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Mortality in Italy*

This paper investigates whether the characteristics of locally elected officials influenced 

excess mortality during the COVID-19 pandemic. Using data on Italy, one of the first 

countries to be severely affected, we examine whether mayoral education influenced 

municipal-level mortality outcomes. We estimate weekly excess mortality using official 

death statistics and a Bayesian hierarchical spatio-temporal model. To address endogeneity 

in political selection, we implement a close-election Regression Discontinuity Design. We 

find that college-educated mayors significantly reduced mortality during the first wave of 

the pandemic, by lowering both the likelihood of excess deaths and the excess mortality 

rate. These effects are not observed in the second wave, likely due to policy convergence 

and a stronger role played by national and regional institutions. Our design interprets 

education as a proxy for broader leadership traits, such as decision-making capacity under 

uncertainty. The findings underscore that political selection can have real demographic 

consequences, shaping population outcomes during crises.
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1 Introduction

The COVID-19 pandemic profoundly affected demographic dynamics, with mortality—

though not the only domain—being the most directly impacted (Aassve et al. 2020;

Dowd et al. 2020). Cross-country and within-country comparisons have identified

multiple factors shaping regional variation in COVID-related mortality. These include

inequality, urbanization, demographic composition, healthcare quality, climate con-

ditions, and policy failures (Chang et al. 2022; Díaz Ramírez et al. 2022; Foster et al.

2024; Sorci et al. 2020). Comparative evidence has also highlighted the potential role

of political variables in mediating the effects of COVID-19, particularly across national

contexts (Martín-Martín et al. 2024). Relevant political dimensions that may have in-

fluenced excess mortality include the quality of democratic institutions (e.g., govern-

ment effectiveness; Rodríguez-Pose & Burlina, 2021), reelection incentives (e.g., timing

relative to the next election; Pulejo & Querubin, 2021), the ideological orientation of

elected officials (e.g., populist vs. non-populist; Charron et al., 2023), and the personal

characteristics of political leaders (e.g., gender; Aldrich & Lotito, 2020).

However, the observed correlation between politicians’ attributes and COVID-related

mortality is unlikely to reflect a causal relationship, as politicians are elected by vot-

ers with distinct characteristics that may themselves influence the spread of the pan-

demic. Place-specific unobservable dimensions may thus confound both political se-

lection and spatial variation in COVID deaths. For instance, Chauvin (2024) finds that

Brazilian municipalities with both higher population density and greater income ex-

perienced higher mortality. Yet, larger and wealthier cities are also more likely to elect

very different types of mayors than smaller or poorer municipalities.

We employ a close-election Regression Discontinuity Design (RDD) to address these

endogeneity concerns and estimate the causal effect of local officials’ education on the

containment of mortality during the COVID-19 crisis in Italy. Although political abil-

ity is a multidimensional trait, education captures a relevant component, reflecting

both human capital accumulation (Becker 1962) and signaling (Spence 1973). Detect-
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ing a non-zero effect would suggest that a bundle of characteristics proxied by educa-

tion has a significant demographic impact in a period of acute crisis (Marshall 2024).

Indeed, more skilled politicians may perform better at managing crises—for example,

by designing and implementing more effective policies under high uncertainty.

The intuition behind the close-election RDD is simple. If random factors—for exam-

ple, unexpected breaking news or rainfall on election day—played even a small role

in determining electoral outcomes, the narrow victory or defeat of a college-educated

candidate versus a non-college-educated rival could be considered as-if randomly as-

signed. By focusing on close elections where the top two candidates differ in ed-

ucation, municipalities assigned to a college-educated mayor should be statistically

similar—in both observable and unobservable characteristics (e.g., elderly popula-

tion share or average income)—to municipalities assigned to a non-college-educated

mayor. This identifying assumption can be partially validated, as municipal charac-

teristics prior to the pandemic should display no discontinuity around the electoral

threshold, that is, at the zero margin of victory between the top two candidates.

Italy serves as our testing ground, being the second country in the world, after China,

to confront the onset of the pandemic, experiencing its full force early on and under-

going distinct waves. We leverage daily official statistics and apply the methodology

by Blangiardo et al. (2020) to estimate excess mortality at the municipality level across

the weeks of 2020 and 2021. We also use official data on the personal characteristics of

mayors to measure political selection at the municipality level. Especially in the early

phase of the pandemic, mayors played a key role in coordinating the local response to

the emergency—by implementing restrictive measures on mobility, mask usage, and

public space closures, and by informing citizens about effective ways to prevent conta-

gion. Ravenda et al. (2023) document the importance of COVID-19 communication by

Italian municipalities on their Facebook pages, covering both restrictive and support

measures. Moreover, they find that the tone and effectiveness of this communication

crucially depended on mayoral characteristics, such as age, ideology, and reelection

incentives. Their findings underscore that mayors had tools to make a difference.
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Our results show that local political selection indeed mattered. We find that more

educated mayors reduced excess mortality at both the extensive and intensive mar-

gins. College-educated mayors who narrowly won close elections—compared to non-

college-educated mayors who also won by a narrow margin—reduced the probability

that their municipality experienced excess deaths by 22% (extensive margin), and the

excess mortality rate by 65% (intensive margin). These effects are observed exclusively

during the first wave, underscoring the importance of sound decision-making when

facing unprecedented challenges and limited central guidance. No statistically signif-

icant effect of mayoral education is detected in the second wave, likely due to policy

convergence and institutional learning, as well as a stronger role played by national

and regional institutions. These effects are not driven by other politician characteristics

that may be compounded with education, such as gender, age, political orientation,

and experience. Overall, our findings provide strong evidence that political selection,

as captured by mayors’ education, shaped the mortality toll of the pandemic.

2 Determinants of COVID-Related Mortality

A first issue in the study of COVID-related mortality concerns how to measure it. Ac-

curately estimating the death toll of the pandemic is complicated by several factors.

Relying on official COVID-19 death counts can lead to biased estimates of pandemic

severity, as it overlooks interactions among causes of death (Castro et al. 2023) and

is affected by inconsistencies in testing strategies, case reporting, death certification,

and other health system variables—issues documented both across and within coun-

tries (Buonanno et al. 2020). These challenges are particularly salient in our setting,

where such reporting issues may be endogenously related to the way local elected offi-

cials manage and organize public services. As is standard in epidemiological research

(Leon et al. 2020; Woolf et al. 2021), a common strategy to address these limitations is

to measure excess all-cause mortality. We adopt this approach precisely because of the

endogeneity concerns mentioned above, and in particular we follow the methodology

proposed by Blangiardo et al. (2020).
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A large body of research has examined why excess mortality varied widely across re-

gions during the COVID-19 pandemic. Major differences have been attributed to a

range of structural, socioeconomic, environmental, and political factors. Health sys-

tem capacity played a critical role in shaping mortality outcomes, particularly in the

early phase of the pandemic. Areas with fewer hospital beds or limited medical staff

faced greater challenges in treating patients effectively. In parallel, the preparedness

and resilience of public health infrastructure influenced the ability to implement re-

sponse measures and to ensure continuity in essential services (Kontis et al. 2020).

Several demographic and environmental factors were associated with higher excess

mortality in the first year of the pandemic. These include high population density,

air pollution, and larger shares of elderly residents (Díaz Ramírez et al. 2022). Fea-

tures of the built environment—such as overcrowded housing and reliance on public

transportation—further shaped virus transmission (Davies et al. 2021). Pre-existing

inequalities amplified the pandemic’s toll. Vulnerable populations—such as racial

and ethnic minorities, the elderly, and those facing poverty or chronic health condi-

tions—suffered disproportionately high levels of excess mortality (Foster et al. 2024;

Kontis et al. 2020). Excess mortality was not simply driven by urban density, but by

the socioeconomic conditions more prevalent in urban settings: poverty, overcrowded

housing, and increased exposure through essential work roles (Davies et al. 2021).

Political decisions and institutional capacity have also been shown to play a role. Ar-

eas that implemented timely and stringent measures—such as lockdowns, widespread

testing, contact tracing, and isolation—were more successful in limiting virus spread

and easing pressure on healthcare systems (Kontis et al. 2020). Regional variation in

institutional quality was also associated with differential pandemic impacts. Notably,

low and declining government effectiveness at the national level was positively corre-

lated with excess mortality in the first half of 2020 (Rodríguez-Pose & Burlina 2021).

Additionally, excess mortality was higher where citizen distrust in institutions was

greater. Polarization in institutional trust—often fueled by political fragmentation—

was associated with worse health outcomes (Charron et al. 2023). Regarding politi-
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cians’ characteristics, countries governed by populist leaders showed higher excess

mortality rates than those led by non-populist governments (Bayerlein et al. 2021).

However, the causal interpretation of most studies on the political determinants of

COVID-related mortality relies on a “selection on observables” assumption (i.e., that

all relevant differences across cases can be measured and controlled for). To address

this limitation, and in a trade-off between internal and external validity, we apply

an RDD that accounts for unobservable factors at the municipality level, consistently

estimating local average treatment effects in close races (Imbens & Rubin 2015).

3 Politicians’ Characteristics and Health Outcomes

Empirical studies in political economy—using different sources of exogenous varia-

tion, from accidental leader deaths to random gender quotas—have shown that polit-

ical selection matters both for economic growth at the national level (Jones & Olken

2005) and for public good provision at the local level (Chattopadhyay & Duflo 2004).

Fujiwara (2015) shows that the introduction of electronic voting in Brazil changed po-

litical selection by favoring the election of legislators who prioritized health policy.

This shift, in turn, led to improvements in infant health outcomes, underscoring how

the identity of elected officials can influence demographic indicators. Macmillan et al.

(2018) show that higher female parliamentary representation is associated with lower

mortality, especially in lower-income and less democratic countries, suggesting that

politician characteristics might play a role in shaping population health.

The educational background of politicians emerges as a key element investigated by

previous studies on political selection.1 Leaders with higher levels of education have

been associated with better governance and stronger economic performance, likely

through more informed policy decisions (Besley et al. 2011; Dal Bó & Finan 2018).
1In political economy, many studies have used education as a proxy for politicians’ ability, together

with administrative experience, market income, military IQ tests, and in-office performance indicators
(Avellaneda 2009; Baltrunaite et al. 2014; Besley et al. 2011; Besley & Reynal-Querol 2011; Bordignon
et al. 2020; Carreri 2021; Dal Bó et al. 2017; Gagliarducci & Nannicini 2013; Galasso & Nannicini 2011;
Galasso & Nannicini 2024). See Dal Bó & Finan (2018) for a review of the literature.
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These studies typically interpret politicians’ education as a proxy for human capital,

civic engagement, and ultimately ability. Yet, Carnes & Lupu (2016) question the em-

pirical validity of this assumption. Analyzing Latin American legislators, they find

limited and often ambiguous evidence linking college degrees to legislative perfor-

mance. Their study, however, focuses on a specific political context and type of leg-

islative activity. Moreover, their performance indicators refer to routine times, whereas

our analysis centers on performance during crises, when decision-making follows dif-

ferent dynamics. More broadly, we interpret education as a proxy for a bundle of

politician characteristics (Marshall 2024), and our theoretical prior is that this bundle

may causally affect the quality of policy choices during a pandemic emergency, as

more educated local leaders may differ from others both in preferences and skills.

First, just as more educated individuals held different preferences regarding the na-

ture and timing of pandemic policy responses, more educated politicians may also

have held distinct beliefs and preferences in this respect. For instance, studies have

shown a positive correlation between educational attainment and vaccine acceptance

in different contexts (Callaghan et al. 2021; Lazarus et al. 2021; Schwarzinger et al.

2021). In addition, education has emerged as a powerful barrier against the spread of

anti-scientific skepticism on social media—a phenomenon that is, in turn, associated

with lower compliance with public health measures and higher excess mortality (Bec-

cari et al. 2024). This indirect role of education might extend to the realm of political

leadership—particularly at the local level, where leaders must make critical decisions

during health emergencies mainly based on their beliefs and preferences.2

Second, more educated politicians may possess a set of skills that enhance the quality

of pandemic policy responses—for example, by improving the timing and implemen-

tation of public health measures such as lockdowns, mask mandates, and hospitaliza-

tion protocols. They may also exhibit stronger communication and leadership abili-
2Outside the political realm, demographic research consistently finds that higher educational at-

tainment is strongly associated with better health outcomes, lower mortality rates, and reduced health
risks across a wide range of indicators (Baker et al. 2011; Baker et al. 2017; Montez et al. 2019). Education
can also exert indirect effects on mortality: for example, maternal education has been shown to play a
protective role in children’s health and survival (Desai & Alva 1998; Ware 1984; Wu 2022).
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ties, which facilitate effective information dissemination and community mobilization

during a public health crisis (Van Bavel et al. 2020). Indeed, research shows that clear

and credible communication is crucial for managing emergencies and fostering public

understanding of complex situations (Lammers et al. 2020).

Next, we discuss why Italy offers an ideal testing ground for these hypotheses.

4 Italian Institutional Setting

4.1 The COVID-19 Emergency

Italy’s response to the pandemic unfolded rapidly starting in late January 2020, fol-

lowing closely the evolution of the epidemic curve. The first COVID-19 cases were

confirmed in Rome on January 29, followed by the declaration of a national state of

emergency. Local outbreaks in northern regions prompted the government to impose

a lockdown in eleven municipalities on February 23, with containment measures such

as movement restrictions, school closures, bans on public gatherings, and the suspen-

sion of non-essential services. Nationwide school closures, the suspension of sport-

ing events, and the imposition of social distancing were announced on March 4 to

slow the spread of the virus. The first phase of the COVID-19 emergency started on

March 9 with the nationwide extension of the restrictions—that is, a lockdown at the

national level. On March 22, nearly all retail and service activities in non-essential eco-

nomic sectors were suspended. Measures were prolonged until May 3, which marked

the end of the first phase. By the end of March, all-cause deaths had increased by

49.4%, and half of them were related to COVID-19 (Istat 2020), showing stark territo-

rial differences—with a peak at +568% in the province of Bergamo—and a concentra-

tion among the elderly population, particularly those aged 70 and over.

As new COVID-19 infections slowed down significantly over the summer, the fol-

lowing phases of the emergency were characterized by a gradual relaxation of con-

tainment measures and the resumption of non-essential activities. Movement was al-

lowed within regions and, from June 3, between regions. Schooling activities resumed
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in person in September under safety protocols, as did public transport services, albeit

with capacity constraints. However, as COVID-19 cases began to rise rapidly again

in early October, the government introduced back new containment measures. On

November 6, a night-time national curfew was enforced, in-person high school classes

were suspended, and non-essential activities were further restricted. A tiered system

categorizing regions into yellow, orange, and red zones based on the severity of re-

strictions was introduced, with zone assignments updated periodically according to

the local evolution of epidemiological parameters.

While the formal state of emergency remained in effect until March 2022, the peak of

the COVID-19 crisis in Italy—in terms of mortality, health system strain, and nation-

wide restrictions—had largely subsided by the summer of 2021, following the accel-

eration of the vaccination campaign. Indeed, the vaccination campaign began in early

2021 and a vaccine certification was later introduced to regulate access to most indoor

public venues. Following the summer of 2020, the successive waves of the COVID-19

pandemic in Italy exhibited a more geographically uniform spread, although north-

ern regions continued to experience higher levels of excess mortality. During the ini-

tial phase of the vaccination campaign in 2021, initially prioritizing high-risk groups

before expanding to the general population, the overall mortality impact remained

substantial, particularly among older age cohorts (Istat 2022).

4.2 Municipal Governance

Italian municipalities represent the lowest administrative unit, nested in 107 provinces,

and, in turn, in 20 regional governments. As of 2020, Italy counted 7,904 municipal-

ities. Each municipal government consists of three institutions: the mayor, the exec-

utive committee, and the city council. The mayor has executive power and carries

out several tasks prescribed by the Italian law, such as supervising the organization

of municipal services and the execution of laws; appointing the members of the ex-

ecutive committee (who cooperate with the mayor in the administration of delegated

functions); issuing executive decrees; and appointing external professionals.
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Municipal elections take place every five years. Voters directly elect both the mayor

and the members of the city council. The electoral system varies depending on the

size of the municipality. In municipalities with fewer than 15,000 residents, a single-

round system is used: each mayoral candidate is supported by a single list of council

candidates, and the candidate receiving a relative majority of votes becomes mayor.

A majority bonus is awarded, granting two-thirds of the city council seats to the win-

ning list. In municipalities with 15,000 residents or more, a two-round runoff system

applies: if no candidate receives an absolute majority in the first round, the top two

candidates compete in a second round. Each mayoral candidate can be supported by

one or more council lists, and the winning coalition receives at least 60% of the council

seats. Mayors are subject to a two-consecutive-term limit: after completing two con-

secutive terms, they are ineligible to run again immediately, unless at least one of the

two terms lasted less than two and a half years. Since 2014, a third consecutive term is

permitted in municipalities with fewer than 3,000 residents.

5 Data

5.1 Estimation of Excess Deaths

We estimate COVID-related deaths by measuring excess all-cause deaths throughout

the pandemic period: deaths in excess (or deficit) are computed as the difference be-

tween (i) all-cause deaths observed during the pandemic and (ii) counterfactual deaths

that would have occurred absent the pandemic. Mortality data is retrieved from the

Italian Institute of Statistics (Istat), which makes available daily series of all-cause

death counts by municipality, gender, and age class starting in 2011 (Istat 2023).

Given the granular spatio-temporal resolution required for our analysis, we adopt a

disease mapping approach (Lawson & Lee 2017) to estimate counterfactual deaths,

leveraging the methodology presented in Blangiardo et al. (2020) to measure excess

mortality at the sub-national level. Disease mapping combined with Bayesian estima-

tion is particularly well-suited to producing stable estimates in low-population areas
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while accounting for spatial, temporal, and spatio-temporal dependencies (Waller et

al. 1997). In particular, following Blangiardo et al. (2020), we specify a Bayesian hier-

archical model and assume that death counts 𝐿 in municipality 𝑀, nested in province 𝑁 ,

observed in week 𝑂 of year 𝑃 , separately by gender, are distributed as a Poisson with

relative risk of death ω and offset 𝑄 :

𝐿𝑀 𝑁𝑂𝑃 → 𝑅𝑆𝑀𝑇𝑇𝑆𝑈

(
𝑄𝑀 𝑁𝑂𝑃 · ω𝑀 𝑁 𝑂𝑃

)
.

The offset term 𝑄 measures the expected number of deaths in each municipality-week

during COVID-19 years, adjusted for age structure through indirect standardization

using the overall Italian population as reference. Indirectly standardized weekly ex-

pected deaths by municipality-year are computed as follows:

𝑄𝑀 𝑁𝑂𝑃 =
∑
𝑉

(
𝑅𝑀 𝑁 𝑃𝑉 ·

𝑊𝑉

𝑅𝑉

) /
52,

where 𝑅𝑀 𝑁 𝑃𝑉 are population counts by age group 𝑉 = {0–14, 15–24, 25–34, 35–44, 45–54,

55–64, 65–74, 75+} in municipality 𝑀 and COVID-19 year 𝑃 , while 𝑊𝑉 and 𝑅𝑉 are, re-

spectively, death and population counts by age group 𝑉 at the country level over the

pre-COVID-19 period (2016–2019). Dividing yearly expected deaths by 52 produces

a weekly series. The relative risk of death ω𝑀 𝑁 𝑂𝑃 is estimated using the following log-

linear random effects model of risk factors:

𝑋𝑆𝑌

(
ω𝑀 𝑁 𝑂𝑃

)
= ε0𝑃 + 𝑍𝑀 + 𝑎𝑀 + ϑ 𝑁 𝑂 + 𝑏 (𝑐𝑀𝑂) ,

where the risk factor ε0𝑃 = ε0 + ϖ𝑃 is an intercept term that captures year 𝑃’s deviation

ϖ𝑃 , specified as a yearly random effect such that ϖ𝑃 → 𝑑 (0, ϱϖ), from the average rela-

tive risk ε0. Factors 𝑍𝑀 and 𝑎𝑀 are included to smooth the over-dispersion in the relative

risk of mortality across a large number of municipalities with varying size (Besag et al.

1991): 𝑍𝑀 is an intrinsic conditional auto-regressive component that captures spatial au-

tocorrelation between municipality 𝑀 and neighboring municipalities, whereas 𝑎𝑀 is an

unstructured random effect that captures non-spatial heterogeneity. The conditional

distribution of the spatial random effect for municipality 𝑀 has the following form:
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𝑍𝑀 |u↑𝑀 → 𝑑

(∑
𝑁
𝑒𝑀 𝑁𝑍 𝑁∑
𝑁
𝑒𝑀 𝑁

,

ϱ2
𝑍∑

𝑁
𝑒𝑀 𝑁

)
,

where 𝑒𝑀 𝑁 = 1 if municipalities 𝑀 and 𝑁 are contiguous (otherwise 𝑒𝑀 𝑁 = 0), so that ς𝑍𝐿

corresponds to the average of random effects across neighbors, and ϱ𝑍𝐿 decreases in

the number of neighbors. The unstructured random effect is distributed as:

𝑎𝑀 → 𝑑

(
0, ϱ2

𝑎

)
.

The relative risk model includes weekly random effects for each province following a

first-order random walk, ϑ 𝑁 𝑂 , and a non-linear function of weekly temperature in each

municipality following a second-order random walk, 𝑐𝑀𝑂 (Blangiardo et al. 2020).

After selecting priors for all parameters and fitting the Bayesian model using data up

to 2019, we draw 1,000 random samples through Monte Carlo simulation from the

posterior distribution to predict counterfactual weekly death counts by municipality

throughout the COVID-19 period.3 Model fit and predictions are performed opera-

tionally in R using INLA, Integrated Nested Laplace Approximation (Blangiardo &

Cameletti 2015). Finally, excess deaths are measured as follows:

𝐿
𝑓

𝑀𝑂𝑃
= 𝐿𝑀𝑂𝑃 ↑ �̂�𝑀𝑂𝑃 ,

where 𝐿𝑀𝑂𝑃 are observed death counts in municipality 𝑀 and week 𝑂 of COVID-19 years,

and �̂�𝑀𝑂𝑃 are counterfactual death counts predicted using the Bayesian model fitted on

pre-COVID-19 data and averaged across 1,000 simulations.

We adopt both a binary and a continuous measure of COVID-related mortality based

on excess deaths. First, we define the extensive margin of excess mortality as a dummy

variable taking value one if excess deaths are larger than zero, that is, if observed

deaths exceed predicted deaths (𝐿𝑀𝑂𝑃 > �̂�𝑀𝑂𝑃 ). Second, we define the intensive margin

of excess mortality using the excess mortality rate, computed as the number of excess

deaths per 100,000 residents in a municipality. We expect the first measure to reduce
3Inverse variances of the parameters of risk factors are modeled through a distribution

log -𝑔𝑉𝑕𝑕𝑉(1, 0.1). As for the global intercept, ε0 → 𝑑

(
0, 106) .
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measurement error, and the second to add some granularity to our analysis. In the

empirical analysis, we aggregate municipal excess deaths by distinguishing three pe-

riods: (i) a pre-COVID-19 (placebo) period covering weeks 1 to 6 of 2020 (January

1 to February 11); (ii) the first wave, spanning weeks 11 to 18 of 2020 (March 11 to

May 5); and (iii) the second wave, extending from week 40 of 2020 to week 19 of 2021

(September 30, 2020 to May 13, 2021).

5.2 Electoral and Mayoral Data

Election outcomes are gathered from the Ministry of Internal Affairs (2025b), which

provides open data on the universe of municipal elections in Italy since 1989. For each

municipal election, we collect candidates’ full names, their endorsing lists/parties,

and the number of votes cast for each candidate and list/party.4 We focus on munici-

palities whose elected mayor (i) won in a race with at least another running candidate,

and (ii) was in office when the pandemic started in March 2020. Thus, for each munic-

ipality we identify the most recent valid election before March 2020 and drop munici-

palities where legislatures were terminated earlier (e.g., due to the mayor’s resignation

or death, or dissolution upon organized crime infiltration).

Data on elected mayors and mayoral candidates is retrieved from Ministry of Inter-

nal Affairs (2025a), which lists the characteristics of local administrators by year and

municipality. When missing, key characteristics are retrieved from the online search

engine on local administrators. We match candidates’ election outcomes to their char-

acteristics using full names—available in both datasets—as identifiers after standard-

izing them. The characteristics include: educational attainment;5 administrative ex-

perience (i.e., time in any municipal office); gender; age on election day; incumbency;

place of birth (i.e., local candidate if municipality of birth and election coincide); ide-

ology (i.e., affiliation to a left/center/right party or civic list); and populist orientation
4For municipalities in four regions with special autonomy (i.e., Aosta Valley, Friuli-Venezia Giulia,

Sicily, and Trentino-Alto Adige), the same data is gathered from regional electoral offices.
5Eleven levels are available: no formal education; exemption after 3rd grade; elementary school;

vocational training after elementary school; middle school; vocational training after middle school; high
school diploma; vocational training after high school; bachelor’s degree; master’s degree; postgraduate
specialization or doctoral degree.
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(i.e., affiliation to a party classified as populist by PopuList, https://popu-list.org). To

estimate the causal effect of mayoral education via RDD, we restrict our main analysis

to a sample of mixed-education electoral races—that is, elections where the top two

candidates differ in education. This analytical sample consists of 2,545 observations.

Descriptive statistics on mayoral characteristics are reported in Appendix Table A1.6

5.3 Municipality-Level Covariates

We compile a rich dataset of municipality characteristics observed in the most recent

pre-COVID-19 period, relying on a variety of institutional sources. Demographic co-

variates are constructed using either Istat (2025a) or Istat (2025b) and include the num-

ber of residents, population density, average household size, and shares of the popu-

lation that are aged 65 and over, women, foreigners, living in households, or living in

cohabitation. Geographical information is retrieved from Istat (2025c) and includes the

macroregion of reference (North-West, North-East, Center, South, Islands), altitude,

coastal proximity, level of urbanization (i.e., city, town, or rural municipality). We de-

rive variables on education and employment from Istat (2025a), including shares of the

population by educational attainment, employment status (employed, out of the labor

force), firm size (i.e., average number of workers per firm), and shares of workers by

job sector (e.g., manufacturing, construction, trade).

Descriptive statistics of municipality-level variables in our analytic sample—including

excess mortality outcomes by COVID-19 period—are reported in Appendix Table A2.

Tables A3 and A4 further compare the descriptive statistics of mayors and municipal-

ities in the analytic sample to those in the full sample with non-missing values for all

variables (6,906 observations). Excluding tertiary education, which is mechanically

higher in the analytic sample due to the focus on mixed-education races, all mayoral

and municipal characteristics are strikingly similar across the two samples. This simi-

larity reinforces the external validity of our results, at least within the Italian context.
6Municipal elections were held in late 2020 in 13% of our municipalities. To ensure consistency in

political leadership across pandemic waves, we exclude these municipalities from the analysis of the
second wave, as their mayors in office may have changed compared to the first wave. Using the same
sample in the second-wave analysis does not affect the results.
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6 Empirical Strategy

To quantify the effect of mayoral education on mortality outcomes, we adopt a sharp

RDD based on a politician characteristic. Specifically, we model excess mortality𝑖𝑀 (𝑄𝑀)

in municipality 𝑀 as a function of the mayor’s education, where 𝑄𝑀 = 1 if the mayor is

more educated and 𝑄𝑀 = 0 otherwise. Our outcome variable, observed excess mor-

tality 𝑖𝑀, corresponds to one of the two potential outcomes 𝑖𝑀 (1) or 𝑖𝑀 (0)—that is, the

excess mortality that would be observed under a more or less educated mayor, respec-

tively. The focus is on close elections in which the first two ranked candidates differ

in educational attainment, i.e., mixed-education elections. Education is dichotomized:

candidates are classified as less educated if they have not attained tertiary education,

and as more educated if they have completed tertiary education or higher. The can-

didate who obtains a positive margin of victory over the other in the decisive ballot

is the elected mayor. The margin of victory 𝑗𝑘𝑀—which serves as the RDD running

variable—is defined as the difference between the vote share of the more educated

candidate and the less educated one. Thus, 𝑗𝑘𝑀 ↓ 0 if the more educated candidate

wins, and 𝑗𝑘𝑀 < 0 if they lose. A zero margin represents the cutoff value in our RDD

design. Mayoral education in each municipality is then a deterministic function of this

margin: 𝑄𝑀 = I{𝑗𝑘𝑀 ↓ 0}. Accordingly, observed excess mortality in municipality 𝑀 can

be expressed as a function of the two potential outcomes (Imbens & Rubin 2015):

𝑖𝑀 =



𝑖𝑀 (1) if 𝑗𝑘𝑀 ↓ 0,

𝑖𝑀 (0) if 𝑗𝑘𝑀 < 0.

The causal effect of interest results from the comparison of excess mortality in munici-

palities headed by more and less educated mayors who barely won against a candidate

with the opposite education level. In these races, mayoral education is considered as

good as randomly assigned, since municipalities are expected to be similar in all re-

spects except for educational attainment around narrow victory margins. Formally,

the local average treatment effect of mayoral education corresponds to the difference
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in the conditional expectations of excess mortality at the cutoff value:

φ = lim
𝑕↔0+

ν [𝑖𝑀 |𝑗𝑘𝑀 = 𝑕] ↑ lim
𝑕↔0↑

ν [𝑖𝑀 |𝑗𝑘𝑀 = 𝑕] = ν [𝑖𝑀 (1) ↑ 𝑖𝑀 (0) |𝑗𝑘𝑀 = 0] .

The RDD estimand φ is defined only within an infinitesimal neighborhood of the RDD

threshold, trading off external validity to gain internal validity. To estimate this local

average treatment effect, one must compute the difference between the limits of two

regression functions approaching the RDD cutoff from opposite sides. In practice, we

estimate local polynomial regressions of the following form:

𝑖𝑀 = 𝜘 + φ𝑄𝑀 + ϱ 𝑏 (𝑗𝑘𝑀) + ω [𝑄𝑀 ↗ 𝑏 (𝑗𝑘𝑀)] + ϖ𝑀, (1)

where 𝑖𝑀 is a measure of excess mortality in municipality 𝑀, 𝑄𝑀 is a dummy variable

equal to one if municipality 𝑀’s mayor has tertiary education or higher, and zero other-

wise, 𝑏 (𝑗𝑘𝑀) is a linear or quadratic polynomial of the more educated mayor’s margin

of victory (Gelman & Imbens 2019), the interaction term 𝑄𝑀 ↗ 𝑏 (𝑗𝑘𝑀) allows for sep-

arate regression functions fitted on either side of the cutoff, and ϖ𝑀 is an error term.

The causal effect of interest is captured by φ. We report estimates obtained using bias

correction and robust variance estimation, a uniform kernel, and a symmetric optimal

bandwidth—selected on both sides of the cutoff—based on the mean squared error

(MSE) minimization procedure described in Calonico et al. (2014). Standard errors are

adjusted for serial correlation in mortality outcomes and for COVID-19 transmission

spillovers within local labor systems, i.e., territorial units defined by Istat based on

daily home-to-work commuting flows, independently of administrative boundaries.

7 Main Results

Figure 1 summarizes the trend in deaths predicted by the model at the country level

throughout the pandemic, along with trends in observed deaths from all causes and

from COVID-19 only. Excess mortality—represented by the gray area marking the

difference between observed all-cause and counterfactual deaths—is evident in two

distinct periods, which broadly align with the COVID-19 phases previously described.
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Moreover, observed all-cause deaths closely track the trend of officially reported COVID-

19 deaths. Figure A1 in the Appendix breaks down these trends by region.

[Figure 1 about here.]

The effect of mayor’s education on excess mortality is visually summarized in Figure

2. Stark discontinuities appear at the cutoff, both at the extensive margin (left graph)

and at the intensive margin (right graph), during the first pandemic wave (panel a).

Policy decisions and communication strategies made by more educated mayors are

associated with systematic reductions in excess mortality. These discontinuities disap-

pear when considering mortality outcomes during the second pandemic wave (panel

b). This evidence suggests that more educated mayors made a difference at the onset

of the emergency, but not after the summer of 2020, despite higher excess mortality

in several regions during the second wave. The same conclusions hold when using a

quadratic polynomial rather than local linear regressions as in the figure.

[Figure 2 about here.]

Table 1 reports estimates of equation 1, where the dependent variable is the proba-

bility of excess deaths and a quadratic polynomial is used. Estimates in the central

columns confirm the visual intuition of a negative causal effect during the first wave.

Specifically, the probability of recording excess deaths is 15.5 percentage points lower

in municipalities governed by more educated mayors—a reduction of approximately

22% relative to the mean in control municipalities—statistically significant at the 5%

level (Column 3). Adding covariates increases precision, yielding a point estimate sta-

tistically significant at the 0.1% level (Column 4). The estimated effect is also larger in

magnitude, though not directly comparable to the previous one, as the optimal band-

width used in the estimation is considerably narrower and the effect tends to grow

closer to the threshold.

The effect vanishes both in the pre-COVID-19 period, used as a placebo test (Columns

1 and 2), and during the second wave (Columns 5 and 6). The null result in the pre-

COVID-19 period serves as an indirect test of the continuity assumption and confirms
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that mayoral education was not affecting mortality differently before the start of the

emergency. The null result in the second wave, instead, supports the interpretation

that local leadership mattered most when the pandemic shock took everyone by sur-

prise, and not in the more codified environment of later outbreaks.

[Table 1 about here.]

Table 2 summarizes the effect of mayoral education on the excess mortality rate. In line

with the binary case previously analyzed, the only large and statistically significant

treatment effect estimates are found during the first pandemic wave. Municipalities

led by more educated mayors recorded 60.3 fewer excess deaths per 100,000 people

compared to those led by less educated mayors—a reduction of approximately 65%

(Column 3). The covariate-adjusted estimate, obtained again in a narrower optimal

bandwidth, is larger in magnitude and statistically significant at the 0.1% level (Col-

umn 4). The placebo tests in Columns 1 and 2 support the validity of the RDD setup.

The estimates in Columns 5 and 6 show that, while the direction of the effects remains

consistently negative during the second pandemic wave, none of the coefficients are

statistically different from zero at conventional levels.

[Table 2 about here.]

7.1 Robustness Checks

A key identifying assumption in RDD is the continuity of potential outcomes, mean-

ing that, in the absence of treatment, potential outcomes would evolve smoothly at

the cutoff. If this assumption is violated, any observed discontinuity in excess mor-

tality could reflect pre-existing differences in other characteristics between units just

above and below the cutoff, rather than the causal effect of the treatment. We indirectly

assess the validity of this assumption by estimating equation 1 using a wide set of pre-

determined municipal characteristics as outcomes. Results are summarized in Table 3.

Reassuringly, these characteristics vary smoothly at the cutoff—no coefficient is statis-

tically significant at the 5% or 1% level. Municipalities led by more educated mayors

18



are slightly less likely to be located in the North-West and somewhat more likely to

be in Southern Italy, but only at a 10% significance level. Given the large number of

covariates tested, these slight imbalances might well be attributed to sample noise.

[Table 3 about here.]

Another check is the continuity in the density function of the running variable at the

cutoff. A violation of this condition may indicate manipulation in treatment assign-

ment, i.e., the ability of units to self-select into treatment or control groups (McCrary

2008). In our setting, a bunching of victories by more or less educated candidates at the

cutoff would invalidate the design. While probabilities of victory differ in our sample

of mixed-education elections, there is no discontinuity in the density function at the

cutoff.7 Appendix Figure A2 provides a visual inspection and formally tests the conti-

nuity hypothesis using Cattaneo et al. (2020). We fail to reject the null hypothesis of a

continuous density—i.e., we find no evidence of sorting around the cutoff, supporting

the validity of the research design. Other non-random heaping points are not visually

discernible either, further supporting the validity of the design (Barreca et al. 2016).

In Appendix Figure A3, we check the sensitivity of our results to the choice of band-

width. Equation 1 is estimated within bandwidths defined by margins of victory rang-

ing from 5 to 50 percentage points (in 1-point increments), and the figures plot the esti-

mated effects for both the extensive margin (left) and the intensive margin (right) of ex-

cess mortality. While point estimates increase in absolute value as bandwidths shrink,

highlighting the well-known trade-off between bias and variance (Cunningham 2021),

effects in the first wave (panel a) are uniformly statistically different from zero across

all bandwidths (up to 17-point margins for excess mortality rates), not only within

the optimal bandwidths. In the second wave (panel b), estimated effects are positive

at narrower bandwidths and become negative at wider bandwidths. However, neg-

ative effects reach statistical significance only at bandwidths exceeding 25 percentage

points, where a causal interpretation of the estimates becomes less credible.
7More educated candidates are overall more likely to win (53.7%) against less educated candidates

(46.3%), a gap that narrows as the margin of victory becomes smaller, as predicted by the RDD setup.
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The distribution of excess mortality rates shows pronounced right-skewness—that is,

a few municipalities recorded extremely high levels of excess mortality. These extreme

values might reflect a compromised healthcare context that limited the scope for may-

oral initiatives in managing the emergency and undermined their effectiveness. Alter-

natively, they could result from the estimation procedure itself, particularly in small

municipalities where deaths are rare events—even when based on 1,000 simulations.

In Appendix Figure A4, we test the sensitivity of our estimates to the exclusion of

such extreme values. In the first pandemic wave, the negative and significant effect

of mayoral education persists even when the distribution is substantially trimmed,

down to the median, regardless of the polynomial specification (panel a). By contrast,

estimates in the second pandemic wave fluctuate considerably above and below zero,

again indicating an inconsistent pattern (panel b).

All of the above tests corroborate the validity of the RDD assumptions and the ro-

bustness of our main findings. Yet, the interpretation of the treatment effect may be

complicated by the correlation between mayoral education and other relevant traits—

that is, the treatment may be compound. In other words, while municipalities just

above and below the RDD cutoff appear to be identical in terms of both observable

and unobservable characteristics, other mayoral attributes that are highly correlated

with education may act as complements or substitutes for tertiary education in ex-

plaining the observed reduction in excess mortality. We thus explore more closely

whether candidates’ pre-determined characteristics affect the estimated effect of ed-

ucation, in order to minimize the possibility that our estimates capture compound

treatments or compensating differentials in other traits. This analysis builds on work

that proposes stricter validity conditions for close-election RD designs (Caughey &

Sekhon 2017; Sekhon & Titiunik 2012), particularly those examining political selection

through candidates’ characteristics (Marshall 2024).

Figure 3 plots the estimated coefficients φ from re-estimating equation 1 after pro-

gressively excluding from the sample those elections that are mixed along other can-

didate characteristics. Operationally, we begin with our analytic sample of mixed-
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education elections and alternatively exclude elections that are also mixed in terms

of gender, age, experience, ideology, or populist orientation. The results are strongly

robust: the causal effect of education on excess mortality persists in the residual sam-

ples, where more educated candidates do not systematically differ from their less ed-

ucated counterparts along other traits that could confound the interpretation of the

treatment effect at the cutoff. Although we interpret education as a proxy for broader

leadership characteristics—potentially including unobservable ability in dealing with

high-uncertainty shocks—we can conclude that our findings are not driven by the cor-

relation between education and the other observable traits we account for in Figure 3.

[Figure 3 about here.]

8 Conclusion

The COVID-19 pandemic was a universal shock, but its effects were far from equal.

Our analysis shows that, even among neighboring municipalities operating under

the same national policy framework, the characteristics of local leadership can signifi-

cantly shape health outcomes. In particular, we provide causal evidence that mayoral

education substantially reduced excess mortality during the first wave of the pan-

demic in Italy—a phase marked by institutional uncertainty and the absence of clear

protocols. This effect fades in later waves, suggesting that mayoral traits mattered

most when uncertainty was highest and centralized guidance more limited.

Our results are robust across a wide range of empirical checks, including placebo

tests, sensitivity to bandwidth and trimming, balance and density continuity, and

compound treatment adjustments. Interpreting education as a proxy for a broader

bundle of leadership traits, we underscore the demographic significance of political

selection processes. In contexts where institutional preparedness is limited or un-

even, the attributes and competence of individual officeholders may critically shape

population-level responses to unexpected crises. A simple back-of-the-envelope cal-

culation illustrates the policy relevance of our findings: at the onset of the pandemic,
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about 53% of Italian municipalities were led by mayors without a college degree. Had

these mayors possessed different characteristics, there would have been 20,000 fewer

excess deaths—up to 32,000 in the upper-bound scenario. In other words, nearly half

of the first wave’s excess death toll might have been avoided.

The evidence from Italy thus speaks to a broader issue: when institutional responses

lag or falter, the identity of elected politicians can shape outcomes, even for policy

responses with significant demographic consequences.
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Fig. 1 Evolution of weekly deaths in Italy during the COVID emergency. The shaded
area between the curves of observed and predicted all-cause deaths quantify excess
mortality. Vertical grey bars identify the two pandemic periods.

29



a. 1st wave

0.6

0.7

0.8

0.9
Pr

ob
ab

il
it

y 
of

 e
xc

es
s 

de
at

hs

–16.2 –8.1 0.0 8.1 16.2
Margin of victory

50

100

150

200

Ex
ce

ss
 m

or
ta

li
ty

 r
at

e

–12.1 –6.1 0.0 6.1 12.1
Margin of victory

b. 2nd wave

0.6

0.7

0.8

0.9

Pr
ob

ab
il

it
y 

of
 e

xc
es

s 
de

at
hs

–15.6 –7.8 0.0 7.8 15.6
Margin of victory

50

100

150

200

250

Ex
ce

ss
 m

or
ta

li
ty

 r
at

e

–15.3 –7.6 0.0 7.6 15.3
Margin of victory

Fig. 2 Regression discontinuity plots of mayoral education and excess mortality at the
extensive margin (left) and intensive margin (right) in the first (panel a.) and second
(panel b.) pandemic wave. Bias-corrected RD estimates with uniform kernel from lo-
cal linear regressions—represented by dashed lines—using MSE-optimal bandwidths
equal on both sides of cutoffs – shown on horizontal axes—obtained through the pro-
cedure described in Calonico et al. (2014). Positive (negative) margins to the right (left)
of cutoffs identify elections where the more educated candidate won (lost) against a
less educated candidate, which are labeled with red (grey) binned sample means.
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Fig. 3 Sensitivity of treatment effect estimates—i.e. more educated mayor—to the ex-
clusion from the analytic sample of other mixed-characteristics elections in regression
discontinuity designs using as outcome excess mortality at the extensive margin (left)
and intensive margin (right) in the first pandemic wave. Bias-corrected RD estimates
with uniform kernel from covariate-adjusted local quadratic (right) regressions using
MSE-optimal bandwidths equal on both sides of cutoffs obtained through the proce-
dure described in Calonico et al. (2014). Point estimates—and their 95% confidence
intervals indicated by horizontal black lines—come from separate RD regressions that
exclude from the sample mixed electoral races in terms of candidate characteristics
listed on vertical axes (residual sample size indicated in parentheses). For continuous
variables—age and experience—similarity is defined as both candidates being above
or below the median level of that variable in the full sample.
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Table 1 Regression discontinuity estimates of probability of excess deaths on mayors’
education

Pre-COVID 1st wave 2nd wave

(1) (2) (3) (4) (5) (6)

More educ. 0.064 –0.089 –0.155** –0.308*** 0.058 –0.075
(0.074) (0.061) (0.071) (0.059) (0.074) (0.067)

Observations 1,518 1,011 1,561 880 1,228 666
Bandwidth 22.3 12.8 23.1 10.6 19.7 9.2
Mean Dep. Var. .374 .386 .718 .733 .726 .728
Covariates ↗ ⊋ ↗ ⊋ ↗ ⊋

Note: Local quadratic bias-corrected RD estimates. MSE-optimal bandwidth, equal on
both sides of the discontinuity, obtained through the procedure described in Calonico
et al. (2014). Robust standard errors, clustered by local labor systems, in parentheses.
* p<.1; ** p<.05; *** p<.01
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Table 2 Regression discontinuity estimates of excess mortality rate on mayors’
education

Pre-COVID 1st wave 2nd wave

(1) (2) (3) (4) (5) (6)

More educ. 7.082 –15.916 –60.269** –73.345*** –25.753 –42.315
(17.769) (15.538) (28.625) (21.441) (56.977) (61.319)

Observations 1,507 931 1,490 812 1,332 506
Bandwidth 21.8 11.6 21.4 9.8 22.9 6.8
Mean Dep. Var. –14.473 –12.830 93.368 88.853 90.950 94.496
Covariates ↗ ⊋ ↗ ⊋ ↗ ⊋

Note: Local quadratic bias-corrected RD estimates. MSE-optimal bandwidth, equal on
both sides of the discontinuity, obtained through the procedure described in Calonico
et al. (2014). Robust standard errors, clustered by local labor systems, in parentheses.
* p<.1; ** p<.05; *** p<.01
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Table 3 Balance tests of covariates

φ̂ Std. error

Elections
Turnout (%) –0.346 (1.405)
Runoff election 0.009 (0.040)
Electoral competition 0.009 (0.013)

Demography
Population (thousands) –2.665 (2.680)
Population ↓ 65 (%) 0.179 (0.829)
Female population (%) 0.033 (0.205)
Foreign population (%) 0.582 (0.700)
Population density 38.535 (95.415)
Pop. in household (%) 0.064 (0.127)
Pop. in cohabitation (%) –0.064 (0.127)
Household size 0.033 (0.038)

Geography
North-West –0.133* (0.076)
North-East –0.051 (0.064)
Center 0.012 (0.046)
South 0.132* (0.078)
Islands 0.039 (0.053)
Altitude –26.356 (46.635)
Coastal 0.068 (0.059)
City –0.013 (0.025)
Town 0.048 (0.076)
Rural –0.025 (0.076)

Education
No or Primary education (%) 0.444 (0.671)
Lower secondary education (%) –0.389 (0.733)
Upper secondary education (%) –0.008 (0.703)
Tertiary (%) 0.025 (0.524)

Employment
Employed (%) –1.760 (1.224)
Out of labor force (%) 1.225 (0.965)
Firm size 0.052 (0.227)
Manufacturing (%) 0.268 (0.917)
Construction (%) –0.761 (1.161)
Wholesale/retail trade (%) 0.784 (1.082)
Transp. and storage (%) 0.579 (0.499)
Accomodation and food (%) –0.609 (0.967)
Prof., scient., techn. (%) –0.579 (0.661)
Health and social (%) 0.580 (0.402)
Other activities (%) –0.149 (0.903)

Note: Local quadratic bias-corrected RD estimates with uniform kernel and MSE-
optimal bandwidths, equal on both sides of the cutoffs, obtained through the pro-
cedure described in Calonico et al. (2014). Robust standard errors, clustered by local
labor system, included in all models.
* p<.1; ** p<.05; *** p<.01
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A Appendix

Table A1 Descriptive statistics of mayors

Obs. Mean Median SD Min. Max.

Education
↘ Lower secondary 2,545 .070 0 .256 0 1
Upper secondary 2,545 .393 0 .488 0 1
↓ Tertiary 2,545 .537 1 .499 0 1

Age 2,545 50.6 51 10.8 20 85
Female 2,545 .149 0 .356 0 1
Experience (years) 2,545 13.9 13 7.7 0 39
Local born 2,545 .301 0 .459 0 1
Ideology

Right 2,545 .075 0 .264 0 1
Center 2,545 .018 0 .133 0 1
Left 2,545 .046 0 .209 0 1
Independent 2,545 .861 1 .347 0 1
Populist or. 2,545 .080 0 .271 0 1
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Table A2 Descriptive statistics of municipalities

Obs. Mean Median SD Min. Max.

Mortality
Excess deaths prob. (pre-COVID) 2,545 .38 .00 .48 0 1
Excess deaths prob. (1st wave) 2,545 .69 1 .46 0 1
Excess deaths prob. (2nd wave) 2,545 .73 1 .44 0 1
Excess mortality rate (pre-COVID) 2,545 –15.6 –18.7 129.4 –583.7 1864.5
Excess mortality rate (1st wave) 2,545 95.2 50.2 227.6 –583.7 2557.7
Excess mortality rate (2nd wave) 2,545 147.2 117.1 361.3 –2477.5 5021.0

Elections
Turnout (%) 2,545 65.21 67.09 10.82 19.50 93.94
Runoff election 2,545 .07 .00 .25 0 1
Electoral competition 2,545 0.50 0.50 0.12 0.19 0.96

Demography
Population (thousands) 2,545 7.01 2.97 17.84 0.03 565.75
Population ↓ 65 (%) 2,545 25.27 24.86 5.21 8.64 54.84
Female population (%) 2,545 50.51 50.62 1.49 39.10 55.22
Foreign population (%) 2,545 6.63 5.90 4.20 0.00 35.21
Population density 2,545 332.3 121.3 648.7 1.1 9435.7
Pop. in household (%) 2,545 99.41 99.77 1.17 79.07 100.00
Pop. in cohabitation (%) 2,545 0.59 0.23 1.17 0.00 20.93
Household size 2,545 2.28 2.30 0.23 1.16 3.09

Geography
North-West 2,545 .33 0 .47 0 1
North-East 2,545 .14 0 .35 0 1
Center 2,545 .14 0 .35 0 1
South 2,545 .29 0 .45 0 1
Islands 2,545 .10 0 .30 0 1
Altitude 2,545 339.8 276.0 284.6 0.0 1816.0
Coastal 2,545 .16 0 .36 0 1
City 2,545 .03 0 .18 0 1
Town 2,545 .37 0 .48 0 1
Rural 2,545 .59 1 .49 0 1

Education
No or Primary education (%) 2,545 23.17 22.79 4.11 3.23 46.94
Lower secondary education (%) 2,545 31.26 30.92 4.24 13.24 48.90
Upper secondary education (%) 2,545 34.96 35.35 4.55 17.22 54.84
Tertiary (%) 2,545 10.63 10.30 3.13 2.04 30.41

Employment
Employed pop. (%) 2,545 45.11 46.18 7.48 23.39 67.31
Out of labor force pop. (%) 2,545 48.90 48.24 6.03 30.77 72.73
Firm size 2,545 3.20 2.80 1.67 0.63 22.57
Manufacturing (%) 2,545 11.54 10.39 6.43 0.00 66.67
Construction (%) 2,545 15.19 13.97 7.08 0.00 75.00
Wholesale/retail trade (%) 2,545 25.31 24.49 7.89 0.00 100.00
Transp. and storage (%) 2,545 4.12 3.33 3.82 0.00 100.00
Accomodation and food (%) 2,545 10.40 8.05 7.90 0.00 100.00
Prof., scient., techn. (%) 2,545 11.49 11.47 4.78 0.00 40.00
Health and social (%) 2,545 5.33 5.06 3.07 0.00 33.33
Other activities (%) 2,545 16.61 17.14 6.01 0.00 50.00
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Table A3 Comparison of descriptive statistics of mayors across samples

Analytic (𝑑 = 2, 545) Full (𝑑 = 6, 906)

Mean SD Mean SD

Education
↘ Lower secondary .07 .26 .10 .29
Upper secondary .39 .49 .44 .50
↓ Tertiary .54 .50 .47 .50

Age 50.62 10.77 51.39 10.81
Female .15 .36 .14 .35
Experience (years) 13.92 7.75 14.6 7.79
Local born .30 .46 .30 .46
Ideology

Right .08 .26 .07 .25
Center .02 .13 .02 .14
Left .05 .21 .04 .19
Independent .86 .35 .87 .33
Populist or. .08 .27 .07 .26

37



Table A4 Comparison of descriptive statistics of municipalities across samples

Analytic (𝑑 = 2, 545) Full (𝑑 = 6, 906)

Mean SD Mean SD

Mortality
Excess deaths prob. (pre-COVID) .38 .48 .37 .48
Excess deaths prob. (1st wave) .69 .46 .68 .47
Excess deaths prob. (2nd wave) .73 .44 .72 .45
Excess mortality rate (pre-COVID) –15.56 129.40 –17.97 134.56
Excess mortality rate (1st wave) 95.21 227.64 109.27 265.61
Excess mortality rate (2nd wave) 147.20 361.27 153.16 395.74

Elections
Turnout (%) 65.21 10.82 65.19 10.59
Runoff election .07 .25 .06 .24
Electoral competition 0.50 0.12 0.58 0.21

Demography
Population (thousands) 7.01 17.84 7.05 27.59
Population ↓ 65 (%) 25.27 5.21 25.47 5.36
Female population (%) 50.51 1.49 50.41 1.62
Foreign population (%) 6.63 4.20 6.66 4.20
Population density 332.34 648.66 297.42 611.23
Pop. in household (%) 99.41 1.17 99.42 1.19
Pop. in cohabitation (%) 0.59 1.17 0.58 1.19
Household size 2.28 0.23 2.26 0.24

Geography
North-West .33 .47 .39 .49
North-East .14 .35 .14 .35
Center .14 .35 .12 .32
South .29 .45 .26 .44
Islands .10 .30 .09 .29
Altitude 339.81 284.64 347.56 287.49
Coastal .16 .36 .14 .35
City .03 .18 .03 .17
Town .37 .48 .33 .47
Rural .59 .49 .64 .48

Education
No or Primary education (%) 23.17 4.11 23.12 4.21
Lower secondary education (%) 31.26 4.24 31.4 4.29
Upper secondary education (%) 34.96 4.55 35.07 4.73
Tertiary (%) 10.63 3.13 10.43 3.23

Employment
Employed (%) 45.11 7.48 45.38 7.48
Out of labor force (%) 48.90 6.03 48.8 6.06
Firm size 3.20 1.67 3.19 1.80
Manufacturing (%) 11.54 6.43 11.47 6.73
Construction (%) 15.19 7.08 15.86 7.81
Wholesale/retail trade (%) 25.31 7.89 24.87 8.17
Transp. and storage (%) 4.12 3.82 4.29 3.97
Accomodation and food (%) 10.40 7.90 10.68 8.32
Prof., scient., techn. (%) 11.49 4.78 11.26 5.08
Health and social (%) 5.33 3.07 5.19 3.35
Other activities (%) 16.61 6.01 16.38 6.32
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Fig. A1 Evolution of weekly deaths during the COVID emergency by region.
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Fig. A2 Manipulation test of the running variable. The robust bias-corrected t-statistic
at the cutoff is 0.399 (𝑙 = 0.690).
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Fig. A3 Sensitivity of treatment effect estimates—i.e. more educated mayor—to band-
width selection in regression discontinuity designs using as outcome excess mortality
at the extensive margin (left) and intensive margin (right) in the first (panel a.) and
second (panel b.) pandemic wave. Bias-corrected RD estimates with uniform kernel
from covariate-adjusted local quadratic regressions that use as bandwidths margins of
victory between 5 and 50 percentage points in the decisive ballot of mixed-education
elections, equal on both sides of the cutoff. The horizontal axes at the bottom report
the bandwidth used, while those at the top report the respective sample size. The
dashed vertical lines indicate MSE-optimal bandwidths obtained through the proce-
dure described in Calonico et al. (2014), and adopted in baseline estimates of Tables 1
and 2, Columns 4 and 6. Shaded areas are 95% confidence intervals.
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b. 2nd wave
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Fig. A4 Sensitivity of treatment effect estimates—i.e. more educated mayor—to ex-
treme values in the distribution of excess mortality rates used as outcomes in regres-
sion discontinuity designs in the first (panel a.) and second (panel b.) pandemic wave.
Bias-corrected RD estimates with uniform kernel from covariate-adjusted local linear
(left) and quadratic (right) regressions using MSE-optimal bandwidths equal on both
sides of cutoffs obtained through the procedure described in Calonico et al. (2014).
The horizontal axes at the bottom report the number of percentiles trimmed from the
upper part of the distribution of dependent variables, while those at the top report the
respective sample size. Shaded areas are 95% confidence intervals.
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