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ABSTRACT 
  

Testing Exclusion Restrictions at Infinity  
in the Semiparametric Selection Model 

 
The control function in the semiparametric selection model is zero at infinity. This paper 
proposes additional restrictions of the same type and shows how to use them to test 
assumed exclusion restrictions necessary for root N estimation of the model. The test is 
based on the estimated control function and its derivative and takes the form of a GMM step 
that occurs at infinity. Alternative estimation of the parameters are proposed which do not rely 
on exclusion restrictions, extending available results for the estimation of the intercept at 
infinity. Simulations are implemented. 
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The basic modelization of the sample selection model involves a linear
output equation where a variable y�i is explained by exogenous variables
xi : y

�
i = xi�+ui and a selection variable s

�
i also modelized in the linear

form as s�i = zi� + vi: Observations obey the selection rule yi = y�i ;
Ii = 1 for s�i > 0 and Ii = 0 for s�i � 0: Traditional assumptions for
this model are that explanatory variables are independent from random
unobserved terms. The idea to derive the theoretical expression of the
conditional mean of the dependent variable subject to the selection rule
and to use it in estimation was �rst due to Heckman (1979). When
the joint distribution of unobserved terms is normal, the expectation of
the output variable conditional to explanatory variables and selection
is E (yi jxi; zi; Ii = 1) = xi� + ��u �� (zi�) : One important drawback of
this formalization is that it requires to specify the joint distribution of
unobserved terms. It has been documented in several papers (Arabmazar
and Schmidt (1982)) that assuming normal distributions could lead to
serious bias in estimation. Some important generalizations were due to
Lee (1982,1983) showing that it is possible to depart from normality, for
example when assuming other distributions for the unobserved terms. A
second generalization of this model was more drastic and showed that
under general conditions the Heckman equation can be extended to write
as

E (yi jxi; zi; Ii = 1) = xi� +K (zi�) (1)

where

K (zi�)P (zi�) =

Z
v>�zi�

uf (u; v) dudv (2)

and P (zi�) = P (zi�+ vi > 0) = P (Ii = 1 jzi ) : Estimation of this
model is possible following di¤erent routes. Robinson (1988) proposes to
�rst compute the residuals of the nonparametric regression of the depen-
dent and explanatory variables on the score function and then to proceed
to a simple regression using these residuals instead of the variables them-
selves. One other important and appealing estimation method is due to
Newey (1988) and consists in using a series expansion of the function
K: Both estimation methods allow to recover, under assumptions, root
N consistent and asymptotically normal estimators of the parameters.
Further results for extended cases including endogeneity of regressors
are available in Das, Newey and Vella (2003).
It is well known that the semiparametric sample selection model suf-

fers from an apparent lack of identi�cation, and the implementation of
the previous methods of Robinson or Newey requires that some variables
are excluded from the regression. However this lack of identi�cation is
only apparent as shown in Chamberlain (1986). The semiparametric
control function satis�es the property that its limit at in�nity is zero.
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As shown by Chamberlain this is enough to identify the model. Such a
property has already been used to estimate the intercept of the model
(Heckman (1990), Andrews and Schafgans (1998)) which is important
in the evaluation literature. However it has not been investigated to
what extent properties at in�nity of the control function allow either to
test exclusion restrictions or to directly estimate the parameters of the
model empirically. Although the Chamberlain property is theoretically
enough, this paper shows that under mild assumptions the control func-
tion satis�es additional restrictions at in�nity that can be useful for such
a purpose. For exemple, it is shown that under some mild conditions, the
derivative of the control function is also zero at in�nity, which provides
an intuitively appealing identifying restriction.

1 Exclusion restriction and misspeci�cation

Consider the sample selection model in which a variable

y�i = xi� + ui (3)

x = (x1; : : : ; xK) and a selection variable

s�i = xi�+ vi (4)

de�ne observations

yi= y
�
i ; Ii = 1 for s

�
i > 0 (5)

Ii = 0 for s�i � 0

and assume independance

l (ui; vi jxi ) = l (ui; vi) (6)

Under this assumption, there exists an unknown function K of the score
function s = x�; such that the output equation for the sample selection
models writes as

E (y jx1; : : : ; xK ; s; I = 1) = �0 + x1�1 + � � �+ xK�K +K (s) (7)

The function K is simply K (s) = E (u jv > �s) : However it is usual
to exclude some variables from the list of regressors (x1; : : : ; xK) as well
as the intercept. Indeed, in the speci�cation of equation (7) it would
be possible to add a linear function of s to K and to substract it from
x�: For exemple we may want to exclude the intercept and the variables
x1; : : : ; xk: This would lead to another speci�cation

E (y jx1; : : : ; xK ; s I = 1) = xk+1
k+1 + � � �+ xK
K + eK (s) (8)

These two speci�cations are linked under a compatibility condition:
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Proposition 1 Under the compatibility condition

�1=�1 = � � � = �k=�k (9)

there exist two additional parameters �0; and �1; the missing intercept
and the missing slope, such that the sample selection equation (7) and
the speci�cation with exclusion (8) are linked through

eK (s)=K (s) + �0 + �1s (10)


l= �l � �1�l; l = k + 1; � � �K (11)

With

�1= �1=�1 = � � � = �k=�k (12)

�0= �0 � �0�1

Proof. Consider the selection equation

E (y jx1; : : : ; xK ; s; I = 1)= �0 + x1�1 + � � �+ xK�K +K (s)
= �0 + x1�1 + � � �+ xK�K � �0 � �1s+K (s) + �0 + �1s

given s = x�; �0 + x1�1 + � � � + xK�K � �0 � �1s can be written as

0 + x1
1 + � � �+ xK
K with


0= �0 � �0 � �1�0

l=

�
�l � �1�l

�
excluding the intercept and x1; : : : ; xk require 
0 = 
k = 0 which in turn
require the compatibility relation imposed and give the values of �0 and
�1:
This result shows that when the function K is left unrestricted dif-

ferent parameters and control functions give identical expectations in
equation (7). Identi�cation is usually achieved by identifying the con-
trol function up to a constant and excluding one or more variables from
the list of the explanatory variables of the output equation. Indeed, if
for a variable x1 such that �1 6= 0; it is assumed that the true value
of the parameter is �1 = 0; then from equation (12) �1 = 0; and thus,
using equation (11), 
l = �l: However, when exclusion restrictions are
misconceived, the control function in the restricted speci�cation and the
parameters 
 do not coincide with the true values.
Proposition 1 also shows that when the functionK is left unrestricted

it is not possible to test exclusion restrictions. Some speci�cation testing
is however possible when k > 1 variables are excluded, but it is a com-
patibility test and not the validity of the assumed exclusion. Namely, in
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the case of k > 1 excluded variables; the compatibility condition (9) can
be tested by a usual GMM overidenti�cation restriction when the model
is estimated using series:

9 
k+1; : : : ; 
K ; �0; �1; : : : ; �M such that

E
��
y � 
k+1xk+1 � 
KxK � �0 � �1s� � � � � �MsM

� �
x; 1; s2; � � � sM

��
= 0

To avoid complications associated with multiple exclusion restric-
tions, we now consider the case where only one variable and the intercept
have been excluded to achieve identi�action:

E (y jx1; : : : ; xK ; s I = 1) = x2
2 + � � �+ xK
K + eK (s) (13)

The parameters (
2; : : : ; 
K) and the function eK (s) are identi�ed.
Chamberlain (1986) shows that although it is not possible to obtain
root N consistent estimates of the true value of the parameters without
exclusion restriction, this does not means that the model is not identi-
�ed. Under a very mild assumption the function K satis�es a property
at in�nity that the function eK (s) with one variable excluded will not,
o¤ering a way to identify both the missing intercept �0 and the missing
slope �1.

Proposition 2 (From Chamberlain 1986) Assumes E (juj) < 1; then
lim
s!1

K (s) = 0: If s has an unbounded support then �1 and �0 are iden-

ti�ed.

Consider imposing the Chamberlain restriction:

lim
s!1

K (s) = 0

Using equation (10) we clearly have

lim
s!1

� eK (s)� ��1s+ �0�� = lim
s!1

K (s) = 0

If the support of s is unbounded then we can identify

lim
s!1

eK (s) =s = �1
and

lim
s!1

eK (s)� �1s = �0
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2 Additional identifying restrictions at in�nity

The idea to use the property of the control function at in�nity to esti-
mate the intercept of models has already been developed by Heckman
(1990) and Andrews and Schafgans (1998). However it has not been in-
vestigated how to use it to test exclusion restrictions or to estimate the
model without exclusion restrictions. For such a purpose it may be of
interest to have additional identifying restrictions. It is possible to show
that under mild conditions the moments at ini�nity of the function and
the score and the moments at in�nity of the derivative of the control
function and the score are zero.

Proposition 3 Assume that for one k; E
���uvk��� exists then the func-

tion K (s) satis�es
lim
s!1

skK (s) = 0 (14)

Proof. We concentrate on

H (s) =

Z
v>�s

uf (u; v) dudv

We have K (s) = H (s) =P (s) ; with P (s) = P (v > �s) : As limP (s) =
1 for s!1; skK (s) � skH (s) : As

E (u) = 0

we have Z
v>�s

uf (u; v) dudv +

Z
v<�s

uf (u; v) dudv = 0

Thus

H (s) = �
Z
v<�s

uf (u; v) dudv

and therefore��skH (s)��= ����sk Z
v<�s

uf (u; v) dudv

���� < Z
v<�s

��sku�� f (u; v) dudv
<

Z
v<�s

��vku�� f (u; v) dudv
for s > 0. As the integral

R ��vku�� f (u; v) dudv exists, we deduce that��skH (s)��! 0 when s! +1
Additional useful restrictions can be obtained on the derivative of

the function at in�nity:
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Proposition 4 Assume that for one k, E
��vku�� < +1; and fv the den-

sity of v is bounded, then

lim
s!+1

skK 0 (s) = 0 (15)

Proof. Here also we can concentrate on H (s) :

K 0 (s) =
H 0 (s)

P (s)
�K (s) P

0
(s)

P (s)

asE
��vku�� < +1; lim skK (s) = 0; given P (s) = R

v>�s fv (v) dv; P
0 (s) =

fv (�s) : fv is bounded, thus P 0 (s) is also bounded. Thus, as lim
s!+1

P (s) =

1, lim
s!+1

skK (s) P
0
(s)

P (s)
= 0:

As

H (s) =

Z
v>�s

uf (u; v) dudv

we clearly have

H 0 (s) =

Z
uf (u;�s) du

thus ��skH 0 (s)
�� � Z jsujk f (u;�s) du = g (s)

as
R ��uvk�� f (u; v) dudv = R

juj
��sk�� f (u;�s) duds = R

g (s) ds exists,
lim
s!1

g (s) = 0 and thus lim
s!1

��skH 0 (s)
�� = 0

It is interesting before turning to estimation to look at the empirical
content of such restrictions. In section 4, the case of a two variables
model with coe¢ cient 1 is considered. In the simulations both variables
enter the selection equation with a coe¢ cient 1 and the variance of the
random term is set to 1. Figure 1 reports the graphs of the functions eK
and eK 0 as they are estimated from simulated data (see section 4) when
one variable in the model has been excluded to achieve identi�cation.
Two polar cases are considered. In the �rst one the two errors are
distributed as Student distributions (with �ve degrees of freedom for
both variables), in the second case they are distributed as �2 (with 2
and 10 degrees of freedom for the output and selection equations): In
both cases the coe¢ cients are biased, as �1 = 1 and �0 = 0: As can be
seen clearly from the graphs, the estimated functions are upward sloping
for observations with high value of the score. Similarly the derivative eK 0

is clearly non zero, and in fact approaches 1. As can be seen this relation
is detected for large share of the sample. The function is regularly sloping
starting the 60thquantile.
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Figure 1: Estimated control function and its derivative. Quantiles of
order 0.60, 0.75, 0.85, 0.92 and 0.96 of the score function are reported.
U1 and Us are the unobserved terms in the output equation and the
selection equation
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3 Estimation: generalizing Heckman and Andrews/Schafgans
estimators

There are di¤erent ways to use the previous restrictions in an estimation
procedure or to provide a test of exclusion restrictions. A �rst possibility
is to estimate the linear model for observations with high values of the
score function. The idea is that for high values of the score, the control
function and the explanatory variables are not correlated. This is ap-
pealing at it does not impose the estimation of the control function and
its derivative. This has however some drawbacks as it is necessary to
make speci�c assumptions to extend non correlation between the score
and the control function at in�nity to non correlation between explana-
tory variables and the control function.1

Another possibility to use the previous constraints is to estimate
the parameters �1 and �0 after the model has been estimated using
an exclusion restriction. Heckman(1990) and Andrews and Shchafgans
(1998) estimate the intercept of a model by taking the average of the
control function for high values of the score. Here, a natural way to
recover the missing slope parameter is to consider the average value of
the derivative of the control function at in�nity. From this estimation it
is possible to test the exclusion restriction and when rejected to correct
the initial estimates to recover consistent estimator for the whole set of
parameters. One imporant characteristic of the data required is that the
distribution fo the score in the selected sample has a su¢ cently fat right
tail.
Consider the model of equation (7) and assume that the two restric-

tions

limK (s)= 0

limK 0 (s)= 0

hold. These restrictions implies that

lim
s0!1

E (K (s) js > s0 )= limK (s) = 0 (16)

lim
s0!1

E (K 0 (s) js > s0 )= limK 0 (s) = 0 (17)

Assume that a variable x1 has been excluded to achieve identi�cation,
then the model writes as in equation (13), and it can be estimated using
series estimators, that is the linear model that includes powers of s as

1Namely E (x0K (s) js > s0 ) = E (E (x0 js )K (s) js > s0 ) : It is necessary to make
an assumption of the form �there exists a constant 
 and a threshold s such that for
each explanatory variable E (jxkj js ) < s
 for s > s and E (juj jvj
) <1":
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additional regressors. This allows to estimate the coe¢ cients 
l for l > 1
and the unknown function eK: Consider now the previous restrictions.
Using equation (10), they clearly rewrites as

lim
s0!1

E
�� eK (s)� ��1s+ �0�� js > s0�= limK (s) = 0
lim
s0!1

E
�� eK 0 (s)� �1

�
js > s0

�
= limK 0 (s) = 0

These moment conditions can be used to estimate the parameters �1

and �0: More generally if lim slK (s) = 0 for l � l0 and lim slK 0 (s) = 0
for l < l1; the missing intercept and the missing slope can be estimated
using the set of moment conditions at in�nity:

lim
s0!1

E
�
sl
� eK (s)� �0 + �1s� js > s0�=0 for l = 0; : : : ; l0

lim
s0!1

E
�
sl
� eK 0 (s)� �1

�
js > s0

�
=0 for l = 0; : : : ; l1

More precisely, consider the following estimation procedure.

1. Estimation of the selection equation, using a semiparametric esti-
mation method. The corresponding estimator b� of � will be root
N consistent.2

2. Estimation of the output equation excluding one variable, say x1
for which �1 6= 0 using series:

yi = exi
 + PN�N + vi
where exi = (x2i; : : : ; xKi) and P = (P0 (s) ; P1 (s) ; : : : ; PdN (s)) is a
set of polynomial functions of the score of maximum degree grow-
ing with the sample size. This yield root N estimations for the
coe¢ cients 
; and estimates b�N : From this estimation, it is possi-
ble to recover an estimation of the selection function eK; as well as
its derivative: beK = Pb�; beK 0

= Pdb�
where Pd is the matrix of the derivative of the polynomial function
in P:3

2Accounting for the distribution of this estimator is important in general. For
example it plays an important role in the distribution of the semiparametric estima-
tion of the slope parameters 
: However, as the parameters obtained in the end are
not root N consistent, for these parameters, the variance of this �rst step estimation
is not important. This appears clearly in the distribution result of Andrews and
Schafgans.

3It is also possible to recover the in�uence function for � :
p
N
�b� � p lim �� �

N�1=2P �i which is important to compute standard errors of the parameters or to
implement optimal GMM in the next step.
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3. Estimation of �1 and �0 using a GMM step solving

argmin










0BB@z

�beK (s)� ��1s+ �0�� 1 (s > s0)
zd

�ceK 0 (s)� �1
�
1 (s > s0)

1CCA









2

S

where z0i =
�
1; : : : ; sl0i

�
and z0di =

�
1; : : : ; sl1i

�
:

If the selected observations s > s0 were the same independently of
the sample size, the optimal metric for this GMM step would be
S� the inverse of the variance matrix of orthogonality conditions.4

The variance of the corresponding estimator would be as usual
V = (G0S�G)�1 ; where G is the expectation of the gradient. The
variance matrix can be estimated replacing expectation by sample
means and parameters by their estimated values:

p
N bV �0:5 �b�� �� N (0; I2)

However the selected observations s > s0 depend on the sample
size and it is the reason why the estimator is not root N consistent.

Remark 1 (a) As in Andrews and Schafgans, instead of the func-
tion 1 (s > s0 (N)) it is possible to introduce a smoother func-
tion:

S (s� s0) = 1 (0 < s� s0 < 1)�
�
1� exp � (s� s0)

1� (s� s0)

�
+1 (1 < s� s0)

(18)

(b) Both Andrews and Schafgans and Heckman base their estima-
tor of the intercept on

(yi � xib
 � �0)S (s� s0) = 0
where b
 is a consistent estimator of the parameter 
: The K
function is not considered explicitly. In our case where we

4This matrix writes as

S� = V

0@z1 (s > s0)
� eK �

�
�1s+ �0

��
+ E (z1 (s > s0)P

0) �

zd1 (s > s0)
� eK 0 � �1

�
+ E (zd1 (s > s0)P

0
d) �

1A�1

which accounts for estimation errors in the function eK and eK 0.

11



also want to recover the missing slope parameter, the model
could have been estimated in a similar way using0B@ (yi � xib
 � �0 � �1s)S (s� s0)

...
(yi � xi
 � �0 � �1s) skS (s� s0)

1CA = 0

In the application, we have considered instead an estimation
method based on an estimation of the eK function, because we
also want to account for constraints on the derivative of K:

4. Test of H0 : �1 = 0: Under H0q
N bV �1 j11b�1  N (0; 1)

5. Final estimation of the parameters: if H0 is accepted, b
 is kept:
In this case estimator are root N consistent. If H0 is rejected then
estimates can be corrected according to

b�k = b
k + b�1b�k
In this case estimators are not root N consistent and the distri-
bution of 
 and � can be neglected: Only the variance of b�1 is
needed.

4 Simulation results

The selection model considered has two explanatory variables

y�i = �0 + x1i�1 + x2i�2 + ui

I�i =�0 + x1i�1 + x2i�2 + usi

The variables x1 and x2 are chosen to be independent and normally
distributed with mean 0 and variance 1: The values of the parameters of
the selection equations are supposed to be known in order to concentrate
on the identi�cation and estimation of the slope parameters of the output
equation. The values chosen for � are �0 = 0; �1 = �2 = 1:We consider
two cases. In a �rst case the value of the parameters are �0 = 0 and
�1 = �2 = 1; while in a second one they are �0 = 0 and �1 = 0 and
�2 = 1: The variance of random terms is 1 so that the R2 is 2=3 on the
whole sample when �1 = 1: As selectivity introduces heteroskedasticity,
the R2 in the selected sample is di¤erent from the R2 in the whole
sample. In practice it is lower, between 0.5 and 0.6. The random terms

12



Output Selection
(U1; US) � � skw kur � � skw kur rho %sel
(N,N) 0.00 1.00 0.00 0.00 0.00 1.00 0.00 -0.01 0.90 0.50
(S,N) 0.00 1.00 0.00 4.77 0.00 1.00 0.00 0.00 0.89 0.50
(�2,N) 0.00 1.00 1.98 5.82 0.00 1.00 0.00 0.00 0.81 0.50
(N,S) 0.00 1.00 0.00 0.00 0.00 1.00 -0.01 4.75 0.89 0.50
(S,S) 0.00 1.00 0.01 4.71 0.00 1.00 0.00 4.70 0.89 0.50
(�2,S) 0.00 1.00 1.99 5.85 0.00 1.00 -0.02 4.72 0.81 0.50
(N,�2) 0.00 1.00 0.00 0.00 0.00 1.00 0.89 1.18 0.88 0.49
(S,�2) 0.00 1.00 -0.02 4.41 0.00 1.00 0.88 1.15 0.96 0.49
(�2,�2) 0.00 1.00 1.99 5.95 0.00 1.00 0.89 1.20 0.87 0.49

Table 1: Distributional characteristics of errors : � is the mean, � the
standard error, skw the skewness and kur the kurtosis

are simulated using di¤erent distributions: Normal, Student (with �ve
degrees of freedom for both variables) and �2 (with respectively 2 and
10 degrees of freedom for u and us). In each case the mean and variance
are adjusted. These distributions have been chosen because they exhibit
important Skewness and Kurtosis. In practice the data have been drawn
in the following way :

1. Generate random normal variables u (1) and us (1) with correlation
0:9:

2. Compute u (2) = F�1� (u (1)) and us (2) = F�1s � (us (1)) where �
is the cdf of a random variable and F and Fs the cdf of the chosen
distribution for u and us:

3. adjust mean and variance to their desired values.

N observations are drawn from which Ii = (I�i > 0) and Iiy
�
i are kept.

The table 1 present some characteristics of the simulated errors for
the di¤erent speci�cations considered. As can be seen, the correlation
between the two errors is around .9, and selection is important as only
50% of observations is selected in the �nal sample. We therefore expect
important bias when omitting to account for the selection. Table 2
provide some quantiles of the probability of selection conditional on the
score. Upper quantiles are close to 1 for each speci�cation. The upper
quartile for example is .95 for a normal distribution .91 for a student
distribution and 0.99 for a �2 distribution. For this distribution, as the
support is bounded on the left, some individuals have probability 1 to
be selected in the sample.
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Us 60% 40% 25% 15% 8% 4%
N 0.73 0.86 0.95 0.98 0.99 1.00
S 0.73 0.85 0.91 0.95 0.97 0.98
�2 0.74 0.93 0.99 1.00 1.00 1.00

Table 2: Quantiles of the probability to be selected depending on the
distribution of unobserved terms in the selection equation

Table 3 present standard estimators : OLS, OLS with Mills ratio,
OLS with Mills ratio when x1 has been excluded. The table clearly
shows that selectivity can lead to severe bias and that the Mills ratio
estimates are also strongly biased. This is mainly the case when the
distribution of u1 is distributed as a �2. Moreover when introducing a
wrong exclusion restriction the intercept and the remaining slope are
also strongly biased.
When implementing the estimation procedure of section 3, it is nec-

essary to select a degree for the polynomial approximation and a sub-
sample of observations with extreme values of the score over which im-
plementing stage 3. Results are obtained for a degree ranging from 6
to 20 and for subsamples of observations having the 4%, 8%, 15%, 25%
or 40% highest score. Results are based on 1000 replications of each
speci�cation. The estimation of the model with the approximated con-
trol function is performed using the Chebichev polynomials de�ned as
PCn (x) = cos(n:arc cos(x)) and they are applied to a given transforma-
tion of the score x = H (s) = 2F (s)�1; where F is the logistic transform.
However, the polynomial function of degree 1 PC1 (H (s)) = H (s) ; is re-
placed by s: This has the advantage that the reported results do not
depend on the true value of the slope parameters, because the bias in
the control function is �0 + �1s; which belong to the family used to
approximate the control function.
Tables 4 and 5 present the results of the estimations of the missing

slope parameter �1 when its true value is 0 using identifying assumptions
limK (s) = 0 and limK 0 (s) = 0. The tables present results obtained
for respectively 2.500 and 10.000 observations in the whole sample. To
appreciate the performance of the estimator the tables present the root
mean square error, which is the root of the sum of the squared bias
and the empirical variance. It also includes information about the ade-
quacy between the distribution of the t-value bt = � b�1 � �1true� = b�1 and
a normal variable. Considering various levels � it is possible to com-
pute b�� = 1(��bt�� > q1��=2)�� over the 1000 replications. This is done for
� = 20%; 10%, 5% and 1%: This information is summarized as the result
of a test of joint adequacy of the vector of estimated probabilities (from
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OLS Mills(1) Mills(2)
(U1,US) Int. b1 b2 Int. b1 b2 Int. b2

b1=1
(N,N) 0.72 0.67 0.67 0.00 1.00 1.00 1.79 0.18
(S,N) 0.70 0.68 0.68 -0.06 1.03 1.03 1.78 0.18
(�2,N) 0.70 0.64 0.64 -0.41 1.15 1.15 1.65 0.20
(N,S) 0.71 0.67 0.67 -0.12 1.05 1.05 1.75 0.18
(S,S) 0.69 0.68 0.67 -0.18 1.08 1.07 1.74 0.19
(�2,S) 0.70 0.63 0.63 -0.55 1.20 1.21 1.60 0.21
(N,�2) 0.76 0.63 0.63 0.04 0.97 0.97 1.74 0.18
(S,�2) 0.81 0.61 0.61 -0.03 1.00 1.00 1.73 0.19
(�2,�2) 0.77 0.60 0.60 -0.35 1.12 1.12 1.61 0.21

b1=0
(N,N) 0.72 -0.33 0.67 0.00 0.00 1.00 0.00 1.00
(S,N) 0.70 -0.32 0.68 -0.06 0.03 1.03 -0.01 1.00
(�2,N) 0.70 -0.36 0.64 -0.41 0.15 1.15 -0.14 1.03
(N,S) 0.71 -0.33 0.67 -0.12 0.05 1.05 -0.04 1.01
(S,S) 0.69 -0.32 0.67 -0.18 0.08 1.07 -0.05 1.01
(�2,S) 0.70 -0.37 0.63 -0.55 0.20 1.21 -0.19 1.04
(N,�2) 0.76 -0.37 0.63 0.04 -0.03 0.97 -0.02 0.99
(S,�2) 0.81 -0.39 0.61 -0.03 0.00 1.00 -0.03 1.00
(�2,�2) 0.77 -0.40 0.60 -0.35 0.12 1.12 -0.14 1.02

Table 3: Standard estimators - Average values over 1000 replications
for samples of 2500 observations before selection. Mills(1) indicates that
the Mills ratio has been introduced as an additional regressor without
exclusion - Mills(2) indicates that the �rst variable has been excluded
from the regression
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the 1000 replications) with the theoretical proportion, accounting for
the variance of the vector b�� (generic element i; j is (�i � �i�j) =p1000
for �i < �j): In the tables a star indicates that the �2 test is accepted.
The tables show that the rmse is lower for smaller values of the de-
gree of the polynomial approximation and larger shares of the sample.
It also shows however that the �2 is accepted mainly for large degrees
of the polynomial approximation. For 2500 observations all �2 are ac-
cepted for a degree 20 and a share of 15%, although other speci�cations
can lead to better performance. Similar results are obtained for 10.000
observations and one can notice that the �2 for smaller shares of the
sample and higher degree of the polynomial approximation. Concerning
the accuracy of the parameters, the rmse has to be compared to the
OLS standard error, which is

p
2=N; as there is approximately half the

sample selected and the variance of the perturbation and explanatory
variable are 1. In the case of 2500 observation this is around 0.03 and
0.015 for 10.000 observations. Thus accepted estimators are usually 3 to
5 time less accurate in the case of 2500 observations and 3 to 10 time less
accurate for 10.000 observations. Overall this is comparable to the loss
of e¢ ciency usually associated with instrumental variables estimation.
Results for alternative speci�cations are presented in tables 6 and

7. The case of restriction on K (s) and sK (s) is �rst considered. We
consider speci�cations adding �rst a restriction using the dervivative of
the control function limK 0 = 0 and then a further constraint using the
product of the score and the derivative of the control function lim sK 0 =
0. Results show that these speci�cations does not lead to important
e¢ ciency gains. Results also show that for these speci�cations it is less
likely the case that the assumption of the adequacy of the distribution
of the empirical bt with a normal distribution is accepted.
5 Conclusion

In this paper it has been shown that under mild conditions the control
function of the semiparametric selection model satis�es properties at
in�nity. When the distribution of the score in the selected sample has
a fat right tail, these properties allow to identify the missing slope and
missing intercept. An estimation procedure can be derived that �rst
estimates the model with an exclusion restriction and second derives the
missing slope and intercept from the estimated control function and its
derivative. This can be used either to test exclusion restrictions which
are necessary to obtain root N, or to estimate the parameters of the
model without exclusion restrictions. Simulation results show that this
estimation procedure works well in a large set of cases. It can be easily
extended to account for the case where there are endogenous regressors
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of the output equation.
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(U1,US) d 4% 8% 15% 25% 40%
(N,N) 6 0.19 0.14 0.11 0.09 0.10
(S,N) 0.22 0.15 0.11 � 0.09 0.10
(�2,N) 0.29 0.18 0.12 0.09 0.07
(N,S) 0.18 0.14 0.12 0.09 0.08
(S,S) 0.21 0.16 0.12 0.09 � 0.08
(�2,S) 0.27 0.17 0.12 0.09 � 0.07
(N,�2) 0.15 0.13 0.12 � 0.09 � 0.08
(S,�2) 0.18 0.12 0.10 � 0.08 0.08
(�2,�2) 0.23 0.16 0.11 0.09 � 0.07
(N,N) 10 0.25 0.19 � 0.12 � 0.10 0.12
(S,N) 0.24 0.17 � 0.13 � 0.11 0.12
(�2,N) 0.26 0.19 0.13 0.10 0.09
(N,S) 0.25 0.18 0.13 � 0.10 0.09
(S,S) 0.22 0.18 � 0.12 � 0.10 0.10
(�2,S) 0.27 0.20 0.12 0.10 � 0.08
(N,�2) 0.24 0.19 0.13 � 0.10 � 0.09
(S,�2) 0.24 0.17 � 0.11 � 0.09 � 0.09
(�2,�2) 0.26 0.18 0.12 � 0.09 � 0.08
(N,N) 14 0.30 0.19 � 0.13 0.11 0.12
(S,N) 0.30 0.19 � 0.14 � 0.11 0.12
(�2,N) 0.28 0.20 0.15 0.11 0.09
(N,S) 0.30 0.20 0.15 � 0.11 0.09
(S,S) 0.25 0.19 � 0.14 � 0.11 0.10
(�2,S) 0.31 0.20 0.14 � 0.10 � 0.09
(N,�2) 0.30 0.20 � 0.15 � 0.11 � 0.09
(S,�2) 0.28 0.18 � 0.13 � 0.09 � 0.09
(�2,�2) 0.29 0.20 0.14 � 0.10 � 0.09
(N,N) 20 0.34 � 0.23 � 0.14 � 0.11 � 0.12
(S,N) 0.36 � 0.23 � 0.15 � 0.12 0.12
(�2,N) 0.32 � 0.24 � 0.16 � 0.11 � 0.10
(N,S) 0.35 0.24 � 0.15 � 0.11 � 0.10
(S,S) 0.32 � 0.23 � 0.15 � 0.11 � 0.10
(�2,S) 0.35 0.25 0.15 � 0.11 � 0.09
(N,�2) 0.36 � 0.23 0.16 � 0.12 0.09
(S,�2) 0.33 � 0.22 � 0.14 � 0.10 0.10
(�2,�2) 0.33 � 0.23 � 0.15 � 0.11 � 0.09

Table 4: rmse for the estimation of the slope parameter of the variable
excluded in the �rst setp when the true value is zero. Estimated from
lim K(s)=0 and limK�(s)=0. d is the degree of the polynomial approx-
imation. �*�means that the �2 test is accepted. Results are obtained
from 1000 replications of a sample of 2500 observations
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(U1,US) d 4% 8% 15% 25% 40%
(N,N) 6 0.16 0.10 0.07 0.06 0.09
(S,N) 0.21 0.12 0.07 0.05 0.09
(�2,N) 0.26 0.14 0.06 0.04 � 0.05
(N,S) 0.16 0.10 0.07 0.05 0.07
(S,S) 0.19 0.12 0.07 0.05 0.06
(�2,S) 0.24 0.14 0.07 0.05 � 0.04
(N,�2) 0.12 0.07 0.05 � 0.04 � 0.06
(S,�2) 0.16 0.09 0.06 � 0.04 � 0.07
(�2,�2) 0.21 0.11 0.06 � 0.05 0.04
(N,N) 10 0.12 0.09 0.06 � 0.07 0.11
(S,N) 0.13 0.09 0.06 0.08 0.11
(�2,N) 0.14 0.09 � 0.06 � 0.06 0.07
(N,S) 0.12 0.09 � 0.07 0.06 0.08
(S,S) 0.12 0.09 0.06 0.06 0.08
(�2,S) 0.13 0.09 0.06 0.05 0.06
(N,�2) 0.12 � 0.09 � 0.06 � 0.05 � 0.07
(S,�2) 0.13 0.09 � 0.06 � 0.05 � 0.08
(�2,�2) 0.12 0.09 � 0.06 � 0.05 � 0.05
(N,N) 14 0.14 0.10 � 0.07 0.07 0.10
(S,N) 0.14 0.10 � 0.07 0.07 0.10
(�2,N) 0.15 0.09 � 0.07 � 0.06 0.07
(N,S) 0.13 0.10 � 0.07 0.06 0.08
(S,S) 0.14 0.10 0.07 0.06 0.08
(�2,S) 0.14 0.09 0.07 0.05 0.06
(N,�2) 0.13 � 0.10 � 0.07 � 0.05 � 0.07
(S,�2) 0.14 � 0.10 � 0.07 � 0.05 � 0.08
(�2,�2) 0.14 0.09 � 0.07 � 0.05 � 0.05
(N,N) 20 0.15 � 0.11 � 0.08 � 0.07 0.10
(S,N) 0.16 � 0.10 � 0.07 � 0.07 0.10
(�2,N) 0.16 � 0.10 � 0.07 � 0.06 0.07
(N,S) 0.15 � 0.11 � 0.07 0.07 0.08
(S,S) 0.15 � 0.11 0.07 0.06 0.08
(�2,S) 0.15 0.10 0.07 0.06 0.06
(N,�2) 0.15 � 0.10 � 0.07 � 0.05 � 0.07
(S,�2) 0.16 � 0.11 � 0.07 � 0.05 � 0.08
(�2,�2) 0.16 � 0.10 � 0.07 � 0.05 � 0.05

Table 5: rmse for the estimation of the slope parameter of the variable
excluded in the �rst setp when the true value is zero. Estimated from
lim K(s)=0 and limK�(s)=0. d is the degree of the polynomial approx-
imation. "*" means that the �2 test is accepted. Results are obtained
from 1000 replications of a sample of 10000 observations

19



limK=0 limsK=0 limK=0 limK�=0 limK=0 limsK=0
limsK=0 limK�=0 limsK�=0

(U1,US) d 8% 15% 25% 8% 15% 25% 8% 15% 25%
(N,N) 6 0.17 0.13 0.11 0.21 0.13 0.08� 0.23 0.12 0.08
(S,N) 0.20 0.14 0.11 0.20 0.12 0.08� 0.20 0.12 0.08�

(�2,N) 0.26 0.16 0.11 0.24 0.13 0.10 0.22 0.12 0.10
(N,S) 0.17 0.13 0.11 0.22 0.13 0.07� 0.26 0.13 0.08�

(S,S) 0.19 0.15 0.11 0.23 0.12 0.08� 0.24 0.12 0.08
(�2,S) 0.23 0.16 0.11 0.25 0.12 0.09 0.25 0.12 0.09
(N,�2) 0.14 0.12 0.11� 0.2 0.13 0.09� 0.25 0.13 0.09�

(S,�2) 0.16 0.11 0.10� 0.22 0.13 0.08� 0.28 0.12 0.08�

(�2,�2) 0.21 0.14 0.1 0.25 0.12 0.10 0.25 0.12 0.10
(N,N) 10 0.22 0.15 0.11� 0.18 0.13� 0.10 0.18 0.13 0.10
(S,N) 0.20 0.14� 0.11� 0.18 0.12� 0.11 0.17 0.12 0.10
(�2,N) 0.22 0.15 0.11 0.20 0.13 0.11 0.19 0.13 0.10
(N,S) 0.22 0.15 0.11 0.18 0.13 0.10 0.17 0.12 0.10
(S,S) 0.20 0.15� 0.11 0.17 0.12� 0.10 0.16 0.12 0.10
(�2,S) 0.24 0.16 0.11 0.19 0.13 0.10 0.18 0.13 0.10
(N,�2) 0.22 0.16 0.11� 0.17 0.12 0.10� 0.17 0.12 0.10�

(S,�2) 0.21 0.15� 0.10� 0.17 0.11� 0.09� 0.16� 0.11� 0.09�

(�2,�2) 0.22 0.15 0.11 0.17 0.12 0.10 0.17 0.12 0.09
(N,N) 14 0.22 0.15� 0.11� 0.19 0.14 0.11 0.20 0.14 0.10
(S,N) 0.21 0.15� 0.11� 0.19 0.14 0.11 0.19 0.13 0.10
(�2,N) 0.23 0.15 0.11 0.20 0.15 0.11 0.20 0.14 0.10
(N,S) 0.24 0.15 0.12 0.20 0.15 0.11 0.20 0.14 0.10
(S,S) 0.2 0.15� 0.11 0.19 0.14� 0.11 0.18 0.13 0.10
(�2,S) 0.24 0.16 0.11 0.21 0.15 0.10 0.20 0.15 0.10
(N,�2) 0.23 0.16� 0.11� 0.19 0.15� 0.11 0.20 0.14 0.11
(S,�2) 0.21 0.15� 0.10 0.18 0.13� 0.09� 0.18 0.12� 0.09�

(�2,�2) 0.23 0.16 0.11 0.20 0.14 0.10� 0.20 0.14 0.10
(N,N) 20 0.22 0.15� 0.11� 0.23� 0.14� 0.11� 0.21 0.14 0.10
(S,N) 0.22 0.14 0.11 0.21 0.14� 0.11 0.20 0.13 0.10
(�2,N) 0.22 0.15 0.11 0.23 0.15 0.11 0.21 0.15 0.10
(N,S) 0.24 0.15 0.12 0.23� 0.15 0.11 0.22 0.14 0.10
(S,S) 0.21 0.15� 0.11 0.22� 0.15� 0.11� 0.19 0.14 0.10
(�2,S) 0.24 0.16 0.11 0.24 0.16� 0.11 0.22 0.15 0.10
(N,�2) 0.24 0.16� 0.11� 0.22� 0.15� 0.12� 0.21 0.15 0.11
(S,�2) 0.22 0.15� 0.10� 0.21� 0.14� 0.09� 0.20 0.13 0.09�

(�2,�2) 0.24 0.16 0.11 0.22 0.15� 0.11� 0.21 0.14 0.10

Table 6: rmse for the estimation of the slope parameter of the variable
excluded in the �rst setp when the true value is zero. Alternative iden-
tifying restrictions. d is the degree of the polynomial approximation.
"*" means that the �2 test is accepted. Results are obtained from 1000
replications of a sample of 2500 observations20



limK=0 limsK=0 limK=0 limsK=0 limK=0 limsK=0
limK�=0 limK�=0 limsK�=0

(U1,US) d 8% 15% 25% 8% 15% 25% 8% 15% 25%
(N,N) 6 0.15 0.10 0.07 0.21 0.08 0.04 0.21 0.08 0.04
(S,N) 0.18 0.11 0.08 0.17 0.08 0.04� 0.16 0.08 0.04
(�2,N) 0.23 0.13 0.07 0.18 0.08 0.06 0.16 0.07 0.06
(N,S) 0.14 0.10 0.07 0.24 0.07 0.04� 0.27 0.07 0.04�

(S,S) 0.17 0.11 0.07 0.20 0.07 0.04� 0.19 0.07 0.04
(�2,S) 0.22 0.13 0.07 0.22 0.07 0.06 0.19 0.06 0.06
(N,�2) 0.11 0.07 0.05� 0.21 0.07 0.05 0.26 0.07 0.05
(S,�2) 0.15 0.08 0.05 0.23 0.07 0.05 0.27 0.07 0.06
(�2,�2) 0.18 0.10 0.06 0.22 0.06 0.08 0.19 0.06� 0.08
(N,N) 10 0.11 0.08� 0.06 0.09� 0.06� 0.07 0.09 0.06 0.07
(S,N) 0.11 0.08 0.06 0.09 0.06� 0.07 0.09 0.06 0.07
(�2,N) 0.12 0.08 0.06 0.10 0.06 0.06 0.09 0.06 0.06
(N,S) 0.11 0.08� 0.06 0.09 0.06 0.06 0.09 0.06 0.06
(S,S) 0.11 0.08 0.06 0.09 0.06 0.06 0.09 0.06 0.06
(�2,S) 0.12 0.08 0.06 0.10 0.06 0.06 0.10 0.07 0.05
(N,�2) 0.11 0.08� 0.05� 0.09 0.06� 0.05� 0.09 0.06� 0.05�

(S,�2) 0.12 0.08� 0.06� 0.10 0.06� 0.05� 0.10 0.06� 0.05�

(�2,�2) 0.11 0.08� 0.06� 0.10 0.06� 0.05� 0.10 0.06� 0.05�

(N,N) 14 0.11 0.08� 0.06 0.10� 0.07 0.07 0.10 0.07 0.07
(S,N) 0.11 0.08� 0.06 0.10 0.07 0.07 0.09 0.07 0.07
(�2,N) 0.12 0.08 0.06 0.09 0.07 0.06 0.09 0.07 0.06
(N,S) 0.11 0.08� 0.06 0.10� 0.07 0.06 0.10 0.07 0.06
(S,S) 0.12 0.08 0.06 0.10 0.07 0.06 0.09 0.07 0.06
(�2,S) 0.11 0.08 0.06 0.10 0.07 0.06 0.10 0.07 0.05
(N,�2) 0.11� 0.08� 0.06� 0.10� 0.07� 0.05� 0.10 0.07� 0.05�

(S,�2) 0.12 0.08� 0.06� 0.10� 0.07� 0.05� 0.09� 0.06� 0.05�

(�2,�2) 0.12 0.08� 0.05� 0.09� 0.07� 0.05� 0.09 0.07� 0.05�

(N,N) 20 0.11 0.08� 0.06 0.11� 0.08� 0.07 0.10 0.07 0.06
(S,N) 0.12 0.08� 0.06 0.10� 0.07 0.07 0.10 0.07 0.06
(�2,N) 0.12 0.08 0.06 0.10 0.07� 0.06 0.10 0.07 0.06
(N,S) 0.12 0.08� 0.06 0.11� 0.08 0.06 0.11 0.07 0.06
(S,S) 0.12 0.08 0.06 0.10 0.07 0.06 0.10 0.07 0.06
(�2,S) 0.11 0.08 0.06 0.10 0.07 0.06 0.10 0.07 0.06
(N,�2) 0.11� 0.08� 0.05 0.10� 0.07� 0.05� 0.10 0.07� 0.05�

(S,�2) 0.13� 0.08� 0.06� 0.11� 0.07� 0.05� 0.11 0.07� 0.05�

(�2,�2) 0.12� 0.07� 0.05� 0.11 0.07� 0.05� 0.10 0.07� 0.05�

Table 7: rmse for the estimation of the slope parameter of the variable
excluded in the �rst setp when the true value is zero. Alternative iden-
tifying restrictions. d is the degree of the polynomial approximation.
�*�means that the �2 test is accepted. Results are obtained from 1000
replications of a sample of 10000 observations21




