlled trial the denominator is
unity and the numerator is the difference of mean outcomes of treatment and control groups, and thus expression
(3) isidentical to expression (2).

12

The situation becomes more intricate when treatment effects are heterogeneous and selection into treatment
depends on these individual effects —the IV estimator then identifies the mean effect of treatment only for those
individuals in the treatment group for whose treatment choice the instrument is pivotal, the local average
treatment effect or LATE (see Imbens and Angrist 1994, Angrist et a. 1996, Heckman 1997, and Augurzky and
Schmidt 2000 for an illustration in the context of community-based interventions).
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ingtrument in contaminated experimental or in non-experimentd data, even the most severe obstacles
to identification can be overcome.

Consider, for instance, a community-based educational program, a smoking prevention
program, say, in a Stuaion which precludes an experimenta evauation. If those communities are
more likely to participate in the program which — for reasons being unobservable to the researcher —
would have lower smoking rates even in the aosence of the program, a comparison of the means of
individual outcomes in trestment and non-experimental comparison communities will be mideading.
However, community participation in the program may aso depend on the current availability of
adminigrative gaff, which does not engage into the actud delivery, but is neverthdess indispensable
for implementing the program. Presume further that the impact of the prevention program is constant
across communities which decide to enroll in the program. An instrumental variables approach using
daff avalability as an ingrument along the lines of expression (3) — notably a non-experimenta
evaduation drategy operating in the presence of unobserved confounders — will then identify
successtully the effect of the smoking prevention program.

Inthe final section, we will argue that the possibility to sample a large number of observations
may even make the analyss of non-experimenta data the preferred strategy for the evduation of a
community-based intervention.

5. Estimator Precision and the Trade-Off
The context of community-based interventions presents formidable problems for any evauation
andyss that can often not be solved convincingly by appeding to the paradigm of randomized
controlled trials. Group-randomized studies do possess ided properties in theory, but in practice,
group-randomization might not be a feasble dternative at al or — as has been argued here in
contrast to the previous epidemiologicd literature — group-randomized studies might be
contaminated. In that case, the decisive advantage of randomized controlled trids, that they and only
they provide for a completely convincing identification strategy in the presence of observable and
unobservable confounders, islost.

There are dternative drategies for the identification of trestment effects dso in that case, but
they specificdly require additiond a priori assumptions to hold - it is the nature of such assumptions
that one ultimately cannot verify them on the basis of evidence. This very necessty of having to
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impose unverifigble assumptions in the analys's has been the main criticiam againgt non-experimenta
studies. As has been argued here, for evauating community-based interventions, one cannot avoid
this problem dtogether by smply increesing the number of communities involved in group-
randomizetion.

In this paper, one potentiadly successful dternative identification Strategy has been advocated
in particular, the estimation of trestment effects usng insrumental variables, either on the basis of
contaminated experimental data or on the basis of non-experimental data. It was demondgtrated that,
as long as a researcher is able to detect a plausble insrumentd variable in the data even the
problem of unobservable confounders can be overcome. A randomization indicator will typicaly be
an ided ingrument, snce it is unrelated to potentiad outcomes by condgruction. Even if the
communities compliance with assgnment is imperfect, one can identify the mean effect of trestment
on the treated, as long as individuds do not know their idiosyncratic gain from trestment or do not
influence their communities participation behavior on the basis of this knowledge (for a numerica
illustration see Augurzky and Schmidt 2000).

Moreover, if the principal advantage of group-randomized studies over and above non-
experimenta studies, the successful identification of treatment effects, is in fact an issue of debate,
then the question of precision moves into the center of considerations as well (see aso Heckman and
Robb 1985). This topic had clearly to stand back againgt the issue of identification in the context of
individua-leve interventions. When using non-experimenta data, one can often easily extend sample
gze a low cogt, and thus estimate parameters very precisely. Since there are non-experimental
evauation gpproaches credibly addressing the fundamental evauation problem, IV-estimation being
one of them, identification of trestment effects might be achieved with non-experimenta data and this
precison might be an important advantage.

However, it is demongtrated in Augurzky and Schmidt (2000) that the number of non-
experimenta observations must typically exceed those of a competing experimenta study by a large
factor for the non-experimenta gpproach to become the superior evauation srategy. Thus, while it
will be generaly impossible to provide a common recipe for every possible intervention and context,
for any paticular dtuation the reative atractiveness of experimentd and non-experimenta
approaches should be explored.
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