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ABSTRACT 
 

An Extension of the Blinder-Oaxaca  
Decomposition Technique to Logit and Probit Models∗

 
The Blinder-Oaxaca decomposition technique is widely used to identify and quantify the 
separate contributions of group differences in measurable characteristics, such as education, 
experience, marital status, and geographical differences to racial and gender gaps in 
outcomes. The technique cannot be used directly, however, if the outcome is binary and the 
coefficients are from a logit or probit model. I describe a relatively simple method of 
performing a decomposition that uses estimates from a logit or probit model. Expanding on 
the original application of the technique in Fairlie (1999), I provide a more thorough 
discussion of how to apply the technique, an analysis of the sensitivity of the decomposition 
estimates to different parameters, and the calculation of standard errors. I also compare the 
estimates to Blinder-Oaxaca decomposition estimates and discuss an example of when the 
Blinder-Oaxaca technique may be problematic. 
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1. Introduction 

 Identifying the underlying causes of racial and gender differences in educational, labor 

market, health, and other outcomes has been the goal of an enormous body of literature in the 

social sciences.  Perhaps the most common approach used in the past few decades to identify and 

quantify these causes is the technique of decomposing inter-group differences in mean levels of 

an outcome into those due to different observable characteristics or "endowments" across groups 

and those due to different effects of characteristics or "coefficients" of groups.  The technique is 

commonly attributed to Blinder (1973) and Oaxaca (1973).  Attesting to the wide use of the 

Blinder-Oaxaca decomposition technique, more than 1000 citations to these two articles were 

found in the Social Sciences Citation Index. 

 The Blinder-Oaxaca decomposition technique is especially useful for identifying and 

quantifying the separate contributions of group differences in measurable characteristics, such as 

education, experience, marital status, and geographical location, to racial and gender gaps in 

outcomes.1  The technique is easy to apply and only requires coefficient estimates from linear 

regressions for the outcome of interest and sample means of the independent variables used in the 

regressions.  A problem arises, however, if the outcome is binary, such as employment, college 

attendance, or teenage pregnancy, and the coefficients are from a logit or probit model.  These 

coefficient estimates cannot be used directly in the standard Blinder-Oaxaca decomposition 

equations. 

 A relatively simple method of performing a decomposition that uses estimates from a 

logit or probit model was first described in Fairlie's (1999) analysis of the causes of the 

black/white gap in self-employment rates.  In this paper, I provide a more thorough discussion of 

how to apply the technique, an analysis of the sensitivity of the decomposition estimates to 

                                                           
1 Although not as commonly used, the technique is also useful for identifying the causes of geographical 

(e.g. urban/rural or cross-country), time period, or other categorical differences in outcomes. 



different parameters, and the calculation of standard errors.  I also compare the estimates to 

Blinder-Oaxaca decomposition estimates and discuss an example of when the Blinder-Oaxaca 

technique may be problematic.  The non-linear decomposition technique described below may be 

useful for identifying the causes of racial, gender, geographical or other categorical differences in 

a binary outcome in which a logit or probit model is used. 2

 

2. Non-Linear Decomposition Technique 

For a linear regression, the standard Blinder-Oaxaca decomposition of the white/black 

gap (male/female, North//South, etc...) in the average value of the dependent variable, Y, can be 

expressed as: 

where jX is a row vector of average values of the independent variables and is a vector of 

coefficient estimates for race j.  Following Fairlie (1999), the decomposition for a nonlinear 

equation, Y = F(X ), can be written as: 
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where Nj is the sample size for race j.  This alternative expression for the decomposition is used 

because Y  does not necessarily equal F( X β̂ ).3  In both (2.1) and (2.2), the first term in 

brackets represents the part of the racial gap that is due to group differences in distributions of X, 

and the second term represents the part due to differences in the group processes determining 

                                                           
2 Sample programs for calculating the decomposition are available on my web page at 

http://econ.ucsc.edu/~fairlie/decomposition. 

3 Note that the Blinder-Oaxaca decomposition is a special case of (2.2). 
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levels of Y.  The second term also captures the portion of the racial gap due to group differences 

in unmeasurable or unobserved endowments.  Similar to most previous studies applying the 

decomposition technique, I do not focus on this "unexplained" portion of the gap because of the 

difficulty in interpreting results (see Jones 1983 and Cain 1986 for more discussion). 

To calculate the decomposition, define jY as the average probability of the binary 

outcome of interest for race j and F as the cumulative distribution function from the logistic 

distribution.  Equation (2.2) will hold exactly for the logit model that includes a constant term 

because the average value of the dependent variable must equal the average value of the predicted 

probabilities in the sample.4  The equality does not hold exactly for the probit model, in which F 

is defined as the cumulative distribution function from the standard normal distribution, but holds 

very closely as an empirical regularity as evidenced below. 

 An equally valid expression for the decomposition is: 
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In this case, the black coefficient estimates, are used as weights for the first term in the 

decomposition, and the white distributions of the independent variables,

Bβ̂

WX are used as weights 

for the second term.  This alternative method of calculating the decomposition often provides 

different estimates, which is the familiar index problem with the Blinder-Oaxaca decomposition 

technique.  As suggested in Oaxaca and Ransom (1994), a third alternative is to weight the first 

term of the decomposition expression using coefficient estimates from a pooled sample of the two 

groups.  Ultimately, the choice across these alternative methods of calculating the first term of the 

                                                           
4 In contrast, the predicted probability evaluated at the means of the independent variables is not necessarily 

equal to the proportion of ones, and in the sample used below it is larger because the logit function is 

concave for values greater than 0.5. 
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decomposition is difficult and depends on the application with many studies reporting results for 

more than one specification. 

 The first terms in (2.2) and (2.3) provide an estimate of the contribution of racial 

differences in the entire set of independent variables to the racial gap in the dependent variable.  

Estimation of the total contribution is relatively simple as one only needs to calculate two sets of 

predicted probabilities and take the difference between the average values of the two.  Identifying 

the contribution of group differences in specific variables to the racial gap, however, is not as 

straightforward.  To simplify, first assume that NB=NW and that there exists a natural one-to-one 

matching of black and white observations.  Using coefficient estimates from a logit regression for 

a pooled sample, , the independent contribution of X*β̂ 1 to the racial gap can then be expressed 

as: 
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Similarly, the contribution of X2 can be expressed as: 
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The contribution of each variable to the gap is thus equal to the change in the average predicted 

probability from replacing the black distribution with the white distribution of that variable while 

holding the distributions of the other variable constant.6  A useful property of this technique is 

                                                           
5 A black dummy variable is included in estimating the logit model with the pooled sample of blacks and 

whites, but is not used to calculate the decomposition. 

6 Unlike in the linear case, the independent contributions of X1 and X2 depend on the value of the other 

variable.  This implies that the choice of a variable as X1 or X2 (or the order of switching the distributions) 

is potentially important in calculating its contribution to the racial gap.  I return to this issue below. 
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that the sum of the contributions from individual variables will be equal to the total contribution 

from all of the variables evaluated with the full sample. 

 Standard errors can also be calculated for these estimates.  Following Oaxaca and 

Ransom (1998), I use the delta method to approximate standard errors.  To simplify notation, 

rewrite (2.4) as: 
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density function. 

In practice, the sample sizes of the two groups are rarely the same and a one-to-one 

matching of observations from the two samples is needed to calculate (2.4), (2.5), and (2.7).  In 

this example, it is likely that the black sample size is substantially smaller than the white sample 

size.  To address this problem, first use the pooled coefficient estimates to calculate predicted 

probabilities, , for each black and white observation in the sample.  Next, draw a random 

subsample of whites equal in size to the full black sample (N

iŶ

B).  Each observation in the white 

subsample and full black sample is then separately ranked by the predicted probabilities and 

matched by their respective rankings.  This procedure matches whites who have characteristics 

placing them at the bottom (top) of their distribution with blacks who have characteristics placing 

them at the bottom (top) of their distribution.7

                                                           
7 The results presented below, however, are fairly similar when simply matching black and white 

observations randomly. 
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The decomposition estimates obtained from this procedure depend on the randomly 

chosen subsample of whites.  Ideally, the results from the decomposition should approximate 

those from matching the entire white sample to the black sample.  A simple method of 

approximating this hypothetical decomposition is to draw a large number of random subsamples 

of whites, match each of these random subsamples of whites to the black sample, and calculate 

separate decomposition estimates.  The mean value of estimates from the separate 

decompositions is calculated and used to approximate the results for the entire white sample.  In 

the decompositions reported below, I use 1000 random subsamples of whites to calculate these 

means.8

 

3. Results 

For illustrative purposes, I employ the non-linear decomposition technique to identify the 

causes of racial differences in computer ownership.  Estimates from the Computer and Internet 

Use Supplement to the August 2000 Current Population Survey (CPS) indicate that 70.9 percent 

of white, non-Latinos have access to a home computer, whereas only 41.3 percent of African-

Americans have access to a home computer (Fairlie 2002).  Of particular interest is whether (and 

how much) group differences in the most likely "suspects" -- family income, education and 

family structure -- contribute to this racial disparity in computer ownership.  The findings are 

useful for the policy debate over the causes and consequences of the "Digital Divide." 

Table 1 reports estimates of the nonlinear decomposition technique for the black/white 

gap in home computer rates using four different set of coefficients.  Logit regressions are 

estimated using four separate samples -- white only, black only, white and black pooled, and all 

                                                           
8 Estimates for the main specification are identical to the 4th decimal place using 10,000 simulations for all 

contributions except two groups of variables (which were both less than 0.0001 different).  In fact, using 

 6



races pooled.9  The individual contributions from racial differences in sex and age, marital status 

and children, education, income, region, and central city status are reported.  The contribution for 

a set of dummy variables, such as those for region, is calculated by simultaneously switching 

distributions of all dummy variables.  The results are generally similar across specifications. 

The difference between white and black computer ownership rates is 0.3030.  As 

expected, the largest factor explaining this large racial disparity in home computer ownership is 

income.  Lower levels of income among blacks account for 0.0775 to 0.1031 (or 25.6 to 34.0 

percent) of the white/black gap in the probability of having a home computer.  In all 

specifications these contributions are statistically significant.  Lower levels of education among 

blacks also contribute to the racial gap in computer ownership.  The decomposition estimates for 

the contribution of racial differences in education range from 0.0340 to 0.0369 (or 11.2 to 12.2 

percent).  Group differences in family characteristics explain a similarly large portion of the gap 

(9.5 to 10.5 percent), whereas group differences in regional distributions explain a small portion 

of the gap (2.8 to 5.2 percent).  Finally, racial differences in sex and age and racial differences in 

central city status explain virtually none of the gap.  The decompositions reveal that group 

differences in all of the included characteristics explain roughly half of the black/white gap in 

computer ownership for the white and pooled specifications and 61.3 percent of the gap for the 

black specification. 

 

                                                                                                                                                                             
only 100 simulations provided contribution estimates that were identical to the 4th decimal place except for 

only two groups of variables (which were both less than 0.0002 different). 

9 Estimates from the logit regressions are reported in the Appendix. All specifications include measures of 

sex, age, marital status, children, education, family income, region, and central city status.  The coefficient 

estimates indicate that being married, the presence of children between the ages of 6 and 17, education, and 

family income increase the probability of computer ownership.  The coefficient estimates are generally 

similar across specifications. 
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COMPARISON TO BLINDER-OAXACA RESULTS 

Perhaps the first question that comes to mind regarding use of the technique is how the 

results compare to those from a standard Blinder-Oaxaca decomposition using estimates from a 

linear probability model.  Specification 2 of Table 2 reports estimates.  Specification 1 reports 

estimates from the non-linear decomposition technique for comparison.  For brevity, I focus on 

the results for the All Races Pooled Specification.  The estimates from the Blinder-Oaxaca 

decomposition do not differ substantially from those from the non-linear decomposition 

technique.  The largest difference is for the marital status and children contribution, which is 

0.0064 smaller in the linear specification.  For this application in which the coefficient estimates 

are well behaved and the decomposition is explaining a racial gap primarily located in the middle 

of the distribution (i.e. between 0.4257 and 0.7286) the Blinder-Oaxaca decomposition 

approximates the nonlinear decomposition results.  The Blinder-Oaxaca decomposition may not 

perform as well in cases in which the racial gap is located in the tails of the distribution or racial 

differences in independent variables (e.g. a continuous measure of wealth) are very large.  In fact, 

an endowment effect may even be larger than 1 (or 100 percentage points) in the Blinder-Oaxaca 

decomposition, which is difficult to interpret in terms of probability. 

A good example of when the Blinder-Oaxaca technique may be problematic is in Fairlie 

(1999).  The contribution of racial differences in asset levels to the black/white gap in the 

transition rate out of self-employment is 0.0176 or 11.1 percent using black coefficients as 

reported in Specification 1 of Table 5 in the article.  The non-linear decomposition technique 

described above for a logit model provides this estimate.  Using a linear probability model and 

the Blinder-Oaxaca decomposition, instead, I find a contribution estimate of 0.1812 or 114.4 

percent.  The linear technique provides a much larger contribution because white asset levels are 

approximately 7 times larger than black asset levels as measured in the regression.  The linear 

technique fails to limit the influence on the probability that the outcome occurs at increasingly 
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high asset levels (even in this case when a quadratic term is included), and thus is likely to be 

overstating the impact of racial differences in asset levels on black/white differences in exit rates. 

 Related to this issue, I also estimate a model using coefficients from a probit regression.  

In this case, F in (2.4) and (2.5) is defined as the cumulative distribution function from the 

standard normal distribution.  Estimates are reported in Specification 3 of Table 2.  The 

contribution estimates are very similar to those using the logit coefficients.  For this application, 

the decomposition estimates are not sensitive to whether the logit or probit model is used. 

 

ORDERING OF VARIABLES 

 Another potentially important issue regarding use of the technique is the effect of 

ordering of variables in the decomposition.  As noted above, because of the nonlinearity of the 

decomposition equation the results may be sensitive to the ordering of variables.  To investigate 

this issue, Specification 4 of Table 2 reports estimates in which the order of switching 

distributions of variables is reversed.  Overall, the estimates are not substantially different than 

the original estimates, but the differences are worth noting.  The main changes are that the family 

characteristics contribution declined from 0.0289 to 0.0175, and the education and income 

contributions increased slightly.  The total contribution, however, remains unchanged because the 

sum of the individual contributions, regardless of their order, must equal the total contribution 

defined in (2.2) or (2.3). 

The effects of reordering, however, depend on the application.  The initial location in the 

logistic distribution and the total movement along the distribution from switching distributions of 

other variables contribute to how sensitive the results are to the ordering of variables.  Perhaps the 

best solution to the problem is to experiment with different orders of variables to confirm the 
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robustness of results.10  If the results continue to vary substantially, one solution for coming up 

with a single point estimate is to randomize the ordering of variables.  In fact, the ordering of 

switching distributions could be randomized at the same time as drawing the random subsample 

of whites.  By using a large number of simulations the procedure approximates the average 

decomposition across all possible orderings of variables while preserving the summing up 

property.  As a check, I estimate the decomposition using this procedure.  All of the estimates lie 

in the intervals created by the estimates reported in Specifications 1 and 4, which represent the 

original "ad hoc" ordering of the variables and its reverse.  In fact, I experimented with different 

initial orderings of the variables and their reverses, and found that the average contribution in 

each case approximated the estimate from the random ordering decomposition, suggesting a 

relatively easy method of checking the sensitivity of results. 

 

THE USE OF SAMPLE WEIGHTS 

 All of the estimates previously reported are unweighted for simplicity.  If sample weights 

are required, however, the decomposition technique needs to be modified slightly.  If sample 

weights are used to estimate both the mean outcomes and the logit regressions, then each 

observation in (2.4) and (2.5) should be weighted.  The only complication arises in choosing 

whether the white or black sample weight is used when switching distributions, which represents 

another index problem as there is no theoretical justification for preferring one over the other. 

 The other case is where sample weights are used to estimate mean outcomes, but not the 

regressions.  In this case, each observation in (2.4) and (2.5) should be weighted and the 

interpretation of the contribution from group differences in observed characteristics remains 

                                                           
10 Another solution is to estimate each contribution by switching the variable of interest first (i.e. use (2.4) 

to estimate the contribution for each variable).  The sum of these contributions, however, may differ 

substantially from the total contribution defined in (2.2) or (2.3). 
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unchanged.  The "left-over" or unexplained portion of the decomposition, however, now also 

includes group differences in the discrepancy between the weighted mean of the outcome and the 

average predicted probability using the weighted distribution of characteristics and unweighted 

regression estimates.11  Estimating decompositions using both white and black sample weights 

from the CPS, I find estimates that do not differ substantially from the unweighted estimates. 

 

5. Summary 

The non-linear decomposition technique discussed above is a relatively easy-to-

implement alternative to the standard Blinder-Oaxaca decomposition.  The main advantage is that 

the coefficient estimates from a logit or probit model can be used directly in the decomposition 

specification.  The technique is thus useful for applications in which it is inappropriate to model 

the dependent variable as a linear function of the explanatory variables. 

                                                           
11 Note that if the weighted mean outcomes are similar to the unweighted mean outcomes then this is 

unlikely to be large. 

 11



References 

 

Blinder, Alan S. 1973. "Wage Discrimination:  Reduced Form and Structural Variables." Journal 

of Human Resources, 8, 436-455. 

 

Cain, Glen G. 1986. "The Economic Analysis of Labor Market Discrimination: A Survey," 

Handbook of Labor Economics, Vol. 1, eds. O. Ashenfelter and R. Laynard, Elsevier Science 

Publishers BV. 

 

Fairlie, Robert W. 1999. "The Absence of the African-American Owned Business: An Analysis 

of the Dynamics of Self-Employment," Journal of Labor Economics, 17(1): 80-108. 

 

Fairlie, Robert W. 2002. "Race and the Digital Divide," Joint Center for Poverty Research 

Working Paper 307. 

 

Jones, F.L. 1983. "On Decomposing the Wage Gap: A Critical Comment on Blinder's Method," 

Journal of Human Resources, 18(1): 126-130. 

 

Oaxaca, Ronald. 1973. "Male-Female Wage Differentials in Urban Labor Markets," International 

Economic Review, 14 (October), 693-709. 

 

Oaxaca, Ronald, and Michael Ransom. 1994. "On Discrimination and the Decomposition of 

Wage Differentials," Journal of Econometrics, 61, 5-21. 

 

Oaxaca, Ronald, and Michael Ransom. 1998. "Calculation of Approximate Variances for Wage 

Decomposition Differentials," Journal of Economic and Social Measurement, 24, 55-61.

 12



(1) (2) (3) (4)
Sample used for coefficients White Black Black/White All Races 

Pooled Pooled

White computer ownership rate 0.7286 0.7286 0.7286 0.7286
Black computer ownership rate 0.4257 0.4257 0.4257 0.4257
Black/White gap 0.3030 0.3030 0.3030 0.3030

Contributions from racial differences in:

Sex and age -0.0004 0.0001 -0.0004 -0.0002
(0.0003) (0.0010) (0.0003) (0.0002)

-0.1% 0.0% -0.1% -0.1%
Marital status and children 0.0315 0.0302 0.0317 0.0289

(0.0017) (0.0041) (0.0015) (0.0014)
10.4% 10.0% 10.5% 9.5%

Education 0.0340 0.0367 0.0341 0.0369
(0.0010) (0.0028) (0.0009) (0.0008)
11.2% 12.1% 11.2% 12.2%

Income 0.0775 0.1031 0.0797 0.0799
(0.0020) (0.0048) (0.0019) (0.0017)
25.6% 34.0% 26.3% 26.4%

Region 0.0102 0.0157 0.0104 0.0085
(0.0017) (0.0055) (0.0016) (0.0015)

3.4% 5.2% 3.4% 2.8%
Central city status -0.0015 0.0000 -0.0007 -0.0019

(0.0021) (0.0041) (0.0019) (0.0017)
-0.5% 0.0% -0.2% -0.6%

All included variables 0.1512 0.1859 0.1548 0.1519
49.9% 61.3% 51.1% 50.2%

Notes: (1) The sample consists of adults ages 25-55 from the specified racial group/s.  (2) 
Standard errors are reported in parantheses below contribution estimates.  (3) The sample sizes 
used to estimate the coefficients in Specifications 1-4 are 34,386, 4,555, 38,941 and 46,322, 
respectively.  (4) Contribution estimates are mean values of the decomposition using 1000 
subsamples of whites.  See text for more details.

Table 1
Non-Linear Decompositions of Black/White Gaps in Home Computer Rates

Using Various Coefficient Estimates

Specification
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(1) (2) (3) (4)
Modification to decomposition All Races Linear Probit Reverse

Pooled Model Model Order

White computer ownership rate 0.7286 0.7286 0.7286 0.7286
Black computer ownership rate 0.4257 0.4257 0.4257 0.4257
Black/White gap 0.3030 0.3030 0.3030 0.3030

Contributions from racial differences in:

Sex and age -0.0002 -0.0008 -0.0002 -0.0003
(0.0002) (0.0003) (0.0002) (0.0003)

-0.1% -0.3% -0.1% -0.1%
Marital status and children 0.0289 0.0225 0.0279 0.0175

(0.0014) (0.0012) (0.0014) (0.0015)
9.5% 7.4% 9.2% 5.8%

Education 0.0369 0.0386 0.0366 0.0420
(0.0008) (0.0008) (0.0008) (0.0009)
12.2% 12.7% 12.1% 13.9%

Income 0.0799 0.0823 0.0806 0.0855
(0.0017) (0.0015) (0.0017) (0.0017)
26.4% 27.2% 26.6% 28.2%

Region 0.0085 0.0078 0.0082 0.0090
(0.0015) (0.0013) (0.0014) (0.0013)

2.8% 2.6% 2.7% 3.0%
Central city status -0.0019 -0.0016 -0.0019 -0.0017

(0.0017) (0.0014) (0.0016) (0.0015)
-0.6% -0.5% -0.6% -0.6%

All included variables 0.1519 0.1488 0.1512 0.1519
50.2% 49.1% 49.9% 50.2%

Notes: (1) The sample consists of adults ages 25-55.  (2) All specifications use coefficient 
estimates from the full sample of all races. (3) Standard errors are reported in parantheses below 
contribution estimates.  (4) Contribution estimates are mean values of the decomposition using 
1000 subsamples of whites.  See text for more details.

Table 2
Non-Linear Decompositions of Black/White Gaps in Home Computer Rates

Linear Probabilty Model and Probit Estimates, and Reverse Ordering of Variables

Specification
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Explanatory Variables (1) (2) (3) (4)
Sample White Black White and A Races

Black
Female 0.0144 -0.0341 0.0050 0.0083

(0.0276) (0.0749) (0.0258) (0.0235)
Age -0.0032 -0.0017 -0.0034 -0.0016

(0.0018) (0.0048) (0.0017) (0.0015)
Married 0.4799 0.5545 0.5032 0.4648

(0.0424) (0.0945) (0.0383) (0.0346)
Previously married 0.0172 0.0906 0.0408 0.0383

(0.0474) (0.1067) (0.0430) (0.0397)
Number of children 0.0455 -0.0522 0.0241 0.0077

(0.0213) (0.0478) (0.0192) (0.0166)
Children ages 6 to 17 0.7425 0.8049 0.7527 0.7410

 (0.0464) (0.1133) (0.0426) (0.0380)
High school graduate 0.6545 0.4017 0.6098 0.7203

(0.0535) (0.1253) (0.0492) (0.0410)
Some college 1.2688 1.0271 1.2240 1.3490

(0.0554) (0.1285) (0.0508) (0.0426)
College graduate 1.6291 1.5359 1.6046 1.7265

(0.0609) (0.1555) (0.0565) (0.0485)
Graduate degree 1.9702 1.8084 1.9440 2.0742

(0.0778) (0.2105) (0.0727) (0.0642)
Family Income:  $10,000 to 0.3497 -0.0632 0.2688 0.3230

$15,000 (0.0911) (0.1840) (0.0808) (0.0710)
Family Income:  $15,000 to 0.5734 0.2783 0.5166 0.4912

$20,000 (0.0892) (0.1790) (0.0792) (0.0702)
Family Income:  $20,000 to 0.4808 0.1933 0.4368 0.4576

$25,000 (0.0828) (0.1751) (0.0741) (0.0662)
Family Income:  $25,000 to 0.7448 0.5826 0.7208 0.7352

$30,000 (0.0808) (0.1641) (0.0720) (0.0643)
Family Income:  $30,000 to 1.0453 0.7098 0.9967 0.9843

$35,000 (0.0797) (0.1701) (0.0714) (0.0638)
Family Income:  $35,000 to 1.0767 1.0635 1.0736 1.0859

$40,000 (0.0805) (0.1740) (0.0724) (0.0651)

Appendix
Logit Regressions for Probability of Having a Home Computer

Specification
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Explanatory Variables (1) (2) (3) (4)
Family Income:  $40,000 to 1.3234 1.2009 1.3030 1.3644

$50,000 (0.0760) (0.1598) (0.0680) (0.0613)
Family Income:  $50,000 to 1.4889 1.2622 1.4597 1.4917

$60,000 (0.0774) (0.1654) (0.0694) (0.0625)
Family Income:  $60,000 to 1.6876 1.8948 1.7030 1.7088

$75,000 (0.0781) (0.1763) (0.0705) (0.0637)
Family Income more than 2.1842 2.5912 2.2102 2.2049

$75,000 (0.0758) (0.1776) (0.0684) (0.0615)
In MSA but not in central 0.0526 0.0930 0.0662 0.0319

city (0.0409) (0.0881) (0.0363) (0.0317)
Rural area -0.1121 -0.1913 -0.1014 -0.1159

(0.0439) (0.1329) (0.0403) (0.0367)
Central city status 0.0172 0.2772 0.0466 0.0425

not identified (0.0484) (0.1166) (0.0440) (0.0399)
Region Controls Yes Yes Yes Yes
Race/Ethnicity Controls No No Yes Yes
Mean of Dependent Variable 0.7286 0.4257 0.6932 0.6590
Sample Size 34,386 4,555 38,941 46,322
Notes:  (1) The sample consists of adults ages 25-55 from the specified racial group/s.  (2) 
Standard errors are in parentheses below coefficient estimates.

Appendix (continued)
Logit Regressions for Probability of Having a Home Computer
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