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ABSTRACT

IZA DP No. 17899 MAY 2025

The Genetic Lottery Goes to School: 
Better Schools Compensate for the 
Effects of Students’ Genetic Differences*

We investigate whether better schools can compensate for the effects of children’s genetic 

differences. To this end, we combine data from the Norwegian Mother, Father, and Child 

Cohort Study (MoBa) with Norwegian register data to estimate the interaction between 

genetic endowments and school quality. We use MoBa’s genetic data to compute polygenic 

indices for educational attainment (PGIEA). Importantly, MoBa includes information on the 

genetic endowments of father-mother-child trios, allowing us to identify causal genetic 

effects using within-family variation. We calculate school value-added measures from 

Norwegian register data, allowing us to causally estimate school quality effects. Leveraging 

the advantages of both data sources, we provide the first causally identified study of gene-

environment interactions in the school context. We find evidence for substitutability of 

PGIEA and school quality in reading but not numeracy: a 1 SD increase of school quality 

decreases the impact of the PGIEA on reading test scores by 6%. The substitutability arises 

through gains of students at the lower end of the PGIEA distribution. This shows that 

investments in school quality may help students to overcome their draw in the genetic 

lottery.
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Introduction 

A core topic in the social sciences is the challenge articulated in the Coleman report (1): "the 

question of how well schools reduce the inequity of birth" (p.36). A substantial body of literature 

has explored the extent to which schools fulfill their purpose of compensating for the effects of 

background differences among children that lie beyond their control. Traditionally, this research 

has focused on inequalities in school performance by socioeconomic status (SES), race, and 

gender (2–4). Here, we consider whether schools compensate or reinforce the effects of children’s 

genetic differences. 

 

Genetic differences between children play a significant role in skills development, with the twin 

study heritability for childhood school performance estimated at approximately 50% (5, 6). 

Importantly, these genetic influences interact with social influences on academic skills, such as 

family socioeconomic status (7) and the broader socio-political environment (8). Evidence of 

gene-environment interactions is highly relevant to social policy; it underscores the fact that 

environments do not affect all individuals equally. Interventions that counteract genetic influences 

could serve as vital policy levers for fostering educational equity.  

 

Despite this, empirical evidence on gene-environment interactions within schools remains sparse. 

Traditional behavioral genetic study samples limit research on genetic interactions with school 

environments because twins usually attend the same school. The recent availability of polygenic 

indices (PGIs) has catalyzed research into how genetic factors interplay with school 

environments. Prior studies have examined between-school variation in PGI effects using 

multilevel models (9–11) as well as measured school quality indicators, such as teacher 

experience and class size (12). While one set of results was inconclusive (9), the later studies 

converged on the finding that higher-quality schools compensate for differences in genetic 

endowment in the production of educational attainment (10–12). 

 

However, a primary challenge in existing research is the difficulty of identifying exogenous 

variation in both genetic factors and school quality measures. Estimates of gene-environment 

interactions (GxE) are biased when genetic factors (G) and/or the environment of interest (E) 

correlate with other variables that influence outcomes. An effective approach to address the first 

source of bias is by using within-family PGIs. Within-family variation in PGIs is a random “genetic 

lottery,” meaning that effects cannot be confounded by other family characteristics. This approach 

was first adopted in the context of gene-environment interactions within schools (10). However, 

the study lacked a method for capturing exogenous variation in school quality and was limited in 

capturing only the school environments of children participating in the cohort study. Without 

identifying causal effects, we cannot conclude whether social advantages increase the expression 

of genetic differences or instead support compensation and diathesis stress models of child 

development, whereby social advantages buffer genetic influences. 

 

Here, we incorporate exogenous variation in both genetics and environments. We leverage within-

family PGIs through parent-offspring genetic data in the Norwegian Mother Father Child Cohort 

study (MoBa) and use established school value-added (VA) indicators, integrating data from 

https://sciwheel.com/work/citation?ids=17690421&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=17757066,17690220,5506411&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=4598227,245064&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=6554736&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10510838&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5612570,13262991,13883813&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=17689872&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5612570&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13262991,13883813,17689872&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=13262991&pre=&suf=&sa=0
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Norwegian registers, thus encompassing all Norwegian children in the cohort (13, 14). Focusing 

on national tests provides methodological advantages due to their standardized nature and real-

world relevance to students’ life outcomes. The Norwegian context and rich educational data 

provide the ideal setting for validating our novel causal gene-environment interaction approach. 

 

Results 

 

Analysis sample 

 

Our analysis is based on the Norwegian Mother, Father, and Child Cohort Study (MoBa) (15), 

linked to population-wide administrative records containing students' national standardized test 

scores and school identifiers. The outcomes of interest are students’ reading and numeracy test 

scores in grade 9, which capture students’ skills in these domains one year after starting lower 

secondary school (grades 8-10, see SI Appendix, sections A and B, for details on the schooling 

system and national test scores in Norway). Students' test scores are standardized within each 

year in the full population of Norwegian students to have a mean of zero and a standard deviation 

of one. We measure students’ and their parents’ genetic endowments with a polygenic index for 

educational attainment PGIEA and quantify school quality through school value-added measures 

(VAd with d ∈ {reading, numeracy}). VAd is constructed using the full population of Norwegian 

students. We standardize PGIEA and VAd in our estimation sample to have a mean of zero and a 

standard deviation of one. 

 

Table 1 shows descriptive statistics for our analysis sample comprising 30,939 children with 

complete data on all relevant outcomes, treatment, and control variables. While our analysis 

sample of genotyped parent-child trios is comparable to the overall MoBa sample, MoBa 

participants are positively selected on socioeconomic background characteristics relative to the 

general population. Importantly, while our study sample is positively selected and therefore not 

representative of the overall Norwegian population, this selection does not compromise the 

internal validity of our estimates or their causal interpretation..  

 

Validation of identification assumptions 

I. Exogenous variation in polygenic indices (PGIEA) 

Causal identification of gene-environment interactions requires exogenous variation in both 

genetic factors and environmental exposures (16). In the absence of exogenous variation in 

children’s genetic endowments (PGIEA), estimates of genetic effects and the corresponding gene-

environment interaction will be confounded by indirect genetic effects from parents and population 

stratification (17). We achieve exogenous variation in PGIEA by leveraging the availability of 

genetic trios in MoBa. By analyzing children's PGIEA while controlling for maternal and paternal 

PGIEA, we isolate the component of children's genetic variation that is randomly allocated during 

meiosis. This within-family genetic variation approach enables causal identification of genetic 

effects (18). 

https://sciwheel.com/work/citation?ids=17633925,17633970&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=5934574&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=17689895&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4755610&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7534151&pre=&suf=&sa=0
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Figure 1 provides evidence supporting the exogeneity of the within-family PGIEA variation used in 

our study. Specifically, it shows correlations between students’ PGIEA and family characteristics 

that may influence the educational outcomes of children, such as parents' education and income. 

The dark-gray dots show correlations without controls for parental PGIEA. Many of the correlations 

are positive and significantly different from zero — a pattern consistent with indirect parental 

genetic effects. The light-gray dots show the same correlations after controlling for parental PGIEA. 

Notably, all correlations with family characteristics converge to zero and become statistically 

indistinguishable from zero. In line with our expectations, the residual within-family genetic 

variation of PGIEA is not confounded with other family characteristics that may influence children’s 

educational outcomes, suggesting a causal interpretation of our estimated genetic effects. Figure 

1 also demonstrates that PGIEA and VAd are not correlated with each other after conditioning on 

parental PGIEA. The absence of such gene-environment correlations suggests that we have 

sufficient independent variation in PGIEA and VAd to separately identify genetic effects, school 

effects, and the gene-environment interaction of interest. 

II. Exogenous variation in school value-added (VA) 

Value-added (VA) models estimate the causal effect of schools on student outcomes by 

comparing students' academic progress relative to comparable peers at different schools (see 

(13) for a recent overview article). The core identification challenge is to isolate VAd from other 

factors that contribute to student outcomes. For example, it is well-documented that school 

enrollment is not random but stratified by factors such as student ability, parental socioeconomic 

status, and ethnicity (4, 19, 20). As these factors contribute to student outcomes, uncontrolled 

comparisons of educational outcomes across schools will yield biased estimates of VAd. In some 

settings, researchers can exploit random student assignments based on lotteries to estimate VAd 

net of confounding factors (4, 21). In the absence of random assignment, however, we can mimic 

such experimental variation using observational data following the protocols suggested by (22) 

and (3). In particular, we calculate VAd while conditioning on observable differences across 

students, including differences in family socioeconomic status and prior student test scores. 

Therefore, the identification of school effects relies on the assumption that the predetermined 

characteristics are sufficient to control for selection into schools. Existing literature has 

documented that the inclusion of prior test scores usually satisfies this assumption (3, 22). Figure 

2 provides evidence supporting the predictive validity and the exogeneity of VAd in our study. In 

Panel (a), we assess whether our measure of school VAd captures relevant variation in student 

outcomes. To this end, we regress the outcome of interest, i.e., reading test scores in grade 9, on 

the corresponding measure of VAd. The slope is precisely estimated and cannot be statistically 

distinguished from 1: a 1 SD increase in VAd increases reading test scores by 1 SD as well. This 

property is often called “forecast unbiasedness“ and establishes the high predictive validity of VAd 

for the corresponding student outcome.  

In Panel (b), we assess whether this relationship is potentially confounded by selection based on 

unobserved characteristics. To that end, we predict student test scores from a variety of variables 

that we do not control for in the construction of VAd and regress these predicted test scores on 

VAd. A coefficient different from zero would suggest that unobserved variables determine 

selection into schools, and we would have to reject the exogeneity of VAd. However, the slope is 

https://sciwheel.com/work/citation?ids=17633925&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=17633935,5506411,17633937&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=5506411,10660638&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11279644&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=17690220&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=17690220,11279644&pre=&pre=&suf=&suf=&sa=0,0
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flat and very close to zero: a 1 SD increase in school VAd decreases predicted reading test scores 

by 0.015 SD. Similar to findings in other studies (3, 14, 22), this suggests that there is negligible 

bias in our value-added estimates after conditioning on a set of controls, including students’ prior 

test scores. In Panels (c) and (d), we repeat the same exercise for numeracy test scores. The 

results are almost identical, further supporting our identification assumption. 

 

Gene-environment interaction 

 

Reading. Table 2 documents that more effective schools have higher relative impacts on the 

reading outcomes of children with a low PGIEA. 

In our base model without any controls (column 1), a 1 SD increase in children’s PGIEA is 

associated with 0.304 SD higher reading scores, whilst a 1 SD increase in VAd is associated with 

0.091 SD higher reading scores. The interaction between PGIEA and VAd is negative and 

significant at the 5% level, suggesting that the effect of children’s genetic endowments on their 

reading skills is moderated by school quality. However, these estimates lack a causal 

interpretation due to potential confounding by indirect genetic effects and non-random selection 

into schools. 

In column (2), we incorporate controls for parental PGIEA and genotyping protocols. In this model, 

a 1 SD increase in PGIEA increases reading test scores by 0.230 SD. The drop in the effect of 

PGIEA in comparison to column (1) is consistent with established literature that suggests that 40-

50% of the raw PGIEA associations with academic skills reflect indirect genetic effects and 

population stratification (17, 23, 24). After controlling for PGIEA of parents, our estimates rely on 

random within-family variation only and are not confounded by other family characteristics that 

may correlate with educational outcomes. The effect of PGIEA has a causal interpretation. 

In column (3), we incorporate the full set of controls used in VAd construction, including lagged 

test scores and school-cohort characteristics (13). The effect of PGIEA remains stable, highlighting 

its causal interpretation after accounting for the PGIEA of parents. However, the effect of VAd drops 

by almost 50% from 0.091 to 0.052. This drop is expected since controlling for parental PGIEA is 

insufficient to control for school selection. After accounting for the expanded set of covariates, our 

estimates of school effects account for selection into schools and are not confounded by other 

family characteristics that may correlate with educational outcomes. The effect of VAd has a 

causal interpretation. 

In column (3), we can give the base effects of both PGIEA and VAd a causal interpretation. 

However, following the arguments of (25) and (26), it is still an open question whether we can 

give the gene-environment interaction a causal interpretation as well. Since our treatment 

variables are considered exogenous conditional on a set of covariates, we need to include the full 

set of two-way interactions of these covariates with the variables of interest (PGIEA, VAd) to ensure 

that the gene-environment interaction is not picking up spurious correlations. Importantly, 

however, when including these two-way interactions, the researcher faces a bias-variance 

tradeoff. On the one hand, the integration of two-way interactions is necessary for the unbiased 

estimation of the gene-environment interaction if these two-way interactions are correlated with 

https://sciwheel.com/work/citation?ids=11279644,17690220,17633970&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=8156123,4755610,16021198&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=17633925&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3132684&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=17690277&pre=&suf=&sa=0
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the outcome and the gene-environment interaction of interest (25, 26). On the other hand, the 

two-way interactions may lead to a loss of statistical power and inflate standard errors, particularly 

when degrees of freedom decrease substantially, R² increases minimally, or collinearity exists 

between interaction terms (26, 27). 

In column (4), we augment our regression model by adding all 2-way interactions of PGIEA and 

VAd with the vector of covariates X. If our gene-environment interaction of interest was 

confounded by other interactions between our variables of interest and the controls, we would 

expect the point estimate of PGIEA ✕ VAd in column (4) to diverge from the corresponding estimate 

in column (3). However, this is not the case. The estimate of the gene-environment interaction 

remains stable, but the standard errors increase from 0.005 to 0.007. This suggests that the 

magnitude of the interaction between the PGIEA and VAd identified in column (3) is unbiased but 

becomes non-significant in column (4) due to the increased variance of the estimates. In view of 

the stability of the point estimates and in line with the arguments put forward in (26), we focus on 

the estimates in column (3) as our preferred estimates.  

Our preferred estimate for the gene-environment interaction  in column (3) suggests that a 1 SD 

increase in PGIEA increases the reading test scores of students in the average school in Norway 

by 0.231 SD. For students attending a school 1 SD above the country average, the impact of a 1 

SD increase in PGIEA decreases by approximately 6% [1-(0.231-0.013)/0.231]. This estimate is 

statistically significant at the 5% level. 

Theoretically, PGIEA and VAd could be complements or substitutes for student learning. If they 

were complements, school quality (VAd) would magnify advantages based on PGIEA; if they were 

substitutes, VAd would compensate for disadvantages based on PGIEA. Our results point to the 

substitutability of PGIEA and VAd as input factors for students’ reading test scores. Figure 3 

illustrates genetic gradients across Norwegian schools of varying quality (±2 SD from the mean), 

revealing whether this substitutability stems from gains at the bottom or losses at the top of the 

PGIEA distribution. The genetic gradients are flatter in higher-quality schools. This pattern 

suggests that in higher-quality schools, genetic differences between children matter less because 

schools compensate children with lower PGIEA. Reversely, the impact of genetic differences 

among students on their test scores is more pronounced in lower-quality schools. This finding 

suggests that investments in school quality can address educational inequalities based on genetic 

differences between children. 

 

Numeracy. We repeat the previous analysis with numeracy test scores as the outcome of 

interest. SI Appendix, Tab. S.1 and SI Appendix, Fig. S.1 suggest that there is no gene-

environment interaction for numeracy scores. In our preferred specification, a 1 SD increase in 

PGIEA is associated with 0.239 SD higher numeracy scores, whilst a 1 SD increase in VAd is 

associated with 0.039 SD higher numeracy scores. The point estimate for the gene-environment 

interaction is 0.000, with an associated 95% confidence band of [-0.0078, 0.0078]. Therefore, this 

null finding is precise enough to exclude magnitudes that are approximately half the size of the 

point estimate for the gene-environment interaction in the reading domain (0.013). 

 

https://sciwheel.com/work/citation?ids=17690277,3132684&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=17690277,17690291&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=17690277&pre=&suf=&sa=0
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Discussion 

 

Summary. We investigated whether schools can mitigate birth-related educational inequalities 

by integrating exogenous school value-added measures with the natural lottery of within-family 

genetic variation. Using this stringent causal inference design, we found compelling evidence of 

a gene-environment interaction influencing reading skill development (though not numeracy) even 

within the narrow time window of one school year (grade 8, ages 13-14). Our results suggest that 

investments in school quality can promote equitable skills development by effectively narrowing 

gaps in reading test scores between students with different genetic predispositions. Notably, 

these findings also reveal a double disadvantage: the skill development gap between children in 

low versus high-quality schools is even larger for those with less genetic predisposition to 

education. 

 

Reading vs. numeracy. We estimate that increases in school quality reduce the impact of PGIEA 

on reading test scores; however, we do not find a gene-environment interaction for numeracy test 

scores. This result is likely related to the higher persistence of numeracy skills during this 

developmental period.  Examining our preferred specification (column 3 of Tables 2 and S.1) 

gives an indication of the persistence of skills. In this specification, we control for subject-specific 

lagged test scores and list the coefficient of this control at the bottom of the table (𝜌). If 𝜌=0, past 

achievement does not impact current performance, giving room for new inputs to shape 

outcomes. Reversely, if 𝜌=1, skills are highly persistent, suggesting that new inputs have less 

scope to shape children’s skills. The corresponding coefficients are 0.462 (SE 0.006) for reading 

and 0.702 (SE 0.004) for numeracy test scores. These estimates suggest that numeracy test 

scores of adolescents in Norway are significantly more persistent than reading test scores, giving 

high-quality schools less scope to level up the numeracy skills of children with lower PGIEA relative 

to their high-PGIEA peers. 

  

Magnitude of effects. We estimate that a 1 SD increase in school quality reduces the impact of 

PGIEA on student outcomes in reading by approximately 6%. To gauge the magnitude of this 

effect, it is essential to emphasize that this treatment effect captures students’ exposure to high- 

or low-quality schools for only one school year (grade 8). Lower-secondary education in Norway 

lasts for three years (grades 8-10), with students usually staying in their initial neighborhood 

school throughout this period (see SI Appendix, section A, and (14)). Therefore, assuming linear 

and additive treatment effects across grades 8-10, a 1 SD increase in school quality would reduce 

the impact of PGIEA on student outcomes in reading by approximately 18% over the total duration 

of lower secondary school. While the assumption of linear and additive treatment effects is 

arguably strong, our projected effect size is consistent with results from (12), who find that a 1 SD 

increase in high school quality in the US (grades 9-12) decreases the impact of PGIEA on 

educational attainment by approximately 19%. 

 

Potential mechanisms. The gene-environment interaction identified here can be further 

understood in the context of theoretical frameworks from economics and developmental 

psychology. The economics literature on skill formation often conceptualizes student outcomes 

as a function of students’ initial skills, school inputs, and family inputs, where families adjust their 

https://sciwheel.com/work/citation?ids=17633970&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=17689872&pre=&suf=&sa=0
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behavior depending on students’ initial skills and school quality (28, 29). Similarly, developmental 

psychology frameworks propose that development and learning are a product of dynamic 

interplay between individual bio-psychological and social processes (30), where an existing 

genetic diathesis/vulnerability can be compensated for, controlled, or triggered by proximal social 

processes (31). Our finding that genetic factors matter less in high-quality schools is consistent 

with the concept of substitutability from economics, as well as the compensation and diathesis-

stress models (11, 31, 32) from developmental psychology. Notably, this also goes against the 

influential bioecological model of child development, whereby social advantage increases the 

expression of genetic differences (30). 

 

The finding that differences in PGIEA have less impact on the development of reading skills in 

higher VAd schools could be explained by both direct and indirect mechanisms. First, students 

with lower PGIEA may gain directly from attending higher-quality schools. Emerging evidence 

shows that schools and teachers in industrialized countries focus on the lower parts of the 

achievement distribution, suggesting that they attach a higher weight to the learning of 

disadvantaged students (33). Therefore, students with lower PGIEA who attend better schools 

receive relatively more and/or higher-quality investments than their peers with higher PGIEA, which 

could explain the negative gene-environment interaction in this study. This mechanism assumes 

that Norwegian educators distribute instructional resources unequally across students within the 

same school. However, even without this assumption, the negative gene-environment interaction 

can be explained by diminishing returns to educational inputs. Students with lower PGIEA may 

have more room for improvement and, consequently, may gain more from attending a better 

school. Notably, compensation and triggering are at the ends of a continuum: just as enriched 

learning environments may compensate for genetic disadvantage, lower-quality schools could be 

stressful environments that “trigger” genetic predispositions linked to low educational attainment 

and hinder the accumulation of reading skills.*   

 

Second, students with lower PGIEA may gain indirectly from attending high-quality schools through 

family adjustments to school quality and children’s PGIEA. These indirect mechanisms are more 

complex as they combine the effects of different inputs on student learning with the behavioral 

responses of parents. For example, if families prioritize supporting children with higher PGIEA and 

family and school inputs act as substitutes in fostering learning, then the effect of additional family 

inputs received by high-PGIEA students becomes weaker in high-VAd schools. This could 

contribute to the negative gene-environment interaction we observed. Alternatively, if families 

decrease their investment with increases in school quality, and family inputs and PGIEA work as 

complements in learning, then the effect of decreased family inputs received by students in high-

VAd schools will be less pronounced for low-PGIEA students. This could also contribute to the 

negative gene-environment interaction observed in this study.  

 

Future research. This study forges several interesting avenues for future research. Ideally, 

investigations aiming to distinguish between different mechanisms involved in the gene-

environment interaction that we identified should combine the data prerequisites for causal gene-

environment interplay studies with detailed data on school practices and parental inputs. The 

former will allow us to understand the characteristics of high-quality schools and to study which 

https://sciwheel.com/work/citation?ids=9896969,17634116&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=2662534&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1452187&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16636850,1452187,13883813&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=2662534&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=17674003&pre=&suf=&sa=0
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features of these schools make them particularly beneficial to students with lower PGIEA (see also 

our discussion on direct gene-environment effects). The latter will allow us to understand how 

mothers and fathers adapt their parenting strategies in response to their children’s PGIEA and the 

quality of their schools, and whether particular parental inputs are especially beneficial to students 

with lower PGIEA (see also our discussion on indirect gene-environment effects). 

 

The relevant school characteristics and parental inputs are highly multifaceted and are unlikely to 

be captured in a single dataset. School quality is likely to consist of diverse pedagogical, 

organizational, cultural, relational, financial, and physical aspects. Similarly, parental inputs may 

consist of different time and monetary investments as well as parenting styles. However, the 

increased availability of molecular genetic data and the integration of these data with linked 

register, survey, and cohort study datasets paves the way for researchers to address these 

interesting questions convincingly in the future. 

 

Materials and Methods 

 

Data 

 

The Norwegian Mother, Father, and Child Cohort Study (MoBa). MoBa is a prospective 

population-based pregnancy cohort study conducted by the Norwegian Institute of Public Health 

(15). Pregnant women were recruited from across Norway from 1999 to 2009. The women 

consented to initial participation in 41% of the pregnancies. Of the fathers invited to participate, 

83% consented. The total cohort includes approximately 114,500 children, 95,200 mothers, and 

75,200 fathers. MoBa participants were linked to administrative register data through the 

Norwegian national ID number system. Analyses are conducted on MoBa children born 2002-

2008 with grade 9 national test scores in reading and numeracy, complete data for genome-wide 

genotyping (see SI Appendix, section C and (34) for details on genotyping and genetic quality 

control in MoBa), information on VAd in their school-cohort cell, and non-missing control variables 

(N=30,939). 

 

Norwegian register data. We estimate VAd for standardized test scores in reading and numeracy 

in grade 8. Since standardized tests are conducted at the beginning of the academic year, we can 

use test scores in grades 8 and 9 to measure student progress in grade 8, i.e., the first year of 

lower secondary school (see SI Appendix, sections A and B). We construct VAd using register 

data on the entire Norwegian student population in birth cohorts 1997-2008 (approximately 60,000 

per cohort). The earliest birth cohort that completed comparable standardized tests in grades 8 

and 9 in reading and numeracy is 1997. The latest birth cohort for whom standardized test 

outcomes are available in the register data is 2008. 

 

Treatment variables 

 

Polygenic index for educational attainment (PGIEA). We used beta weights from the largest 

genome-wide association study of educational attainment to date (“EA4”), excluding MoBa (35).  

Polygenic indices were calculated using LDPred v.1 (36), a Bayesian approach that uses a prior 

https://sciwheel.com/work/citation?ids=5934574&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13218721&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12752152&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1016386&pre=&suf=&sa=0
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on the expected polygenicity of a trait (assumed fraction of non-zero effect markers) and adjusts 

for linkage disequilibrium (LD) based on a reference panel to compute SNPs weights. LD 

adjustment was performed using the MoBa genotype data as LD reference panel. The weights 

were estimated based on the heritability explained by the markers in the GWAS summary 

statistics and the assumed fraction of markers with non-zero effects. PGIEA were computed based 

on these weights with the –score command in plink2 (37). 

 

School Value-Added (VAd). Consider educational outcome Y in subject d of student i attending 

school j in cohort c. We model this educational outcome as a function of individual student 

characteristics Z, cohort fixed effects 𝜏, and school quality VAd: 

 

    𝑌𝑖𝑗𝑐
𝑑 =  𝛽𝑑𝑍𝑖𝑗𝑐  +  𝜏𝑐

𝑑 + 𝑉𝐴𝑗𝑐
𝑑  + 𝜀𝑖𝑗𝑐

𝑑  . (1) 

 

In our setting, Z comprises lagged grade 8 test scores in numeracy, reading, English, maternal 

and paternal years of education, second-generation migration status, gender, birth cohort, birth 

order, number of siblings, and school-cohort averages of all previous controls. 

Note that VAd is a latent variable captured in the composite error term  𝜇𝑖𝑗𝑐
𝑑 = 𝑉𝐴𝑗𝑐

𝑑 +  𝜀𝑖𝑗𝑐
𝑑  of 

equation (1). We can construct an estimate of VAd of school j in cohort c by estimating equation 

(1) and calculating the cohort-school average in the resulting residuals: 

 

    𝑉�̂�𝑗𝑐
𝑑 =  ∑ (𝜇𝑖𝑗𝑐

𝑑 )/𝑁𝑗𝑐
𝑑  ,   (2) 

 

where 𝑁𝑗𝑐
𝑑  captures the number of students of cohort c in school j.  

 

We want to use estimates of VAd in regression models to explain student outcomes. However, 

we cannot explain student outcomes of school j in cohort c using VAd measures for the same 

school cohort because of the mechanical relationship between the dependent variable Y and the 

independent VAd variable (see equation [1]). For example, a student with a high reading test score 

will simultaneously push up the corresponding measure of VAd in their school-cohort cell. This 

mechanical link is particularly pronounced if school-cohort cells are small. To break this 

mechanical relationship, we predict VAd in school j of cohort c from all neighboring cohorts 

l=1,...,c-1,c+1,…, L using an empirical Bayes procedure (see for (38) a recent overview article): 

 

𝑉𝐴𝑗𝑐
𝑑 =  ∑𝐿

𝑙=1 𝜁𝑗𝑙
𝑑 (𝑉�̂�𝑗𝑙

𝑑 ), (3) 

 

where 𝜁 are weights selected to minimize forecast errors. Similar to (22), we use all neighboring 

cohorts and not just preceding cohorts to increase the precision of the VAd estimates. Therefore, 

our final measure of VAd is the best linear predictor of VAd for cohort c in school j from all preceding 

and subsequent cohorts who attended this school while excluding the cohort itself to avoid biased 

estimates through reversed causality. This procedure yields a noisy measure of VAd. Furthermore, 

it is well-known that measurement error in the independent variables leads to attenuation bias in 

the relevant coefficients in downstream analyses. The empirical Bayes procedure takes care of 

https://sciwheel.com/work/citation?ids=1158431&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=17690373&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11279644&pre=&suf=&sa=0
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this concern. Specifically, it chooses weights 𝜁 such that noisy estimates of VAd are shrunk to the 

mean in proportion to their signal-to-noise ratio. It can be shown analytically that this weighting is 

the exact inverse of attenuation bias in error-in-variables regressions – see (38) for an outline of 

the formal argument. Therefore, while we measure VAd with error, our regressions recover 

estimates of school effects that are not afflicted by attenuation bias.† 

 

This procedure yields an unbiased estimate of VAd if there is no selection into schools based on 

factors not captured in observable characteristics Z. Following (22), we can evaluate the 

plausibility of the exogeneity assumption using “as-if-unobservable” variables. Specifically, we 

treat students’ 5th-grade literacy and numeracy scores, fathers’ and mothers’ earnings rank at 

age 6, and fathers’ and mothers’ age at birth as unobserved variables that we do not include in 

the control vector Z. In turn, we can test whether they confound the relationship between VAd and 

student outcomes. 

The validation exercise consists of three steps. First, we separately regress each of our outcomes 

of interest and the as-if-unobservables on Z and store the residuals. This step ensures that we 

only exploit variation that is not captured by Z. Second, we regress each (residualized) outcome 

on all (residualized) “as-if-unobservables” and store the predicted outcomes. This step creates a 

summary statistic for variation in the (residualized) outcomes that is accounted for by our 

(residualized) “as-if-unobservables.” It captures variation in the outcomes of interest that is not 

accounted for by Z and which, therefore, is a potential source for omitted variable bias. Finally, 

we regress this summary statistic on VAd. If VAd is substantially associated with the predicted 

outcomes, then this indicates that there is selection into schools based on “as-if-unobservables” 

(i.e., 5th-grade test scores, parental earnings rank, and parental age at birth). The results are 

shown in Figure 2. 

VAd can be interpreted as a summary statistic for all school factors contributing to students’ 

academic progress in skill dimension d. However, since VAd is constructed controlling for an 

extensive set of school-cohort characteristics, including the prior attainment and socio-economic 

status of peers, it is unlikely to capture peer effects. Moreover, while VAd captures persistent 

differences in quality across schools, it does not capture within-school differences in quality due 

to, for instance, teacher quality.   

  

Analysis 

 

We estimate the following model through ordinary least-squares and cluster standard errors at 

the level of schools j: 

 

 

 𝑌𝑖𝑗𝑐
𝑑 = 𝛼𝑑𝑃𝐺𝐼𝑖𝑗𝑐

𝐸𝐴 +  𝛽𝑑 𝑉𝐴𝑗𝑐
𝑑 +  𝜅𝑑(𝑃𝐺𝐼𝑖𝑗𝑐

𝐸𝐴 ×  𝑉𝐴𝑗𝑐
𝑑 ) +  𝛿𝑑𝑋𝑖𝑗𝑐  +  𝜀𝑖𝑗𝑐

𝑑 . (4) 

 

PGIEA and VAd are the variables of interest, X is a vector of control variables, and 𝜀d is the error 

term. 𝛼d,  𝛽d, and 𝜅d are the parameters of interest, identifying the causal effects of PGIEA, VAd, 

and the corresponding gene-environment interaction. 

https://sciwheel.com/work/citation?ids=17690373&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11279644&pre=&suf=&sa=0
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Controls X include genetic controls, i.e., paternal and maternal PGIEA, genotyping batch, and the 

vector of covariates Z used for the construction of VAd, i.e., lagged grade 8 test scores in 

numeracy, literacy, English, maternal and paternal years of education, second generation 

migration status, gender, birth cohort, birth order, number of siblings, and school-cohort averages 

of all previous controls. Note that lagged test scores are a function of PGIEA. Therefore, they are 

“bad controls” for estimating genetic effects (27). To address this concern, we regress grade 8 

test scores in numeracy, literacy, and English on PGIEA and include the residuals from these 

regressions as our controls for lagged test scores. Hence, we control for all variations in lagged 

test scores uncorrelated with our variable of interest (PGIEA). 

 

Endnotes 

 
* Theoretically, the existence of this effect is ambiguous. Extensive literature has emphasized the 
importance of dynamic complementarities in skill formation, which suggests higher gains by 
students with higher initial skills (39). However, consistent with our results, various recent papers 
have suggested that higher quality schools have more positive effects on students from 
disadvantaged socioeconomic backgrounds and who have higher genetic predisposition to ADHD 
and low educational attainment (10–12). Other studies have obtained inconclusive or null findings 
(9, 40). Some of these inconsistencies could be explained by differences in outcome selectivity 
(i.e., national tests versus degree completion) and/or differences across institutional contexts (41). 
 
† Note that this conclusion only holds when standardizing VAd with respect to its true SD, which 
is unobserved. Therefore, we estimate the true SD by the square root of the one-year lag 
autocovariance, which provides a lower bound on the true within-year SD of VAd (22, 42). We use 
this estimate for all standardizations of VAd. 
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Figures and Tables 

 
Figure 1. Validation of the exogeneity of within-family PGIEA variation. This plot shows correlations 

of PGIEA with children’s observable sociodemographic background characteristics and school 

value-added (VAd) in our analysis sample (N=30,939). Dark circles show uncontrolled population-

level correlations with children’s PGIEA. Light circles show the corresponding within-family 

correlations after controlling for PGIEA of biological mothers and fathers. Whiskers show 95% 

confidence intervals. Standard errors are heteroskedasticity robust. Data: Own calculations based 

on MoBa and Norwegian registers. 
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Figure 2. Validation of the exogeneity of VAd. This figure shows correlations of VAd with children’s 

observable and predicted test scores in reading (Panels [a] and [b]) and numeracy (Panels [c] 

and [d]) in grade 9 for the full population of cohorts 1997-2007 (N=508,615). All variables are 

residualized from control variables Z (see Materials and Methods). Predicted test scores are 

constructed from children’s literacy and numeracy test scores in grade 5, maternal and paternal 

earnings rank at age 6, and maternal and paternal age at birth. Scatter plots are constructed by 

binning the VAd distribution into 100 percentiles. Regression slopes are estimated on the full data. 

Standard errors are clustered at the school level. Data: Own calculations based on Norwegian 

registers. 
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Figure 3. Gene-environment interaction for reading test scores. This figure shows binned scatter 

plots for the relationship between PGIEA and reading test scores in grade 9 by quintile of the VAd 

distribution. Scatter plots are constructed by grouping the PGIEA distribution into 15 bins. 

Regression slopes are estimated on the full data, conditioning on controls matching the focal 

model (see column 3, Table 2; Materials and Methods). Data: Own calculations based on MoBa 

and Norwegian registers. 
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Table 1. Summary statistics. This table shows descriptive statistics. The first panel focuses on 

the main analysis sample, i.e., MoBa cohorts 2002-2008 with PGIEA data for biological mothers, 

fathers, and their children. The second panel also includes MoBa participants with missing 

PGIEA data for either mothers, fathers, or their children. The third panel focuses on the entire 

Norwegian population born 2002-2008, irrespective of whether they have participated in MoBa. 

Parental income ranks are calculated in the full population. Test scores for Reading, Math, and 

English are standardized on the full population. Data: Own calculations based on MoBa and 

Norwegian registers. 
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Table 2. Gene-environment interaction for reading scores. This table shows estimates for the 

effects of PGIEA and VAd on children’s reading scores in grade 9, as well as the corresponding 

gene-environment interaction. Genetic controls include the PGIEA of biological mothers and 

fathers, and categorical variables for the genotyping batch. School quality controls include 

lagged grade 8 test scores in numeracy, literacy, English, maternal and paternal years of 

education, second-generation migration status, gender, birth cohort, birth order, number of 

siblings, and school-cohort averages of all previous controls. 2-way interactions include all 

interactions of PGIEA and VAd with the aforementioned controls. Skill persistence 𝜌 indicates the 

estimate for lagged test scores in reading (grade 8), which is estimated in the model as part of 

the child controls. Standard errors (in parentheses) are clustered at the school level. 

Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001. Data: Own calculations based on 

MoBa and Norwegian registers. 
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A. Norwegian school system 

 

The Norwegian compulsory school system consists of elementary education (grades 1-7) and 

lower secondary education (grades 8-10). Nearly all children attend their public neighborhood 

school, where children are automatically enrolled. Parents can apply to attend a different public 

school, but this is only possible if there are spaces available, and enrollment is then determined 

by the principal on a case-by-case basis. Only about 5% of students attend private schools that 

are either religious, offer alternative pedagogies, or are international. Public schools are free of 

charge and have a common national curriculum. There is no tracking, and grade promotion or 

retention is very rare. Most children have the same classmates while attending the same school 

across grade levels, and teachers will often follow the same students across grade levels as well. 

Children do not receive grades during elementary school. During lower secondary school, children 

receive teacher-assessed grades biannually in each subject. Only the last semester’s grades in 

grade 10 are part of the final transcript and are used, together with results on external exams, to 

apply to upper secondary education. Students are guaranteed a spot in upper secondary 

education in one of their three preferred programs (5 academic programs and 10 vocational 

programs), but the final transcript determines program admission and also school admission if the 

counties have free school choice within the program.  

 

Norway is recognized as an egalitarian society with lower levels of inequality compared to many 

other Western countries. This relative equality can be attributed to Norway’s low levels of income 

inequality, comprehensive redistributive welfare state institutions, and high rates of 

intergenerational mobility. In line with other Nordic countries, Norway exhibits smaller between-

school differences (1), likely due to less sorting across schools as well as potentially fewer 

differences in school quality. Schools serving disadvantaged students are often allocated more 

resources, such as a higher teacher-student ratio in lower-performing schools (2). However, 

despite being relatively egalitarian, one in ten children grows up in families with persistently low 

household income (3). Socioeconomic achievement gaps in Norway are narrower than in 

countries such as the United States, yet the difference is smaller than expected given substantial 

cultural and economic differences between the countries (4-6).  

 

 

B. Standardized national tests 

 

National tests in numeracy, reading, and English are taken annually at the beginning of grades 5 

and 8, while numeracy and reading are also tested in grade 9. The grade 9 test is the same as 

that in grade 8 and measures growth during the first year of lower secondary education. The tests 

are commissioned from experts in test development and psychometrics connected to universities 

in Norway. The tests are digital, and the results are scored automatically. About 96% of all 

students in Norway take the tests, although students with special needs and those following 

introductory language courses may be exempt. The test results are mainly used to collect 

information about students’ skills and to track school development over time. Results are 

conveyed to teachers, students, and parents, but have no direct consequences for students. In 

the present study, we used numeracy and reading tests for grade 9 as our main outcome 
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variables, where we standardized the summed test scores with a mean of 0 and a SD of 1 within 

each test and year. National tests in grade 8 are used as a control variable, while the ones in 

grade 5 are used to validate the design. 

 

C. Genotyping 

 

Blood samples were obtained from both parents during pregnancy and from mothers and children 

(umbilical cord) at birth. Quality-controlled genotyping array data is available for the full 207,569 

unique MoBa participants (7). Phasing and imputation were performed with IMPUTE4.1.2_r300.3, 

using the publicly available Haplotype Reference Consortium release 1.1 panel as a reference. 

To identify a sub-population of European-associated ancestry, principal component analysis 

(PCA) was performed with 1000 Genomes phase 1 after LD-pruning. During post-imputation 

quality control, the following thresholds were used for SNP removal: imputation quality (INFO) 

score   ≤  0.8; MAF<1%; call rate<95%. 

 

D. Supplementary Figures 
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Fig. S1. Gene-environment interaction for numeracy test scores. This figure shows binned scatter 

plots for the relationship between PGIEA and numeracy test scores in grade 9 by quintile of the 

VAd distribution. Scatter plots are constructed by grouping the PGIEA distribution into 15 bins. 

Regression slopes are estimated on the full data, conditioning on controls matching the focal 

model (see column 3, Table 2; Materials and Methods). Data: Own calculations based on MoBa 

and Norwegian registers. 

 

D. Supplementary Tables 
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Table S1. Gene-environment interaction numeracy scores. This table shows estimates for the 

effects of PGIEA and VA on children’s numeracy scores in grade 9, as well as the corresponding 

gene-environment interaction. Genetic controls include the PGIEA of biological mothers and 

fathers, and categorical variables for the genotyping batch. School quality controls include lagged 

grade 8 test scores in numeracy, literacy, English, maternal and paternal years of education, 

second-generation migration status, gender, birth cohort, birth order, number of siblings, and 

school-cohort averages of all previous controls. 2-way interactions include all interactions of PGIEA 

and VAd with the aforementioned controls. Standard errors (in parentheses) are clustered at the 

school level. Skill persistence 𝜌 indicates the estimate for lagged test scores in numeracy (grade 

8), which is estimated in the model as part of the child controls. Significance levels: * p < 0.05, ** 

p < 0.01, *** p < 0.001. Data: Own calculations based on MoBa and Norwegian registers. 
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