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ABSTRACT

IZA DP No. 18070 AUGUST 2025

Notes on a World with Generative AI*

Generative AI (GenAI) and Large Language Models (LLMs) are advancing into domains 

once seen as uniquely human: reasoning, synthesis, abstraction, and rhetoric. This paper, 

addressed to (labor) economists, subject-matter experts, and informed readers, aims to 

clarify what is genuinely new about LLMs, what is not, and why the distinction matters. 

Using the analogy to autoregressive models familiar from economics, we build a conceptual 

bridge to explain their stochastic nature, a feature which produces fluency that is often 

mistaken for agency even by experienced observers. We then place LLMs in the broader 

history of human–machine outsourcing, from digestion to cognition, to frame their 

emergence as part of a much longer trajectory of technological delegation. The analysis 

examines the disruptive implications for white-collar labor markets, institutional structures, 

and the epistemic norms that shape knowledge production. Particular attention is given to 

the risks and paradoxes that arise when synthetic content becomes both the product and 

the raw material of cognitive work. In such cases, displacement of human labor can erode 

the very source of original material on which these systems depend, creating a feedback 

loop that degrades both input quality and output reliability. By grounding the discussion in 

conceptual clarity rather than speculative forecasts or media-driven panic, we seek to create 

space for a more deliberate and actionable understanding. While GenAI can substitute for 

some of the labor it draws upon, its statistical limits will probably preserve an essential role 

for human judgment. The central question is not only how these tools are deployed, but 

also which activities we relinquish, and how we choose to reallocate our attention and 

expertise in a reshaped division of cognitive labor.
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1 Introduction
AI and in particular GenAI has become the defining focus of our time. Across media, policy,
academia, and popular culture, it is framed both as an existential risk and as a limitless oppor-
tunity. Some see it as the ultimate productivity tool, others as an angel of mass unemployment
or epistemic collapse. Within the same breath, large language models (LLMs) are described
as both astonishingly intelligent and deeply flawed; as breakthrough inventions and glorified
autocomplete engines. This dissonance is not accidental. It reflects genuine confusion not just
about the capabilities of the technology, but about how to think about it at all.

Figure 1: Search Interest for ChatGPT vs Soccer (a strong topic in search) worldwide.

Much of the public and academic debate suffers from two mirrored errors: overestimating
what LLMs are, and either underestimating or misjudging what they change. On one hand, we
are easily impressed by coherence, mistaking fluency for insight. On the other, we are often
blind to structural effects: how the widespread use of such tools reshapes institutions, habits,
and expectations, even as their internal workings are bluntly statistical.

This confusion is amplified by a growing divide in the economic discourse. Some, like
Daron Acemoglu, paint a bleak picture of substitution, warning that LLMs accelerate an “AI
illusion”: a cycle of hype built on superficial competence, followed by structural disempower-
ment and mass unemployment. AI development, so the argument goes, is benchmarked against
the Turing test, implicitly casting the human as the thing to be replaced.1 Others,2 drawing
on principles of comparative advantage and opportunity cost, argue that displacement is not
destiny: even as machines take over certain cognitive tasks, new roles and complementarities
for humans will emerge, though perhaps in unfamiliar places. The tension between substitution
and augmentation, replacement and reinvention, underlies much of the current unease.

Recent usage data reflects the scale and ambivalence on hand. According to Microsoft’s
2024 Work Trend Index, 75% of global knowledge workers now use LLMs at work. Among
them, 78% bring “their own AI” into the workplace, often without formal institutional support
or oversight. Yet this widespread adoption is accompanied by quiet anxiety: 52% of users are
reluctant to admit using LLMs for their “most important tasks,” and 53% worry that doing so
makes them look replaceable.3 The covert and strategic use of LLMs4 at scale introduces novel
information asymmetries in the labor market but also creates challenges well beyond internal

1Acemoglu and Johnson (2023)
2E.g. https://www.noahpinion.blog/p/what-if-everyone-is-wrong-about-what
3See Microsoft and LinkedIn, 2024 Work Trend Index Annual Report, p. 15. Available at: Microsoft 2024

Work Trend Index Report.
4In recent work we detected statistically significant residue of ChatGPT use in scientific abstracts where a

similar covert use appears to be the case (Askitas, 2025)
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workplace dynamics: it opens the door to training data poisoning, whether for geopolitical
manipulation, disinformation, or influence operations, as well as to the stealthy alteration of
weights in ostensibly “open-weight” models. In the current epistemic infrastructure, trust,
transparency, and verification will become even more contested and fragile.

Some critics, including François Chollet, creator of Keras, have warned that the overwhelm-
ing focus on LLM development may be the worst thing that could happen to broader Artificial
General Intelligence (AGI) research, since it drains funding and attention away from alterna-
tive approaches such as symbolic reasoning, program synthesis, and neurosymbolic systems.5
Their concern highlights how technological hype can distort research priorities, reinforcing the
importance of understanding both the promise and the limits of present-day systems.

This essay tries to reframe the conversation. We argue that LLMs are not synthetic minds,
but simply highly scalable statistical mirrors. They excel at imitation, recombination, and
surface-level synthesis. Yet their impact goes well beyond their mechanical limitations. By
making cognitive labour easier, faster, and more accessible, they trigger a familiar pattern: the
outsourcing of human faculties to machines. As with earlier technologies, from agriculture to
writing, from engines to calculators, this outsourcing does not merely increase efficiency. It
transforms what it means to learn, to signal competence, to become an expert, or even to think.

To explore this transformation, we proceed in four steps. First, in Section 2, we demystify
the underlying logic of LLMs by showing that they are, quite literally, autoregressive models,
albeit operating at an immense scale and applied to language rather than numeric time series:
powerful, predictive, but blind to novelty. Second, in Section 3, we place them within a longer
trajectory of technological outsourcing, from digestion to muscle to cognition, tracing both the
upsides and civilisational side-effects. Third, in Section 4, we examine how these tools disrupt
existing institutions and cause the emergence of new ones, amplify inequality, and might break
the developmental ladders that sustain human expertise. Finally, in Section 5, we reflect on the
paradox that while LLMs threaten to displace human work, they still depend on it for their own
survival.

In the Addendum 1, we offer the reader who is not faint of mathematical symbolism a
heuristic sketch of why it is difficult to produce a safe LLM in the sense of protecting the naive
or vulnerable from erroneous, yet convincing, outputs. LLMs can be thought of as compressing
engines of their training set, in the sense that they compress the entire training corpus into a set
of model parameters, and we use this framing to sketch their limitations and unmitigated risks.

In the Addendum 2 we discuss the difference between learning language structure (as it
turns out LLMs can do that consistently) and learning truth (a harder more fragile undertaking).
While the ideas in the addendum can be made mathematically precise we confine ourselves to
plain english at this point.

This discussion unfolds around eight central threads: the autoregressive structure of LLMs;
their role in outsourcing cognition; the tension between fluency and understanding; the epis-
temic risks of synthetic text; the breakage of skill ladders; the economic tradeoffs between
augmentation and substitution; the long-term implications for expertise and epistemic infras-
tructure; and the paradox of recursive dependence on human-generated input. Each of these
themes informs how we think about both the promise and the limitations of generative AI.

This essay was written to give structure to the author’s thoughts on this emergent technol-
ogy. We hope it may offer guidance or inspiration for new research questions that bring together
researchers from otherwise disconnected disciplines, and help policymakers, the press, and the
broader public reflect on this emerging disruption in a fact-based, dispassionate, and nuanced

5See e.g. https://www.freethink.com/robots-ai/arc-prize-agi
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manner, incorporating areas for which the author has a particular fondness: technological,
mathematical, historical, philosophical, and social-scientific perspectives.
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2 GenAI: An Autoregressive Parrot
At its core, a large language model (LLM) is a sophisticated autoregressive machine. Like a
high-order autoregressive (AR) time series model (admittedly among the simplest of all econo-
metric models) that predicts the next data point based on patterns in the past, an LLM predicts
the next word (or token) based on a statistical understanding of previous ones. Its genius lies
not in understanding meaning per se, but in mastering correlation: recognizing and reproducing
the structure of language at scale6.

This surface-level coherence, however, often mystifies even experts. Because the output
feels fluid, purposeful, and well-formed, it triggers our instinct to attribute intention, agency,
or understanding despite none being present. Even experienced engineers, like the Google re-
searcher7 who publicly claimed an LLM had become sentient, have fallen into this trap. But the
effect is not new. ELIZA, the simple chatbot developed in the 1960s by Joseph Weizenbaum,
famously elicited strong emotional reactions from users by doing nothing more than reflecting
their input back at them in a structured way. This tendency of humans to interpret fluency as
thought came to be known as the “ELIZA effect”.8

This similarity to autoregressive models is not merely metaphorical; it is both technical and
conceptual.9 What time-series are to AR models, books are to LLMs: long sequences of data
from which future elements are statistically inferred. Just as autoregressive (AR) models treat
a time series as a sequence of numerical observations, where finite sequencies of past values
are used to predict the next one, LLMs treat language as a sequence of tokens (or characters).
During training, the model slides through text in overlapping windows (say, 30 tokens at a time)
learning to predict what comes next after each such sequence. The objective is to minimise
prediction error across this entire textual universe, much like fitting a regression line through
historical data. And as with AR models, performance is often excellent until a structural break
occurs. Ironically, that is precisely when prediction matters most.

The underlying assumption behind autoregressive models is deceptively simple: if the past
determines the future, then some essential structure must be encoded in past values themselves.
The goal is not to recover causality, but to exploit correlation on the belief that history carries
the signature of what’s to come. By this logic, past values have something meaningful to say
about future ones, and their statistical regularities are a valid basis for extrapolation.

LLMs operate on the same principle. When we prompt them, they respond by conditioning
on the latent priors embedded in their training corpus. These priors are drawn from patterns
in existing text (books, code, dialogue, and documents) and the output is a kind of statistically
probable continuation, not an act of understanding. What’s missing is what was never encoded
to begin with.

Consider a time series forecasting model trying to predict the stock price of Volkswagen
(VW) during the period it was secretly using emissions defeat devices10. No matter how so-

6See Bender et al. (2021) for the influential critique that introduced the metaphor of LLMs as “stochastic
parrots” i.e. models that fluently mimic language without true understanding, raising concerns about scale, bias,
and misuse.

7See The Guardian, “Google fires software engineer who claimed AI chatbot was sentient,” June 12, 2022.
Available at: https://www.theguardian.com.

8See ELIZA and the “Eliza effect” described on Wikipedia (https://en.wikipedia.org/wiki/ELIZA,
https://en.wikipedia.org/wiki/ELIZA effect); also Joseph Weizenbaum’s original paper (Weizenbaum, 1966).

9Not surprisingly, GenAI models are inherently well-suited to time series forecasting (Lim and Zohren, 2021).
10In September 2015, Volkswagen admitted to installing defeat devices in diesel vehicles to manipulate emis-

sions tests. Following the disclosure, VW’s stock plunged nearly 30% in a matter of days. See Jack Ewing,
“Volkswagen Says 11 Million Cars Worldwide Are Affected in Diesel Deception,” The New York Times, Sept. 22,
2015. https://www.nytimes.com
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phisticated the model, it would have failed to foresee the crash that followed disclosure because
the relevant causal factor was hidden, absent from the data. The signal wasn’t in the series.

In the same manner, a truly novel idea, one that incubates in a mind before ever being
articulated, cannot be predicted by an LLM. Because it does not exist in the corpus, it leaves
no statistical trace. Language models can recombine what they have seen, but they cannot
anticipate what has never been expressed although in many occasions they might lead us to
believe so.

LLMs rely on this same statistical logic when adapting to different tones or genres. You can
ask an LLM to write lyrics like Tom Waits, prose like an American Economic Review paper, or
a news report in the style of The New York Times. It will comply, not because it understands
these styles, but because it conditions its internal probabilities on the statistical signature of
the corresponding corpus. It’s not imitating ideas; it’s matching form. And with that, the LLM
quietly enters the labor market, performing tasks once reserved for journalists, analysts, editors,
and assistants.

An AR model performs well when the future looks like the past. But it falters when there’s
a structural break: a crisis, a regime change, or a fundamentally new situation outside its train-
ing window. LLMs behave in much the same way. They (most of the time) produce fluent,
plausible, even persuasive text, until you ask them to handle the unfamiliar, the contradictory,
or the truly novel. When the moment requires creative insight or epistemic risk-taking, the
model retreats to the comfort of prior patterns.

Some counter the “parrot” critique by pointing out, correctly, that LLMs often generate sen-
tences they’ve never seen before. But this does not contradict the autoregressive analogy. An
AR model, once fitted, can produce values it has never observed, yet those values still lie close
to the regression line. They are new, but not surprising. Likewise, LLMs can generate entirely
novel phrases or formulations that are statistically consistent with their training data. They
don’t repeat the past; they extend its trajectory. Occasionally, an LLM may stumble upon a
formulation that feels like an idea. But this is no more mysterious than an AR model producing
an unfamiliar data point: it is novel, yet structurally predictable. What makes the output seem
insightful is less the presence of intention than our tendency to confuse fluency with agency, es-
pecially when a sequence happens, by chance or correlation, to capture something meaningful.
In the opposite direction, when you feel frustrated at how an LLM will speak fluent nonsense
to you, changing its “mind” as you interact with it, know that this is like an AR model being
off in its prediction. Sometimes our confidence interval excludes nonsense, and sometimes it
contains some. And once again, interacting with an LLM is not conversing with a mind, it is
sampling from a forecast, sometimes within bounds, sometimes well outside them11.

This very mechanism (the generation of new-but-expected output) is what gives LLMs
their distinctive power. They do not retrieve information the way a classical database or search
engine does; instead, they predict what a plausible answer would be, given all they’ve seen.
They won’t necessarily cite a passage from a specific book (although LLM extensions now
exist that can), but they can generate something that reads like a citation, an AR-style projection
of what a passage should say, based on the latent structure of the corpus. In this sense, an
LLM functions as a composite of a know-it-all author of a giant, all-encompassing dynamically
written book , and a locate-all librarian. Here is another instance where LLMs begin to encroach
on traditionally human white-collar tasks: rephrasing, organising and retrieving “information”.
In doing so, the LLM enters, once again, the labor market, raising the question of whether it
augments or substitutes human cognitive work.

GenAI is not a thinker. But it is a tireless synthesizer, a tool that makes the implicit ex-
11For the reader who needs to dig deeper: OpenAI (2023), Schaeffer et al. (2023), Liu et al. (2020)
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plicit, surfaces hidden patterns and latent phrasing, and assembles fragments of knowledge into
(mostly) coherent text, even when that text did not exist before. In doing so, grammar and
syntax may be largely correct (form), but validity and logical coherence are often lacking.

This is why LLMs excel at style but not at substance. They can imitate clarity, compress
ambiguity, and polish expression. But they do not “know” in any meaningful sense, nor do they
invent. Instead, they remix and repackage. The resulting prose often has the feel of authority
(precise, coherent, and grammatically polished) but lacks the epistemic grounding that comes
from actual reasoning or evidence. Like parrots trained on vast archives, LLMs can mimic
almost any intellectual posture without understanding the stakes of what is being said.

Still, this imitation should not be dismissed. What emerges is a new kind of cognitive
infrastructure. LLMs collapse the cost of semantic retrieval, making it easier to trace a concept,
rephrase a claim, or simulate an argument without having to originate it. They open up a new
way of accessing and rearranging knowledge, one that augments rather than replaces human
agency.

To recap the analogy: in econometrics, we often prize causal models over predictive ones,
because the former aim to explain mechanisms, not just correlations. Yet in many real-world
contexts where causal inference is difficult or unnecessary, prediction is good enough. Gener-
ative AI falls squarely into this prediction class.

Our own reasoning, at its best, aspires to causality, to uncover hidden mechanisms, question
assumptions, and shift paradigms. Generative AI, by contrast, excels at optimising within
known frames: refining an idea, drafting an introductory paragraph, summarising a document.
These are tasks where high-quality prediction is sufficient and often more efficient than manual
effort.

The analogy isn’t perfect, but it’s instructive: in a world full of prediction-class problems,
generative AI is an effective tool. But for questions that demand causal leaps, conceptual
breakthroughs, or principled dissent from established narratives, it remains just that: a tool. In
short: Generative AI continue to be more A than I.

Thinking is like uncorking a bottle of wine: there’s a pop, a shift in pressure, and suddenly
something begins to flow. Sometimes it’s rich and structured, sometimes wild and surprising,
sometimes thin and forgettable but it’s always yours, and it always emerges from the strange,
nonlinear processes that make up a mind. With LLMs, there is also unpredictability: you never
quite know what you’re going to get. This is partly due to their stochastic nature, modulated by
the so-called temperature parameter that controls randomness. But crucially, what flows from
them is not the result of interior pressure or insight. It is the output of an autoregressive process:
a vast engine of statistical pattern continuation, estimating the next token based on everything
that came before. The resemblance to thought is superficial. It looks like wine, it pours like
wine, but it was never fermented in a mind, at least not directly. It is distilled from a collective
corpus, inferred from the archived outputs of uncountable minds.
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3 Outsourcing Ourselves
Technology (a predominantly, though not exclusively12, human endeavor) can be understood
as the systematic outsourcing of human faculties to machines13. From digestion to muscle
to cognition, we have continuously externalised internal processes, delegating what was once
organic and embedding it into artefacts of our own design.

Early agriculture and cooking technology transformed human digestion. By preprocess-
ing food outside the body (soaking, fermenting, grinding, heating) we weakened our teeth
and shortened our digestive tract over evolutionary time and freed ourselves from the constant
labour of feeding14. This outsourcing did not merely save energy; it reorganised time, allowing
attention to be redirected to tool-making, social interaction, or abstract thought. But it also
introduced new forms of vulnerability: our modern world faces civilisational illnesses such as
obesity, malnutrition, anorexia, and other nutritional or metabolic disorders, conditions born
not of scarcity, but of abundance, misalignment, and over-optimisation.

The industrial revolution brought the mechanisation of muscle. Horses15 and human labour-
ers were replaced by steam, steel, and internal combustion. Machines substituted brute strength,
yes, but also augmented it: workers operating powered tools could accomplish far more than
unaided effort ever allowed. Yet this came at a cost. As the body became redundant, it atro-
phied. The rise of sedentary labour, and eventually fitness clubs16, is not a contradiction but
a consequence, a new layer of adaptation in response to an older one. The externalities of
this transformation included a profound reliance on fossil fuels, widespread pollution, and an
exacerbation of climate change.

Automation took the logic of mechanisation further. From the assembly line to the back of-
fice, processes once requiring human judgement were codified into scripts, routines, and feed-
back loops. Taylorism17 rationalised labour by breaking it into discrete, optimisable units, but
it also depersonalised work, alienated workers, and reduced them to appendages of a system.
This form of outsourcing brought immense productivity gains, but it also intensified inequali-
ties and generated resistance movements, from trade unions to calls for universal basic income
in our days: once again successive layers of adaptation in response to prior ones.

The same pattern is visible in the rise of computing and navigation technologies. The out-
sourcing of arithmetic to calculators, and of memory and logic to computers, has made basic
computational skills increasingly rare. Imagine, for example, the early human calculators in
the NASA programme, highly trained specialists, who were eventually displaced by IBM ma-
chines18. Yet even as machines took over, the human role remained critical in design, oversight,

12Tool use is not unique to humans: chimpanzees, capuchin monkeys, New Caledonian crows, dolphins, and
even octopuses have been observed selecting, modifying, and using tools in the wild (Seed and Byrne, 2010).

13For the origins of this somewhat econ-centric formulation, see Anders (1956), where he introduces the concept
of the “Promethean Gap” (the reader with classical Greek education will certainly appreciate the name of the
concept). See also Wiener (1950), for an early articulation of cybernetic automation as the delegation of human
agency to machines.

14https://www.americanscientist.org/article/meat-eating-among-the-earliest-humans
15By the mid-20th century, the United States horse population had fallen approximately 80% from its 1920

peak of 27.5 million to around 4.5 million in 1959, a decline closely tied to the widespread adoption of tractors,
automobiles, and other motorised transport. (United States Department of Agriculture, 1959).

16As the body atrophied from disuse, sedentary lifestyles became widespread so did fitness clubs emerge to
compensate. The modern fitness-club industry began taking off in the United States during the 1960s and 1970s;
by the mid-1990s, private fitness centers had become ubiquitous, driven by cultural shifts and alarm over declining
physical condition in a post-industrial society (Stern, 2008; Petrzela, 2020)

17(Braverman, 1974; Encyclopaedia Britannica, 2025)
18By the late 1950s, NASA had begun replacing human “computers” with IBM mainframes like the IBM 704
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and judgement. Similarly, GPS has allowed us to navigate confidently through unfamiliar ter-
rain, but studies suggest it may degrade our internal spatial awareness and sense of direction19.
Meanwhile, thousands of orbiting satellites light up the night sky, raising concerns not only
about aesthetic and ecological disruption but also long-term space debris. These tools increase
our reach but narrow our involvement. What we gain in convenience, we may lose in intuition.

In each case, outsourcing a function to technology did not simply replace the old with the
new. It reshaped the environment, redefined effort, and reconfigured what it meant to be human
in that context. The effect was not linear but dialectical: substitution in one domain produced
augmentation in another, which in turn demanded new compensations, norms, and forms of
self-discipline.

Every time we outsource a capability, those fellow human beings who happened to be en-
dowed with that very skill experience a loss in its market value. Yet paradoxically, they are
often best positioned to adapt: to step into the new gaps and demands created by the shift-
ing landscape. It is rarely a smooth or painless transition. But it is one we have undergone
repeatedly, and will undoubtedly face again.

Language models are the next phase in this trajectory. They represent the outsourcing of
synthesis, summarisation, composition, and rhetorical finesse. LLMs are not the first machines
to shape how we think: writing itself was once a disruptive technology (and so was its mass
upscaling with Gutenberg centuries later). In his dialogue Phaedrus20 in 370 BC, Plato ex-
pressed concern that writing would erode memory and true understanding21. Once written
down, knowledge would be read without being known; people would seem wise without being
so22. The warning, written over 23 centuries ago, is strangely contemporary. It echoes today’s
fears that language models will erode our reasoning or replace thought with mere simulation23.

Plato’s concern in Phaedrus that writing would weaken memory and degrade true under-
standing, was not entirely misplaced, though it underestimated the brain’s remarkable plastic-
ity. As modern neuroscience reveals, the adoption of writing did not merely offload memory;
it restructured the brain itself. According to Dehaene’s theory of neuronal recycling, liter-
acy co-opted parts of the visual cortex originally evolved for spatial orientation and object
recognition, particularly in the left occipitotemporal region, repurposing them to process letter-

and 7090, capable of performing in minutes what previously took human teams days or weeks. For details, see
NASA’s history of human computers and IBM automation at NASA (NASA Jet Propulsion Laboratory / NASA
History, 2016; Miracle, 2025).

19See Maguire et al. (2006) for how the brain differs between bus drivers (light navigational load) and taxi
drivers (heavy load) in London.

20Plato (1997), https://www.historyofinformation.com/detail.php?id=3439
21Plato, Phaedrus 275a–278e. Socrates recounts the myth of Theuth and Thamus, where the invention of writing

is said to produce “forgetfulness in the souls of those who learn it.” This anticipated what is now called the Google
effect: if you can always find, why remember?

22Ironically, this very condition has become institutionalized in modern education. One of the more unfortunate
perversions of contemporary schooling is that it often rewards rote memorization over creative thinking, precisely
the sort of shallow recall Plato warned against. Rather than serving as a tool to scaffold understanding, externalized
knowledge becomes a checklist of facts to be recited. If writing once threatened memory, today’s education
system sometimes mistakes memory for knowledge. In that light, large language models are not a rupture, but a
continuation: fluent in recall, indifferent to meaning, and trained (like many students) to predict the right answer.

23The author first encountered Plato’s critique of writing in Phaedrus during an interactive exchange with a
large language model. When prompted for historical concerns about externalised memory, the model surfaced this
example, not through database retrieval or lookup, but via autoregressive prediction. It generated the reference
by statistically completing a sequence of contextual prompts based on patterns learned during training, effectively
reconstructing a citation lurking in the vastness of its training set, rather than recalling it from a fixed source. As
always, the author diligently verified the reference, but the learning effect was genuine.
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forms and words.24 This act of outsourcing cognition to written symbols was not passive but
physiologically active: it altered the cognitive foundation that once feared such alteration. To-
day’s large language models present an analogous challenge: we outsource linguistic fluency,
ideation, and structure to machines. And again, the brain will not remain unchanged. If the
past is any guide, we should expect not just cultural but neurological adaptations, as humans
co-evolve with these new symbolic collaborators.

And yet, as with Plato’s critique, we risk underimagining the upside. Writing may have
made the natural rote expert obsolete (the labor market once again), but it enabled the preser-
vation and dissemination of knowledge across space and time, and the creation of entirely new
intellectual roles: authors, librarians, archivists, editors, and publishers. What seemed like a
loss to the oral mind became an infrastructure for modern science, law, and culture. The same
may yet prove true of LLMs, if we learn how to wield them.

As with earlier tools, LLM adoption is bound to disrupt and upend existing structures:
from the labour market to our epistemic norms to our very physiology. Just as mechanisation
weakened the body but extended its reach, cognitive outsourcing may dull the mental muscle
it displaces, even as it amplifies what remains. To produce more, we may end up thinking less
or thinking in unfamiliar ways. LLMs, too, come with externalities: their training requires
enormous amounts of data, energy, and computational infrastructure, raising sustainability and
equity concerns25.

The consequences will be mixed. The speed and scope of intellectual work may increase
dramatically, with entire fields accelerated by models that generate hypotheses, summarise lit-
erature, write code, or refactor logic. But cognitive dependence may also grow. Displaced skills
aren’t guaranteed to be retained. We can easily imagine a future where most people consume
LLM-processed content, while others pay a premium for human-curated work, eventually giv-
ing rise to “fitness clubs for the mind” to preserve critical thinking, memory, abstraction, and
judgment. These may be necessary to counter new forms of intellectual malnutrition. The chal-
lenge, as always, is not just what machines can do, but what we stop doing once they can, and
more importantly, what we choose to do instead.

The current wave of large language models (LLMs) did not arise in a vacuum. They
emerged from a converging state of software and hardware that reflects and amplifies the logic
of the human mind. On the software side, transformer architectures (first introduced in 2017)
captured the statistical structure of human language using attention-based mechanisms remark-
ably well-suited to the way we process context and sequence. On the hardware side, the rise
of highly parallelised computation via GPUs and TPUs enabled models with hundreds of bil-
lions of parameters to be trained on a scale matching human cultural output. But none of this
would have worked if language itself (its syntax, structure, and predictability) were not already
a product of the cognitive architecture that made us human. In a very real sense, LLMs work
because they exploit patterns that our own brains evolved to produce.

Writing, with its use of angles (Gamma), triangles (Delta), circles (Omikron), and other
geometric forms, likely co-evolved with the brain in complex and unpredictable ways. De-
haene’s theory of neuronal recycling suggests that reading and writing did not evolve new
neural structures but instead repurposed ancient spatial recognition circuits, particularly in the

24See Dehaene and Cohen (2007); Dehaene (2009).
25Bitcoin shows that raw hardware efficiency can improve by orders of magnitude over time. If LLM workloads

follow a similar curve of hardware and software optimisation then per-output energy costs could fall sharply,
potentially making LLMs much less energy-hungry in the future. The key question is whether demand rises faster
than efficiency improves, leading to a Jevons paradox effect, where total energy use increases despite gains in
efficiency.
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visual cortex, for decoding symbolic shapes and mapping them to sound and meaning.26

The adventurous reader might allow this author, a non-expert on the subject matter, to
spitball on what got us to large language models (LLMs), and what LLMs might in turn do to
us, not culturally, but physiologically and neurologically.

To start, LLMs are not an alien artifact; they are deeply human. They emerged from a partic-
ular configuration of brain functions. Our evolved language faculty, regions like Broca’s area27

(involved in producing speech) and Wernicke’s area28 (involved in understanding it), gave rise
to our taste for syntax, semantics, and structured expression. Supporting these are a network
of connections between higher-order reasoning centers and sensory areas, enabling the inte-
gration of thought, language, and perception. Our brains are also powerful prediction engines,
constantly anticipating the next word, movement, or social cue. Transformer-based LLMs like
GPT are a formalisation and amplification of this very logic: they model the statistical structure
of language by predicting the next word, token by token, just as we do in conversation.

Add to this our reliance on compression and abstraction, enabled by working memory and
executive control, and our talent for social cognition: inferring intentions, simulating conver-
sations, tracking narrative arcs. These are not merely background conditions; they shaped the
design of LLMs. We built these systems to “speak” like us because we are shaped to speak the
way we do. In that sense, LLMs are a mirror of the neural real estate that produced them.

But mirrors reflect back. And now, these very same circuits are being reshaped in return.
If writing reshaped the visual cortex, LLMs may reshape the prefrontal cortex, particularly

areas responsible for planning, abstraction, and structured thought. Offloading ideation, sum-
marisation, and even first-draft writing to a machine may reduce the need to hold extended
arguments or narrative threads in working memory. Our language production systems may be-
come more reactive and curatorial, focused on steering and refining rather than generating from
scratch.

Our reward systems, sensitive to fast feedback and novelty, may be subtly tuned by the im-
mediacy of machine-generated responses. Just as social media exploits intermittent reinforce-
ment, the LLM-as-assistant could deepen cognitive dependence through sheer responsiveness
and availability.

The most profound effects may be on our social cognition circuits. As we increasingly treat
LLMs as conversation partners, addressing them in the second person, anthropomorphising
their tone, and expecting empathy, we may begin to repurpose the same neural modules used to
model human minds. This could deepen our empathy or flatten it, depending on whether these
synthetic interactions displace real ones.

And then there is our sense of self. Just as mirrors or autobiographies relate to our self-
awareness, LLMs may reshape narrative identity: how we externalise our thoughts and reflect
on them. An external mind that finishes your sentence, suggests your phrasing, or articulates
your idea with more elegance than you could muster: what does that do to internal monologue?
Does the self become a prompt formatter?

This is not a cautionary tale. The changes may not be good or bad in any general sense.
But if reading and writing co-evolved with the human brain through the repurposing of neural
real estate, there is no reason to think LLMs will leave the brain untouched. The interface may
be screen and keyboard, but the medium is cognitive architecture. And evolution has never
stopped at the skull.

26See Dehaene and Cohen (2007); Dehaene (2009).
27Broca (1861)
28Wernicke (1874)
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4 Disruption
If LLMs are tools for outsourcing ourselves, they are also forces of disruption. Their emer-
gence does not simply offer new capabilities; it destabilises the institutional and economic
frameworks that depend on human cognition, originality, and trust. In this sense, language
models are not just technical artefacts, they are market participants, cultural actors, and epis-
temic disruptors.

One major fault line is information asymmetry. As it becomes harder to distinguish be-
tween human- and machine-generated content, the value of authenticity declines. If readers
cannot reliably tell whether an abstract, cover letter, or policy memo was written by a person
or a model, trust in quality (and the signalling function of effort) begins to erode. This dy-
namic risks creating a classic lemons market29: as high-quality human work is crowded out by
indistinguishable low-cost output, incentives to invest in quality may collapse.

Higher-order beliefs compound the problem. If I believe all writers are using machines,
why read their work rather than just summarise it with an LLM? If I believe no one reads but
only summarizes, why write at all? If I believe everyone assumes I’m using GPT, why wouldn’t
I? As these beliefs take hold, texts may grow shorter, less effortful, more interchangeable. The
long-term consequences for attention, motivation, and meaning are still unknown30.

At the same time, LLMs magnify existing superstar dynamics31. Those already adept at
prompt engineering, framing, and narrative assembly can now scale their productivity dramat-
ically, while others risk falling further behind. The gap between the top 0.1% and the rest may
widen, not only in income, but in visibility, influence, and perceived competence. We may end
up with a handful of Taylor Swifts, and the rest playing small bars for free drinks. Like earlier
waves of digitization, AI favours scale and disproportionately rewards those already operating
at the frontier.

AI readiness spans a wide spectrum: from the mentally or intellectually unprepared, or
even vulnerable32, to those unable to formulate an effective prompt, to those unable to evaluate
a GPT output, up to those best positioned to exploit GenAI. A highly skilled programmer could
thrive without LLMs, yet still reaps huge gains from them: drafting a technically correct solu-
tion might take days, while crafting a precise prompt could produce a viable draft in minutes,
leaving only a quick audit. This is superstar dynamics on steroids. It is precisely those that
need GenAI the least that will benefit the most33.

Meanwhile, norms and institutions lag. Disclosure standards for AI-generated content re-
main weak. Academic and professional codes of conduct are only beginning to grapple with
what constitutes legitimate use. Some are starting to respond: when submitting a paper to an
Elsevier outlet, one now encounters a policy stating that LLMs may be used, but their use must
be disclosed, and the authors remain fully responsible for the content (see Figure 2). Such
language (tentative, permissive, but cautious) signals that the boundaries of acceptable prac-
tice are actively being redrawn. Education systems face a parallel dilemma: how to preserve
the value of learning when the tools to bypass it are freely available, increasingly persuasive,

29Akerlof (1970)
30Nowhere is this information asymmetry more evident than in the ongoing battle between applicants and

hiring firms where firms use AI to screen AI-generated resumes https://mashable.com/article/
ai-generated-resumes-overwhelming-recruiters

31Rosen (1981). Thanks to Peter Kuhn for the idea.
32Dohnány et al. (2025)
33For to every one who has will more be given, and he will have abundance; but from him who has not, even

what he has will be taken away. Matthew 25:29, RSV https://en.wikipedia.org/wiki/Matthew_
effect
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and often undetectable34. Some policy responses are already emerging: in China, for example,
AI-enabled chatbot features such as photo recognition and real-time Q&A were temporarily
disabled by major firms (Tencent, ByteDance, Alibaba, Moonshot) during the four-day gaokao
college entrance exam to curb cheating and preserve fairness.35

Nowhere is this more visible than in the collapse of the traditional ascension ladder. Ex-
pertise is rarely born whole; it is cultivated through repeated low-stakes practice: writing bad
drafts, summarising dense texts, failing to explain. But if LLMs automate these early-stage
tasks, novices may be denied the friction that makes mastery possible. What happens when
junior analysts, student writers, or early-career researchers no longer need to struggle through
the tedious parts of thinking? The result may be a generation of professionals fluent in polished
output but hollow in internal structure, lacking not knowledge, but the cognitive grind that gives
it shape.

Figure 2: Pop-up on Elsevier’s Editorial Manager: “GenAI is not a co-author. If you use it
disclose it and make it your own”

The problem extends to staffing and career progression. If firms, following basic economic
incentives, begin36 substituting entry-level positions with agentic AI and retain only senior
staff, how will future seniors emerge? The pipeline of expertise depends on apprenticeship and
time. Remove the entry-level rung, and the ladder collapses. In education, a similar dynamic is
unfolding. A recent New York Times feature reports growing controversy as professors increas-
ingly rely on ChatGPT to generate teaching materials, while students protest that they pay to
be instructed by humans, not algorithms they could freely access themselves.37

This tension between leveraging AI for instructional efficiency and maintaining educational
legitimacy, further illustrates how asymmetric use of generative systems can erode trust and

34Many Gen Z-ers are delaying full-time work for extended schooling or gap experiences, seeking purpose
over pay, and expressing uncertainty about workforce integration in an AI-disrupted economy. See factors driving
this trend: Deloitte (2025) on Gen Z skill orientation and delay of milestones, Axios (2025) on school-to-work
misalignment, and Post (2024) on rising NEET rates among youth.

35See The Guardian, “Chinese tech firms freeze AI tools in crackdown on exam cheats,” June 9, 2025. Available
at: https://www.theguardian.com

36See Economic Times, “After warning mid-level IT engineers that AI was going to do their work,
now Mark Zuckerberg’s Meta plans to lay off 5% of its workforce,” March 2025. Available at:
https://economictimes.indiatimes.com. CNBC, “Meta is targeting hundreds of millions of businesses for agen-
tic AI,” March 6, 2025. Available at: https://www.cnbc.com.

37See The New York Times, “College professors are using ChatGPT. Some students aren’t happy,” May 14,
2025. Available at: https://www.nytimes.com...
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reshape institutional norms. From a policy perspective, this breakdown calls for creative regu-
latory responses.

If substitution becomes the norm, governments may consider a class of economic instru-
ments similar to those used in environmental policy. Just as carbon taxes internalise the envi-
ronmental costs of fossil fuel consumption, a “cognitive erosion tax” could be levied on firms
that systematically replace junior staff with LLM-based agents. The logic is simple: if au-
tomating entry-level work depletes the future supply of human experts, undermining learning
pathways, mentorship structures, and institutional memory, then the social cost should not be
externalised. Conversely, firms that maintain human development pipelines or actively invest
in hybrid intelligence where non-displaced junior staff work alongside LLMs, could receive
targeted support or public recognition.

Another option, less punitive and more strategic, might involve public investment in “LLM
stock”: a dedicated labour force tasked with generating diverse, high-quality training data to
keep generative systems robust. Whether via taxation, subsidy, or direct provision, the key is
to acknowledge that knowledge ecosystems are not self-sustaining. Left to market incentives
alone, they may cannibalise their own future. From a policy perspective, one response to the
breakdown of training pathways and expertise pipelines might involve taxing substitution or
subsidising retention. Just as carbon taxes aim to internalise negative externalities and steer
market behaviour toward long-term sustainability, a “cognitive externality tax” could be levied
on firms that aggressively replace junior roles with LLM agents. The idea is not to halt au-
tomation, but to recognise its systemic consequences: if the substitution of entry-level labour
hollows out the future supply of experts, the costs of that erosion, currently borne by society,
should be internalised by those driving it.

Conversely, firms that demonstrably maintain human apprenticeship structures, knowledge
transfer, or hybrid human-AI work models might receive targeted support or public investment.
In this framing, LLMs are treated not as neutral productivity tools, but as infrastructural forces
whose uptake reshapes labour market dynamics, institutional memory, and long-run human
capital development.

LLMs were trained on human output (text, code, conversation) in order to turn around and
render many of those very humans obsolete. The model learned to write Python code, for
example, by ingesting countless human-written snippets from sources like GitHub and Stack
Overflow. The result is phenomena like “vibe coding,” where users describe a task in natural
language and the model writes the code. But as firms increasingly replace programmers with
“agentic AI”, the source of training data (active human coders) diminishes. Layoffs across the
tech sector, in part driven by AI substitution, have already illustrated this shift.

Yet this disruption contains its own limit. If the asymmetry continues, the share of human-
generated content in the future training corpus will approach zero. This leads to what re-
searchers call model collapse: when AI systems are trained primarily on synthetic output, they
begin to amplify their own statistical artefacts, compounding errors and degrading performance
(see Figure 3). In this scenario, high-quality human content (or at least carefully curated syn-
thetic data) regains value38. The paradox is that in order to keep LLMs sharp, we may need to
employ human white-collar workers primarily as generators of future training data.

Of course, the disruption cuts both ways. These tools can democratise access to expert-
38In 2024, Stack Overflow and OpenAI announced a partnership allowing OpenAI access to Stack Over-

flow’s vetted developer content to improve GPT-based coding tools. In return, Stack Overflow benefits from
OpenAI-driven attribution and model tuning. This collaboration raises the possibility that human contributors,
once volunteering for reputation, may increasingly serve as paid curators of high-quality training data. See:
https://openai.com/blog/openai-and-stack-overflow-partnership.
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Figure 3: Self-Consuming Generative Models Go MAD - Model Autophagy Disorder (Alemo-
hammad et al., 2023): Training generative artificial intelligence (AI) models on synthetic data
progressively amplifies artifacts. Output in t is based on model trained on its output in round
t→ 1.

like output. They can help second-language writers, idiosyncratic thinkers, or under-resourced
students level the playing field. They can compress learning curves and make institutional
knowledge more searchable and responsive. But even this form of empowerment depends on
careful adoption. Without thoughtful design, AI-enhanced systems may entrench dependence,
reward surface fluency, and crowd out the very practices they aim to support.

What we are witnessing is not just a new tool, but a shift in the equilibrium of effort,
signal, and trust. Like prior technological disruptions, the effects of LLMs will not be evenly
distributed. They will benefit some, displace others, and reshape the norms that mediate both.
The challenge is not simply how we use the technology, but how we reconfigure the institutions
around it.

It is tempting to think of our digital knowledge ecosystem as uniquely fragile, prone to
corrupted disks, server failures, and the obsolescence of formats. But knowledge has always
been precarious.39 Clay tablets eroded, papyrus crumbled, libraries burned,40 and magnetic
tapes degraded. What preserved knowledge across time was not the medium itself,41 but the
social act of transcription: monks copying manuscripts, scribes preserving commentaries, oral
traditions renewing themselves through repetition. In this light, even the Internet Archive42 or
a large language model can be seen as part of that long lineage, mechanical monks, of a sort,
preserving not individual texts but the statistical patterns that structure our collective memory.
These systems do not remember as we do, but they are trained on what we chose to preserve.
Fragility remains but so does the instinct to pass things on.

39See, for example, the Antikythera mechanism, a sophisticated mechanical computer dating from the 2nd
century BC, discovered in a shipwreck and whose function remained mysterious for decades. Its survival was an
accident; its context, mostly lost.

40The Library of Alexandria, though mythologized, remains a potent symbol of how centralized repositories of
knowledge can vanish through fire, neglect, or political upheaval.

41Although the Gutenberg press contributed by enabling copies at scale.
42https://web.archive.org/
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5 Conclusion
Large language models are not the end of human thinking, but they do alter its terrain. By
mimicking form without understanding and producing output at scale, they force a revaluation
of how we recognise effort, originality, and expertise. Trained on the residue of human labor,
the written word, they are cognitive machines built from language, now set loose to reshape the
very structures from which they were born.

Far from being synthetic minds, LLMs are best understood as (indeed, quite literally are)
autoregressive engines: powerful in continuity, brittle in novelty. Like past technologies of
outsourcing (digestion, muscle, navigation) they liberate, displace, and reshape in equal mea-
sure. They offer speed, reach, and fluency, but at the risk of cognitive atrophy, institutional
erosion, and the loss of formative struggle. As with all transitions, the issue is not just what the
machine can do but what we stop doing once it can.

The irony is deep. A machine trained on human expression begins to crowd out its source.
Layoffs in tech, ghostwritten job applications, synthetic research, signal a structural inversion:
the producer becomes the provider of raw material: the training data. Yet this process may
be self-limiting. As synthetic content floods the ecosystem, model quality may degrade: a
statistical echo chamber amplifying its own artefacts. Human thought, once devalued, may re-
emerge as the one thing still worth predicting. The creators of original human content become
farmers of biologically raised words, fuel for the thought-processing machine.

Plato feared that writing would erode memory. He was right in the narrow sense, but wrong
in the long arc. Writing did not end thought, it extended it, archived it, transformed its audience
put some people out of and others into work. Something similar may be possible now. But only
if we resist the temptation to treat LLMs as minds, or replacements, or prophets and instead
treat them as tools: powerful, fallible, and deeply shaped by the humans who train, prompt, and
deploy them.

The real stakes lie not in the models themselves, but in the world we build around them.
Disclosure norms, learning systems, institutional checks, apprenticeship paths will de-
termine whether the future shaped by AI is one of collapse, stagnation, or the rise of a new
cognitive infrastructure. The machine predicts. The rest is still our business.
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1 Why Perfectly Safe Generative AI is Probably Out of Reach
In this addendum I want to discuss the perils of producing a safe large language model (LLM),
in order to form an idea of whether or not we can mathematically or programmatically rescue
the naive or vulnerable from erroneous model responses43. Lets start with reiterating that a large
language model does not “know” facts directly; instead, for any given prompt X , it computes
a probability distribution Pω(Y | X) over possible token sequences Y (the responses), where
ω are the learned weights of the model (the classical econometrician can read ω as e.g. the
coefficient estimates of an OLS). These weights arise jointly from the training data, the model
architecture and capacity, and the optimization process. The very terminology often used (e.g.,
“hallucination”) is itself anthropomorphic, obscuring the fact that the model is not “perceiving”
or “misremembering,” but simply sampling from a learned probability distribution.

With this in mind we discuss the topology of the response space of a large language model
(LLM) to formalise our reasoning. Let O be the set of all possible token sequences (outputs) in
the model’s output vocabulary, which is nowadays already sanitised from arbitrary nonsensical
sequences. Inside O, let S ↑ O be the set of syntactically, grammatically and vocabulary-wise
valid outputs, well-formed under the target language. Inside S , let C ↑ S be the set of coherent
outputs i.e. those that are meaningful and internally consistent. Finally, let F ↑ C be the set of
true, safe, and factually grounded outputs.

• O \ S: “Kingba derpow time the fox 9reenly.”: ungrammatical mixed with nonsense.

• S \ C: “The orphan’s father washed her clothes.”: grammatically fine but meaningless.

• C \ F : “The capital of France is Berlin.”: coherent but factually wrong.

• F : “The capital of France is Paris.”: coherent and factually correct.

If a model’s response lands outside S , most humans will instantly recognize it as broken and
be safe. If it lands in S \ C, it may still be dismissed as nonsense by most people, though some
vulnerable users could be misled in subtle cases. The greatest danger lies in C \ F (coherent,
fluent falsehoods) which is both vast and difficult to detect without external verification and
increases as most LLMs can consistently hit C creating a false confidence among the gullible.

Heuristic size argument. A simple way to see that the space C \ F is large is by considering
that for many factual templates (“The capital of X is Y”) there are far more false instantiations
than true ones. If a fact has n plausible surface forms but only 1 is true, then for each such slot-
filling pattern the false-to-true ratio is roughly n → 1 : 1.44 Since the number of such patterns
grows combinatorially with statement length L, the fraction of C occupied by F shrinks rapidly
as L increases. In realistic, unstructured domains, this means an overwhelming proportion of
coherent outputs are wrong.

With this framing, the safety challenge can be analyzed as follows.
43Of course this is not to say that seasoned and experienced content creators are risk free. We can imagine, for

example, the long term effects of a seasoned Python programmer’s over-reliance on “vibe coding”.
44There are currently 193 Member States of the United Nations (UN), according to the official UN membership

list: https://www.un.org/en/about-us/member-states. By contrast, the GeoNames database,
drawing from OpenStreetMap and other sources, lists over 11.8 million geographic features and 25 million place
names globally: https://www.geonames.org/statistics/. Thus, for the template “The capital of X
is Y ,” there are only ↓ 193 correct instantiations, but roughly 193 ↔ 25 ↔ 106 possible combinations, implying
that just one in about 25↔ 106 coherent outputs is factually correct.
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1. Even perfect learning of the training distribution is not perfect truth. The probability
distribution that could, in principle, be distilled from the training data is not the same as
the truth distribution, that is, the ideal probability distribution over all possible statements
that assigns probability 1 to every true statement and probability 0 to every false one. Un-
less the training data is 100% correct, which is practically impossible, there is a built-in
“contamination floor” ε:

ε(X) = 1→
∑

Y →F

Pω(Y | X),

the probability that the model leaves F for prompt X .

In large web-scale corpora, even after filtering, realistic residual factual errors persist: GPT-
3 truthfulness is 58% on Truthful Q&A45 and GPT-4 continues to demonstrate deficiencies,
e.g., it hallucinates references in approximately 28.6% of cases when generating citations
in scientific systematic-review contexts.46. Even if the training data were 100% correct,
we would still face the question of coverage (point 2), and the model’s own capacity and
inductive bias can still leave probability mass outside F .

2. Information bottleneck. Kolmogorov complexity, denoted K(s), measures the length of
the shortest computer program that can produce a string s;47 some strings are incompress-
ible: their shortest possible description is essentially the string itself.

An LLM may be thought of as a compression machine of its training data: it takes the
corpus, tunes its parameters, and the ratio of the input to the size of the model is the com-
pression ratio. For scale, combining just a few major public text and code sources yields a
staggering corpus: English Wikipedia (26 TB),48 Common Crawl (8 PB),49 the U.S. Library
of Congress Web Archives (45 PB),50 public GitHub code (↗ 1.5 PB),51 arXiv (↗ 1 TB),52

and PubMed Central (↗ 0.5 TB)53 sum to roughly 54.5 PB of material.

And this list is far from exhaustive. Adding other national web archives (tens of petabytes),
global patent databases (several petabytes), large-scale digitized public-domain book collec-
tions (tens of petabytes), technical standards, court records, and public forums/wikis outside
Wikipedia could plausibly push the open-text total into the ↗ 280 PB rang, and this is still
not counting material in other languages.

By comparison, a leading open-weight model such as Meta Llama 3 (70 billion parameters)
occupies about 141 GB in 16-bit floating-point format (two bytes per parameter).54 Treating
the corpus as the “input” and the model as the “compressed form” gives a crude overall
compression ratio of 280 PB

141 GB ↓ 2.0↔ 106, or over two million to one: roughly like squeezing
that entire combined corpus into just 14% of the storage of a top-tier smartphone costing

45Lin et al. (2022): GPT-3 truthful ↓ 58% vs. human 94%.
46Chelli et al. (2024)
47https://en.wikipedia.org/wiki/Kolmogorov_complexity
48https://en.wikipedia.org/wiki/Wikipedia:Statistics
49https://commoncrawl.org/blog/august-september-2024-newsletter
50https://www.loc.gov/programs/web-archiving/
51https://archiveprogram.github.com/
52https://info.arxiv.org/help/bulk_data.html
53https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
54https://community.ibm.com/community/user/cloud/blogs/arindam-dasgupta/

2024/09/18/calculating-gpu-requirements-for-efficient-llama-3
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under $1,500.5556

At such extreme compression, and with incomplete coverage, it is inevitable that rare, id-
iosyncratic, or low-pattern truths (those with high K(s)) will be lost or distorted.

3. Scaling law reality check. Empirically, LLM quality improves as a power law in both
dataset size and compute budget.57 For example, pushing from 90% to 95% accuracy may
require a modest multiplier in data or compute, but pushing from 99% to 99.9% can require
orders of magnitude more, often beyond realistic training budgets. Architectural changes
(e.g., Mixture-of-Experts, retrieval-augmented transformers) alter constants but do not re-
move the asymptotic slowdown. Crucially, the last few percent of errors are not uniformly
random: they may cluster in rare, high-stakes scenarios (safety-critical domains, adver-
sarial prompts, long-tail factual events). This means that even if the average-case error rate
seems tiny, the residual unsafe cases can remain policy-relevant and economically damag-
ing.

4. Multi-turn contamination and safe prompt set complexity. In multi-turn interaction, the
model’s own outputs feed back into the prompt stream, either explicitly (the user copies them
back) or implicitly (they shape user follow-ups). If we think of Xsafe as the set of prompts
that, when given to the model, produce only safe outputs, then for bounded length L the
safe prompt set Xsafe,L inherits the same combinatorial hardness as FL. A simple counting
heuristic: over an input alphabet A, the number of prompts of length at most L grows as
O(|AL

|); unless safety constraints admit a very compact characterisation, enumerating or
certifying membership in Xsafe,L scales correspondingly. Real-time prompt Quality Control
(QC) would require:

• high-precision semantic parsing,

• domain-specific fact-checking (often with retrieval), and

• adversarial-input detection robust to prompt obfuscation.

Each component is imperfect, costly to run at scale, and vulnerable to circumvention by
clever adversaries or accidental drift.

5. Prompt-space feedback into training. Most deployed models, especially those fine-tuned
with Reinforcement Learning from Human Feedback (RLHF), periodically retrain or fine-
tune on real user prompts and completions.58 This means that unsafe or biased patterns in
user interaction can re-enter the training distribution. Because the model shapes what users
see (and thus the prompts they post), this creates a feedback loop, a form of endogenous
contamination, where the prompt space gradually drifts in ways that may not be obvious
until large-scale safety degradation is observed. This self-referential retraining can induce
model deterioration, progressively reinforcing its own idiosyncrasies or factual errors, es-
pecially if external verification is weak, leading to drift away from the original truth set.

55For example, the Apple iPhone 15 Pro Max with 1 TB storage capacity; see https://www.apple.com/
iphone-15-pro/specs/.

56Of course, such a phone could not “uncompress” this model (i.e., use it for inference, meaning generating
responses) as running inference at useful speed would require vastly more computing power and electrical energy,
on the scale of a large server cluster rather than a handheld device.

57Kaplan et al. (2020); Hernandez et al. (2022) show benchmark loss scaling with dataset size, model size, and
compute; gains from extra “nines” of accuracy require disproportionately more resources.

58Christiano et al. (2023) introduce RLHF; Ouyang et al. (2022) demonstrate its large-scale application in GPT
models using live prompt data.
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6. Open world, moving target. Even if we could perfectly fence off F today, tomorrow’s
facts, norms, and adversarial techniques can push outputs outside it.59 Examples:

• geopolitical facts change (leaders, borders, capital cities),

• safety norms evolve (medical guidelines, terminology sensitivity),

• jailbreak prompt engineering develops faster than defensive filters.

Thus, F is time-dependent, and maintaining perfect safety requires continuous retrain-
ing, re-verification, and prompt-set monitoring, each with lag and cost. In current practice,
substantial model improvements are not truly incremental: changes in training data, archi-
tecture, or tokenizer usually require recomputing the entire weight set ω from scratch, which
both limits the ability to cheaply and continuously adapt and introduces quality discontinu-
ities, where gains in some areas coincide with regressions in others.

7. Only robust mitigation. The most viable mitigation today is layering external systems
(fact-checkers, retrieval modules, theorem provers) outside the base model, tuned to the
specific model’s failure modes.60 These work well in narrow, structured domains where
truth conditions are crisp and cheaply checkable (for example, mathematical proofs or code
compilation). In broad, open-ended domains, coverage gaps remain large.

Illustrative case – Python code generation: here F is the set of all programs that meet a for-
mal specification, something that can often be checked automatically with unit tests (small,
targeted checks that verify whether individual functions or program components work as in-
tended). This is a best-case safety scenario, yet even the strongest models succeed on only
a fraction of problems when judged by “pass@k”, the proportion of test cases solved when
the model is allowed to try up to k different solutions. Harder, repository-level benchmarks
reveal further brittleness: on EvoCodeBench, GPT-4 achieves only about 20.7% pass@1 in
real-world, repo-style prompts, highlighting the gap between unit-test success and reliable,
large-scale code synthesis.6162

Bottom line: Without perfectly clean, complete, and unchanging training data and strict prompt
control, contamination from interaction and continual learning will reintroduce errors. Model
capacity and scaling constraints mean “always safe” for all prompts is unrealistic. Policy should
focus on restricted, verifiable domains and robust abstention; protecting vulnerable users likely
would likely require mediated inputs and outputs or constrained systems, with significant trade-
offs.

59Bommasani et al. (2022) discuss performance instability and domain shifts in foundation models.
60Ji et al. (2023) survey persistent hallucination and safety failures in open-domain natural language generation;

Trivedi et al. (2023) show that retrieval augmentation can mitigate some of these failures but does not eliminate
them.

61Li et al. (2024) introduce EvoCodeBench, an evolving code-generation benchmark aligned with real-world
repositories.

62The recently released GPT5 seems to inch forward on certain standardised tests: https://openai.com/
index/introducing-swe-bench-verified/, https://aider.chat/docs/leaderboards/
and https://openai.com/index/introducing-gpt-5/

23

https://openai.com/index/introducing-swe-bench-verified/
https://openai.com/index/introducing-swe-bench-verified/
https://aider.chat/docs/leaderboards/
https://openai.com/index/introducing-gpt-5/


2 Learning structure vs. Learning Truth
In this section we discuss, in plain English, the difference between stochastic inference (an
LLM commanding the syntax) and truth. While it is written for a layperson, most of the ideas
can be made mathematically precise using Kolmogorov complexity, entropy rates, and related
tools.

When you think about all possible strings of English letters and punctuation, imagine them
as an enormous ocean, O. Most of this ocean is gibberish. Inside it lies a small, smooth island,
S , which contains all syntactically valid English sentences. Somewhere on that island there
is a tiny, scattered patch of sand, F , representing the sentences that are both grammatical and
factually correct.

An LLM is trained to predict the next token, effectively learning the distribution over char-
acters or words that appears in its training corpus. This learned distribution is excellent for
capturing the statistical patterns of syntax, and it is also the only tool the model has for recover-
ing facts. The problem is that while this distribution carries strong local constraints that allow
the model to reconstruct grammaticality with high accuracy, it does not carry enough informa-
tion to guarantee correctness of specific facts, especially rare ones. Syntax is like the shape of
the container; facts are the rare items inside it.

For example: “Marie Curie was born in Warsaw in 1867” lies inside both S and F . “Marie
Curie was born in Paris in 1931” lies inside S but outside F . “Curie Warsaw 1867 born Marie”
sinks back into the ocean: it is outside S .

Large language models can almost always land on the grammar island S , even though they
have seen only a tiny fraction of all possible valid sentences. This is because syntax is locally
learnable: the same grammatical rules appear over and over in different contexts. Once you
have seen enough examples, you can reconstruct the “local shape” of grammar and generalize
it to new sentences. This is like standing on the circumference of a circle: if you know the
slope of the tangent line and the curvature at your point, you can reconstruct the curve in your
immediate neighborhood. Syntax is smooth and redundant, so local information suffices to
navigate it anywhere.

Truth is a global property: knowing what is correct in one part of the world tells you little
about what is correct elsewhere. You cannot deduce Marie Curie’s birthplace from generic
birth rules: you have to know the fact itself. Rare facts appear infrequently in training data
and do not generalize the way grammar does. In the circle analogy, truth is not about local
curvature at all; it is about knowing which scattered points on the circle are painted red. To
know that, you would need to see the whole circle, not just your local neighborhood. Even if
the internet contained only correct facts, LLMs would still get some wrong because they do
not store a literal fact table. They compress everything into patterns in their parameters, which
causes blurring (rare facts averaged with others), interference (new learning distorting older
memories), sampling errors (high-probability facts replaced by wrong tokens), and prompt
mismatch (a slightly different wording steering the model away from the right fact).

Two analogies make this gap intuitive. First, think of chess: you can learn the rules of
legal moves (syntax) in five minutes, but becoming a good chess player requires a lifetime of
practice and knowing every game ever played as the rules tell you nothing about that (truth).
Second, think of a human who has read an entire encyclopaedia but has no access to it: they
must answer from memory alone. They will get many common facts right but will inevitably
misremember rare ones, especially when asked in unfamiliar ways. Imagine, as an experiment,
training an LLM solely on the text of the Encyclopedia Britannica. It would probably learn
syntax perfectly and produce flawless English, but recovering the exact facts would be a totally
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different matter.63

Programming languages present a special case. In formal terms, they too have a distinction
between syntax (what strings are legal code) and semantics (what that code means), but in
practice for many common programming tasks, these two sets overlap much more than they
do in natural language. Syntax errors are fatal, and following standard idioms often brings
you close to correct semantics. For Python in particular, which appears abundantly in training
data, this high overlap means that getting syntax right often coincides with getting the intended
functionality right. In rare languages such as Stata, the model has seen fewer examples, so the
overlap between S and F is smaller and performance drops. Nonetheless, they are not identical
sets: many programs are syntactically valid but semantically wrong, so even in programming
the model can land in S without reaching F .

It is tempting to think: if the model can write perfect sentences, it could use that ability to
form database queries and fetch the truth directly. This is the idea behind retrieval-augmented
generation (RAG): the model converts your question into a search query, a retrieval system
finds relevant documents or database entries, and the model uses this retrieved text to produce
an answer. RAG sidesteps the compression problem: facts need not be stored in weights, they
can be pulled from an up-to-date source. This builds a bridge from the language island S back
to the real world W .

RAG helps, but it is not a magic bullet because it inherits the limitations of retrieval and
integration. If the source is outdated or wrong, the answer will be too. Queries may be am-
biguous or poorly formed and miss the right fact entirely. Even when relevant documents exist,
ranking errors may bury them behind less relevant ones. The LLM can only see a finite context,
so key details may be cut off. And once retrieved facts are seen, the model may override them
with its own internal memory, especially if that memory reflects more frequent but outdated
information. Maintaining and updating retrieval systems adds further engineering complexity.

The core asymmetry is that syntax is a smooth, redundant structure like a circle whose curve
you can trace from local slope and curvature, so it is easy to learn and generalise from a small
sample. Truth is a sparse, global property like identifying scattered red points on the circle, so
you need far more coverage to get it right, and compression or retrieval errors quickly knock
you off target. In programming, S and F overlap heavily, which is why LLMs can do better
there with enough exposure, but they are not identical. RAG extends the LLM’s reach into F ,
but it still cannot guarantee truth without flawless sources, perfect queries, accurate ranking,
and faithful integration. Without these, the navigator can sail the grammar island perfectly yet
still pick up the wrong grain of sand from the truth patch.

63This would, in fact, be an interesting experiment which, if it has not been done yet, should be: What percent of
the facts does an LLM get wrong if learning from the Encyclopedia Britannica allows it to write perfect English?
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