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ABSTRACT 
  

Testing for Restricted Stochastic Dominance*

 
Asymptotic and bootstrap tests are studied for testing whether there is a relation of stochastic 
dominance between two distributions. These tests have a null hypothesis of nondominance, 
with the advantage that, if this null is rejected, then all that is left is dominance. This also 
leads us to define and focus on restricted stochastic dominance, the only empirically useful 
form of dominance relation that we can seek to infer in many settings. One testing procedure 
that we consider is based on an empirical likelihood ratio. The computations necessary for 
obtaining a test statistic also provide estimates of the distributions under study that satisfy the 
null hypothesis, on the frontier between dominance and nondominance. These estimates can 
be used to perform bootstrap tests that can turn out to provide much improved reliability of 
inference compared with the asymptotic tests so far proposed in the literature. 
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1. Introduction

Consider two probability distributions, A and B, characterised by cumulative distri-
bution functions (CDFs) FA and FB . In practical applications, these distributions
might be distributions of income, before or after tax, wealth, or of returns on financial
assets. Distribution B is said to dominate distribution A stochastically at first order
if, for all z in the union of the supports of the two distributions, FA(z) ≥ FB(z). If B
dominates A, then it is well known that expected utility and social welfare are greater
in B than in A for all utility and social welfare functions that are symmetric and
monotonically increasing in returns or in incomes, and that all poverty indices that
are symmetric and monotonically decreasing in incomes are smaller in B than in A.
These are powerful orderings of the two distributions1 and it is therefore not surprising
that a considerable empirical literature has sought to test for stochastic dominance at
first and higher orders in recent decades.

Testing for dominance, however, requires leaping over a number of hurdles. First,
there is the possibility that population dominance curves may cross, while the sample
ones do not. Second, the sample curves may be too close to allow a reliable ranking
of the population curves. Third, there may be too little sample information from
the tails of the distributions to be able to distinguish dominance curves statistically
over their entire theoretical domain. Fourth, testing for dominance typically involves
distinguishing curves over an interval of an infinity of points, and therefore should also
involve testing differences in curves over an infinity of points. Fifth, the overall testing
procedure should take into account the dependence of a large number of tests carried
out jointly over an interval. Finally, dominance tests are always performed with finite
samples, and this may give rise to concerns when the properties of the procedures that
are used are known only asymptotically.

Until now, the most common way to test whether there is stochastic dominance, on the
basis of samples drawn from the two populations A and B, is to posit a null hypothesis
of dominance, and then to study test statistics that may or may not lead to rejection of
this hypothesis2. Rejection of a null of dominance is, however, an inconclusive outcome
in the sense that it fails to rank the two populations. In the absence of information
on the power of the tests, non-rejection of dominance does not enable one to accept
dominance, the usual outcome of interest. It may thus be preferable, from a logical
point of view, to posit a null of nondominance, since, if we succeed in rejecting this
null, we may legitimately infer the only other possibility, namely dominance.

We adopt this latter standpoint in this paper. We find that it leads to testing proce-
dures that are actually simpler to implement than conventional procedures in which

1 See Levy (1992) for a review of the breadth of these orderings, and Hadar and Russell
(1969) and Hanoch and Levy (1969) for early developments.

2 See, for instance, Beach and Richmond (1985), McFadden (1989), Klecan, McFadden
and McFadden (1991), Bishop, Formby and Thistle (1992), Anderson (1996), Davidson
and Duclos (2000), Barrett and Donald (2003), Linton, Maasoumi and Whang (2005),
and Maasoumi and Heshmati (2005).

– 1 –



the null is dominance. The simplest procedure for testing nondominance was proposed
originally by Kaur, Prakasa Rao, and Singh (1994) (henceforth KPS) for continuous
distributions A and B, and a similar test was proposed in an unpublished paper by
Howes (1993a) for discrete distributions. In this paper, we develop an alternative pro-
cedure, based on an empirical likelihood ratio statistic. It turns out that this statistic
is always numerically very similar to the KPS statistic in all the cases we consider.
However, the empirical likelihood approach produces as a by-product a set of proba-
bilities that can be interpreted as estimates of the population probabilities under the
assumption of nondominance.

These probabilities make it possible to set up a bootstrap data-generating process
(DGP) which lies on the frontier of the null hypothesis of nondominance. We show that,
on this frontier, both the KPS and the empirical likelihood statistics are asymptotically
pivotal, by which we mean that they have the same asymptotic distribution for all
configurations of the population distributions that lie on the frontier. A major finding
of this paper is that bootstrap tests that make use of the bootstrap DGP we define can
yield much more satisfactory inference than tests based on the asymptotic distributions
of the statistics.

The paper also shows that it is not possible with continuous distributions to reject
nondominance in favour of dominance over the entire supports of the distributions.
Accepting dominance is empirically sensible only over restricted ranges of incomes or
returns. This necessitates a recasting of the usual theoretical links between stochastic
dominance relationships and orderings in terms of poverty, social welfare and expected
utility. It also highlights better why a non-rejection of the usual null hypothesis of
unrestricted dominance cannot be interpreted as an acceptance of dominance, since
unrestricted dominance can never be inferred from continuous data.

In Section 2, we investigate the use of empirical likelihood methods for estimation of
distributions under the constraint that they lie on the frontier of nondominance, and
develop the empirical likelihood ratio statistic. The statistic is a minimum over all
the points of the realised samples of an empirical likelihood ratio that can be defined
for all points z in the support of the two distributions. In Section 3 we recall the
KPS statistic, which is defined as a minimum over z of a t statistic, and show that
the two statistics are locally equivalent for all z at which FA(z) = FB(z). Section 4
shows why it turns out to be impossible to reject the null of nondominance when the
population distributions are continuous in their tails. Some connections between this
statistical fact and ethical considerations are explored in Section 5, and the concept
of restricted stochastic dominance is introduced. In Section 6, we discuss how to test
restricted stochastic dominance, and then, in Section 7 we develop procedures for test-
ing the null of nondominance, in which we are obliged to censor the distributions,
not necessarily everywhere, but at least in the tails. In that section, we also show
that, for configurations of nondominance that are not on the frontier, the rejection
probabilities of tests based on either of our two statistics are no greater than they are
for configurations on the frontier. This allows us to restrict attention to the frontier,
knowing that, if we can control Type I error there by choice of an appropriate signifi-
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cance level, then the probability of Type I error in the interior of the null hypothesis is
no greater than that on the frontier. We are then able to show that the statistics are
asymptotically pivotal on the frontier. Section 8 presents the results of a set of Monte
Carlo experiments in which we investigate the rejection probabilities of both asymp-
totic and bootstrap tests, under the null and under some alternative setups in which
there actually is dominance. We find that bootstrapping can lead to very considerable
gains in the reliability of inference. Section 9 illustrates the use of the techniques with
data drawn from the Luxembourg Income Study surveys, and finds that, even with
relatively large sample sizes, asymptotic and bootstrap procedures can lead to different
inferences. Conclusions and some related discussion are presented in Section 10.

2. Stochastic Dominance and Empirical Likelihood

Let two distributions, A and B, be characterised by their cumulative distribution
functions (CDFs) FA and FB . Distribution B stochastically dominates A at first order
if, for all x in the union U of the supports of the two distributions, FA(x) ≥ FB(x). In
much theoretical writing, this definition also includes the condition that there should
exist at least one x for which FA(x) > FB(x) strictly. Since in this paper we are
concerned with statistical issues, we ignore this distinction between weak and strong
dominance since no statistical test can possibly distinguish between them.

Suppose now that we have two samples, one each drawn from the distributions A
and B. We assume for simplicity that the two samples are independent. Let NA

and NB denote the sizes of the samples drawn from distributions A and B respectively.
Let Y A and Y B denote respectively the sets of (distinct) realisations in samples A
and B, and let Y be the union of Y A and Y B. If, for K = A, B, yK

t is a point in Y K,
let the positive integer nK

t be the number of realisations in sample K equal to yK
t .

This setup is general enough for us to be able to handle continuous distributions, for
which all the nK

t = 1 with probability 1, and discrete distributions, for which this is
not the case. In particular, discrete distributions may arise from a discretisation of
continuous distributions. The empirical distribution functions (EDFs) of the samples
can then be defined as follows. For any z ∈ U , we have

F̂K(z) =
1

NK

NK∑
t=1

I(yK
t ≤ z),

where I(·) is an indicator function, with value 1 if the condition is true, and 0 if not.
If it is the case that F̂A(y) ≥ F̂B(y) for all y ∈ Y , we say that we have first-order
stochastic dominance of A by B in the sample.

In order to conclude that B dominates A with a given degree of confidence, we require
that we can reject the null hypothesis of nondominance of A by B with that degree
of confidence. Such a rejection may be given by a variety of tests. In this section we
develop an empirical likelihood ratio statistic on which a test of the null of nondom-
inance can be based; see Owen (2001) for a survey of empirical likelihood methods.
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As should become clear, it is relatively straightforward to generalise the approach to
second and higher orders of dominance, although solutions such as those obtained
analytically here would then need to be obtained numerically.

For a given sample, the “parameters” of the empirical likelihood are the probabilities
associated with each point in the sample. The empirical loglikelihood function (ELF)
is then the sum of the logarithms of these probabilities. If as above we denote by nt

the multiplicity of a realisation yt, the ELF is
∑

yt∈Y nt log pt, where Y is the set of
all realisations, and the pt are the “parameters”. If there are no constraints, the ELF
is maximised by solving the problem

max
pt

∑

yt∈Y

nt log pt subject to
∑

yt∈Y

pt = 1.

It is easy to see that the solution to this problem is pt = nt/N for all t, N being the
sample size, and that the maximised ELF is −N log N +

∑
t nt log nt, an expression

which has a well-known entropy interpretation.

With two samples, A and B, using the notation given above, we see that the proba-
bilities that solve the problem of the unconstrained maximisation of the total ELF are
pK

t = nK
t /NK for K = A,B, and that the maximised ELF is

−NA log NA −NB log NB +
∑

yA
t ∈Y A

nA
t log nA

t +
∑

yB
t ∈Y B

nB
t log nB

t . (1)

Notice that, in the continuous case, and in general whenever nK
t = 1, the term

nK
t log nK

t vanishes.

The null hypothesis we wish to consider is that B does not dominate A, that is, that
there exists at least one z in the interior of U such that FA(z) ≤ FB(z). We need z to
be in the interior of U because, at the lower and upper limits of the joint support U, we
always have FA(z) = FB(z), since both are either 0 or 1. In the samples, we exclude
the smallest and greatest points in the set Y of realisations, for the same reason. We
write Y ◦ for the set Y without its two extreme points. If there is a y ∈ Y ◦ such that
F̂A(y) ≤ F̂B(y), there is nondominance in the samples, and, in such cases, we plainly
do not wish to reject the null of nondominance. This is clear in likelihood terms, since
the unconstrained probability estimates satisfy the constraints of the null hypothesis,
and so are also the constrained estimates.

If there is dominance in the samples, then the constrained estimates must be different
from the unconstrained ones, and the empirical loglikelihood maximised under the
constraints of the null is smaller than the unconstrained maximum value. In order to
satisfy the null, we need in general only one z in the interior of U such that FA(z) =
FB(z). Thus, in order to maximise the ELF under the constraint of the null, we begin
by computing the maximum where, for a given z ∈ Y ◦, we impose the condition that
FA(z) = FB(z). We then choose for the constrained maximum that value of z which
gives the greatest value of the constrained ELF.
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For given z, the constraint we wish to impose can be written as
∑

yA
t ∈Y A

pA
t I(yA

t ≤ z) =
∑

yB
s ∈Y B

pB
s I(yB

s ≤ z), (2)

where the I(·) are again indicator functions. If we denote by FK(pK ; ·) the cumu-
lative distribution function with points of support the yK

t and corresponding proba-
bilities the pK

t , then it can be seen that condition (2) imposes the requirement that
FA(pA, z) = FB(pB , z).

The maximisation problem can be stated as follows:

max
pA

t ,pB
s

∑

yA
t ∈Y A

nA
t log pA

t +
∑

yB
s ∈Y B

nB
s log pB

s

subject to
∑

yA
t ∈Y A

pA
t = 1,

∑

yB
s ∈Y B

pB
s = 1,

∑

yA
t ∈Y A

pA
t I(yA

t ≤ z) =
∑

yB
s ∈Y B

pB
s I(yB

s ≤ z).

The Lagrangian for this constrained maximisation of the ELF is

∑
t

nA
t log pA

t +
∑

s

nB
s log pB

s + λA

(
1−

∑
t

pA
t

)
+ λB

(
1−

∑
s

pB
s

)

−µ

(∑
t

pA
t I(yA

t ≤ z)−
∑

s

pB
s I(yB

s ≤ z)

)
,

with obvious notation for sums over all points in Y A and Y B , and where we define
Lagrange multipliers λA, λB , and µ for the three constraints.

The first-order conditions are the constraints themselves and the relations

pA
t =

nA
t

λA + µI(yA
t ≤ z)

and pB
s =

nB
s

λB − µI(yB
s ≤ z)

. (3)

Since
∑

t pA
t = 1, we find that

λA =
∑

t

λAnA
t

λA + µIt(z)
=

∑
t

nA
t

λA + µIt(z)
λA + µIt(z)

− µ
∑

t

nA
t It(z)

λA + µIt(z)

= NA − µ

λA + µ

∑
t

nA
t It(z) = NA − µ

λA + µ
NA(z), (4)

where It(z) ≡ I(yA
t ≤ z) and NA(z) =

∑
t nA

t It(z) is the number of points in sample A
less than or equal to z. Similarly,

λB = NB +
µ

λB − µ
NB(z) (5)
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with NB(z) =
∑

s nB
s Is(z). With the relations (3), the constraint (2) becomes

∑
t

It(z)
λA + µ

=
∑

s

Is(z)
λB − µ

, that is,
NA(z)
λA + µ

=
NB(z)
λB − µ

. (6)

Thus, adding (4) and (5), we see that

λA + λB = NA + NB = N, (7)

where N ≡ NA + NB .

If we make the definition ν ≡ λA + µ, then, from (7), λB − µ = N − λA − µ = N − ν.
Thus (6) becomes

NA(z)
ν

=
NB(z)
N − ν

. (8)

Solving for ν, we obtain

ν =
NNA(z)

NA(z) + NB(z)
. (9)

From (4), we see that

λA = NA −NA(z) +
λANA(z)
λA + µ

so that 1 =
NA −NA(z)

λA
+

NA(z)
λA + µ

. (10)

Similarly, from (5),

1 =
NB −NB(z)

λB
+

NB(z)
λB − µ

. (11)

Write λ ≡ λA, and define MK(z) = NK−NK(z). Then (10) and (11) combine with (6)
to give

MA(z)
λ

=
MB(z)
N − λ

. (12)

Solving for λ, we see that

λ =
NMA(z)

MA(z) + MB(z)
. (13)

The probabilities (3) can now be written in terms of the data alone using (9) and (13).
We find that

pA
t =

nA
t It(z)

ν
+

nA
t (1− It(z))

λ
and pB

s =
nB

s Is(z)
N − ν

+
nB

s (1− Is(z))
N − λ

. (14)

We may use these in order to express the value of the ELF maximised under constraint
as

∑
t

nA
t log nA

t +
∑

s

nB
s log nB

s

−NA(z) log ν −MA(z) log λ−NB(z) log(N − ν)−MB(z) log(N − λ). (15)
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Twice the difference between the unconstrained maximum (1), which can be written
as ∑

t

nA
t log nA

t +
∑

s

nB
s log nB

s −NA log NA −NB log NB ,

and the constrained maximum (15) is an empirical likelihood ratio statistic.

Using (9) and (13) for ν and λ, the statistic can be seen to satisfy the relation

1−
2
LR(z) = N log N −NA log NA −NB log NB + NA(z) log NA(z) + NB(z) log NB(z)

+MA(z) log MA(z) + MB(z) log MB(z)− (
NA(z) + NB(z)

)
log

(
NA(z) + NB(z)

)

−(
MA(z) + MB(z)

)
log

(
MA(z) + MB(z)

)
. (16)

We will see later how to use the statistic in order to test the hypothesis of nondomi-
nance.

3. The Minimum t Statistic

In Kaur, Prakasa Rao, and Singh (1994), a test is proposed based on the minimum of
the t statistic for the hypothesis that FA(z)−FB(z) = 0, computed for each value of z
in some closed interval contained in the interior of U. The minimum value is used as the
test statistic for the null of nondominance against the alternative of dominance. The
test can be interpreted as an intersection-union test. It is shown that the probability
of rejection of the null when it is true is asymptotically bounded by the nominal level
of a test based on the standard normal distribution. Howes (1993a) proposed a very
similar intersection-union test, except that the t statistics are calculated only for the
predetermined grid of points.

In this section, we show that the empirical likelihood ratio statistic (16) developed in
the previous section, where the constraint is that FA(z) = FB(z) for some z in the
interior of U, is locally equivalent to the square of the t statistic with that constraint
as its null, under the assumption that indeed FA(z) = FB(z).

Since we have assumed that the two samples are independent, the variance of F̂A(z)−
F̂B(z) is just the sum of the variances of the two terms. The variance of F̂K(z),
K = A,B, is FK(z)

(
1−FK(z)

)
/NK , where NK is as usual the size of the sample from

population K, and this variance can be estimated by replacing FK(z) by F̂K(z). Thus
the square of the t statistic is

t2(z) =
NANB

(
F̂A(z)− F̂B(z)

)2

NBF̂A(z)
(
1− F̂A(z)

)
+ NAF̂B(z)

(
1− F̂B(z)

) . (17)

Suppose that FA(z) = FB(z) and denote their common value by F (z). Also define
∆(z) ≡ F̂A(z) − F̂B(z). For the purposes of asymptotic theory, we consider the limit
in which, as N → ∞, NA/N tends to a constant r, 0 < r < 1. It follows that
F̂K(z) = F (z) + Op(N−1/2) and that ∆(z) = Op(N−1/2) as N →∞.
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The statistic (17) can therefore be expressed as the sum of its leading-order asymptotic
term and a term that tends to 0 as N →∞:

t2(z) =
r(1− r)

F (z)(1− F (z))
plim
N→∞

N∆2(z) + Op(N−1/2). (18)

It can now be shown that the statistic LR(z) given by (16) is also equal to the right-
hand side of (18) under the same assumptions as those that led to (18). The algebra
is rather messy, and so we state the result as a theorem.

Theorem 1

As the size N of the combined sample tends to infinity in such a way that
NA/N → r, 0 < r < 1, the statistic LR(z) defined by (16) tends to the right-
hand side of (18) for any point z in the interior of U, the union of the supports
of populations A and B, such that FA(z) = FB(z).

Proof: In Appendix.

Remarks:

It is important to note that, for the result of the above theorem and for (18) to hold, the
point z must be in the interior of U . As we will see in the next section, the behaviour
of the statistics in the tails of the distributions is not adequately represented by the
asymptotic analysis of this section.

It is clear that both of the two statistics are invariant under monotonically increasing
transformations of the measurement units, in the sense that if an income z is trans-
formed into an income z′ in a new system of measurement, then t2(z) in the old system
is equal to t(z′) in the new, and similarly for LR(z) .

Corollary

Under local alternatives to the null hypothesis that FA(z) = FB(z), where
FA(z) − FB(z) is of order N−1/2 as N → ∞, the local equivalence of t2(z)
and LR(z) continues to hold.

Proof:

Let FA(z) = F (z) and FB(z) = F (z) − N−1/2δ(z), where δ(z) is independent of N .
Then ∆(z) is still of order N−1/2 and the limiting expression on the right-hand side
of (18) is unchanged. The common asymptotic distribution of the two statistics now
has a positive noncentrality parameter.
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4. The Tails of the Distribution

Although the null of nondominance has the attractive property that, if it is rejected,
all that is left is dominance, this property comes at a cost, which is that it is impossible
to infer dominance over the full support of the distributions if these distributions are
continuous in the tails. This reinforces our earlier warning that non-rejection of the
literature’s earlier null hypotheses of dominance cannot be interpreted as implying
dominance. Moreover, and as we shall see in this section, the tests of nondominance
that we consider have the advantage of delimiting the range over which restricted
dominance can be inferred.

The nondominance of distribution A by B can be expressed by the relation

max
z∈U

FB(z)− FA(z) ≥ 0, (19)

where U is as usual the joint support of the two distributions. But if z− denotes the
lower limit of U , we must have FB(z−)−FA(z−) = 0, whether or not the null is true.
Thus the maximum over the whole of U is never less than 0. Rejecting (19) by a
statistical test is therefore impossible. The maximum may well be significantly greater
than 0, but it can never be significantly less, as would be required for a rejection of
the null.

Of course, an actual test is carried out, not over all of U , but only at the elements
of the set Y of points observed in one or other sample. Suppose that A is dominated
by B in the sample. Then the smallest element of Y is the smallest observation,
yA
1 , in the sample drawn from A. The squared t statistic for the hypothesis that

FA(yA
1 )− FB(yA

1 ) = 0 is then

t21 ≡
NANB(F̂ 1

A − F̂ 1
B)2

NBF̂ 1
A(1− F̂ 1

A) + NAF̂ 1
B(1− F̂ 1

B)
,

where F̂ 1
K = F̂K(yA

1 ), K = A,B; recall (17). Now F̂ 1
B = 0 and F̂ 1

A = 1/NA, so that

t21 =
NANB/N2

A

(NB/NA)(1− 1/NA)
=

NA

NA − 1
.

The t statistic itself is thus approximately equal to 1 + 1/(2NA). Since the minimum
over Y of the t statistics is no greater than t1, and since 1 + 1/(2NA) is nowhere near
the critical value of the standard normal distribution for any conventional significance
level, it follows that rejection of the null of nondominance is impossible. A similar,
more complicated, calculation can be performed for the test based on the empirical
likelihood ratio, with the same conclusion.

If the data are discrete, discretised or censored in the tails, then it is no longer impos-
sible to reject the null if there is enough probability mass in the atoms at either end
or over the censored areas of the distribution. If the distributions are continuous but
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are discretised or censored, then it becomes steadily more difficult to reject the null as
the discretisation becomes finer, and in the limit once more impossible. The difficulty
is clearly that, in the tails of continuous distributions, the amount of information con-
veyed by the sample tends to zero, and so it becomes impossible to discriminate among
different hypotheses about what is going on there. Focussing on restricted stochastic
dominance is then the only empirically sensible course to follow.

5. Restricted stochastic dominance and distributional rankings

There does exist in welfare economics and in finance a limited strand of literature that
is concerned with restricted dominance – see for instance Chen, Datt and Ravallion
(1994), Bishop, Chow, and Formby (1991) and Mosler (2004). One reason for this
concern is the suspicion formalised above that testing for unrestricted dominance is
too statistically demanding, since it forces comparisons of dominance curves over areas
where there is too little information (a good example is Howes 1993b). This insight is
interestingly also present in Rawls (1971)’s practical formulation of his famous “differ-
ence” principle (a principle that leads to the “maximin” rule of maximising the welfare
of the most deprived), which Rawls defines over the most deprived group rather than
the most deprived individual:

In any case, we are to aggregate to some degree over the expectations of the
worst off, and the figure selected on which to base these computations is to
a certain extent ad hoc. Yet we are entitled at some point to plead practical
considerations in formulating the difference principle. Sooner or later the capacity
of philosophical or other argument to make finer discriminations is bound to run
out. (Rawls 1971, p.98)

As we shall see below, a search for restricted dominance is indeed consistent with a
limited aggregation of the plight of the worst off.

A second reason is the feeling that unrestricted dominance does not impose sufficient
limits on the ranges over which certain ethical principles must be obeyed. It is often
argued for instance that the precise value of the living standards of those that are
abjectly deprived should not be of concern: the number of such abjectly deprived
people should be sufficient information for social welfare analysts. It does not matter
for social evaluation purposes what the exact value of one’s income is when it is clearly
too low. Said differently, the distribution of living standards under some low threshold
should not matter: everyone under that threshold should certainly be deemed to be
in very difficult circumstances. This comes out strongly in Sen (1983)’s views on
capabilities and the shame of being poor:

On the space of the capabilities themselves – the direct constituent of the stan-
dard of living – escape from poverty has an absolute requirement, to wit, avoid-
ance of this type of shame. Not so much having equal shame as others, but just
not being ashamed, absolutely. (Sen 1983, p.161)
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Bourguignon and Fields (1997) interpret this as
the idea that a minimum income is needed for an individual to perform ‘normally’
in a given environment and society. Below that income level some basic function
of physical or social life cannot be fulfilled and the individual is somehow excluded
from society, either in a physical sense (e.g. the long-run effects of an insufficient
diet) or in a social sense (e.g. the ostracism against individuals not wearing the
proper clothes, or having the proper consumption behavior). (Bourguignon and
Fields 1987, p.1657)

Such views militate in favour of the use of restricted poverty indices, indices that give
equal ethical weight to all those who are below a survival poverty line. The same views
also suggest an analogous concept of restricted social welfare.

To see this more precisely, consider the case in which we are interested in whether there
is more poverty in a distribution A than in a distribution B. Consider for expositional
simplicity the case of additive poverty indices, denoted as PA(z) for a distribution A:

PA(z) =
∫

π(y; z) dFA(y) (20)

where z is a poverty line, y is income, FA(y) is the cumulative distribution function for
distribution A, and π(y; z) ≥ 0 is the poverty contribution to total poverty of someone
with income y, with π(y; z) = 0 whenever y > z. This definition is general enough
to encompass many of the poverty indices that are used in the empirical literature.
Also assume that π(y; z) is non-increasing in y and let Z = [z−, z+], with z− and z+

being respectively some lower and upper limits to the range of possible poverty lines.
Then denote by Π1(Z) the class of “first-order” poverty indices that contains all of
the indices P (z), with z ∈ Z, whose function π(y; z) satisfies the conditions

π(y; z)

{ equals 0 whenever y > z,
is non-increasing in y,
and is constant for y < z−.

(21)

We are then interested in checking whether ∆P (z) ≡ PA(z)− PB(z) ≥ 0 for all of the
poverty indices in Π1(Z). It is not difficult to show that this can be done using the
following definition of restricted first-order poverty dominance:
(Restricted first-order poverty dominance)

∆P (z) > 0 for all P (z) ∈ Π1(Z) iff ∆F (y) > 0 for all y ∈ Z, (22)

with ∆F (y) ≡ FA(y)−FB(y). Note that (22) is reminiscent of the restricted headcount
ordering of Atkinson (1987). Unlike Atkinson’s result, however, the ordering in (22) is
valid for an entire class Π1(Z) of indices. Note that the Π1(Z) class includes discon-
tinuous indices, such as some of those considered in Bourguignon and Fields (1997), as
well as the headcount index itself, which would seem important given the popularity of
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that index in the poverty and in the policy literature. Traditional unrestricted poverty
dominance is obtained with Z = [0, z+].3

The indices that are members of Π1(Z) are insensitive to changes in incomes when
these take place outside of Z: thus they behave like the headcount index outside Z.
This avoids being concerned with the precise living standards of the most deprived –
for some, a possibly controversial ethical procedure, but unavoidable from a statistical
and empirical point of view. To illustrate this, let the poverty gap at y be defined as
g(y; z) = max(z− y, 0). For a distribution function given by F , the popular FGT (see
Foster, Greer and Thorbecke 1984) indices are then defined (in their un-normalised
form) as:

P (z;α) =
∫

g(y; z)αdF (y) (23)

for α ≥ 0. One example of a headcount-like restricted index that is ordered by (22) is
then given by:

P̃ (z) =
{

F (z−) when z ∈ [0, z−],
F (z) when z ∈ [z−, z+].

(24)

The formulation in (24) can be supported by a view that a poverty line cannot sensibly
lie below z−: anyone with z− or less should necessarily be considered as being in equally
abject deprivation. Alternatively, anyone with more than z+ cannot reasonably be
considered to be in poverty. Another more general example of a poverty index that is
ordered by (22) is:

P̃ (z; α) =

{
(z−)α

F (z−) when z < z−,
zαF (z−) +

∫ F (z)

F (z−)
g(y; z)α dF (y) when z ∈ [z−, z+].

(25)

P̃ (z;α) in (25) is the same as the traditional FGT index P (z; α) when all incomes below
z− are lowered to 0, again presumably because everyone with z− or less ought to be
deemed to be in complete deprivation. When z ≥ z−, the index in (25) then reacts
similarly to the poverty headcount for incomes below z−, since changing (marginally)
the value of these incomes does not change the index. For higher incomes (up to z+),
(25) behaves as the traditional FGT index and is strictly decreasing in incomes when
α > 0.

A setup for restricted social welfare dominance can proceed analogously, for example
by using utilitarian functions defined as

W =
∫

u(y) dF (y),

and by allowing u(y) to be strictly monotonically increasing only over some restricted
range of income Z. Verifying whether ∆F (y) > 0 for all y ∈ Z is then the corre-
sponding test for restricted first-order welfare dominance. Fixing Z = [0,∞[ yields
traditional first-order welfare dominance.4

3 See for instance Foster and Shorrocks (1988a).

4 See for instance Foster and Shorrocks (1988b).
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6. Testing restricted dominance

To test for restricted dominance, a natural way to proceed, in cases in which there is
dominance in the sample, is to seek an interval [ẑ−, ẑ+] over which one can reject the
hypothesis

max
z∈[ẑ−,ẑ+]

FB(z)− FA(z) ≥ 0. (26)

For simplicity, we concentrate in what follows on the lower bound ẑ−.

As the notation indicates, ẑ− is random, being estimated from the sample. In fact, it
is useful to conceive of ẑ− in much the same way as the limit of a confidence interval.
We consider a nested set of null hypotheses, parametrised by z−, of the form

max
z∈[z−,z+]

FB(z)− FA(z) ≥ 0, (27)

for some given upper limit z+. As z− increases, the hypothesis becomes progressively
more constrained, and therefore easier to reject. For some prespecified nominal level α,
one then defines ẑ− as the smallest value of z− for which the hypothesis (27) can be
rejected at level α by the chosen test procedure, which could be based either on the
minimum t statistic or the minimised empirical likelihood ratio. It is possible that
ẑ− = z+, in which case none of the nested set of null hypotheses can be rejected at
level α. With this definition, ẑ− is analogous to the upper limit β+ of a confidence
interval for some parameter β. Just as ẑ− is the smallest value of z− for which (27) can
be rejected, so β+ is the smallest value of β0 for which the hypothesis β = β0 can be
rejected at (nominal) level α, where 1−α is the desired confidence level for the interval.

The analogy can be pushed a little further. The length of a confidence interval is
related to the power of the test on which the confidence interval is based. Similarly,
ẑ− is related to the power of the test of nondominance. The closer is ẑ− to the
bottom of the joint support of the distributions, the more powerful is our rejection of
nondominance. Thus a study of the statistical properties of ẑ− is akin to a study of
the power of a conventional statistical test.

7. Testing the Hypothesis of Nondominance

We have at our disposal two test statistics to test the null hypothesis that distribu-
tion B does not dominate distribution A, the two being locally equivalent in some
circumstances. In what follows, we assume that, if the distributions are continuous,
they are discretised in the tails, so as to allow for the possibility that the null hypoth-
esis may be rejected. Empirical distribution functions (EDFs) are computed for the
two samples, after discretisation if necessary, and evaluated at all of the points yA

t and
yB

s of the samples. It is convenient to suppose that both samples have been sorted in
increasing order, so that yA

t ≤ yA
t′ for t < t′. The EDF for sample A, which we denote

by F̂A(·), is of course constant on each interval of the form [yA
t , yA

t+1[, and a similar
result holds for the EDF of sample B, denoted F̂B(·).
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Recall that we denote by Y the set of all the yA
t , t = 1, . . . , NA, and the yB

s ,
s = 1, . . . , NB . If F̂B(y) < F̂A(y) for all y ∈ Y except for the largest value of yB

s ,
then we say that B dominates A in the sample. The point yB

NB
is excluded from Y

because, with dominance in the sample, it is the largest value observed in the pooled
sample, and so F̂A(yB

NB
) = F̂B(yB

NB
) = 1. On the other hand, we do not exclude the

smallest value yA
1 , since F̂A(yA

1 ) = nA
1 /NA while F̂B(yA

1 ) = 0. Obviously, it is only
when there is dominance in the sample that there is any possible reason to reject the
null of nondominance.

When there is dominance in the sample, let us redefine the set Y ◦ to be Y without
the upper end-point Y B

NB
only. Then the minimum t statistic of which the square

is given by (17) can be found by minimising t(z) over z ∈ Y ◦. There is no loss of
generality in restricting the search for the maximising z to the elements of Y ◦, since
the quantities NK(z) and MK(z) on which (15) depends are constant on the intervals
between elements of Y ◦ that are adjacent when the elements are sorted. Thus the
element ẑ ∈ Y ◦ which maximises (15) can be found by a simple search over the
elements of Y ◦.

Since the EDFs are the distributions defined by the probabilities that solve the prob-
lem of the unconstrained maximisation of the empirical loglikelihood function, they
define the unconstrained maximum of that function. For the empirical likelihood test
statistic, we also require the maximum of the ELF constrained by the requirement of
nondominance. This constrained maximum is given by the ELF (15) for the value z̃
that maximises (15). Again, z̃ can be found by search over the elements of Y ◦.

The constrained empirical likelihood estimates of the CDFs of the two distributions
can be written as

F̃K(z) =
∑

yK
t ≤z

pK
t nK

t ,

where the probabilities pK
t are given by (14) with z = z̃. Normally, z̃ is the only

point in Y ◦ for which F̃A(z) and F̃B(z) are equal. Certainly, there can be no z for
which F̃A(z) < F̃B(z) with strict inequality, since, if there were, the value of ELF could
be increased by imposing F̃A(z) = F̃B(z), so that we would have ELF(z) > ELF(z̃),
contrary to our assumption. Thus the distributions F̃A and F̃B are on the frontier of
the null hypothesis of nondominance, and they represent those distributions contained
in the null hypothesis that are closest to the unrestricted EDFs, for which there is
dominance, by the criterion of the empirical likelihood.

For the remainder of our discussion, we restrict the null hypothesis to the frontier
of nondominance, that is, to distributions such that FA(z0) = FB(z0) for exactly one
point z0 in the interior of the joint support U , and FA(z) > FB(z) with strict inequality
for all z 6= z0 in the interior of U . These distributions constitute the least favourable
case of the hypothesis of nondominance in the sense that, with either the minimum
t statistic or the minimum EL statistic, the probability of rejection of the null is no
smaller on the frontier than with any other configuration of nondominance. This result
follows from the following theorem.
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Theorem 2

Suppose that the distribution FA is changed so that the new distribution is
weakly stochastically dominated by the old at first order. Then, for any z in
the interior of the joint support U, the new distribution of the statistic t(z) of
which the square is given by (17) and the sign by that of F̂A(z)−F̂B(z) weakly
stochastically dominates its old distribution at first order. Consequently, the
new distribution of the minimum t statistic also weakly stochastically domi-
nates the old at first order. The same is true for the square root of the statistic
LR(z) given by (16) signed in the same way, and its minimum over z. If FB

is changed so that the new distribution weakly stochastically dominates the
old at first order, the same conclusions hold.

Proof: In Appendix.

Remarks:

The changes in the statement of the theorem all tend to move the distributions in the
direction of greater dominance of A by B. Thus we expect that they lead to increased
probabilities of rejection of the null of nondominance. If, as the theorem states, the
new distributions of the test statistics dominate the old, that means that their right-
hand tails contain more probability mass, and so they indeed lead to higher rejection
probabilities.

We are now ready to state the most useful consequence of restricting the null hypothesis
to the frontier of nondominance.

Theorem 3

The minima over z of both the signed asymptotic t statistic t(z) and the
signed empirical likelihood ratio statistic LR1/2(z) are asymptotically pivotal
for the null hypothesis that the distributions A and B lie on the frontier of
nondominance of A by B, that is, that there exists exactly one z0 in the interior
of the joint support U of the two distributions for which FA(z0) = FB(z0),
while FA(z) > FB(z) strictly for all z 6= z0 in the interior of U .

Proof: In Appendix.

Remarks:

Theorem 3 shows that we have at our disposal two test statistics suitable for testing
the null hypothesis that distribution B does not dominate distribution A stochastically
at first order, namely the minima of t(z) and LR1/2(z). For configurations that lie
on the frontier of this hypothesis, as defined above, the asymptotic distribution of
both statistics is N(0, 1). By Theorem 2, use of the quantiles of this distribution as
critical values for the test leads to an asymptotically conservative test when there is
nondominance inside the frontier.
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It is clear from the remark following the proof of Theorem 1 that both statistics are
invariant under monotonic transformations of the measuring units of income.

The fact that the statistics are asymptotically pivotal means that we can use the
bootstrap to perform tests that should benefit from asymptotic refinements in finite
samples; see Beran (1988). We study this possibility by means of simulation experi-
ments in the next section.

8. Simulation Experiments

There are various things that we wish to vary in the simulation experiments discussed
in this section. First is sample size. Second is the extent to which observations are dis-
cretised in the tails of the distribution. Third is the way in which the two populations
are configured. In those experiments in which we study the rejection probability of var-
ious tests under the null, we wish most of the time to have population A dominated by
population B except at one point, where the CDFs of the two distributions are equal,
When we wish to investigate the power of the tests, we allow B to dominate A to a
greater or lesser extent.

Stochastic dominance to first order is invariant under increasing transformations of
the variable z that is the argument of the CDFs FA and FB . It is therefore without
loss of generality that we define our distributions on the [0, 1] interval. We always let
population A be uniformly distributed on this interval: FA(z) = z for z ∈ [0, 1]. For
population B, the interval is split up into eight equal segments, with the CDF being
linear on each segment. In the base configuration, the cumulative probabilities at the
upper limit of each segment are 0.03, 0.13, 0.20, 0.50, 0.57, 0.67, 0.70, and 1.00. This is
contrasted with the evenly increasing cumulative probabilities for A, which are 0.125,
0.25, 0.375, 0.50, 0.625, 0.75, 0.875, and 1.00. Clearly B dominates A everywhere
except for z = 0.5, where FA(0.5) = FB(0.5) = 0.5. This base configuration is thus
on the frontier of the null hypothesis of nondominance, as discussed in the previous
section. In addition, we agglomerate the segments [0, 0.1] and [0.9, 1], putting the full
probability mass of the segment on z = 0.1 and z = 0.9 respectively.

In Table 1, we give the rejection probabilities of two asymptotic tests, based on the
minimised values of t(z) and LR1/2(z), as a function of sample size. The samples
drawn from A are of sizes NA = 16, 32, 64, 128, 256, 512, 1024, 2048, and 4096. The
corresponding samples from B are of sizes NB = 7, 19, 43, 91, 187, 379, 763, 1531, and
3067, the rule being NB = 0.75NA − 5. The results are based on 10,000 replications.
Preliminary experiments showed that, when the samples from the two populations
were of the same size, or of sizes with a large greatest common divisor, the possible
values of the statistics were so restricted that their distributions were lumpy. For our
purposes, this lumpiness conceals more than it reveals, and so it seemed preferable to
choose sample sizes that were relatively prime.
The two test statistics turn out to be very close indeed in value when each is minimised
over z. This is evident in Table 1, but the results there concern only the tail of the
distributions of the statistics. In Figure 1, we graph P value plots for the two statistics,
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Table 1

NA α = 0.01 α = 0.01 α = 0.05 α = 0.05 α = 0.10 α = 0.10

tmin LRmin tmin LRmin tmin LRmin

16 0.001 0.000 0.005 0.005 0.013 0.017

32 0.000 0.000 0.004 0.004 0.017 0.015

64 0.001 0.001 0.009 0.010 0.026 0.030

128 0.003 0.003 0.021 0.021 0.048 0.047

256 0.001 0.006 0.033 0.033 0.070 0.069

512 0.010 0.010 0.039 0.039 0.082 0.082

1024 0.007 0.007 0.042 0.042 0.087 0.087

2048 0.010 0.010 0.043 0.043 0.087 0.087

4096 0.009 0.009 0.044 0.044 0.092 0.092

Rejection probabilities, asymptotic tests, base case, α = nominal level

over the full range from 0 to 1. See Davidson and MacKinnon (1998) for a discussion
of P value plots, in which is plotted the CDF of the P value for the test.
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Figure 1: P value plots for asymptotic tests
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Two sample sizes are shown: NA = 32 and NA = 256. In the latter case, it is hard
to see any difference between the plots for the two statistics, and even for the much
smaller sample size, the differences are plainly very minor indeed.

In the experimental setup that gave rise to Figure 1, it was possible to cover the
full range of the statistics, since, even when there was nondominance in the sample,
we could evaluate the statistics as usual, obtaining negative values. This was for
illustrative purposes only. In practice, one would stop as soon as nondominance is
observed in the sample, thereby failing to reject the null hypothesis.

It is clear from both Table 1 and Figure 1 that the asymptotic tests have a tendency to
underreject, a tendency which disappears only slowly as the sample sizes grow larger.
This is hardly surprising. If the point of contact of the two distributions is at z = z0,
then the distribution of t(z0) and LR1/2(z0) is approximately standard normal. But
minimising with respect to z always yields a statistic that is no greater than one
evaluated at z0. Thus the rejection probability can be expected to be smaller, as we
observe.

We now consider bootstrap tests based on the minimised statistics. In bootstrapping,
it is essential that the bootstrap samples are generated by a bootstrap data-generating
process (DGP) that satisfies the null hypothesis, since we wish to use the bootstrap in
order to obtain an estimate of the distribution of the statistic being bootstrapped under
the null hypothesis. Here, our rather artificial null is the frontier of nondominance, on
which the statistics we are using are asymptotically pivotal, by Theorem 3.

Since the results we have obtained so far show that the two statistics are very similar
even in very small samples, we may well be led to favour the minimum t statistic on
the basis of its relative simplicity. But the procedure by which the empirical likelihood
ratio statistic is computed also provides a very straightforward way to set up a suitable
bootstrap DGP. Once the minimising z is found, the probabilities (14) are evaluated
at that z, and these, associated with the realised sample values, the yA

t and the yB
s ,

provide distributions from which bootstrap samples can be drawn.

The bootstrap DGP therefore uses discrete populations, with atoms at the observed
values in the two samples. In this, it is like the bootstrap DGP of a typical resampling
bootstrap. But, as in Brown and Newey (2002), the probabilities of resampling any
particular observation are not equal, but are adjusted, by maximisation of the ELF,
so as to satisfy the null hypothesis under test. In our experiments, we used bootstrap
DGPs determined in this way using the probabilities (14), and generated bootstrap
samples from them. Each of these is automatically discretised in the tails, since the
“populations” from which they are drawn have atoms in the tails. For each bootstrap
sample, then, we compute the minimum statistics just as with the original data. Boot-
strap P values are then computed as the proportion of the bootstrap statistics that
are greater than the statistic from the original data.

In Table 2, we give results like those in Table 1, but for bootstrap tests rather than
asymptotic tests. For each replication, 399 bootstrap statistics were computed, Results
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Table 2

NA α = 0.01 α = 0.05 α = 0.10

32 0.001 0.018 0.051

64 0.003 0.033 0.082

128 0.006 0.049 0.104

256 0.013 0.053 0.106

512 0.010 0.049 0.102

1024 0.010 0.051 0.100

Rejection probabilities, bootstrap tests, base case, α = nominal level

are given only for the empirical likelihood statistic, since the t statistic gave results
that were indistinguishable.
It is not necessary, and it would have taken a good deal of computing time, to give
results for sample sizes greater than those shown, since the rejection probabilities are
not significantly different from nominal already for NA = 128.

In Figure 2, P value plots are given for NA = 32 and 128, for the asymptotic and
bootstrap tests based on the empirical likelihood statistic. This time, we show results
only for P values less than 0.5.
In the bootstrap context, if there is nondominance in the original samples, no boot-
strapping is done, and a P value of 1 is assigned. If there is dominance in the original
samples, an event which under the null has a probability that tends to one half as the
sample sizes tend to infinity, then bootstrapping is undertaken; each time the boot-
strap generates a pair of samples without dominance, since the bootstrap test statistic
would be negative, and so not greater than the positive statistic from the original sam-
ples, this bootstrap replication does not contribute to the P value. Thus a bootstrap
DGP that generates many samples without dominance leads to small P values and
frequent rejection of the null of nondominance.

From the figure, we see that, like the asymptotic tests, the bootstrap test suffers from
a tendency to underreject in small samples. However, this tendency disappears much
more quickly than with the asymptotic tests. Once sample sizes are around 100, the
bootstrap seems to provide very reliable inference. This is presumably related to the
fact that the bootstrap distribution, unlike the asymptotic distribution, is that of the
minimum statistic, rather than of the statistic evaluated at the point of contact of the
two distributions.
We now look at the effects of altering the amount of discretisation in the tails of the
distributions. In Figure 3 are shown P value plots for the base case with NA = 128,
for different amounts of agglomeration. Results for the asymptotic test are in the left
panel; for the bootstrap test in the right panel. It can be seen that, for the asymptotic
test, the rejection rate diminishes steadily with z− over the range [0.01, 0.10], where
the discretisation is performed for for z < z− and for z > 1 − z−. This behaviour is
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Figure 2: P value plots for asymptotic and bootstrap tests
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Figure 3: Varying amounts of discretisation; base case, NA = 128

entirely as expected, in accord with the discussion in Section 4. For values of z− in
the range 0.10 to 0.16, the P value plots are essentially identical.

With the bootstrap, dependence on the extent of discretisation is considerably less.
Indeed, for P values up to around 0.3, and z− greater than 0.03, the dependence is
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very slight. One point needs to be made, however, concerning the implementation of
the bootstrap DGP. Although for z− = 0.1 the phenomenon is not apparent, for much
smaller or much greater values of z−, the bootstrap DGP usually makes the CDFs
of the two bootstrap populations touch somewhere in one of the tails rather in the
middle of the distribution. This means that the bootstrap DGP is very different from
the true DGP, in such a way that there is almost always nondominance in the bootstrap
samples. Thus the bootstrap P value, as the proportion of bootstrap statistics greater
than the original one, is very close to zero. This undesirable feature can be avoided
by the simple trick of making the smallest and largest values in the set from which
the bootstrap samples are drawn just a little smaller or greater, respectively, than the
point of accumulation. Thus, for z− = 0.05 for instance, the smallest value in the set
for each sample is set equal to 0.045 rather than to 0.05, and the largest value is set
to 0.955 rather than to 0.95. More generally, the smallest and largest values are set to
0.9z− and 1− 0.9z− respectively.
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Figure 4: Alternative configurations, NA = 64, z− = 0.1

The base case we have considered so far is one in which B dominates A substantially
except at one point in the middle of the distribution. We now consider two other
configurations, the first in which the two distributions still touch in the middle, but
the dominance by B is less elsewhere. The cumulative probabilities at the upper limits
of the eight segments in this case are 0.1, 0.2, 0.3, 0.5, 0.6, 0.7, 0.8, and 1.0. The second
configuration has the two distributions touching twice, for values of z equal to 0.25
and 0.75. The cumulative probabilities are 0.10, 0.25, 0.35, 0.45, 0.55, 0.75, 0.85, and
1.00. Results are shown in Figure 4, with z− set to 0.1, and NA = 64 and NB = 43.
The tests are based on the minimum t statistic. As usual, the empirical likelihood
statistic gives essentially indistinguishable results.

For both configurations, all the tests are conservative, with rejection probabilities well
below nominal in reasonably small samples. In the second configuration, in which the
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distributions touch twice, the tests are more conservative than in the first configuration.
In both cases, it can be seen that the bootstrap test is a good deal less conservative
than the asymptotic one. However, in all cases, the P value plots flatten out for
larger values of P , because the P value is bounded above by 1 minus the proportion of
bootstrap samples in which there is nondominance. In these two configurations, the
probability of dominance in the original data, which is the asymptote to which the
P value plots tend, is substantially less than a half.

Another configuration that we looked at needs no graphical presentation. If both
populations correspond to the uniform distribution on [0, 1], rejection of the null of
nondominance simply did not occur in any of our replications. Of course, when the
distributions coincide over their whole range, we are far removed from the frontier of
the null hypothesis, and so we expect to have conservative tests.

We now turn our attention to considerations of power. Again, we study two con-
figurations in which population B dominates A. In the first, we modify our base
configuration slightly, using as cumulative probabilities at the upper limits of the seg-
ments the values 0.03, 0.13, 0.20, 0.40, 0.47, 0.57, 0,70, and 1.00. There is therefore
clear dominance in the middle of the distribution. The second configuration uses cu-
mulative probabilities of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 1.0. This distribution is
uniform until the last segment, which has a much greater probability mass than the
others.

In Figure 5, various results are given, with those for the first configuration in the
left-hand panel and for the second in the two right-hand panels. Both asymptotic and
bootstrap tests based on the minimum t statistic are considered, and z− is set to 0.1.
There is nothing at all surprising in the left-hand panel. We saw in Figure 2 that,
with the base configuration, the asymptotic test underrejects severely for NA = 32
and NB = 19. Here, the rejection rate is still less than the nominal level for those
sample sizes. With the base configuration, the bootstrap test also underrejects, but
less severely, and here it achieves a rejection rate modestly greater than the significance
level. For NA = 64 and NB = 43, the increased power brought by larger samples is
manifest. The asymptotic test gives rejection rates modestly greater than the level,
but the bootstrap test does much better, with a rejection rate of slightly more than
14% at a 5% level, and nearly 28% at a 10% level.
In the second configuration, power is uniformly much less. If we were to change
things so that the null of nondominance was satisfied, say by increasing the cumulative
probability in population B for z around 0.25, then the results shown in Figure 4
indicate that the tests would be distinctly conservative. Here we see the expected
counterpart when only a modest degree of dominance is introduced, namely low power.
Even for NA = 128, the rejection rate of the asymptotic test is always smaller than the
significance level. With the larger sample sizes of the right-hand panel, some ability
to reject is seen, but it is not at all striking with NA = 256. In contrast, the bootstrap
test has some power for all sample sizes except NA = 64, and its rejection rate rises
rapidly in larger samples, although rejection rates comparable to those obtained with
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Figure 5: Power curves, z− = 0.1

the first configuration with NA = 64 are attained only for NA somewhere between 256
and 512.

The possible configurations of the two populations are very diverse indeed, and so
the results presented here are merely indicative. However, a pattern that emerges
consistently is that bootstrap tests outperform their asymptotic counterparts in terms
of both size and power. They are less subject to the severe underrejection displayed by
asymptotic tests even when the configuration is on the frontier of the null hypothesis,
and they provide substantially better power to reject the null when it is significantly
false.

Conventional practice often discretises data, transforming them so that the distribu-
tions have atoms at the points of a grid. Essentially, the resulting data are sampled
from discrete distributions. A few simulations were run for such data. The results
were not markedly different from those obtained for continuous data, discretised only
in the tails. The tendency of the asymptotic tests to underreject is slightly less marked,
because the discretisation means that the minimising z is equal to the true (discrete)
z0 with high probability. However, the lumpiness observed when the two sample sizes
have a large greatest common divisor is very evident indeed, and prevents simulation
results from being as informative as those obtained from continuous distributions.

9. Illustration using LIS data

We now illustrate briefly the application of the above methodology to real data using
the Luxembourg Income Study (LIS) data sets5 of the USA (2000), the Netherlands
(1999), the UK (1999), Germany (2000) and Ireland (2000). The raw data are treated
in the same manner as in Gottschalk and Smeeding (1997), taking household income

5 See http://lissy.ceps.lu for detailed information on the structure of these data.
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to be income after taxes and transfers and using purchasing power parities and price
indices drawn from the Penn World Tables6 to convert national currencies into 2000
US dollars. As in Gottschalk and Smeeding (1997), we divide household income by
an adult-equivalence scale defined as h0.5, where h is household size. All incomes are
therefore transformed into year-2000 adult-equivalent US dollars. All household obser-
vations are also weighted by the product of household sample weights and household
size. Sample sizes are 49,600 for the US, 5,000 for the Netherlands (NL), 25,000 for
the UK, 10,900 for Germany (GE) and 2,500 for Ireland (IE).

This illustration abstracts from important statistical issues, such as the fact that the
LIS data, like most survey data, are actually drawn from a complex sampling structure
with stratification and clustering. Note also that negative incomes are set to 0 (this
affects no more than 0.5% of the observations), and that we ignore the possible presence
of measurement errors in the data.

Figure 6 graphs the P values of tests of the null hypothesis that FA(z) ≤ FB(z) against
the alternative that FA(z) > FB(z) at various values of z over a range of $1500 to
$7500, for various pairs of countries, and for both asymptotic and bootstrap tests.
(Distribution A is the first country that appears in the legends in the Figure.) In all
cases, bootstrap tests were based on 499 bootstrap samples. We set z− to $1500 and
z+ to $7500 since these two bounds seem to be reasonable enough to encompass most
of the plausible poverty lines for an adult equivalent ($1500 is also where we are able
to start ranking the UK and the US). The asymptotic and bootstrap P values are very
close for the comparisons of the US with either Germany or the UK. The bootstrap
P values are slightly lower than the asymptotic ones for the NL-US comparison and
somewhat larger for the US-IE one. These slight differences may be due to the smaller
NL and IE samples. Although the differences are not enormous, they are significant
enough to make bootstrapping worthwhile even if one is interested only in point-wise
tests of differences in dominance curves.
Figure 7 presents the results of similar tests but this time over intervals ranging
from $1500 to z+. The null hypothesis is therefore that FA(z) ≤ FB(z) for at least
some z in [$1500, z+] against the alternative that FA(z) > FB(z) over the entire range
[$1500, z+]. For the NL-US comparison, note first that F̂US(z) is always lower than
F̂NL(z) but that the difference between the two empirical distribution functions is small
for z between around $4800 to about $10000. Although it is therefore difficult to reject
the null hypothesis of nondominance for much of the range of z+ values, the bootstrap
P values are significantly lower than their asymptotic counterparts, as is to be ex-
pected, given the greater power of the bootstrap test procedure seen in the simulation
experiments. A similar result is found for a US-UK nondominance test. The US-GE
comparison yields very close asymptotic and bootstrap P values, and both procedures
would reject at a level of 5% the null hypothesis of nondominance of Germany over
the US for a range of approximately [$1500, $6750]. A US-IE test of nondominance

6 See Summers and Heston (1991) for the methodology underlying the computation of
these parities, and http://pwt.econ.upenn.edu/ for access to the 1999-2000 figures.
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Figure 6: P values for dominance at given points

generates bootstrap P values that are larger than the asymptotic ones. Again, this is
in contrast with the other comparisons, and it also brings back to mind that bootstrap
and asymptotic results can differ somewhat with small samples and tests covering the
tails of distributions.
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Figure 7: P values for restricted dominance over interval

Table 3 illustrates how the differences in the power of the asymptotic and bootstrap
tests can influence the ranges over which we may reject nondominance of UK over
the US. The P values of the first two reported tests are both equal to 5%, but the
asymptotic test is over the range Z = [$1550, $5577] and the bootstrap test is over
the wider range Z = [$1550, $5680]. Thus, using a bootstrap test extends by about
$100 the range Z of poverty lines over which we can declare – at a level of 5% – the
UK to have less poverty than the US for all of the poverty indices that belong to
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Π1(Z) (recall (23)), and it is therefore more powerful than the asymptotic test. A
similar result applies for a test level of 10%: the range over which we can reject that
Π1(Z) poverty is no lower in the UK is Z = [$1068, $5698] for the asymptotic test and
Z = [$1068, $5784] for the bootstrap test. Almost as importantly, given the prevalence
of the use of the poverty headcount index in policy and poverty analysis circles, the
bootstrap procedure extends the range of poverty lines over which we can confidently
and jointly declare the headcount to be lower in the UK than in the US.

Table 3

Type of tests Range of z P values

Asymptotic [$1550, $5577] 5%

Bootstrap [$1550, $5680] 5%

Asymptotic [$1068, $5698] 10%

Bootstrap [$1068, $5784] 10%

P values of four tests of the null hypothesis that the UK does not dominate the US

10. Discussion and Conclusions

In this paper, we have adopted the point of view that, if we really wish to demon-
strate statistically that the distribution of population B stochastically dominates that
of population A at first order, then it is appropriate to use a null hypothesis of non-
dominance, since, if we reject it, all that is left is dominance. However, we show that
is it impossible to reject this null at any conventional significance level if we have con-
tinuous distributions and use all the observations in samples drawn from them. With
discrete distributions, this problem does not necessarily arise, and indeed, in practice,
many investigators explicitly or implicitly discretise their samples by setting up a grid
of points and agglomerating observations in the samples on to atoms at the points of
the grid.

If we are ready in the case of continuous distributions to discretise in the tails of the dis-
tributions at least, and thus to search for restricted dominance, then we have seen that
it is easy to set up both asymptotic and bootstrap tests for the null of nondominance.
Note that such discretisation will also protect at least partially against measurement
errors and outliers in the tails of the distributions. We consider two seemingly differ-
ent statistics, one the minimum t statistic of KPS, the other an empirical likelihood
ratio statistic. We show that the two statistics typically take on very similar values in
practice, and that inference using one of them is indistinguishable from inference using
the other. The advantage of the empirical likelihood ratio statistic is that, in order
to compute it, we compute a set of probabilities that estimate the probabilities of the
populations under the hypothesis that they are at the frontier of nondominance, that
is, that they are such that there is dominance of A by B everywhere except at exactly
one point in the interior of the common support of the distributions.
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This fact makes it possible to use the bootstrap in order to estimate the distributions
of either one of the two statistics under data-generating processes that are on the
frontier of nondominance. In fact, we show that the statistics are asymptotically
pivotal on the frontier, so that we can expect that the bootstrap will provide more
reliable inference than the asymptotic distributions of the statistics. This turns out
to be the case in a selection of configurations that we study by means of simulation
experiments. Our preferred testing procedure is thus a bootstrap procedure, in which
the bootstrap samples are generated using the probabilities computed in the process of
evaluating the empirical likelihood ratio statistic. It does not seem to matter whether
the minimum t statistic or the likelihood ratio statistic is used.

Most of the literature on testing relations between a pair of distributions deals with
tests for which the null hypothesis is dominance. It is plausible to suppose that these
tests too can be dealt with by the methods of empirical likelihood, but it is less simple
to do so. For this sort of test, we do not reject the null of dominance unless there
is nondominance in the sample. In that case, we wish to find the distributions that
respect the null of dominance and are closest, by the criterion of the empirical like-
lihood, to the unrestricted estimates that exhibit nondominance. These distributions
must of course lie on the frontier of the null hypothesis. In general, however, it is not
enough to require that there should be just one point y ∈ Y at which the restricted
estimates coincide. In Wolak (1989), this matter is considered for the case of discrete
distributions, and it is shown that locating the pair of distributions on the frontier of
the null closest to a pair of sample distributions which display nondominance involves
the solution of a quadratic programming problem. Further, the asymptotic distribu-
tion of the natural test statistic, under a DGP lying on the frontier, is a mixture of
chi-squared distributions that is not as simple to treat as the standard normal asymp-
totic distributions found in this paper. It remains for future research to see whether
empirical likelihood methods, used with continuous distributions, can simplify tests
with a null of dominance.

In principle, the methods of this paper can be extended with no particular difficulty to
tests for second- and higher-order restricted dominance. We have not done so in this
paper because there do not seem to exist closed-form solutions, like (9) and (13), for
the Lagrange multipliers needed to solve the problem of maximising the ELF subject to
the relevant constraints. Numerical methods of solution should not be hard to develop,
but computing times would inevitably be longer. The empirical likelihood methods
of this paper could also prove useful for tests of the general intersection-union type,
for which, as in this paper, the null hypothesis is formulated as a union of multiple
hypotheses and the alternative is the intersection of the contraries of these multiple
hypotheses.

It also remains for future research to determine how the procedures described in this
paper can be used to test for dominance with dependent samples and dependent obser-
vations, for samples with complex sampling designs, and analogously to test for which
continuous ranges of parameter values (for instance, of equivalence scales, prices in-
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dices, behavioural elasticities) poverty, inequality or social welfare indices are larger
in one distribution than in another.

Appendix

Proof of Theorem 1:

For K = A,B, NK(z) = NK F̂K(z) and MK(z) = NK(1− F̂K(z)). Therefore

NK(z) log NK(z) + MK(z) log MK(z)
=NK log NK + NK

(
F̂K(z) log F̂K(z) + (1− F̂K(z)) log(1− F̂K(z))

)
. (28)

Further,

( ∑

K=A,B

NK(z)
)

log
( ∑

K=A,B

NK(z)
)

+
( ∑

K=A,B

MK(z)
)

log
( ∑

K=A,B

MK(z)
)

=

N log N +
( ∑

K=A,B

NK F̂K(z)
)

log
( ∑

K=A,B

NK

N
F̂K(z)

)
+

( ∑

K=A,B

NK(1− F̂K(z))
)

log
( ∑

K=A,B

NK

N
(1− F̂K(z))

)
(29)

From (16), we see that LR(z) is equal to twice the expression

∑

K=A,B

(
NK(z) log NK(z) + MK(z) log MK(z)−NK log NK

)
+ N log N

−
( ∑

K=A,B

NK(z)
)

log
( ∑

K=A,B

NK(z)
)

+
( ∑

K=A,B

MK(z)
)

log
( ∑

K=A,B

MK(z)
)

From (28) and (29), this expression can be written as

−
∑

K=A,B

NK F̂K(z) log
(NAF̂A(z) + NBF̂B(z)

NF̂K(z)

)

−
∑

K=A,B

NK(1− F̂K(z)) log
(N − (NAF̂A(z) + NBF̂B(z))

N(1− F̂K(z))

)
. (30)

Consider now the first sum in the above expression, which can be written as

−(
NAF̂A(z) + NBF̂B(z)

)
log

(
NAF̂A(z) + NBF̂B(z)

)

+NAF̂A(z) log NF̂A(z) + NBF̂B(z) log NF̂B(z). (31)
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Define ∆(z) ≡ F̂A(z) − F̂B(z). Then we see that NAF̂A(z) + NBF̂B(z) = NF̂B(z) +
NA∆(z). Making these substitutions lets us write expression (31) as

−(
NF̂B(z) + NA∆(z)

)(
log NF̂B(z) + log

(
1 +

NA∆(z)
NF̂B(z)

))

+NA(F̂B(z) + ∆(z))
(
log NF̂B(z) + log

(
1 + ∆(z)/F̂B(z)

))
+ NBF̂B(z) log NF̂B(z).

Taylor expanding up to second order in ∆(z) then gives

(−N + NA + NB)F̂B(z) log NF̂B(z)−NA∆(z) + 1−
2

N2
A∆2(z)

NF̂B(z)
−NA∆(z) log NF̂B(z)

−N2
A∆2(z)

NF̂B(z)
+ NA∆(z)− 1−

2

NA∆2(z)
F̂B(z)

+ NA∆(z) log NF̂B(z) +
NA∆2(z)

F̂B(z)
+ Op(N−1/2),

since, under our assumptions, NK = Op(N) and ∆(z) = OP (N−1/2). The term
independent of ∆(z) in the above expression and the terms linear in ∆(z) all cancel,
and so what remains is just a term of order unity and a remainder that tends to zero
as N →∞:

1−
2

NA(N −NA)∆2(z)
NF̂B(z)

+ Op(N−1/2) = 1−
2

NANB∆2(z)
NF̂B(z)

+ Op(N−1/2).

Since F̂B(z) = F (z) + Op(N−1/2), this expression is equal to NANB∆2(z)/2NF (z) to
the same order. An exactly similar calculation for the second line of (30) shows that,
to the same order of approximation, it is equal to NANB∆2(z)/2N(1 − F (z)). The
entire expression (30) is therefore

1−
2

NANB∆2(z)
N

( 1
F (z)

+
1

1− F (z)

)
= 1−

2

NANB∆2(z)
NF (z)(1− F (z))

+ Op(N−1/2). (32)

Finally, since NA/N → r as N →∞ and NB/N → 1− r, we see that the large-sample
limit of LR(z), which is twice that of (32), is

r(1− r)
F (z)(1− F (z))

plim
N→∞

N∆2(z),

which is the leading-order term on the right-hand side of (18), as required.

Proof of Theorem 2:

The proof relies on the following construction, based on that in the proof of Lemma 1
on page 84 of Lehmann (1986).

Consider two CDFs F1 and F2 defined on the real line such that F1 weakly stochasti-
cally dominates F2 at first order, and a random variable V distributed uniformly on
[0, 1]. As in Lehmann, define the quantile functions fi, i = 1, 2, by the relation

fi(y) = inf{x |Fi(x−) ≤ y ≤ Fi(x)}.

– 29 –



Clearly the fi are weakly increasing and such that fi

(
Fi(x)

) ≤ x and Fi

(
fi(y)

) ≥ y
for all real x and y for which the functions are defined. In addition, the inequalities
fi(y) ≤ x and y ≤ Fi(x) are equivalent. Thus

Pr
(
fi(V ) ≤ x

)
= Pr

(
V ≤ Fi(x)

)
= Fi(x),

so that the random variable fi(V ) has CDF Fi. Since F1(x) ≤ F2(x) for all real x
by the hypothesis of weak stochastic dominance, it follows that f1(y) ≥ f2(y) for all
real y.

Let {ui}, i = 1, . . . , N be a sequence of IID “random numbers”, each distributed
uniformly on [0, 1]. These random numbers can generate two IID random samples,
Y ≡ {yi} and Z ≡ {zi}, i = 1, . . . , N , with yi = f1(ui) and zi = f2(ui). The sample
{yi} is a sample drawn from the distribution F1, while {zi} is drawn from F2. Since
f1(u) ≥ f2(u) for all u, the EDF of Y stochastically dominates that of Z at first order.

Consider now two random samples of N IID draws, generated by the same set of
random numbers, the first from distribution FA, the second from a new distribution F ′A
that is weakly stochastically dominated by FA. The above result demonstrates that
the EDF F̂A of the first sample is nowhere greater than the EDF F̂A′ of the second.

We show below that the square root statistics t(z) and LR(z) defined in the statement
of the theorem are non-decreasing functions of F̂A(z) for all z. Thus, for each z,
t(z) ≤ t′(z) where t(z) is the statistic computed using the first sample and t′(z) is that
computed using the second sample. It follows that the minimum statistic for the first
sample, t∗ say, is no greater than the minimum statistic t′∗ for the second sample.

Let U denote the set of random numbers {ui} for which t′∗ ≤ x for a given real value x.
Then t∗ ≤ x for all sets of random numbers in U . Thus Pr(t∗ ≤ x) ≥ Pr(t′∗ ≤ x),
which means that the distribution of t′∗ weakly stochastically dominates that of t∗, as
stated by the theorem.

The same arguments apply to the minimum LR statistic, and also to changes in FB

as described in the statement of the theorem, since, as seen below, t(z) and LR(z) are
non-increasing functions of F̂B(z).

We compute the derivative with respect to F̂A(z) of t(z) as given by the square root
of expression (17). This square root can be written in the form

C
x− y

(
x(1− x) + k

)1/2
(33)

where x = F̂A(z), y = F̂B(z), k = (NA/NB)F̂B(z)(1 − F̂B(z)), and C is a positive
constant. The derivative of expression (33) with respect to x is C times

2x(1− x) + 2k − (x− y)(1− 2x)

2
(
x(1− x) + k

)3/2
.
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This expression is certainly positive unless x−y and 1−2x have the same sign. Suppose
first that x ≤ 1/2 and x− y > 0. Then, since y ≥ 0, x ≥ x− y and so

2x(1− x)− (x− y)(1− 2x) ≥ 2x(1− x)− x(1− 2x) = x ≥ 0.

Similarly, if x ≥ 1/2 and x− y < 0, we see that |x− y| ≤ 1− x. Then

2x(1− x)− (y − x)(2x− 1) ≥ 2x(1− x)− (1− x)(2x− 1) = 1− x ≥ 0.

Thus the derivative is positive in all cases. The proof that the derivative of t(z) with
respect to F̂B(z) is negative is exactly similar.

The statistic LR(z) is given by twice the expression (30). The first line of (30) is in
turn equal to (31), of which the derivative with respect to F̂A(z) is

−NA log
(
NAF̂A(z) + NBF̂B(z)

)−NA + NA log NF̂A(z) + (NA/N)N

= −NA log
(
1− NB∆(z)

NF̂A(z)

)
.

Since NB/(NF̂A(z)) is positive, this expression has the same sign as ∆(z). Similarly,
the derivative of the second line of (30) with respect to F̂A(z) is

NA log
(
1 +

NB∆(z)
N(1− F̂A(z))

)
,

of which the sign is also the same as that of ∆(z). Since the square root statistic is
defined to have the same sign as ∆(z), its derivative with respect to F̂A(z) is everywhere
nonnegative. This completes the proof.

Proof of Theorem 3:

Under the restricted null hypothesis of the statement of the theorem, the statistic
t(z0) is distributed asymptotically as N(0, 1). The probability that t(z0) ≤ z1−α,
where z1−α is the (1 − α) quantile of N(0, 1), therefore tends to 1 − α as N → ∞.
The probability that the minimum over z ∈ Y ◦ of t(z) is less than z1−α is therefore
no smaller than 1 − α asymptotically. Thus the probability of rejecting the null of
nondominance on the basis of the minimum of t(z) is no greater than α. This is the
standard intersection-union argument used to justify the use of the minimum of t(z)
as a test statistic.

In Theorem 2.2 of KPS, it is shown that, if the distributions A and B belong to the
restricted null hypothesis, then the probability of rejecting the null is actually equal
to α asymptotically. We conclude therefore that the asymptotic distribution of the
minimum of t(z) is N(0, 1). Since this is a unique distribution, it follows that this
statistic is asymptotically pivotal for the restricted null. The local equivalence of t(z)
and LR1/2(z) shown in Theorem 1 then extends the result to the empirical likelihood
ratio statistic.
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