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ABSTRACT

IZA DP No. 18025 JULY 2025

How Do Classmates Matter for the  
Class-Size Effects?*

This paper investigates the effect of class-size reduction on students’ academic outcomes, 

with a particular emphasis on its heterogeneity based on classmates’ characteristics. We 

estimate the causal effects of class-size reduction on students’ mathematics and language 

test scores by controlling for student and teacher fixed effects. To address potential 

endogeneity, we employ the predicted class size with a cap as an instrumental variable 

for the actual class size. Utilizing rich panel data on Japanese primary school students, 

our findings indicate a positive and robust average effect of class-size reduction on 

mathematics test scores. Furthermore, we find that classes with high-ability classmates 

benefit even more from class-size reduction in terms of language test scores. The effect of 

class-size reduction on mathematics test scores is found to depend positively on the ability 

of the lowest-achieving student in a class. Additionally, classes with a higher proportion of 

female students tend to benefit more from class-size reduction. Our results lend support to 

the theoretical framework proposed by Lazear (2001).
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1 Introduction

Class-size reduction stands as a prominent policy instrument aimed at enhancing the quality

of educational environments. The underlying premise is that smaller classes benefit from

richer educational resources per student, thereby fostering improved educational outcomes.

However, the effectiveness of class-size reduction is difficult to be observed empirically to a

large extent (e.g., Hanushek (1986), Hanushek (2003), Hanushek (2006)). While numerous

studies have reported positive effects of smaller classes on academic achievement (e.g., An-

grist and Lavy (1999); Krueger (1999), Krueger (2003)), the magnitudes of these average

effects are often limited and sometimes statistically insignificant (e.g., Angrist et al. (2019)).

As evident in the existing literature, the reported size and significance of the effect of

class-size reduction on students’ academic achievement vary considerably. We suspect that

these discrepancies may arise because class-size reduction has heterogeneous effects across

different types of classes, such as those with varying student compositions or taught by

different types of teachers. Investigating this potential heterogeneity in the effect of class-

size reduction serves as the primary motivation for our study.

The characteristics of classmates are likely to influence the effectiveness of class-size re-

duction for at least two reasons. First, even in the absence of direct interaction among

classmates, if the effect of class size varies according to individual student characteristics

such as baseline ability and gender, the average effect will naturally be influenced by the

composition of the student body. More importantly, within the context of schooling, where

students interact with each other, the distribution of students’ characteristics (e.g., gen-

der and ability of classmates) can affect the impact of class-size reduction through various

channels, including peer effects. In Lazear (2001)’s model, which conceptualizes schooling

as a joint production process among students, disruptive behavior by even a single student

can impede the entire educational process within the class, thereby negatively affecting the

educational outcomes of all classmates. If the schooling process exhibits such strong comple-

mentarity among students, the composition of classmates will indeed generate heterogeneity

in the effects of class size.

In this study, we examine the heterogeneous effect of class-size reduction on students’

academic outcomes. As sources of this heterogeneity, we focus on the distribution of baseline

academic outcomes, measured by test scores in the preceding grade (hereafter referred to as

ability), and the gender of students. Drawing upon the spirit of Lazear (2001)’s model, the

individual probability of students disturbing the education process is one of the fundamental

determinants of educational outcomes. We employ student ability and gender as proxies

for this probability. Generally, a negative correlation exists between students’ ability and
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misbehavior in classrooms (e.g., Myers et al. (1987)). Regarding gender, boys may exhibit

a higher propensity for disruptive behavior than girls, as evidenced by their greater likeli-

hood of engaging in bullying and cyberbullying (Li (2006)) and their higher rates of referral,

diagnosis, and treatment for Attention-Deficit Hyperactivity Disorder (ADHD) symptoms

(e.g., Gaub and Carlson (1997); Gershon and Gershon (2002)). We estimate the heteroge-

neous effect of class-size reduction based on the average, maximum, and minimum ability of

classmates, as well as the proportion of female students in a class.

Our data are taken from administrative records of primary school students in a large

municipality within the Tokyo metropolis of Japan, collected between 2010 and 2016. This

dataset comprises panel information on academic performance, as measured by a standard-

ized test, linked with information on teachers and socioeconomic background, such as eligi-

bility for school financial assistance (analogous to free lunch programs), for students in the

second to sixth grades.

To identify the causal effects of class-size reduction on students’ outcomes, it is essential to

exploit either random variations in class size within a school (e.g., Krueger (1999)) or quasi-

random variations arising from an institutional setting (e.g., Angrist and Lavy (1999)). In the

absence of randomized controlled class formation in our data, we adopt the latter approach,

leveraging quasi-experimental variations in class size. Japanese primary schools adhere to

class-size regulations set by the Ministry of Education, the central authority for education

policy in Japan, which cap class size at 40 students. Similar to the identification strategy

employed by Angrist and Lavy (1999), we utilize the predicted class size based on grade size

(the so-called Maimonides’ rule) as an instrument for the actual class size. Furthermore, we

control for teacher-student pair fixed effects to mitigate potential threats to the identification

of the class-size reduction effect stemming from endogenous matching between students and

teachers. In Japanese primary schools, it is common practice for class composition, as well

as classroom teachers, to be shuffled and reassigned as students progress to the next grade.

This generates variations in class size even when a student is taught by the same teacher

across consecutive grades. By controlling for teacher-student fixed effects, we identify the

causal effect of class-size reduction from changes in class size for students taught by the same

teachers. This strategy, combined with the quasi-random variation in class size induced by

the class-size cap, strengthens our identification strategy.

The results of our estimation analyses confirm that, on average, smaller classes are bene-

ficial for students’ academic performance, with a more pronounced effect observed for math-

ematics: a marginal reduction in class size is associated with an increase of 0.009 standard

deviations in math test scores. We also find that students in classes with higher average base-

line academic performance experience greater benefits from class-size reduction in Japanese
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language test scores. Moreover, the effect of class-size reduction is more sensitive to the abil-

ity of the lowest-performing student than to that of the highest-performing student. Classes

where the lowest-performing student has a higher baseline score demonstrate significantly

greater gains from class-size reduction in math test scores compared to classes with lower-

performing bottom students. These findings align with the results of Lavy et al. (2012a)

and Lavy et al. (2012b), who found that the proportion of low-performing students and/or

the ability of the worst-performing student in a class significantly impact the performance

of other students. Our findings are consistent with their results, and we extend their impli-

cations to the context of class-size reduction. Additionally, our analysis reveals that classes

with a higher percentage of female students benefit more from class-size reduction.

The remainder of this paper is structured as follows. Section 2 provides a review of

the relevant literature and outlines our contributions to the field. Section 3 details the

institutional background. Section 4 our empirical strategy. Section 5 describes the data

used in our analysis. Section 6 presents our empirical findings. Section 7 discusses the

robustness and interpretation of our findings. Finally, Section 8 concludes the paper.

2 Literature Review and Our Contributions

Historically, a substantial body of literature examines the relationship between class size

and student performance with observational data. A series of meta-analyses conducted

by Hanushek (1986), Hanushek (2003), Hanushek (2006) found no consistent relationship

between class size and student outcomes, showing the difficulty of identification of class

size effects in the absence of experimental data or a quasi-experimental setting. With the

experimental data from the Project STAR in Tennessee in the U.S., Krueger (1999) found

a positive effect of small class size. While the mapping of percentile test scores to tangible

outcomes remains unclear, the reported effect sizes, relative to the standard deviation of the

average percentile score, were 0.20 in kindergarten, 0.28 in first grade, 0.22 in second grade,

and 0.19 in third grade.

Angrist and Lavy (1999) is one of the first papers to estimate the class size effect with

observational data within a quasi-experimental framework. They identified a negative rela-

tionship between class size and student academic performance, as measured by test scores

in Israeli public primary schools. The institutional context of Israeli public primary schools,

subject to a maximum class size regulation (the Maimonides’ Rule), generates a discontin-

uous change in class size around multiples of the class size cap in grade size. Their work

demonstrated the effectiveness of a regression discontinuity design (RDD) as an identification

strategy for the causal effect of class size. Subsequently, numerous studies have applied RDD
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to observational data, often finding a positive effect of class size reduction (e.g., Urquiola

(2006), Browning and Heinesen (2007); Akabayashi and Nakamura (2014); Hojo and Senoh

(2019); and Gilraine (2020), among many). Similarly, Gary-Bobo and Mahjoub (2013) use

a rich sample of students from French junior high schools with a panel structure to obtain

small but significant and negative effects of class size on probabilities of being promoted to

the next grade in grades 6 and 7.

The positive class size reduction effect is not necessarily guaranteed with this identifica-

tion strategy. Hoxby (2000), utilizing a long panel dataset where class size changes are driven

by idiosyncratic variation of cohort size and also applying the Maimonides’ Rule, found an

insignificant effect of class size on students’ academic performance. Leuven et al. (2008)

found insignificant class size effect using a Norwegian administrative database to estimate

the effect of class size on student achievement at the end of lower-secondary school with iden-

tification strategy based on maximum class-size rules and population variation. Dobbelsteen

et al. (2002) found that after correcting for endogeneity with different instruments driven

by the budget for teacher salary depending on the total number of enrollment in a school,

pupils in large classes do no worse – and sometimes even better – than identical pupils in

small classes. Angrist et al. (2019) found that the effect was insignificant, which cast doubt

on the effectiveness of class size reduction. Similarly, Ito et al. (2020) found no effect of class

size reduction in Japanese compulsory schools.

While these studies contribute significantly to the debate on the effect of class size re-

duction, research using observational data exploring how this effect varies across different

types of classes with varying student compositions is relatively limited. Applying a similar

but more robust identification strategy to potential endogenous matching between students

and teachers by controlling student-teacher fixed effects to observational data, our paper

contributes to the literature by examining the heterogeneity of the class size effect based on

the characteristics of classmates such as the distribution of student ability and gender.

There are several papers, studying heterogeneous class size effects in various dimensions.

Using experimental data, Ding and Lehrer (2011) showed a heterogeneous effect of class

size reduction based on teachers’ characteristics. While utilizing experimental data, their

simple categorization of classes into large and small limited the analysis of marginal changes

in class size. With observational data, Bonesrønning (2003) found that the class size effect

differs among student subgroups and that smaller classes yield greater benefits in Norwegian

lower secondary schools with a high proportion of students from intact families. Bosworth

(2014) reported that students struggling academically appear to benefit more from class size

reductions than high-achieving students. Nandrup (2016) found that class size effects vary

across grades in Danish public compulsory schools. Tanaka (2020) finds the heterogeneous
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effects of class size reduction by socioeconomic status of students’ household using micro-

data from a large municipality in Japan. Kedagni et al. (2021) applied structural estimation

methodologies to Greek administrative data, finding a hump-shaped effect of class size on

academic achievement. Their analysis quantified the costs and benefits of teacher hiring and

firing but did not examine the heterogeneity of the class size reduction effect by student

characteristics. Our current paper emphasizes the role of distribution of baseline abilities

and gender of classmates for the class size effects.

As a closely related paper to ours, Bandiera et al. (2010), using rich university data from

the UK, demonstrated a heterogeneous marginal effect of class size reduction depending on

the composition of students’ ability within the class. Similarly, Diette and Raghav (2015),

without using instrumental variables, found negative correlations between class size and

college students’ academic achievements, particularly pronounced for students with lower

baseline achievements. Their identification strategy relied on controlling for student and/or

teacher fixed effects separately. However, controlling for student and teacher fixed effects

independently may be susceptible to the endogeneity of matching between students and

teachers. Moreover, the absence of an effective class size cap in the university setting ren-

dered the application of a regression discontinuity design infeasible. In contrast, our paper

addresses the identification challenge by applying a regression discontinuity design while

simultaneously controlling for fixed effects at the student-teacher matched pair level.

Several studies have highlighted the potential manipulation of grade size to create small

classes, which invalidates the identification strategy based on the class size cap. Angrist

et al. (2017) found that a significant portion of the class size effects in Italy could be at-

tributed to such manipulation. Angrist et al. (2019) detected incentives for schools in Israeli

public primary schools to manipulate grade size to achieve smaller classes, suggesting that

predicted class size calculated using actual grade size might be endogenous. Urquiola and

Verhoogen (2009) identified the possibility of grade size manipulation to attain small classes

in Chilean schools with students from affluent households. To address this concern in our

study, we employ the McCrary (2008) test to demonstrate that the potential for grade size

manipulation is minor in our specific setting.

Finally, we offer interpretations of our findings based on a theoretical model built on

Lazear (2001). The observed variations in the results of class size effects can be attributed

to the heterogeneity of class composition. To explain the mechanism through which class size

influences students’ academic performance, Lazear (2001) interprets the education produc-

tion process as a combat against students’ disturbance behavior (the education production

function is described in Appendix A). In larger classes, the probability of the educational

process being disrupted by a student increases. Our findings provide supportive evidence for
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Lazear (2001)’s theoretical framework.

3 Institutional Background

Japanese compulsory education is based on the Constitution, specifically, the Fundamental

Law of Education, promulgated in 1947. Compulsory education consists of six years of

primary education in primary school and three years of lower secondary education in middle

school. Children who are six years old before April 2nd start first grade in primary school

on April 1st and receive schooling for nine years in total compulsory. The majority of

primary and middle schools are publicly financed and run by the education board of the

local municipality. Each municipality establishes school districts and assigns students to

designated public schools based on their residential addresses.1

Public primary schools (grades one to six) in Japan are subject to upper limits on class

size, as stipulated by the Act on Standards for Class Formation and Fixed Number of School

Personnel of Public Compulsory Education Schools. This law permits local government

education boards to establish their own upper class size limits, provided these limits are

below the national standard set by the Ministry of Education, Culture, Sports, Science and

Technology of Japan. In the context of our study, primary schools had an upper limit of 35

students for the first and second grades, and 40 students for the remaining grades (third,

fourth, fifth, and sixth grades) before 2021. Importantly, students experience simultaneous

changes in the upper limits of class sizes and class reassignments when students transition

from second to third grade.

All teachers in Japanese primary schools, regardless of whether the school is national,

public, or private, are required to hold a teaching license. Teachers are assigned to schools

by the prefectural government’s education board, which oversees teacher personnel matters.

Given that teachers with three to seven years of tenure at a school are typically transferred

to another school, public school teachers do not have the opportunity for long-term self-

selection into specific schools. Once assigned to elementary schools, classroom teachers are

responsible for teaching all subjects to students in their classes. All teachers are certified to

teach any grade within elementary schools and can be assigned as classroom teachers to any

grade level. The assignment of teachers to specific classes within schools is at the discretion

of the school principal, potentially leading to endogenous matching between teachers and

students/classes. To address this potential endogeneity, our empirical analysis controls for

teacher-student fixed effects.

1Students are also allowed to attend private or public schools run by the national government. In the

case of school attendance at private and national schools, students need to take entrance examinations.

6



4 Empirical Strategy

We estimate the effect of class size reduction using the following regression model:

Yijcgst = β0+β1Cjcgst+Xijcgstγ1+P−ijcgstγ2+Tjcgstγ3+f(Egst)+dij+dg+ds+dt+ϵijcgst (1)

where Yijcgst is the outcome variable (i.e., student academic performance) for student i, in

class c taught by teacher j, grade g, school s, and year t. Cjcgst is the size of class c taught by

teacher j, in grade g at school s in year t. Xijcgst is the vector of observable characteristics

of students (e.g., socioeconomic status of households), P−ijcgst is the baseline characteristics

of classmates excluding i (the average, minimum, and maximum scores of baseline test, and

the share of female students in a class), Tjcgst is the teacher characteristics (e.g., teaching

experience), and f(Egst) is a polynomial of enrollment in grade g at school s in year t, Egst.

We include up to the third polynomial of grade size. dg, ds, dt are the grade, school and year

fixed effects, respectively. dij represents the fixed effects for student-teacher pairs. ϵijcgst is

the idiosyncratic error term.

The inclusion of student-teacher fixed effects is important for the robust identification of

class size effects, as it accounts for potential sorting between teachers and students based

on unobservable factors. While controlling for student fixed effects and teacher fixed effects

separately addresses unobserved characteristics of students and teachers independently, our

institutional background suggests a more complex dynamic. As previously discussed, teach-

ers and students are reassigned annually, and the matching of teachers to classes is de-

termined by the school principal. Furthermore, the rules governing teacher assignment to

classes are often highly school-specific, potentially leading to endogenous matching based on

unobservable characteristics of both teachers and students. To address this, our identifica-

tion strategy leverages the variation in class size within a specific teacher-student pairing.

When we observe a student taught by the same teacher for at least two consecutive years

but experiencing different class sizes across these grades, we interpret the resulting variation

in academic outcomes as being caused by the change in class size. This approach provides a

more robust estimate against potential endogenous matching between students and teachers.

Although our preferred identification strategy, employing student-teacher fixed effects,

mitigates the risk of endogeneity, it may substantially reduce the variation in class size

available for identifying the class size effects. In the subsequent section, we will demonstrate

that sufficient variation in class size remains within our sample of students taught by the

same teacher over multiple years to credibly identify the effect of class size reduction. In

addition, as a robustness check to assess the external validity of our primary findings, we

will present estimation results from a specification that controls for student fixed effects
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and teacher fixed effects separately. While this alternative identification strategy, without

student-teacher pair fixed effects, may be more susceptible to endogenous matching, it retains

greater variation in class size within individual students. By presenting both sets of results,

we aim to provide a comprehensive and robust analysis of the class size effects.

Another threat to the identification of the class size effect, specifically the coefficient β1,

is the potential endogeneity of class size. For instance, districts with higher average student

academic performance may benefit from richer educational resources outside of schools, such

as the prevalence of cram schools and private tutoring. This attractive educational envi-

ronment could lead more families to reside in these districts, resulting in increased student

enrollment and, consequently, larger class sizes. This correlation between unobserved factors

(e.g., external educational resources, family sorting) and class size would bias our estimates

of the causal effect. To address this potential endogeneity problem, we adopt the instru-

mental variable (IV) approach, following the methodology of Angrist and Lavy (1999). We

utilize the upper limit on class size to calculate a predicted class size, which serves as an

instrument for the potentially endogenous actual class size variable. The rationale behind

this instrument is that the predicted class size, derived from the grade enrollment and the

mandated maximum class size, is correlated with the actual class size but is plausibly exoge-

nous to the unobserved determinants of student academic performance. Given the number

of students enrolled in grade g at school s in year t, assuming that classes are divided almost

equally, we have

Ĉjcgst =
Egst

int[Egst−1

C̄gt
] + 1

(2)

where C̄gt is the maximum possible number of students of a class. In our data, C̄gt = 35

for the first and second graders since year 2012, and C̄gt = 40 for the rest grade and before

2012.

To investigate the heterogeneity of the class size effect based on the characteristics of

classmates, we incorporate interaction terms between class size and the baseline character-

istics of classmates, as specified in the following equation:

Yijcgst = β0+β1Cjcgst+CjcgstP−ijcgstβ2+Xijcgstγ1+P−ijcgstγ2+Tjcgstγ3+f(Egst)+dij+dg+ds+dt+ϵijcgst

(3)

In the subsequent analyses, we explore the heterogeneous effects of class size reduction by

considering the distribution of classmates’ ability and gender. Specifically, we include inter-

action terms between class size and the average baseline test scores, as well as the maximum

and minimum baseline test scores of classmates. The average, maximum, and minimum

baseline test scores are calculated using the test scores of classmates in year t, obtained from

the previous year/grade t−1. In addition to the baseline academic performance of peers, we
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further investigate the heterogeneous effects of class size reduction based on the proportion

of female classmates.

We estimate the models with interaction terms using instrumental variables, where the

predicted class size interacted with the relevant classmate characteristics serves as instru-

ments for these interaction terms. Our identification strategy combines both instrumental

variable (IV) and fixed-effects approaches. Conditional on the included fixed effects, we

exploit the variation in class size induced by changes in class composition from grade to

grade, as well as the regulatory upper limit on class size, following the spirit of Angrist and

Lavy (1999). The identification of heterogeneous class size reduction effects using equation

(3) is also achieved through the within-student-teacher variation in class size across different

grades. Specifically, conditioning on the fixed effects, we estimate the model by instrument-

ing the actual class size with the predicted class size derived from grade size. Furthermore,

the interaction terms involving actual class size are instrumented by the interactions be-

tween the predicted class size and the respective class characteristics (e.g., mean baseline

test scores, the proportion of female students in a class, etc.).

Figure 1 illustrates the relationship between grade size, predicted class size, and actual

class size in our sample for each grade level. As the figure reveals, there are downward

jumps in actual class size when the grade size reaches multiples of 35 for grade 2 and 40

for the remaining grades. This pattern indicates that class size caps are binding in some

grades and schools, as class divisions are typically implemented when the grade size reaches

these thresholds. These observations suggest a positive correlation between the predicted

class size (our instrument) and the potentially endogenous actual class size in the first-stage

regression. We will report the first-stage F-statistics in the subsequent instrumental variable

regression analyses.

5 Data

5.1 Data Source and Descriptive Statistics

This study employs administrative data collected by the Education Board of a specific city

from 2010 to 2016.2 As of 2015, this city, a large municipality within the Tokyo Metropo-

lis, comprised over 300,000 households and a population exceeding 600,000 residents. Our

dataset encompasses information from all 74 public primary schools within the city, including

students enrolled in the second through sixth grades.

2Due to the confidentiality agreement, we cannot identify the city by name in our paper.
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Figure 1: Actual and Predicted Class Size

(a) Grade 2 (b) Grade 3

(c) Grade 4 (d) Grade 5

Note: The relationship between grade size (horizontal axis) and actual and predicted class sizes (vertical

axis) is plotted. A class size cap of 40 students is in place, with the exception of grade 2, which has a cap

of 35 students.
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The municipality conducts an annual assessment of student learning in its public primary

and lower secondary schools each April when the Japanese academic year starts. These tests

are designed to assess students’ achievements up to the previous year-grade. All students

in these schools, with the exception of first-grade elementary school students, participate in

these assessments. The assessments comprise examinations in mathematics and Japanese

language, as well as a student questionnaire that gathers information on students’ behavior

and opinions regarding their school life. The primary objective of this assessment is to

provide diagnostic feedback to both students and teachers to facilitate the improvement

of student learning. It is considered a low-stakes examination for students, teachers, and

schools, as there are no sanctions or penalties imposed on teachers or schools based on the

assessment results. Furthermore, the results have no bearing on students’ academic grades

within their schools. In our analyses, we utilize test scores (specifically, the correction rate,

ranging from 0 to 100) that have been normalized within each year and grade level across the

municipality with mean 0 and standard deviation 1. In the regression analyses, we regress

test scores in year t+ 1 on class size, the baseline scores of classmates, and other covariates

from year t.

Our dataset comprises three components: student academic test data, student socioe-

conomic status data, and teacher survey data. The student academic test data includes

standardized assessments that evaluate students’ academic achievement. For students in the

second through sixth grades, we have their scores in both Japanese language and mathe-

matics. The student socioeconomic status data indicates whether students receive school

financial assistance from the government. Students from lower-income households and/or

those experiencing family hardships (e.g., parental divorce) are eligible for government aid.

In our data, a student’s socioeconomic status is represented by a binary variable indicating

the receipt of any form of financial assistance. We restrict our sample to students without

school transfer during our observation periods in addition to the availability of all informa-

tion for the analysis and with class size larger than or equal to 10. This selection of samples

reduced the total number of observations from 149,727 to 145,264.

Table 1 presents the summary statistics of students’ test scores, class size, and grade

size. The left panel reports the descriptive statistics of all students in the sample. Students’

math and Japanese language scores have been normalized to have a mean of 0 and a stan-

dard deviation of 1 within each grade level and year before sample selection. The average

grade size (total number of students in a grade at a school) is approximately 79 students,

while the average class size is around 31 students. The standard deviation of grade size is

approximately 28 students, indicating considerable variation in grade size across schools.

The right panel of Table 1 presents the descriptive statistics for the subsample of stu-
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dents who were taught by the same teacher for at least two years. Given that our primary

identification strategy relies on the within-student-teacher pair variation in class size, these

students are crucial for estimating the class size effects. Although the size of this subsample

is reduced to approximately one-third of the full sample size, the descriptive statistics remain

broadly similar to those observed for the entire sample.

Table 1: Descriptive Statistics

Full Same Teacher

VARIABLES mean sd min max mean sd min max

Japanese score 0.010 0.986 -5.787 2.051 0.027 0.975 -5.057 2.031

Math score 0.010 0.987 -5.941 1.782 0.035 0.970 -5.477 1.587

Class size 31.481 4.351 10 41 31.731 4.329 10 40

Grade size 78.891 28.174 10 217 78.636 26.816 10 217

Female student 0.492 0.500 0 1 0.495 0.500 0 1

School financial assist. 0.347 0.476 0 1 0.357 0.479 0 1

Teaching experience 11.806 10.435 1 44 11.069 9.681 1 40

Tenure (current school) 3.473 2.052 0 17 3.592 1.939 0 16

Teacher age 37.294 10.276 22 65 36.455 9.691 22 62

Base Japanese score -0.004 0.267 -1.335 0.877 0.013 0.269 -1.147 0.877

Base math score -0.004 0.275 -1.237 0.861 0.013 0.278 -1.111 0.760

Sample size 145,264 44,122

Note: The columns labeled ”Full” present results for the full sample, while the columns labeled ”Same

Teacher” present results for the subsample of students taught by the same teacher for at least two consecutive

years. Test scores are standardized within each year-grade-subject based on the correction rate, resulting in

a distribution with a mean of 0 and a standard deviation of 1 before excluding observations with missing

values for the variables listed in the table. Observations with a class size smaller than 10 and/or involving

school transfers have been excluded from the analysis.

5.2 Source of Variations

Our identification strategy follows Angrist and Lavy (1999), with minor technical adap-

tations. While Angrist and Lavy (1999) utilize the Maimonides’ Rule as an instrumental

variable, the variation of which stems from year-to-year changes in grade size, we also em-

ploy the Maimonides’ Rule as an IV. However, our unit of observation is the student-teacher

pair. Consequently, if a student was instructed by different teachers in different years, these

student-teacher pairs are treated as distinct observations. Therefore, our identification relies

exclusively on students who were taught by the same teacher across multiple years but also
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experienced variations in class size. The variation in our instrumental variable arises from

changes in the grade size of students taught by the same teacher over different years. These

year-to-year fluctuations in grade size occur due to student mobility, including students

transferring into and out of schools.

First, we present the number of students taught by the same teachers across different

grade levels. Although class compositions are typically reshuffled as students progress to the

next grade, the probability of being taught by the same teacher for two consecutive grades

is non-negligible. Table 2 displays the number of students taught by the same teacher for

multiple years (not necessarily consecutive). As shown in the table, the vast majority of

students in our sample (71.88%) changed teachers every year. This implies that our identi-

fication of the class size reduction effect is derived from the remaining 28.12% of students.

Among the students who had the same teacher for multiple years, the majority (27.12% of

the total sample) experienced the same teacher for two years.

Table 2: Total Number of Students Taught by Same Teacher

Observed year Number of Students Percent

1 year 101,142 71.88

2 years 39,402 27.12

3 years 3,972 2.73

4 years 728 0.50

5 years 20 0.01

Note: The share of students taught by the same teachers is reported. The total number of observations

in the analysis is 145,264.

Next, we present summary statistics on the variation in class size experienced by the

student taught by the same teacher across different years. This is crucial because our iden-

tification of the effect of class size reduction is predicated on the existence of such variation

for this specific subsample of students. Table 3 examines the difference in class size between

the current year (t) and the previous year (t − 1), two years prior (t − 2), and three years

prior (t − 3), respectively, for students taught by the same teacher for two, three, and four

consecutive years. The first row indicates that the average change in class size between two

consecutive grades for students taught by the same teacher in those grades is 0.632 students.

This relatively small average change is attributable to the fact that many students experience

no change in class size between two consecutive grades.

Although the majority of students experienced minor changes in class size, a subset

of students experienced substantial changes due to the upper class size limit regulation.

As shown in Column (6) of Table 3, approximately 4-11% of students taught by the same
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teachers experienced class size changes resulting from new class formation and/or the closure

of existing classes due to enrollment fluctuations and the upper class size limit. Consequently,

some students experienced a reduction in class size of up to 13 students within a single year,

while others experienced an increase of up to 21 students within one year. As we extend the

period of consecutive years considered, the mean of the class size variation increases. The

standard deviation, minimum, and maximum values of class size changes within a student-

teacher pair serve as key sources of identification in our analysis.

Table 3: Changes of Class Size of Students Taught by Same Teacher

(1) (2) (3) (4) (5) (6)

Changes of class size obs. mean std. dev. min max % big changes

1-year difference 21,662 0.632 2.242 -13 21 4.07

2-year difference 2,312 1.214 3.155 -4 20 4.97

3-year difference 662 1.873 3.481 -2 20 10.88

4-year difference 169 2.349 3.048 -2 8 7.10

Note: Changes in class size for students taught by the same teachers across consecutive grades are

reported. Column (6) presents the percentage of students who experienced a change in the total number of

classes within one grade from the current grade to the subsequent grade.

The variation in grade size arises from students transferring between schools and, in

some instances, school consolidations. Students are permitted to transfer schools at any

point during the academic year, contingent on their specific circumstances. These inter-

school transfers, including those resulting from school consolidations, coupled with the annual

reshuffling of classes, lead students to experience different teachers, classmates, and class sizes

across different years. Table 4 presents summary statistics of the within-school cohort change

in grade size experienced by students from one year to the subsequent year. The first row

treats each student as an observation, while the second row treats each student-teacher pair

as an observation. In both cases, each school-cohort experienced changes in cohort size with

a standard deviation of approximately 7 students, on average. These within-school cohort

variations in grade size provide a crucial source of exogenous variation for the identification

of class size effects.

5.3 Balancing Tests

In Japanese public primary schools, class compositions are often reshuffled between grade

levels, leading to changes in classmates. Furthermore, teacher assignments to classes can

also vary from one grade to the next. Given the absence of explicit rules governing the
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Table 4: Standard Deviation of Grade Size within School-Cohort

mean std. dev. min max

For all student

Standard deviation of grade size 6.890 6.885 0 39.748

Student-teacher pairs

Standard deviation of grade size 7.216 6.483 0 39.748

Note: Summary statistics of the standard deviation of grade size are reported for each school-cohort.

The full sample comprises 787 school-cohorts, while the student-teacher pair subsample includes 461 school-

cohorts.

assignment of students and teachers to specific classes, it is worth exploring the potential

systematic correlation between teachers’, classes’ and students’ characteristics. To examine

the possibility of sorting based on teachers’ characteristics and students’ ability, we conduct

balancing tests, the results of which are presented in Tables 5 and 6.

Regarding the assignment of teachers to classes based on teachers’ characteristics, we

regressed teaching experience, teacher’s tenure at the current school, and teacher’s age on

class characteristics such as class size and the baseline characteristics of students within the

class. The results of these regressions are reported in Table 5. We find no strong evidence of

a systematic correlation between teaching experience, teacher’s tenure at the current school,

or teacher’s age and class size, nor with the baseline ability of students in our sample. These

findings suggest that there is no systematic matching between teachers and classes based on

these observed teacher and class characteristics.

As a further balancing test, we compare students whose data contribute to the identifi-

cation of class size effects (i.e., those who were taught by the same teacher but experienced

a change in class size due to class reshuffling) against those whose class size remained stable.

This comparison is based on observable characteristics of both students and teachers. We

conduct this balancing test by regressing a binary indicator for students who had the same

teacher but experienced a change in class size on the following covariates: baseline Japanese

language and mathematics test scores, receipt of school financial assistance, class size in

the previous grade, teacher’s teaching experience, tenure at the current school, and age, in

addition to school, year, and grade fixed effects. We estimate this model using the subsam-

ple of students who were taught by the same teacher for at least two grades, incorporating

student-teacher pair fixed effects. It is important to note that, within this specification,

time-invariant characteristics of students and teachers, such as gender, cannot be included

as they are absorbed by the student-teacher pair fixed effects.

The results of this balancing test are reported in Column (1) of Table 6. Most importantly,
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Table 5: Balancing Tests: Class Level

(1) (2) (3)

VARIABLES Teach exp. Sch. tenure Age

Baseline Japanese score 0.054 0.019 0 -0.001

(0.158) (0.183) (0.025)

Baseline Math score -0.107 0.035 0.003

(0.109) (0.167) (0.025)

Class size 0.000 0.010 0.000

(0.009) (0.009) (0.001)

%Financial assist -0.173 0.167 0.034

(0.237) (0.371) (0.040)

%Female students -0.245 -0.014 -0.050

(0.320) (0.475) (0.060)

Max Japanese score -0.028 0.031 -0.020

(0.132) (0.186) (0.020)

Max math score -0.102 0.203 -0.014

(0.253) (0.284) (0.038)

Min Japanese score -0.045 -0.037 -0.003

(0.035) (0.037) (0.005)

Min math score 0.033 -0.016 0.002

(0.030) (0.038) (0.006)

Note: Estimates using class-level data, controlling for school, year, and grade fixed effects, as well

as a third-order polynomial of grade size, are reported. Standard errors clustered at the school level are

presented in parentheses. The total number of observations is 5,362. *Significant at 10%; **Significant at

5%; ***Significant at 1%

the baseline Japanese language and mathematics test scores, as well as the receipt of school

financial assistance, did not exhibit a systematic correlation with the change in class size for

students taught by the same teachers. Furthermore, the teacher’s total teaching experience,

tenure at the current school, and age are uncorrelated with the class size change. Class

size in the previous grade shows a positive correlation with the change in class size, which

is plausible given that larger grade sizes (and consequently, larger class sizes) increase the

likelihood of class size changes due to grade-level reshuffling. Based on these results, we

conclude that the class size change is not driven by students’ characteristics, particularly

their academic ability, conditional on being taught by the same teacher.
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Table 6: Balancing Tests: Individual Level

(1) (2)

VARIABLES Class size change Same teacher

Baseline Japanese score 0.009 0.015***

(0.032) (0.005)

Baseline Math score -0.029 0.003

(0.039) (0.0005)

Class size 0.044*** -0.011

(0.020) (0.010)

Financial assist -0.013 -0.008

(0.057) (0.008)

Teach exp. -0.184 0.028

(0.162) (0.041)

Sch. tenure. 0.025 0.012

(0.031) (0.018)

Age -0.053 -0.053

(0.067) (0.086)

Observations 21,662 56,806

Note: Column (1) presents estimates using the subsample of students taught by the same teacher for at

least two consecutive grades, controlling for student-teacher pair fixed effects and a third-order polynomial

of grade size. Column (2) presents estimates using the subsample of students observed for two consecutive

years, controlling for student fixed effects, teacher fixed effects, and a third-order polynomial of grade size.

Standard errors clustered at the school level are reported in parentheses. *Significant at 10%; **Significant

at 5%; ***Significant at 1%

Building on the previous balancing test, which confirmed the absence of a systematic

correlation between baseline test scores and class size changes within student-teacher pairs,

we address the possibility that teachers might differentially retain certain types of students

based on their prior experience. To investigate this, we regress a binary indicator of be-

ing taught by the same teacher for two consecutive years on students’ characteristics (i.e.,

baseline Japanese language and mathematics test scores, and the receipt of school financial

assistance in the previous grade), incorporating both student and teacher fixed effects.

The results of this analysis are presented in Column (2) of Table 6. These findings indicate

that students’ and teachers’ characteristics are generally not strongly correlated with the
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probability of being taught by the same teacher, with the exception of students’ baseline

Japanese language test score. This score exhibits a positive correlation with the probability

of having the same teacher for two consecutive grades. This correlation potentially introduces

selection bias into our estimation results that employ student-teacher fixed effects. We will

address the robustness of our main findings in light of this potential bias in Section 7.1.

5.4 Manipulation Check

A potential threat to the identification of the effects of class size reduction is the manipulation

of grade size to achieve smaller classes. As highlighted by Angrist et al. (2019), if schools

have an incentive to manipulate grade size to obtain smaller classes, the predicted class

size calculated using the actual grade size could be endogenous, thereby invalidating our

instrumental variable. Following the recommendation of Angrist et al. (2019), we test for

the possibility of grade size manipulation by conducting the McCrary (2008) density test.

We use grade size as the running variable to test for discontinuities in the density of grade

size at multiples of the class size cap for each grade level. For the second grade, the class

size cap was 35 after 2012, while for all other grades, the cap was 40.

Table 7: Manipulation Tests

Cutoff 1st 2nd 3rd

Grade

2 -0.259 -2.187 -0.051

(0.795) (0.029) (0.960)

3 0.437 -0.980 -1.112

(0.662) (0.327) (0.266)

4 1.587 0.572 0.211

(0.113) (0.567) (0.833)

5 -0.120 -1.129 0.368

(0.904) (0.259) (0.713)

6 0.684 -1.033 0.323

(0.494) (0.299) (0.747)

Note: Results from McCrary (2008)’s density discontinuity test, using grade size as the running variable,

are reported to assess the discontinuity in the density of grade size at the multiples of the class size cap for

each grade. For the second grade, the class size cap was 35 after 2012. For all other grades, the class size cap

was 40. The t-statistic of the test, with the null hypothesis of no bunching at each cutoff point, is reported.

The p-value is presented in parentheses.

Table 7 reports the t-statistic of the results from the McCrary (2008) test, with the
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corresponding p-value in parentheses. We found no statistically significant discontinuities

in the grade size density around the cutoff points, with the exception of some bunching of

grade size below the second cutoff point (i.e., grade size of 70) for the second graders. While

the manipulation of grade size to create smaller classes poses a significant concern for the

identification of class size effects, as discussed in detail by Angrist et al. (2019), our findings

indicate the opposite: bunching occurring below the cutoff point, which would lead to larger

class sizes. Therefore, we conclude that the potential manipulation of grade size to achieve

smaller class sizes is not a major concern in our dataset.

6 Results

We apply our benchmark model (1) to evaluate the average effect of class size reduction and

the regression model (3) to evaluate different types of heterogeneity in class size reduction

effects. This section presents the results of our analysis.

6.1 Average Effect

Table 8 presents the results of our benchmark model. The first two columns display the

findings for Japanese language scores, while the last two columns show those for math test

scores. The columns labeled “FE” report the estimation results from the model with student-

teacher fixed effects using Ordinary Least Squares (OLS), and the columns labeled “FEIV”

report the results from the model with student-teacher fixed effects using the instrumental

variable (IV) method. Overall, the coefficient for class size is negative, suggesting that smaller

class sizes are associated with higher academic achievement in both Japanese language and

math. Without the use of an instrument, the coefficients on class size are negative and

statistically significant, as shown in Columns (1) and (3). These OLS results indicate that a

one-student decrease in class size is associated with an average increase of 0.0046 standard

deviations in Japanese scores and 0.0073 standard deviations in math scores. However, when

class size is instrumented by the predicted class size, the coefficient on class size is statistically

significant only for math test scores (-0.0087 in Column (4)), and the coefficient on class size

is negative but not statistically significant for Japanese language (-0.0028 in Column (2)).

The results from our preferred specification, which includes student-teacher fixed effects

and the instrumental variable, suggest that, on average, class size reduction is beneficial

for math achievement but less effective for Japanese language. One potential explanation

for this difference is that mathematics, as a scientific discipline, may benefit more from

focused instruction and specific techniques. Conversely, Japanese language learning might
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Table 8: Average Class Size Effect

VARIABLES Japanese Math

(1) (2) (3) (4)

MODEL FE FEIV FE FEIV

Class size -0.00464** -0.00278 -0.00730*** -0.00870***

(0.00211) (0.00328) (0.00195) (0.00309)

School financial assistance 0.00317 0.00321 0.000670 0.000641

(0.0188) (0.0188) (0.0168) (0.0168)

Total teaching experience 0.00957** 0.00955** 0.00293 0.00295

(0.00469) (0.00469) (0.00365) (0.00365)

Tenure at the current school 0.00148 0.00149 0.00492 0.00491

(0.00581) (0.00581) (0.00543) (0.00543)

Teacher age 0.0649*** 0.0645*** -0.0101 -0.00982

(0.0238) (0.0238) (0.0209) (0.0209)

Baseline ability of language -0.223*** -0.223*** 0.0332 0.0334

(0.0256) (0.0256) (0.0230) (0.0230)

Baseline ability of math -0.00604 -0.00606 -0.196*** -0.196***

(0.0243) (0.0243) (0.0225) (0.0225)

Percent of female students -0.0155 -0.0140 -0.0290 -0.0301

(0.186) (0.186) (0.170) (0.170)

Share of financial assistance receivers -0.0303 -0.0290 -0.0866 -0.0876

(0.0699) (0.0699) (0.0639) (0.0639)

Max Japanese score -0.00420 -0.00594 -0.000535 0.000779

(0.0217) (0.0219) (0.0198) (0.0199)

Max math score 0.0226 0.0205 0.0952*** 0.0968***

(0.0340) (0.0341) (0.0299) (0.0301)

Min Japanese score 0.0145** 0.0150** 0.0136*** 0.0133**

(0.00584) (0.00588) (0.00517) (0.00519)

Min math score -0.00663 -0.00656 0.00522 0.00517

(0.00605) (0.00605) (0.00573) (0.00573)

Predicted class size in the 1st stage 0.5785*** 0.5785***

(0.0185) (0.0185)

F-stat. of the 1st stage 313.22*** 313..22***

Note: All specifications include third-order polynomials of grade size, school fixed effects, year fixed

effects, grade fixed effects, and student-teacher pair fixed effects, in addition to the variables listed in the

table. A student’s own status is excluded from the calculation of the mean, minimum, and maximum

scores, as well as the share of female students and school financial assistance recipients. The FE models

are estimated using Ordinary Least Squares (OLS). The FEIV models are estimated using Two-Stage Least

Squares (2SLS), with the predicted class size as the instrument for the actual class size. Standard errors

are clustered at the student-teacher pair level. The number of observations is 145,264. *Significant at 10%;

**Significant at 5%; ***Significant at 1%

depend more on communicative interaction and may not always have definitive right or

wrong answers. Consequently, more concentrated teaching may be less crucial for Japanese
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compared to math.

In the bottom panel of Table 8, we report the F-statistic of the first stage, as well

as the estimated coefficient and standard error of the predicted class size as the excluded

instrument for the actual class size in the first-stage regression. The coefficient on the

predicted class size in the first-stage regression is positive and statistically significant at

the 1% level. Furthermore, the first stage is significant at the 1% level, based on the F-

test result. These results indicate the relevance of our instrument (i.e., its correlation with

the endogenous variable). Combined with the findings on the absence of manipulation in

grade size, as discussed in Figure 1 and Section 5.4 (which suggests the excludability of our

instrument), these findings collectively support its validity.

It is worthwhile to compare the results of Ordinary Least Squares (OLS), including fixed

effects for student-teacher pairs with those of the instrumental variable (IV) method. For the

Japanese language score, the coefficients on class size in both models are negative, and their

magnitudes are comparable (-0.0046 with FE and -0.0028 with FEIV). However, only the

OLS coefficient is statistically significant, while the IV coefficient is imprecisely estimated.

For the math score, both coefficients are negative and statistically significant. Notably, the

estimated coefficient with the IV method is larger in absolute value than the one obtained

with OLS. This finding aligns with the discussion in Angrist and Lavy (1999), suggesting

that OLS estimates might be biased upward due to a potential positive correlation between

class size and unobserved heterogeneity, such as school “quality.” However, we find that

the results from OLS and the IV method are generally similar and close to each other.

This may indicate that our results are primarily identified by variations in class size within

student-teacher pairs, rather than variations driven by the class size cap rule.3

6.2 Heterogeneous Effects

Table 9 presents the heterogeneous effects of class size reduction on Japanese language scores

across classes with varying baseline ability and female student share. Column (1) replicates

the coefficient on class size from Column (2) in Table 8. Column (2) examines the effect of

3Although the coefficient on class size for Japanese is imprecisely estimated with the IV method, it is

interesting to discuss the potential reason for the different estimated effects across subjects. Given that

the set of compliers in the IV estimates is consistent across subjects, we interpret this result (specifically,

the larger coefficients for mathematics than for Japanese in general) as indicating that our IV method,

which leverages large class size variations due to the class size cap as a source of identification, is more

effective in identifying the causal effect of class size for mathematics than for Japanese. This may be because

mathematics content is relatively easier to adjust to varying class sizes than Japanese, leading to a more

responsive causal effect of class size in mathematics.
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class size reduction on Japanese scores in classes with different mean baseline Japanese scores

of classmates. The coefficient on the interaction term between class size and mean baseline

Japanese score is negative and statistically significant, indicating that the positive effect of

class size reduction is more pronounced in classes with higher mean baseline Japanese scores.

Similarly, Column (3) shows the class size effect interacting with the maximum and minimum

baseline Japanese scores of classmates. The coefficient on the interaction term between class

size and maximum baseline Japanese score is positive and statistically significant at the 10%

level, suggesting that the positive effect of class size reduction is weaker in classes with higher

maximum baseline Japanese scores.

Column (4) reports the results when all three interaction terms with class size are in-

cluded. The coefficient on the interaction term with the mean score remains negative and

statistically significant, and that on the interaction term with the maximum score remains

positive and statistically significant. Column (5) reports the results with the interaction

term between class size and the proportion of female students in a class. The coefficient

on this interaction term is negative and statistically significant, indicating that the positive

effect of class size reduction is stronger in classes with a higher proportion of female students.

Finally, Column (6) presents the model including all interaction terms. We can confirm the

robustness of our findings: the positive effect of class size reduction is stronger for classes

with high mean baseline scores and a high proportion of female students, and weaker for

classes with high maximum baseline scores.

Table 10 similarly presents the heterogeneous effects of class size reduction on math scores

across classes with varying baseline ability and female student share. Column (1) replicates

the coefficient on class size from Column (4) in Table 8. Column (2) examines the effect

of class size reduction on math scores in classes with different mean baseline math scores

of classmates. The coefficient on the interaction term between class size and mean baseline

math score is negative and statistically significant, indicating that the positive effect of class

size reduction is more pronounced in classes with higher mean baseline math scores. Column

(3) shows the class size effect interacting with the maximum and minimum baseline math

scores of classmates. The coefficients on both interaction terms are negative and statistically

significant, suggesting that the positive effect of class size reduction is stronger in classes

with higher maximum and minimum baseline math scores.

Column (4) reports the results when all three interaction terms are included. While the

statistical significance of the coefficient on the interaction term with the mean score is no

longer evident, the coefficients on the maximum and minimum baseline math scores remain

negative and statistically significant. Column (5) reports the results with the interaction

term between class size and the proportion of female students in a class. The coefficient
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Table 9: Heterogeneous Class Size Effect: Japanese Score

Japanese score (1) (2) (3) (4) (5) (6)

Class size -0.00278 -0.00259 -0.0117* -0.0101 0.0399*** 0.0305**

(0.00328) (0.00328) (0.00642) (0.00648) (0.0142) (0.0151)

x Mean score -0.0103** -0.0163*** -0.0146***

(0.00428) (0.00510) (0.00512)

x Max score 0.00672* 0.00964** 0.00964**

(0.00393) (0.00402) (0.00402)

x Min score -0.000390 0.00169 0.00168

(0.00114) (0.00132) (0.00132)

x Female share -0.0956*** -0.0911***

(0.0303) (0.0304)

F-stat. of the 1st stage

Class size 313*** 300*** 300*** 287*** 316*** 291***

x Mean score 388650*** 373136*** 354613***

x Max score 18311*** 21383*** 20979***

x Min score 54072*** 59110*** 57062***

x Female share 1030*** 936***

Note: All specifications for math scores include the class mean, maximum, and minimum baseline

Japanese scores, the class share of female students, the class share of school financial assistance recipients,

teacher’s total teaching experience, teacher’s tenure at the current school, teacher’s age, student’s own status

of school financial assistance, school fixed effects, year fixed effects, grade fixed effects, and student-teacher

fixed effects, in addition to the variables listed in the table. A student’s own status is excluded from the

calculation of the class means. Class size and its interaction terms are instrumented by the predicted class

size and its interactions. Standard errors are clustered at the student-teacher pair level. The number of

observations is 145,264. *Significant at 10%; **Significant at 5%; ***Significant at 1%

on this interaction term is negative and statistically significant at the 10% level, indicating

that the positive effect of class size reduction is stronger in classes with a higher proportion

of female students, consistent with the findings for Japanese scores. Finally, Column (6)

presents the model including all interaction terms. The positive effect of class size reduction

is stronger for classes with high minimum baseline scores, high maximum scores (significant

at the 10% level), and a high proportion of female students (significant at the 10% level).

Similarly to the case for the average class size effects, we report the F-statistics and its

significance for the first stage in the bottom panel of Tables 9 and 10. For the specifications

including the interaction terms with class size, we report the F-statistics of the first stage

regressions using the interaction terms with actual class size as dependent variable of the first

stage in addition to the first stage with class size itself as the dependent variable. We can
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Table 10: Heterogeneous Class Size Effect: Math Score

Math score (1) (2) (3) (4) (5) (6)

Class size -0.00870*** -0.00845*** -0.00530 -0.00538 0.0150 0.0148

(0.00309) (0.00309) (0.00855) (0.00871) (0.0127) (0.0144)

x Mean score -0.00959*** 0.000302 0.000477

(0.00340) (0.00456) (0.00456)

x Max score -0.0121** -0.0122** -0.0112*

(0.00602) (0.00607) (0.00611)

x Min score -0.00398*** -0.00403*** -0.00408***

(0.00106) (0.00139) (0.00139)

x Female share -0.0531* -0.0480*

(0.0272) (0.0273)

F-stat. of the 1st stage

Class size 313*** 302*** 281*** 258*** 316*** 288***

x Mean score 459516*** 432250*** 440401***

x Max score 6562*** 6345*** 6260***

x Min score 47786*** 46490*** 45518***

x Female share 1030*** 971***

Note: All specifications include the class mean, maximum, and minimum baseline math scores, the class

mean, maximum, and minimum baseline Japanese scores, the class share of female students, the class share

of school financial assistance recipients, teacher’s total teaching experience, teacher’s tenure at the current

school, teacher’s age, student’s own status of school financial assistance, school fixed effects, year fixed

effects, grade fixed effects, and student-teacher fixed effects, in addition to the variables listed in the table.

A student’s own status is excluded from the calculation of the class means. Class size and its interaction

terms are instrumented by the predicted class size and its interactions. Standard errors are clustered at the

student-teacher pair level. The number of observations is 145,264. *Significant at 10%; **Significant at 5%;

***Significant at 1%

confirm that the first stage is statistically significant at the 1% level across all specifications.

Although the coefficients on the excluded instruments (namely, predicted class size and its

interaction terms with other class characteristics) are not reported in the tables, they are

also strongly significant. These results support the validity of our instrument.
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7 Discussions

7.1 Robustness

7.1.1 Clustering Level of Standard Errors

In our analyses thus far, we have reported standard errors clustered at the student-teacher

pair level. As a robustness check, we also report standard errors clustered at the school-cohort

level. The first and second columns in Table 11 present the estimation results of the model

from Column (6) of Tables 9 and 10, but with standard errors clustered at the school-cohort

level. Although some coefficients lose statistical significance under this alternative clustering,

the coefficients on the interaction terms with mean baseline scores and female share remain

statistically significant for Japanese scores, and the coefficients on the interaction terms with

minimum baseline scores remain statistically significant for math scores.

7.1.2 Alternative Specification of Fixed-Effects

In our benchmark specification, we include student-teacher pair fixed effects to control for

potential endogeneity arising from student-teacher matching. Although our specification is

robust against this type of endogenous matching, it reduces the variation in class sizes used

for the identification of the class size effect. We utilize the variation in class size within

student-teacher pairs for identification, as discussed in Subsection 5.2. However, concerns

may arise regarding the robustness and external validity of our benchmark results. To

address these concerns, we estimate the model (3) with student fixed effects and teacher

fixed effects included separately as an alternative specification. This specification leverages

the variation in class size within students and within teachers to identify the class size effects.

Consequently, we can utilize the variation in class size across grades for students taught by

different teachers, in addition to the variation for students taught by the same teachers.

Columns (3) and (4) of Table 11 report the estimated class size effects with student fixed

effects and teacher fixed effects included separately. The results are largely consistent with

those obtained using student-teacher pair fixed effects. Notably, our main findings—the

importance of class mean baseline ability for Japanese class size effects and the minimum

baseline achievement of classmates for math class size effects—remain robust in the specifi-

cation with separate student and teacher fixed effects.

In Subsection 5.3, we found a positive correlation between baseline Japanese test scores

and the probability of being taught by the same teacher in two consecutive grades. This cor-

relation may potentially introduce sample selection bias in the benchmark specification with
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Table 11: Robustness Checks

Clustering Separate FE Raw score

(1) (2) (3) (4) (5) (6)

Japanese Math Japanese Math Japanese Math

Class size 0.0305 0.0148 0.0222*** 0.0076 0.355 0.573**

(0.0213) (0.0206) (0.0085) (0.0083) (0.270) (0.273)

x Mean score -0.0146** 0.0005 -0.0071** 0.0008 -0.362*** 0.0290

(0.0069) (0.0079) (0.0032) (0.0029) (0.0921) (0.0863)

x Max score 0.0096 -0.0112 0.0072** -0.0086** 0.149** -0.182

(0.0066) (0.0094) (0.0028) (0.0038) (0.0734) (0.117)

x Min score 0.0017 -0.0041** 0.0018** -0.0035*** 0.0520** -0.0775***

(0.0018) (0.0020) (0.0009) (0.0008) (0.0235) (0.0255)

x Female share -0.0911** -0.0480 -0.0640*** -0.0302** -0.843 -1.611***

(0.0418) (0.0393) (0.0148) (0.0135) (0.548) (0.514)

Note: All specifications include the class mean, maximum, and minimum baseline math scores, the class

mean, maximum, and minimum baseline Japanese scores, the class share of female students, the class share

of school financial assistance recipients, teacher’s total teaching experience, teacher’s tenure at the current

school, teacher’s age, student’s own status of school financial assistance, school fixed effects, year fixed

effects, grade fixed effects, and student-teacher fixed effects, in addition to the variables listed in the table.

A student’s own status is excluded from the calculation of the class means. Class size and its interaction

terms are instrumented by the predicted class size and its interactions. Standard errors are clustered at

the school-cohort level for Columns (1) and (2), at the student level for Columns (3) and (4), and at the

student-teacher pair level for Columns (5) and (6). The total number of observations is 145,264. *Significant

at 10%; **Significant at 5%; ***Significant at 1%

student-teacher fixed effects. The results reported in Columns (3) and (4) of Table 11 also

provide suggestive evidence regarding sample selection bias based on baseline Japanese test

scores. In these specifications, we utilize the variation in class sizes within students, includ-

ing both those retained and those who changed teachers. The robustness results reported

indicate that the potential bias due to the positive correlation between baseline Japanese

test scores and the probability of being taught by the same teachers is not substantial in our

context.

7.1.3 Raw Test Scores

In our main specifications, we standardized test scores within each year-grade-subject. Given

that we utilize student panel data, this standardization allows us to compare test results

across grades with varying levels of test difficulty. To assess the robustness of our results to

26



the standardization of test scores, we estimate the model using non-standardized test scores

as dependent variables. The results of this analysis are presented in Columns (5) and (6)

of Table 11. For Japanese language scores, the finding that the class size reduction effect

is positively associated with the baseline mean score remains robust when using raw scores

as the dependent variable. Similarly, for math test scores, the finding that the class size

reduction effect is positively associated with the minimum baseline score also proves robust.

Therefore, we conclude that our main findings regarding the heterogeneous effects of class

size are robust to the standardization of test scores.

7.2 Other Forms of Heterogeneity

In our analyses thus far, we have identified heterogeneous class size effects based on class-

mates’ characteristics. We now discuss other potential forms of heterogeneous effects: het-

erogeneity across quantiles and the non-linearity of the class size effect.

7.2.1 Quantile Regression

It is worthwhile to explore the potential heterogeneity of the class size effects across different

quantiles of the outcome test scores. Given that the estimation results with and without

the instrument are similar, as observed in Table 8, we discuss the potential heterogeneity

across quantiles based on the results obtained from the quantile regression model without

the instrument. These results are reported in Table A1. Although the class size effects were

not statistically significant in this analysis, the magnitude of the coefficients is comparable

to those in Table 8 and remains relatively stable across different quantiles.

7.2.2 Non-linearity

In the main specifications examined in this paper, we assumed a linear relationship be-

tween class size and outcome test scores. However, this relationship may be non-linear, as

demonstrated by Kedagni et al. (2021) in the Greek context. To explore this possibility,

we extended our benchmark analysis by including the squared class size as an additional

regressor, and we instrumented both class size and its squared term with predicted class size

and its squared counterpart. The results of this extension are reported in the Appendix as

Table A2. Our analysis did not provide evidence of a significant non-linear relationship in

our study.
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7.3 Interpretation

To explain how class size impacts educational activities, Lazear (2001) provides a theoreti-

cal framework with explanatory power and applicability. He posits that each student has a

probability, denoted by p, of being well-behaved and not disturbing other students. In the

absence of disruptions, the total value of educational production in a class is V . However,

if even one student misbehaves, the teacher must address this, temporarily halting the ed-

ucational production process. Thus, each student’s disruptive behavior creates a negative

externality that affects the educational output of the entire classroom.

Lazear (2001)’s model can be extended in various dimensions, and our results provide

support to Lazear (2001)’s model in an extended dimension. The heterogeneity in students’

gender or socioeconomic status are factors that can determine their value within a unit of

time and/or the possibility of being well-behaved. If we kick out a student with a higher

possibility of disturbing other students, the possibility of disturbing others will be reduced,

which can even be viewed as a benefit for the education activity. However, if we kick out

a student with a lower possibility of disturbing others, that will be a lost for the education

because such a student could contribute more to class education by helping others or asking

thought-provoking questions.

Our finding that class size reduction is more effective when the average baseline academic

performance is higher aligns with this framework. We interpret this as students with higher

academic performance being less likely to disrupt the class and having a greater capacity for

educational production within a given time. Consequently, when the class is disrupted, the

loss of educational production is more substantial.

Our results regarding the heterogeneity based on female student percentage also fit Lazear

(2001)’s model. Classes with a higher proportion of female students benefit more from class

size reduction in both Japanese and mathematics, likely because these classes experience

fewer disruptions. Data from the Japanese Ministry of Education in 2021 indicates that

among all recognized primary school bullying cases, 246,211 were perpetrated by males

and 174,686 by females, suggesting that males are more prone to engaging in problematic

behaviors that can disrupt the educational process.

Another finding that can be explained by, and provides supporting evidence for, Lazear

(2001)’s model is the heterogeneous effect of class size reduction in classes with different

baseline scores of the lowest-performing student. We consider a student’s baseline score to

reflect their ability, which may encompass both cognitive skills and non-cognitive behaviors.

It is reasonable to assume that the lowest-performing student in a class is more likely to

disrupt learning than other students. Conversely, a student with a higher baseline score is
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less likely to disrupt the educational process, for example, by asking questions with obvious

answers. Therefore, when reducing class size in a class where the lowest-performing student

has a particularly low baseline score, the potential for disruption is likely reduced more

significantly than in a class where the lowest-performing student’s baseline score is higher.

A detailed discussion with a formal mathematical model is provided in Appendix A.

Our results regarding the average effect of class size reduction are comparable to, though

somewhat smaller in magnitude than, those reported in other literature such as Bandiera

et al. (2010) and Urquiola (2006). Bandiera et al. (2010) found that a one standard deviation

reduction in class size increases students’ test scores by 0.074 standard deviations, while

Urquiola (2006) reported an increase of up to 0.3 standard deviations. Angrist and Lavy

(1999) found effects ranging from 0.13 to 0.27 standard deviations for pupils. While these

studies measure class size reduction in terms of standard deviations, our measure is the

number of students in the class. Given that the standard deviation of class size in our

dataset is 4.3 students, the effect of a one standard deviation decrease in class size can be

approximated as 0.04 standard deviations in mathematics scores and about 0.02 standard

deviations in Japanese scores.4 Our estimates are slightly smaller than those in the literature,

partly due to the inclusion of teacher-student fixed effects.5

8 Conclusion

This paper primarily estimated the heterogeneous effects of class size reduction on academic

outcomes, focusing on class average baseline test scores, the percentage of female students

in a class, and the baseline scores of the highest- and lowest-performing students in a class.

Our findings indicated that the main effect of class size reduction is positive for students’

academic performance and particularly strong for mathematics.

We also found that smaller classes are more beneficial for students in Japanese language

classes with higher average peer baseline scores. Another notable finding is that for math

scores, classes where the lowest-performing student has a higher baseline math score benefit

more from class size reduction. These findings suggest that the heterogeneity of class size

reduction effects is heterogeneous across subjects. In particular, focusing more attention

4Hojo and Senoh (2019) report that a class size reduction of one student results in an improvement of

0.018 in math scores and 0.014 in Japanese scores within the Japanese context.
5A cost-benefit analysis based on our estimates might be of interest. However, a comprehensive calculation

of the cost-benefit ratio would require estimates of the long-run effects on not only academic outcomes but also

other skills, such as non-cognitive skills, in addition to a number of assumptions specific to the educational

context. This is beyond the scope of the current paper and will be considered as future research.
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on the lowest-performing students in their classes is effective in improving the academic

performance of students in math through class size reduction. We proposed an interpretation

of our empirical findings by extending the theoretical framework proposed by Lazear (2001).

One important avenue of future research is to unpack the mechanism why the effects

of class size reduction are heterogeneous. Although our paper focuses on the disruptive

peer/bad apple effect, we could also explore more mechanisms such as individualized atten-

tion, boutique, and rainbow (e.g., Hoxby and Weingarth (2005)). Unpacking the mechanism

of heterogeneous effects, we could obtain rich implications for optimal education policy in

schools.
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A Illustration of Education Process

We illustrate our results regarding the heterogeneous effects of class size reduction by an

extended version of the model by Lazear (2001). In our formal model, in a class, there are

n students, where each student belongs to a type t ∈ {1, 2, ..., T}. There are nt students of

each type t, such that
∑t=T

t=1 nt = n, and we assume nt > 0 for all t. The probability that

each student with type t will well-behave in class is pt, and without loss of generality, we

assume 1 > p1 > p2.... > pT > 0. Following Lazear (2001)’s model, let V denote the value

of a unit of learning, which is determined by the market value of human capital and the

likelihood that a student is focusing on learning during the given instant. We assume that

V > 0, i.e., human capital has a strictly positive value. Therefore, the expected value of

education in a time unit can be specified as follows:

π = V × Πj=T
j=1 p

nj

j

In our model, π can be viewed as the students’ academic performance, measured by test

scores. The possibility of each type being well-behaved, pj, is determined by its baseline

academic performance, i.e., students with higher baseline scores have higher possibility of

being well-behaved. It is relatively intuitive that students with higher baseline scores are

less likely to disturb other students, for example, less likely to ask questions which all other

students know the answer.

We first want to show that reducing the class size will have a positive effect on the

education production, regardless of the type of students whose number is reduced. We take

the derivative of π with respect to nj for any given j, we get

∂π

∂nj

= V ln(pj)Π
j=T
j=1 p

nj

j

Because V > 0, Πj=T
j=1 p

nj

j > 0 and ln(pj) < 0, ∂π
∂nj

< 0, for any type j. This can explain

our result that the main effect of class size reduction is positive since the first derivative of

education production with respect to class size is always negative.

Take the derivative of π with respect to pk, we have

∂π

∂pk
= (VΠj ̸=kpj)×

∂pnk
k

∂pk
= (VΠj ̸=kpj)nkp

nk−1
k

Since all elements in the formula, V , pj and nj are strictly positive, we have ∂π
∂pk

> 0.

Therefore, the education production is a strictly increasing function of the possibility of any

type of students being well-behaved, which is also quite intuitive.
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We are now going to provide some possible theoretical explanation to the heterogeneous

effect of class size reduction. In particular, we explain why class size reduction has a signif-

icantly positive effect for classes whose bottom student is better. To do this, we take the

derivative to ∂π
∂nk

with respect to pk. That is, we look at the effect of class size reduction by

reducing the number of a type of students with the possibility of well-behave of pk.

∂2π

∂nk∂pk
= V

1

pk
Πj=T

j=1 p
nj

j +
1

pk
V ln(pk)nkΠ

j=T
j=1 p

nj

j = VΠj=T
j=1 p

nj

j [1 + nkln(pk)]×
1

pk

We can see that the sign of ∂2π
∂nk∂pk

depends on the sign of the term [1+nkln(pk)]. If pk is large

and nk is small, it would be more likely that the term is positive, which means the effect

of class size reduction is less positive only if we reduce the number of the type of students

whose possibility of well-behave is high enough, and meanwhile, there are enough number of

this type of students.

If we put some specific numbers into the term [1 + nkln(pk)], we can get a sense of how

large pk and how small nk should be, in order to make it positive. If nk = 10 and pk = 0.9,

we have ln(0.9)=-0.105 and nkln(pk)=-1.05, so [1 + nkln(pk)]=-0.05, still slightly smaller

than zero. And if we reduce nk by 1, i.e. nk = 9, we get [1 + nkln(pk)]=0.05, which is

slightly greater than zero. When pk=0.8, if nk = 5, [1+nkln(pk)] = −0.1 < 0, and if nk = 4,

[1 + nkln(pk)] = 0.12 > 0. We can see that when pk is larger, for the term to be positive,

the number of students in this type k can be allowed to be larger than when pk is smaller.

This theoretical result can explain our finding that the heterogeneity in the effect of

class size reduction is not sensitive to the baseline score of the highest-performing student

in the class, but is sensitive to the baseline score of the lowest-performing student. Class

size reduction has a significantly larger positive effect when the class’s lowest-performing

student has a higher baseline score, but the effect is insignificant when the highest-performing

student’s baseline score varies.

For the student with the worst baseline score in a class, pk is relatively small, so ∂2π
∂nk∂pk

< 0

is more likely to hold. Therefore, when reducing the number of this type of students nk, and

increase pk, we can see that the class size reduction effect on education production is even

more positive. However, for the top student, pk is high, and when the number of this type is

smaller enough, ∂2π
∂nk∂pk

> 0 is more likely to hold. When we reduce this type of students, the

effect of class size reduction is less obvious, and that’s why the coefficient associated with

the interaction term of class size and the score of bottom student in the class is negative and

significant, but the coefficient associated with the class size and the score of the top student

is not significant.
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B Appendix Tables

Table A1: Quantile Regression

(1) (2) (3) (4) (5)

Quantile .1 .3 .5 .7 .9

Japanese score

Class size -0.00458 -0.00458 -0.00464 -0.00470 -0.00470

(0.00967) (0.00959) (0.00360) (0.00302) (0.00309)

Math score

Class size -0.00728 -0.00728 -0.00730 -0.00731 -0.00731

(0.0513) (0.0507) (0.0167) (0.0132) (0.0138)

Note: Class size effects in this table are estimated by Ordinary Least Squares (OLS) with student-teacher

pair fixed effects. All specifications include the class mean, maximum, and minimum baseline math scores,

the class mean, maximum, and minimum baseline Japanese scores, the class share of female students, the

class share of school financial assistance recipients, teacher’s total teaching experience, teacher’s tenure at

the current school, teacher’s age, student’s own status of school financial assistance, grade dummies, and a

third-order polynomial of grade size. A student’s own status is excluded from the calculation of the class

means. Standard errors are clustered at the student-teacher pair level. The number of observations is

145,264. *Significant at 10%; **Significant at 5%; ***Significant at 1%
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Table A2: Nonlinear class size effect

(1) (2) (3) (4)

Japanese score

Class size -0.0359* -0.0312 -0.0280 -0.0358

(0.0208) (0.0209) (0.0312) (0.0315)

Class size squared 0.000509 0.000430 0.000396 0.000530

(0.000334) (0.000336) (0.000517) (0.000523)

Math score

Class size -0.0565*** -0.0529*** -0.0432 -0.0418

(0.0195) (0.0197) (0.0289) (0.0292)

Class size squared 0.000800** 0.000740** 0.000548 0.000532

(0.000316) (0.000319) (0.000478) (0.000483)

Controls NO YES NO YES

IV NO NO YES YES

Note: All specifications include grade dummies, a third-order polynomial of grade size, and student-

teacher fixed effects. The following variables are included as controls: the class mean, maximum, and

minimum baseline math scores; the class mean, maximum, and minimum baseline Japanese scores; the class

share of female students; the class share of school financial assistance recipients; teacher’s total teaching

experience; teacher’s tenure at the current school; teacher’s age; and student’s own status of school financial

assistance. A student’s own status is excluded from the calculation of the class means. For the instrumental

variable (IV) estimates, class size and its squared term are instrumented by the predicted class size and its

squared term. Standard errors are clustered at the student-teacher pair level. The number of observations

is 145,264. *Significant at 10%; **Significant at 5%; ***Significant at 1%
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