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ABSTRACT

IZA DP No. 17828 APRIL 2025

Navigating Cleaner Waters: 
Waste Import and Water Pollution

This paper examines the causal impacts of reducing solid waste imports on water quality 

in China, which was the world’s largest importer of waste until recently. We focus on 

the National Sword policy, introduced at the end of 2017, which abruptly banned the 

import of plastics, textiles, vanadium slag, and paper, reducing waste imports from 1.25 

million tons per month to nearly zero. Using administrative data on waste imports and 

daily water quality readings from real-time automated monitoring stations across China, 

we exploit the sudden reduction in imported waste to identify significant improvements in 

dissolved oxygen levels in prefectures that previously imported the banned waste. These 

positive effects vary by the type of waste imported and are smaller in prefectures where the 

main importers are multinational firms. Our results are supported both by the Regression 

Discontinuity Design and the Difference-in-Differences framework. The magnitude of the 

effect is strongest immediately after the ban and gradually declines over time.
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1 Introduction

Global solid waste management poses a significant challenge, with the World Bank projecting

annual waste generation to rise from 2.01 billion tons today to 3.4 billion tons by 2050. Over the

past two decades, the rapid increase in waste exports from developed to developing countries,

propelled by lower costs, lenient regulations, and the demand for raw materials, has exacerbated

global environmental challenges. Despite the urgency, there is limited understanding of the

broader environmental impacts of large-scale policies that aim at reducing solid waste. Specif-

ically, research on how waste reduction and improper recycling practices a!ect water resources

in waste-importing developing countries remains particularly scarce (Greenstone et al., 2021).

In this paper, we provide causal evidence on the environmental impacts of waste imports in

emerging economies, particularly those recognized as pollution havens. This paper estimates the

causal environmental impacts of solid waste on water pollution by exploring the drastic policy

shift known as the “National Sword Policy” in China. Enacted in January 2018, this policy

banned 24 categories of waste imports across four main types: plastics, textiles, vanadium slag,1

and paper, which accounted for 89% of the China’s total waste imports. The policy reduced

imports of these types of waste from 1.25 million tons per month following its announcement

in August 2017, dropping to zero at the end of the year (see Figure 1).2 This ambitious and

stringent import waste ban policy, which e!ectively ended China’s role as a major destination for

global waste imports, o!ers a rare opportunity to study the environmental e!ects of substantial

waste reduction.

The primary challenge in assessing the causal environmental impacts of reduced waste im-

ports is the non-random distribution of waste volumes across regions over time. Provinces that

imported more waste before the policy change may have had weaker local environmental reg-

ulations or little public concern for the environment, confounding the results. We utilize the

sudden and significant decrease in waste imports to China following the National Sword policy

to implement a Regression Discontinuity Design (RDD) in our analysis. This approach explores

1Vanadium slag is a byproduct generated during the production of steel or ferrovanadium alloys.
2We exclude data from the transition period (September-December 2017), or add a transition period dummy in our analysis

because the reduction in waste imports during this time was likely influenced by the upcoming waste ban policy. Additionally,
shipments received during this period likely included waste dispatched before the policy announcement.
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the di!erences in water quality indicators before and after the policy change within a su”ciently

short period of time. The strategy not only minimizes the e!ects of typical confounding fac-

tors, such as selection in waste import, but also eliminates concerns about the use of long-term

data during this period, when policy initiatives targeting waste imports were frequent, such as

Operation Green Fence in 2013 (Balkevicius et al., 2020) and the import license system in 2015

(Shang et al., 2020). Our analysis uses real-time readings of water quality published by auto-

mated water monitoring stations that encompass major rivers in China, which are considered

more reliable due to their limited scope for data manipulation (Greenstone et al., 2022; Hu et al.,

2023). Additionally, our administrative data on waste imports, detailed by eight-digit HS codes

and destination prefectures, further enhance the precision of our analysis.

Our study reveals that the ban on waste import has led to an increase in dissolved oxygen

levels, a key water quality indicator, by 2.65 mg/L (about one standard deviation) in prefectures

that imported banned waste before import ban policy. While all waste types show some im-

provement in water quality, areas that imported vanadium slag experience the most significant

gains. In contrast, we find that paper recycling, primarily carried out by large-scale facilities to

produce low-grade paperboard, has a relatively limited impact on water quality. Our findings

further suggest that the estimated environmental benefits are likely driven by reduced landfill use

and lower industrial wastewater discharges following the policy change. In addition, we find that

the improvement in water quality is largest in prefectures where the main waste importers were

privately owned firms, and much smaller in prefectures where foreign-owned or multinational

firms were the main importers.

In contrast to the significant before-after di!erences observed in prefectures that imported

banned waste, we find no changes in water oxygen levels in prefectures that did not import

banned waste, suggesting that our results are unlikely to be driven by unobserved confounding

factors. However, a small spillover e!ect was observed in prefectures that did not import waste

but are geographically located downstream of those that did, consistent with the flow of water

bodies in China (He et al., 2020). No such spillover e!ect was observed in upstream prefectures.

Building on this finding, we further use those upstream prefectures that did not import waste
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as a control group to implement a Di!erence-in-Di!erences (DinD) framework. Compared to

the RD estimates, which capture the immediate policy e!ect, the DinD estimates quantify the

average e!ect over the post-policy period (2018-2019). The DinD estimation results align with

our RD estimates. However, we find that the immediate e!ect (RDD) is larger than the average

e!ect over the two-year post-policy period (DinD), suggesting that the impact of the National

Sword policy diminishes over time.

Despite the scale of China’s waste imports, as the world’s largest waste importer until the

implementation of the National Sword Policy, the environmental impact on water resources

remains largely understudied, even as it becomes increasingly critical. The recycling and disposal

of large amounts of solid waste require extensive water usage for cleaning, sorting, bleaching,

and breaking down materials, leading to a significant water footprint. For example, recycling

one ton of vanadium product from vanadium slag results in the generation of 30-50 tons of

ammonia-contaminated water (Li et al., 2017). Waste and recycling residues can contaminate

water through wastewater, landfill leachate, or improper dumping. These pollutants deplete

dissolved oxygen by fueling decomposition, blocking sunlight needed for photosynthesis, and

releasing toxins that harm oxygen-regulating organisms.

Although these significant water-related concerns exist, most research on solid waste manage-

ment has focused primarily on air quality impacts (Tanaka et al., 2022; Guo et al., 2023; Li and

Takeuchi, 2023; Shi and Zhang, 2023; Unfried and Wang, 2024), leaving the impacts on water

quality largely unexplored. Water pollution has unique dynamics and mechanisms compared

to air pollution, as pollutants originate from di!erent sources and disperse through ecosystems

in diverse ways (Keiser and Shapiro, 2019; Greenstone et al., 2021). In addition to its harmful

e!ects on marine life and ecosystems, increasing evidence indicates that water quality is cru-

cial for human health, a!ecting both drinking water safety and nutritional quality through its

influence on agriculture (Ebenstein, 2012; Wang et al., 2022; Lin and Qian, 2024).3

3Previous research has documented the detrimental e!ects of surface water pollution on various health outcomes, including
infant mortality, digestive cancer deaths and the health of older populations (Ebenstein, 2012; He and Perlo!, 2016; Lai, 2017).
Additionally, studies focusing on the roll-out of piped water in rural China have demonstrated significant improvements in both
children’s and adults’ health outcomes, children’s educational achievements, and reductions in infant mortality rates (Zhang, 2012;
Zhang and Xu, 2016). Our research further adds to the growing body of literature on environmental regulations and water pollution,
with a particular focus on developing countries (Cai et al., 2016; Chen et al., 2018; He et al., 2020; Greenstone et al., 2021; Hu et al.,
2023).
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To address the lack of empirical evidence on how waste management policies a!ect water

quality in waste-importing developing countries, we exploit high frequency daily monitoring

data to examine the impact of the National Sword Policy. Similar to Greenstone (2022), our

regression discontinuity design compares outcomes before and after the policy using “day” as the

running variable.4 Specifically, we use daily panel data from 126 automated water monitoring

stations across China in our analysis. The high frequency of our data ensures a large enough

sample around the policy cut-o!, reducing the need to widen the estimation window beyond

around 200 days for credible identification.

Further, we observe that immediately following the announcement of the policy in mid-August

2017, waste imports to China sharply declined and virtually reduced to zero when the policy

came into e!ect on January 1, 2018. During this four-month transition period, all water oxygen

indicators steadily improved. This transition period provided su”cient time for adjustments in

waste management practices, revealing its impact on water body. Our estimation results remain

unchanged whether we drop the data from the transition period or include a dummy variable to

account for the e!ect during the transition period.5

Our RD estimates essentially compare water quality in August 2017(policy announced) with

January 2018(policy implemented). One concern is that the results may be driven by season-

ality di!erences (August vs. January). We mitigate this concern by filter our water quality

data using both month- and day-fixed e!ects. Furthermore, the absence of e!ects in upstream

control prefectures during the same period suggests that our results are unlikely to be driven

by seasonality. The absence of e!ects in placebo tests (e.g., comparing water quality in August

2015 with January 2016), further supports the robustness of our identification strategy.

This paper is closely related to the literature on the environmental e!ects of solid waste

and waste management practices, where the empirical evidence is relatively sparse and largely

focuses on developed countries (Akbulut-Yuksel and Boulato!, 2021). Using a DinD framework,

Shi and Zhang (2023), Li and Takeuchi (2023) and Unfried and Wang (2024) were the first

4Greenstone (2022) implements an RD design with “day” as the running variable using data from 654 air monitoring stations in
China.

5We exclude data from the transition period (September-December 2017), or add a transition period dummy in our analysis
because the reduction in waste imports during this time was likely influenced by the upcoming waste ban policy. Additionally,
shipments received during this period likely included waste dispatched before the policy announcement.
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to study the impact of China’s NS Policy. Our paper makes several distinct contributions

to this literature. First, while existing studies focus exclusively on the impact of the policy

on air quality, this paper examines its impact on water—a key resource used in recycling and

disposal—and highlights its unique impact, including spillover e!ects on downstream prefectures.

Second, leveraging administrative data on waste imports by HS code, we di!erentiate the impact

across waste types, whereas prior studies primarily examine the impact of plastic waste (Li

and Takeuchi, 2023; Unfried and Wang, 2024) or overall all waste reductions (Shi and Zhang,

2023). Our heterogeneous results by banned waste types—showing a strong e!ect for slag but

an insignificant e!ect for paper—raise important policy implication regarding whether a uniform

ban on all waste imports is optimal. Third, utilizing high-frequency water quality data at daily

level, we are able to analyze the immediate short-term e!ects by essentially comparing water

quality in Aug 2017 (policy announced) with Jan 2018 (policy implemented). Combining RDD

results with DinD results, we find that the impact on water quality is strongest immediately

after the ban and gradually decreases over time. Fourth, we show that water quality steadily

improved during the transition period (Sept-Dec 2017) as waste import gradually declined to

zero (Figure 3).

This paper also contributes to the literature on the pollution-haven hypothesis, which sug-

gests that stringent environmental regulations in developed countries may lead to the relocation

of polluting industries to countries with weaker regulations. For example, environmental regula-

tions such as Clean Air Act in the US led to an increase in outbound foreign direct investment,

particularly involving polluting industries (Hanna, 2010; Tanaka et al., 2022).6 Moreover, lower

tari! and non-tari! barrier rates on polluting goods compared to cleaner goods are found to

further facilitate the international trade of polluting products (Shapiro, 2021). This paper adds

novel empirical evidence to the existing research on the relocation of polluting industries, focus-

ing on one of the dirtiest types of products: solid waste.

The rest of the paper proceeds as follows. Section 2 provides a brief background on solid

waste management in China and Operation National Sword. Section 3 describes the data, and

6Studies by Copeland and Taylor (2004); Levinson (2010); Cherniwchan et al. (2017) and Copeland et al. (2022) provide detailed
support for this hypothesis.
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the identification strategy is discussed in Section 4. Main results and robustness checks are

reported in Section 5. Section 6 reports mechanisms and Section 7 concludes the paper.

2 Background

2.1 Waste Import in China and the National Sword Policy

Beginning in the 1990s, China’s rapid industrial expansion led to a substantial demand for raw

materials, often met by importing significant quantities of foreign waste for recycling. Conse-

quently, China became the leading global importer of solid waste, with imports surging from 4

million tonnes annually in 1995 to over 45 million tonnes by 2016. Among these waste imports,

89% comprised wastepaper, plastic, textiles, and metal products. By the mid-2010s, half of the

world’s plastic scrap and wastepaper were imported into China (Tran et al., 2021; Xia, 2018).

Recycling raw materials extracted from imported waste has been crucial for the growth and

development of China’s manufacturing industry (Chen et al., 2010; Shang et al., 2020).

Besides the large demand for raw materials, several other factors also made the waste im-

porting and recycling process economically attractive, such as low labor and shipping costs.

Additionally, environmental regulations in China, like in many other waste-importing countries,

were less stringent compared to waste-exporting nations, further contributing to increased waste

imports.

The large volumes of waste imports have been accompanied by significant challenges in waste

management and widespread illicit waste tra”cking (Tran et al., 2021; Katz et al., 2019). For

example, Jambeck et al. (2015) reported that in 2010, China was the leading contributor to

mismanaged plastic waste, with 76% of its 8.82 million metric tons of plastic waste improp-

erly handled. Furthermore, the prevalence of small-scale, privately owned recyclers in China’s

recycling industry exacerbated waste management and hindered regulatory enforcement (Xia,

2018).

In response to growing concerns over waste contamination, illegal tra”cking, and mislabeling,

the Chinese government introduced regulations to improve the quality of imported waste and
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reduce its environmental impact. In February 2013, Operation Green Fence (OGF), a ten-month

campaign, was launched to combat illegal imports and improve the quality of recyclables through

stricter inspections. By the end of 2014, the Ministry of Ecology and Environment moved several

categories of solid waste to restricted imports,7 and in 2015, China further tightened controls

with import quotas and a licensing system(Shang et al., 2020).

On July 18, 2017, China notified the WTO of its intention to permanently ban 24 categories

of waste imports, classified into four specified types. The formal announcement of the waste

ban to the public was made on August 10, 2017, through Decree No. 39, 2017 by the Ministry

of Ecology and Environment (MEE) (see Appendix A for the Decree), with the ban scheduled

to take e!ect after December 31, 2017. This policy is commonly referred to as the National

Sword (NS) (Vedantam et al., 2022; Li and Mu, 2024). The four types of banned waste include

unsorted wastepaper, post-consumer plastics, waste textile materials, and vanadium slag from

metal production, covering 24 waste categories. Each of these 24 categories is specified by

10-digit HS codes by the MEE, and the complete list can be found in Appendix Table A1.

Figure 1a illustrates the monthly total import of banned waste from 2014 to 2019, while

Figure 1b further breaks down the total amount into each of the four types of banned waste.

These figures reveal that prior to the import waste ban announcement in August 2017, China

imported around 1 to 1.5 million tons of these wastes every month. Following a sharp decline in

the transition period of September to December 2017, the amount of imported waste virtually

reached zero by January 2018. This underscores the e!ectiveness of the policy in curbing banned

waste imports from the beginning of 2018, while also pointing out the transition period between

the announcement of the policy in mid-August, 2017 and its full implementation in January

2018, allowing su”cient time for adjustment and gradual transition.

2.2 Dissolved Oxygen in Water

Dissolved Oxygen is the amount of oxygen gas that is dissolved in water. In our study, we

primarily utilize daily measurements of dissolved oxygen (mg/L) as an indicator to assess water

quality. This is motivated by the well-documented use of dissolved oxygen as a critical measure
7The policy is announced in Decree No. 80, 2014.
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for evaluating the general health of aquatic environments and the quality of water for human

use (U.S. EPA, 2023). Dissolved oxygen is not only vital for supporting a range of ecological

processes but also is considered crucial for the overall well-being of aquatic ecosystems (Rounds

et al., 2013; Wetzel and Likens, 2000; Behar et al., 1996). Further, dissolved oxygen levels

in water serve as a reliable indicator for detecting water contaminants, which are potentially

hazardous to human health (Bozorg-Haddad et al., 2021).

The optimal level of dissolved oxygen in the water bodies varies based on local environmental

factors, such as atmospheric pressure and water temperature. Typically, warm water dissolves

less amount of oxygen. However, water is generally classified as healthy if the dissolved oxygen

concentration falls within 80 to 120 percent saturation and maintains a minimum value of 6.5

mg/L (U.S. Environmental Protection Agency, 2023; Behar et al., 1996).

2.3 How Waste Recycling Can A!ect Water Oxygen Levels

There are three primary ways that waste and recycling residuals can end up in water bod-

ies. First, the recycling process, notably for vanadium slag and textiles, demands substantial

water use for cleaning, sorting, bleaching, and breaking down materials into smaller particles,

inherently suggesting a significant water footprint. For example, in China, recycling one ton

of vanadium product from vanadium slag results in the generation of 30-50 tons of ammonia-

contaminated water (Li et al., 2017). The release of insu”ciently treated wastewater into natural

water bodies can introduce a variety of pollutants, such as chemical residues, suspended solids,

and organic materials. Second, recycling residuals and contamination in the imported waste

often end up in landfills. This can lead to the production of leachate, a liquid that, when

not properly managed, can contaminate surrounding soil and water bodies. The composition

of leachate varies based on the type of waste and can include hazardous substances harmful

to aquatic ecosystems. Third, waste processing centers, especially small-scale privately owned

facilities sometimes dump the waste into the water body, when waste exceeds their processing

capacity.8

8For example, the Borgen Project once reported that 24 kilograms of floating debris, 88.7% of which is plastic, were found per
1,000 square meters of surface water in China (Jambeck et al., 2015).
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When waste, residuals, and wastewater from recycling processes enter a water body, they

can significantly impact dissolved oxygen levels in several ways. First, organic matter and

chemicals in the waste can deplete oxygen as they break down. Microbes consume oxygen while

decomposing the organic matter attached to the waste. Similarly, chemicals such as nitrogen-

based compounds from recycling textiles and vanadium slag undergo nitrification, a process

that also uses up oxygen. As a result, oxygen levels in the water can drop, sometimes to the

point where they are completely depleted. These conditions can also lead to excessive algae

growth, which further consumes oxygen and creates “dead zones”—areas where aquatic life

cannot survive due to hypoxia (lack of oxygen). Second, waste materials that block sunlight

can hinder photosynthesis in aquatic plants. Since photosynthesis is a key source of oxygen in

water, this reduction further depletes oxygen levels. Third, toxic chemicals from waste, although

they may not directly consume oxygen, can harm aquatic life. This reduction in the number of

organisms that naturally help regulate oxygen levels can further disrupt the oxygen balance in

the water. Appendix B further provides descriptions of how recycling each type of banned waste

— plastic, textile, slag, and paper — could potentially reduce the water oxygen level.

3 Data Source and Descriptive Statistics

3.1 Water Quality Data

Our empirical analysis utilizes daily surface water quality data provided by the China National

Environmental Monitoring Centre (CNEMC). The CNEMC publishes real-time surface water

quality readings on its website, collected directly from its automated water quality monitoring

stations across China. We collected the water quality readings for our analysis covering the

period from January 1, 2015, to December 31, 2019. This dataset includes information from 126

automated water monitoring stations that consistently reported water quality data throughout

our study period. These stations are distributed across 93 prefectures. Among these prefec-

tures, 72 have only 1 station, 13 prefectures have 2 stations, and the remaining 8 have 3 to 5

stations. These automated stations cover major rivers in China that are deemed important by
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the CNEMC. The spatial distribution of these stations is illustrated in Figure 2, highlighting

their coverage across Chinese prefectures.9

Over our study period, the CNEMC consistently reported dissolved oxygen, ammonia nitro-

gen, permanganate index, and pH levels from its automated stations. We primarily utilize daily

measurements of dissolved oxygen as an indicator to assess water quality in our study, since

it is regarded as a major indicator used to measure water pollution (Greenstone et al., 2021).

We also present our main estimation results using ammonia nitrogen, permanganate index and

pH levels in Appendix Table A2. Real-time water quality data is automatically updated every

four hours, resulting in six readings per day. To evaluate daily water quality, we focused on the

mode of dissolved oxygen from these six readings. This approach provides a more accurate and

representative analysis of water quality.10

China started publishing real-time water quality readings from its automated water monitor-

ing stations in the early 2010s. The advantage of using data published from automated stations

is that it is likely to be more reliable than data from non-automated stations, due to the limited

scope for data manipulation (Hu et al., 2023). However, the number of these automated stations

is smaller than the total number of non-automated water monitoring stations, which exceeded

1000 in the mid-2010s.11 One consideration related to the installation of automated water sta-

tions is that o”cials in prefectures with automated stations may be more vigilant about the

public’s environmental concerns (Axbard and Deng, 2024). Thus, it is important to note that

the implementation of the National Sword Policy in 2018 does not coincide with the introduc-

tion of automated stations, which occurred several years earlier. Therefore, the likelihood of a

discontinuity in 2018 being attributed to the introduction of automated stations is minimal.12

We further investigate the continuity assumption related to this potential concern in Section 4.

9Note that due to data limitation, we only focus on mainland China. Taiwan is not included in this study.
10Our results remain virtually unchanged when we use the mean of the water quality readings.
11In early 2020,the CNEMC publishes real-time readings from more than 1000 water monitory stations.
12To further investigate this concern, we regress the presence of automated stations in each prefecture on the prefecture-level

waste importing status in 2017. This analysis reveals no significant correlation between these two variables, providing additional
evidence that such concerns are unlikely to have a substantial impact.
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3.2 Waste Import Data

Our study also employs detailed firm-level annual trade data from 2015 to 2017, sourced from

the China Customs Statistics (CCS) database. This database, maintained by the General Ad-

ministration of Customs of China, provides a comprehensive record of all goods imported into

China. It includes detailed information on trade products, identified by an eight-digit HS code,

along with data on product quantity, unit, category, and value. Additionally, it o!ers granular

firm-level details, such as the geographical location of importers at the prefecture level. Using

the CCS data and HS code classifications, we identified the Chinese prefectures that were im-

porting each banned waste category (i.e., plastics, textiles, paper, and vanadium slag), along

with their corresponding trade volumes before the launch of the ban policy.13

3.3 Other Data

To provide a more comprehensive analysis of the factors influencing our results, we focus on

two potential mediators: industrial waste and municipal solid waste (MSW). Data onindustrial

waste, specifically the volume of industrial wastewater discharged, is compiled from the China

City Statistical Yearbooks spanning from 2015 to 2019. This dataset includes information from

296 prefectures and details the total volume of wastewater discharged by industrial enterprises.

For municipal solid waste, we use data from the China Urban Construction Statistical Yearbooks

for the same period. This data provides county-level information on the volume of waste managed

through landfills. This dataset is available for 644 counties, which we collapsed and merged into

325 prefectures using their census codes. Finally, we also compile a battery of time-variant

prefecture-level indicators such as total GDP, population, number of post-secondary schools in

the city, and the number of large firms. All control variables are collected from various China

City Statistical Yearbooks available in the China City Database. The descriptive statistics of

all these variables are reported in Appendix Table A3.

13The trade volume for banned waste is identified by matching the first 8 digits of the 10-digit HS code reported in the ban list
with the 8-digit HS code reported in CCS. A potential concern is that CCS may include trade volumes of waste not covered by the
ban due to di!erences in the last two digits of the HS code. However, the impact of this issue is likely to be limited. For instance,
Figure 1 computed using the first 8 digits of the waste items’ HS code, shows that the quantities have all dropped to near zero after
the end of 2017, suggesting that the inclusion of non-banned waste is unlikely.
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3.4 Summary Statistics and Descriptive Evidence of the Waste Ban Impact

Table 1 provides a detailed summary of our water quality indicator—dissolved oxygen. In

addition to the level of dissolved oxygen, measured as mg of O2 per liter of water (mg/L),

denoted as DO, we also report the summary statistics for two dummy variables: Suboptimal

DO and Extremely Low DO. Suboptimal DO equals 1 if dissolved oxygen is less than or equal

to 6.5, indicating a healthy water oxygen level according to international standards (Section 2).

Extremely Low DO equals 1 if DO is less than or equal to 3, a threshold used to define category

4 pollution levels by the Chinese Government, indicating severe pollution.14

Table 1 also includes both unadjusted (raw) outcomes and filtered outcomes. The filtered

outcomes are generated by regressing each of the raw outcomes on month-fixed e!ects and day-

fixed e!ects. The residuals from these regressions, representing deviations after accounting for

these fixed e!ects are defined as the filtered outcomes. By construction, the filtered outcomes

have a mean of zero. These filtered outcomes are used in all our regression analyses to account for

within-year variations commonly influenced by seasonal weather patterns and human activities,

factors that routinely a!ect water oxygen levels (Xu et al., 2020; Duan et al., 2018). For example,

the average water oxygen level in the month of August is about 6 mg/L, whereas this number

exceeds 9 mg/L in the month of January.15

Table 1 compares water quality indicators before and after the waste import ban policy in

China. Notably, there is a visible increase in DO levels and a marked reduction in Suboptimal

DO and Extremely Low DO following the waste ban policy. The DO level rose from 7.6 to

8.1, the proportion of Suboptimal DO decreased from 30.7% to 24.9%, and the proportion of

Extremely Low DO decreased from 4.9% to 3%, respectively. Overall, the data in Table 1

provides preliminary evidence of the potential positive environmental e!ects of the waste ban

policy, particularly regarding its impact on water quality in China.

Turning to waste import data, Appendix Table A4 reveals that within the 93 prefectures with

automated water monitoring stations in our sample, 32 prefectures imported any type of banned

14Our results remain quantitatively and statistically robust when using alternative categories, such as a dummy indicating if DO
level is less than or equal to 5 (category 3 in water quality) or DO level less than 6 (category 2 in water quality).

15Fail to account for such di!erences in seasonality violates the RD assumption, which requires that the policy treatment be the
only factor causing di!erences in the outcome variable before and after the cuto!.
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waste in 2017. Among these, 26 imported plastic, 14 imported textile, 2 imported slag, and

9 imported paper waste. This amounted to a total of 5,168 thousand tons of imported waste.

Appendix Figure A.1 provides a detailed breakdown of the prefectures that imported waste in

2017, categorizing them according to the type of banned waste imported during this period

(i.e., plastics, textiles, paper, and slag) conditional on the prefectures having automated water

monitory systems. Notably, these maps reveal a significant overlap in the prefectures importing

plastic and textile waste. In contrast, the importation of paper and, to an even greater extent,

slag, appears to be more geographically dispersed.

In our main analysis, the waste import status of prefectures is determined by their waste

import statistics in the year 2017 due to its proximity to our cut-o! point in the RD design.

Observations that are within the optimal bandwidth (before the cut-o!) are almost all in 2017.

In the robustness check, we also report the results where we use the import volume during

2015-2017 as an alternative indicator for waste imports.

4 Empirical Strategy

This study aims to assess the environmental impacts of waste imports on water quality. The

causal identification of these e!ects is complicated by the non-random variation in the quantity

of imported waste received across regions and over time, likely influenced by local economic

activities and other unobserved factors. As we discussed in previous sections, the National

Sword policy created a discontinuity in waste import on January 1, 2018, by imposing a total

import ban on four types of waste: plastics, textiles, paper, and slag. The import volume of

these banned items has dropped to virtually zero after January 1, 2018. To identify the causal

e!ect of waste import on water quality, we, therefore, exploit the discontinuity on January 1,

2018, using the local-linear regression discontinuity design (RDD) approach. Specifically, we

estimate the following regression:

Yit = ω + f(dt) + εNSt + ϑit (1)
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where Yit represents the water quality readings in monitoring station i on date t that are filtered

by month and day fixed e!ects (see Section 3.4). Our running variable dt denotes the distance

in day(s) between the date of the water quality readings were recorded and the cut-o! date

(January 1, 2018). f(dt) is a first-degree polynomial in our running variable that is allowed to

di!er on both sides of the cuto!. To avoid overfitting, we use polynomials up to a quadratic

in our estimations (Gelman and Imbens, 2018). Our policy variable, NSt, is an indicator that

equals 1 if the date is on or after January 1, 2018 (dt → 0, i.e., the post-policy period). Our

analysis primarily focuses on prefectures that imported any type of waste in 2017. Hence, the

parameter of interest, ε, measures the causal e!ect of the waste import ban policy on water

quality in prefectures that imported any waste. In the results section, we will further investigate

heterogeneity across di!erent types of waste and compare the results with the prefectures that

did not import any waste.

The RDD closely resembles randomized controlled experiments, where the assignment of

treatment status is e!ectively random. As a result, the inclusion of control variables in RDD

is generally unnecessary, similar to randomized controlled experiments. However, to ensure

robustness, we include prefecture fixed e!ects as covariates in our robustness checks. Further,

in our analysis, we adopt the data-driven optimal bandwidth selection approach as described by

Cattaneo et al. (2019). To ensure the robustness and reliability of our findings, we also extend

our analysis by applying various bandwidth selection procedures. Our baseline estimations

utilize a triangular kernel, which gives more weight to observations that are closer to the cuto!.

Additionally, to test the stability of our findings, we conduct estimations using a rectangular

kernel.

We observe a clear decline in the volume of imported waste, starting immediately after the

policy announcement in August 2017 and reaching zero by the end of the year (see, Figure

1). The reduction in waste imports during the transition period (September-December 2017) is

likely influenced by the impending total waste ban policy, while shipments received during this

period are also likely to include waste shipments sent out before the policy announcement.16

16Waste imported to China typically employs surface transportation, known for its time-consuming nature, making it challenging
to manage the shipping period.
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To provide additional evidence on the transition period, in Figure 3, we present the changes

in water oxygen outcomes during this transition period in prefectures that imported any waste

in 2017 (subfigure (a)-(c)), as well as for prefectures that did not import any waste (subfigure

(d)-(f)). Consistent with Figure 1a, which demonstrates that the waste imports continuously

declined during the period, Figure 3 (a)-(c) illustrates that all three water oxygen level indicators

gradually improved, leading to a big contrast in water quality between the time the policy was

announced and the time it was fully implemented. On the other hand, as expected, no significant

changes in water quality indicators were observed during this period in prefectures that did not

import banned waste, further supporting the validity of our analysis.

We employed two methods to incorporate this four-month transition period into our iden-

tification strategy. The first method involves adding a transition-period dummy to our main

estimation model, while the second method simply drops the observations during the transition

period. This second approach resembles the ‘donut hole RD’ strategy, which removes observa-

tions around the cuto! to address the sorting issue near the cuto! (Barreca et al., 2011). The

di!erence is that the primary reason for applying the donut strategy in this study is driven by

the policy design, rather than the necessity to address endogeneity issues. We find that both

approaches essentially show the same results. For simplicity, we present the second approach in

our main text and present the results of the first approach in the Appendix. Due to the exclusion

of the transition period, therefore, August 31, 2017, is the last day before the cuto! date. We

formally test the continuity assumption required for the RD design on both January 1, 2018 and

August 31, 2017. Additionally, we note that our outcomes have already been adjusted using

month-fixed e!ects and day-fixed e!ects, reducing the likelihood of bias from general seasonal

di!erences between August and January.

The validity of the RD design relies on the continuity assumption which asserts that any

abrupt shifts in water quality indicators at the discontinuity are solely attributable to the im-

plementation of the waste ban policy. One concern is the potential manipulation of the running

variable around the cut-o!s, which, in our study, is the date. The continuity assumption re-

quires that water quality readings are smoothly observed around the cuto! points and that the
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automated water monitory system is not intentionally turned on/o! around the cuto! for unob-

served reasons. We examine this assumption by analyzing the distribution of the observations of

dissolved oxygen by day, as illustrated in Appendix Figure A.2. Our analysis reveals no evidence

of manipulation around August 31, 2017, and January 1, 2018, as the observations are smoothly

distributed around these two days.

We further demonstrate the absence of similar discontinuities in observed water quality by

conducting several placebo experiments. In these tests, we arbitrarily assign a cuto! for the

policy change to a previous year while mimicking our current setting by either excluding or not

excluding a transition period applied in our main analysis. Additionally, we experiment with

other hypothetical cuto! points in the months before the actual policy change. These placebo

tests consistently fail to detect any discontinuities at the artificial cuto!s, thereby reinforcing

the credibility of our RD approach. A detailed description of these robustness checks is provided

in the next section.

To further support the continuity assumption, we also explore the possibility of abrupt changes

in other prefecture-level factors that could influence environmental outcomes. Although the

National Sword policy is part of broader initiatives aimed at reducing pollution in China, there

is no evidence suggesting that its timing coincides with sudden shifts in other variables a!ecting

water quality or abrupt changes in prefecture-level macroeconomic or socioeconomic indicators.

Specifically, we analyze prefecture-level outcomes such as population, GDP per capita, and the

presence of large firms to ensure these factors remain stable around the cuto!. In Appendix

Figure A.3, we present the yearly prefecture-level data for these variables, applying a first-order

polynomial to each side of the discontinuity point. The absence of significant changes in these

macroeconomic indicators near the cuto! point strengthens the validity of our RD estimates.

While prefecture-level macroeconomic data is unavailable at the monthly level, preventing a

direct test of discontinuity on August 31, 2017, the observed yearly data show a consistent trend

across 2017–2018, similar to previous years. This suggests that the likelihood of a sudden change

on August 31, 2017, is minimal. Taken together with other continuity tests discussed above, we

conclude that the continuity assumption is likely satisfied on both January 1, 2018, and August
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31, 2017, reinforcing the credibility of our RD estimates.

5 Estimation Results

In this section, we begin by presenting the baseline estimates using the Regression Discontinuity

(RD) design. Next, we investigate potential spillover e!ects and perform various sensitivity

analyses to assess the robustness of our results under alternative specifications. Finally, we

examine heterogeneity across di!erent ownership types of waste importers and explore potential

mediators, such as landfill use and industrial wastewater discharge, to better understand the

mechanisms underlying our results.

5.1 Baseline Estimation

As is customary in RD design, we begin with the graphical illustration of the RD estimates.

Panel A of Figure 4 presents RD plots for dissolved oxygen level. Each point represents the

sample average of dissolved oxygen within a 10-day bin, while the lines depict a first-degree

polynomial fitted separately on each side of the day cuto!. The discontinuity at day zero

provides an estimate of the gap in dissolved oxygen caused by the waste ban policy. Subfigure

(a) in Panel A indicates that the reduction of waste imports to China increases the dissolved

oxygen level in the prefectures importing waste by 2.6 mg/L.

To further explore the diverse environmental impacts of the National Sword policy across

di!erent types of banned waste, we present RD graphs centered on prefectures categorized by

the type of imported waste. The subfigures (b)-(e) demonstrate a clear impact of the policy, with

a significant increase in dissolved oxygen levels, especially in prefectures that imported plastic,

textiles, and slag. In contrast, the final subfigure, which restricts the sample to prefectures that

did not import any waste in 2017, shows no observable change before or after the policy. The

estimates provided in Panels B and C which focus on indicators for suboptimal dissolved oxygen

levels (DO ↑ 6.5mg/L) and extremely low dissolved oxygen level (DO ↑ 3mg/L) are consistent

with the findings in Panel A, further reinforcing the robustness of our results.

Building on the evidence illustrated in the RD plots, we now proceed to formally estimate
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our sharp RD model. Table 2 presents the bias-corrected and variance-adjusted robust RD

estimates (Cattaneo et al., 2019). Consistent with the finding from the RD plot, the first column

of Panel A demonstrates that the waste import ban has improved the dissolved oxygen levels in

prefectures which imported any of the banned waste categories by 2.65 mg/L. This improvement

corresponds to a one-standard-deviation increase in dissolved oxygen levels compared to right

before the policy came into e!ect, and it is about 0.34 (= 2.654/7.7) of the mean dissolved oxygen

level in the whole sample. Similarly, the RD analysis in the first column of Panel B indicates

a significant decrease of 24 percentage points in the likelihood of reporting suboptimal oxygen

levels following the implementation of the policy. This decline represents a reduction of 0.5

standard deviations (= 0.237/0.467) in reports of low oxygen levels at water monitoring stations

after the policy took e!ect. Panel C yields statistically and quantitatively similar results, even

when focusing on the rarer instances of extremely low oxygen levels, further demonstrating a

consistent pattern of environmental improvement after the policy. Similar to results from RD

plots, we find no discernible change in the water quality indicators for the prefectures that had

no waste import before the National Sword policy (column 6 of Table 2).

We observe significant heterogeneity in water quality improvements across waste types (columns

(2)-(5)). Prefectures that imported slag experienced the largest improvement, with e!ects nearly

double those observed in prefectures importing textiles or plastics. On the other hand, prefec-

tures that previously imported paper waste experienced limited e!ects. These di!erences are

likely attributable to variations in recycling processes. As discussed in Section 2.3 and Ap-

pendix B, extracting vanadium from slag generates substantial volumes of toxic water, which

is challenging to reuse and highly detrimental to ecosystems. In comparison, recycling paper

to produce low-grade cardboard requires minimal water use, resulting in a limited impact on

dissolved oxygen levels.

5.2 Spillover E!ects

Our investigation further examines the spillover e!ects on prefectures that did not import any

waste before the National Sword policy, focusing on how river streams influence the e!ects
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downstream and upstream, respectively. To classify upstream and downstream prefectures, we

adopted the framework outlined in He et al. (2020) and Cai et al. (2016). In China, rivers

generally flow from east to west. As illustrated in detail in Figure 5, we categorized non-waste-

importing prefectures as upstream or downstream based on their location relative to waste-

importing prefectures. Water stations in downstream prefectures capture water flowing from

waste-importing prefectures, leading us to hypothesize that only downstream stations would

show improvements in water quality as a positive spillover e!ect of the policy, while upstream

prefectures would not exhibit such improvements. To ensure the robustness of our findings, we

analyze water quality data from stations at varying distances–from 50 km to 150 km–where

rivers cross prefectural boundaries.

Our findings, summarized in Table 3, support this hypothesis. Stations located upstream of

the waste-importing prefectures show no significant change in water quality (column (1)). We

note that upstream also includes isolated stations that are far away from waste-importing areas.

In contrast, downstream prefectures exhibit a notable decline in the presence of suboptimal

dissolved oxygen (Panel B, columns (2) and (3)). However, the spillover e!ects appear to be

relatively moderate. We see that the e!ect on the presence of extremely low oxygen levels and the

overall oxygen level is not statistically significant at the conventional levels, though the direction

of the coe”cient is consistent with our hypothesis. As water flows downstream, pollutants

from waste-importing prefectures likely dissipate, reducing their impact on downstream areas.

Consequently, before the policy, the negative spillover e!ect on downstream prefectures was

likely to be relatively small compared to the pollution level caused by the prefectures that

imported waste. This likely explains the relatively moderate, though significant, improvement

in downstream prefectures after the implementation of the waste ban policy.

The absence of the e!ect on upstream prefectures also validates our identification strategy

and strengthens the argument against confounding variables. If there are any confounding fac-

tors around the cut-o!, that bias our results, these factors must also exhibit a special geographic

pattern, systematically a!ecting only the prefectures importing waste and their immediate down-

stream prefectures, but not immediate upstream prefectures.
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5.3 Alternative Estimation Strategy: DinD

In this subsection, we employ a Di!erence-in-Di!erences (DinD) strategy to estimate the impact

of the National Sword policy on water quality. The DinD strategy is used in existing studies

that examine the impact of waste import ban on air quality in China (Li and Takeuchi, 2023;

Shi and Zhang, 2023; Unfried and Wang, 2024).

Since there is a clear spillover e!ect on downstream prefectures, the control group in our

DinD framework comprises 44 upstream prefectures that did not import any waste prior to the

policy. This group helps capture the potential influence of confounding factors that may have

systematically a!ected water quality across China before and after the policy.

We implement a standard DinD model, regressing the water quality indicator on an interaction

term between the treatment status of prefectures and a post-2018 dummy, while controlling for

year and prefecture fixed e!ects. The treatment status here is defined in two ways. The first

specification sets a treatment dummy equal to one if a prefecture imported any waste in 2017,

and zero if the prefecture is an upstream prefecture without any waste import in 2017. The

second specification of treatment status uses the log of the volume of banned waste imported in

2017 in each prefecture.17 Post dummy equals one if the date is on or after January 1, 2018.

The transition period of September- December 2017 is not included in the estimation. Similar to

our RDD specification, our DinD results remain consistent when treating the transition period

as a dummy variable instead of excluding those observations.18

We first implement the DinD strategy using observations within the bandwidth estimated in

the RD design. This “RD-DinD” approach allows us to leverage the strengths of both strategies,

mitigating potential confounding factors by comparing outcomes immediately before and after

the policy within a su”ciently short time frame while also accounting for di!erences between

a!ected and control prefectures.

Table 4 reports the estimation results. Each cell reports the estimation of a separate re-

gression. To estimate the optimal bandwidth, column (1) first conducts an RD design using

the sample including both treated prefectures and upstream control prefectures. The estimated

17Prefectures did not import any banned waste is defined as 0.
18Estimation results available upon request.
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optimal bandwidth of 204 days, which includes 31,800 e!ective observations, is subsequently

utilized in the DinD analysis shown in column (2). The remaining columns examine the results

across di!erent sample periods. Column (3) use half of the optimal bandwidth, including only

102 days before and after the cuto!; column (4) double the optimal bandwidth, extending the

sample to 408 days before and after the cut-o!, while column (5) includes the entire sample

period (2015-2019) and estimates the DinD specification reminiscent of earlier studies.

Applying our DinD strategy to di!erent sample periods, we find that the impact of the

National Sword policy is stronger in the short run and gradually declines over time. For instance,

in Panel A of Table 4, where Dissolved Oxygen is used as the outcome variable, the DinD

estimator is 1.854 when only 102 days before and after the cuto! are included. The size of the

e!ect decreases to 0.608 when the sample extends to 408 days before and after the cuto! and

further declines to 0.434 when the full sample period is included. All results are statistically

significant at the 5% level. Overall, the RDD estimator is larger than the DinD estimator, likely

because RDD captures the immediate policy e!ect (comparing water quality in August 2017 vs.

January 2018), while DinD estimates the average di!erences before and after the policy over the

entire sample period applied in the estimation.

A similar pattern emerges when alternative outcome variables (Suboptimal DO and Extremely

Low DO) are used in Panel B and Panel C, respectively. The findings are also robust to using

the volume of imported waste as a continuous treatment measure rather than a binary indicator.

Finally, parallel trends tests, reported in Appendix Table A5, confirm that treated and control

groups followed similar pre-policy trends prior to the implementation of the National Sword

Policy in 2018.

5.4 Robustness Tests and Validity Checks

To strengthen the reliability of our RD estimates, we perform a series of robustness tests sum-

marized in Table 5. The first column of Table 5 incorporates prefecture-level fixed e!ects to

the baseline RDD specification improving the statistical e”ciency of our estimates by account-

ing for historical variations in water quality across prefectures. Subsequent columns in Table 5
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present alternative specifications with a quadratic polynomial of the running variable and where

we apply the CER-optimal bandwidth selection procedure outlined by Cattaneo et al. (2019).

Additionally, we test the sensitivity of our results to data-driven bandwidths by halving or dou-

bling the MSE-optimal bandwidth. In column (6), we further use a uniform kernel for our RDD

specification, while column (7) expands our donut specification by excluding data from August

2017, the month that coincides with the announcement of the National Sword policy to test

whether our results are sensitive to the data points close to the cut-o!. Further, in our baseline

specification, a prefecture is defined as “treated” if it imported any waste during 2017. This

definition is based on optimal bandwidth of approximately 200 days, which implies the use of

observations only in 2017 before the cut-o!. To test the sensitivity of this definition, the last

column expands the waste-importing period for defining treatment status to include the years

2015–2017. The extensive analyses presented in Table 5 collectively confirm the robustness of

our RD estimates across various specifications, bandwidth selections, polynomial choices, and

kernel applications.

The RD design enables us to identify the causal e!ects of the waste import ban on water

quality indicators, provided that improvements around the cuto! date can be attributed to the

policy change rather than independent temporal changes. This risk is largely mitigated by the

daily frequency of our water readings and the relatively narrow estimated bandwidths, which

span only a few months at most. Nevertheless, to further validate this assumption, we conduct

placebo experiments to test for potential discontinuities unrelated to the policy. Specifically, we

falsely assign alternative policy announcement dates, while ensuring that the falsification tests

do not overlap with the observations in our main analysis (Imbens and Lemieux, 2008). The

results of these falsification tests are summarized in Table 6. The first column mimics the main

RD specification, but shifts the start of the policy to January 2016, while dropping the months of

September to December 2015, which corresponds to the time between the announcement of the

policy in mid-August and its implementation in the upcoming January. We further present the

RD plots for this placebo exercise in Figure 6. In column (2), similarly, we retroactively adjust

the policy timeline by 365 days, setting August 31, 2016, as the new end date before the policy
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starts and September 1, 2016, as the beginning. The last column extends this adjustment by two

years, with August 31, 2015, as the end date before the policy’s start on September 1, 2015. It is

comforting that none of these placebo experiments reveal any discontinuities in our data. Taken

together, the evidence from Tables 5 and 6 and Figure 6 and Appendix Figure A.3 on other

prefecture indicators collectively bolster our confidence that the estimated e!ects represent the

environmental impact caused by the waste import ban policy, not other confounders around the

cut-o!.

As discussed in the background section, there was a transition period between the announce-

ment of the policy in August 2017 and its implementation in January 2018; thus, we re-estimate

Eq.(1) by adding a transition dummy variable, instead of dropping all observations in the tran-

sition period. This dummy variable equals one for days between September 1 and December

31, 2017, and zero otherwise to capture the transition period. This specification compares the

average water quality during the transition period to the water quality immediately before the

announcement of the policy in August 2017. The results presented in Appendix Table A6 in-

dicate that our point estimate of ε remains essentially unchanged in this specification. The

coe”cient of the transition dummy suggests that, on average, the water DO level improved by

0.94 during the transition period (column 1, Panel A).

We further test the robustness of our results by excluding prefectures that imported less than

10% of the median value of each type of waste (see Appendix Table A7). This specification

allows us to focus more precisely on prefectures that experienced a more substantial reduction

in imported banned waste. Additionally, we extend our baseline specification by exclusively

focusing on prefectures that imported only one type of waste, as some prefectures imported

multiple types of banned waste. The result of this analysis are summarized in Appendix Table

A8.19 Collectively, the estimation results presented in Appendix Tables A7 and A8 are consistent

with the findings in Table 2, further reinforcing the robustness of our baseline results.

One concern related to our estimation is the potential impact from the production side. The

main purpose of China’s waste imports has been to extract raw materials to meet the large

demand in production. Thus, the sudden decline in waste imports could potentially reduce pro-
19Since there is no prefecture imported only slag, we are not able to perform these robustness checks on slag.
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duction activities and, consequently, influence environmental outcomes. To address this, we first

demonstrate that the volume of waste import is relatively small compared to the total volume

of production (see Appendix Table A9). For example, the import of textile waste accounted for

less than 1% of the total production of intermediate textiles in 2017. On the other hand, for

plastics, the volume of waste import is relatively large, accounting for almost 7% of the volume of

production. We, therefore, further investigate the change in production level around our cuto!.

We find that the production of goods likely to use the banned waste remained relatively stable

in 2017 and 2018 (see Appendix Figure A.4). Additionally, we do not observe any significant

changes in water quality in prefectures that produce outputs potentially using the banned waste

but did not import any waste (see Appendix Table A10). Based on this evidence, we conclude

that our results are unlikely to be influenced by any potential changes in production activities

around the cuto!.

5.5 Heterogeneity by Firm Ownership

Having shown that the waste import ban has significantly improved a spectrum of water quality

indicators, we now investigate the potential sources of heterogeneity in the estimated e!ects of

the National Sword policy. Previous research has documented significant variations in recycling

processes across di!erent firm types. Typically, privately-owned enterprises (POEs) exhibit

potentially higher pollution levels due to their small-scale and ine”cient recycling methods

(Collins and Harris, 2002; Eskeland and Harrison, 2003; Cole et al., 2006). In this subsection,

we explore potential sources of heterogeneity based on firm ownership.

Our data reveals that 20% of the total banned waste was imported by foreign-owned or

foreign-jointly owned enterprises (FOE), while the remaining portion was imported by domes-

tic importers. Among domestic importers, privately-owned enterprises (POEs) were the main

actors, accounting for 88% of the imported waste, with the remainder handled by state-owned

or collectively owned firms. To examine whether the estimated e!ect of the policy varies by the

firm characteristics, we group prefectures based on the percentage of imported volumes by each

type of firm ownership and re-estimate our main specification. The results are summarized in

25



Table 7. Column (1) focuses on prefectures that were predominantly foreign-owned, i.e., where

at least 50% of the imported waste was brought in by FOEs. Column (2) presents results for

prefectures where waste imports were primarily handled by domestically owned firms. Column

(3) further narrows our focus to prefectures where POEs specifically imported at least 50% of

the banned waste.

Our analysis in Table 7, columns (2) and (3), shows that prefectures with a higher presence

of domestically owned firms, particularly POEs, experienced significant improvements in water

quality following the import waste ban policy. These improvements are reflected in a substantial

increase in dissolved oxygen levels (approximately one standard deviation) and a notable reduc-

tion in occurrences of dangerously low oxygen readings (around half a standard deviation). In

contrast, in prefectures where FOEs predominated, we observe that the dissolved oxygen level

and the presence of extremely low oxygen levels are not statistically significant. There is only

a significant reduction in the presence of suboptimal dissolved oxygen levels after the policy.

These results suggest that the pollution levels caused by FOE importers were likely to be less

harmful compared to domestic firms, especially POEs.20

Our findings regarding POEs are consistent with previous literature on air quality.Unfried

and Wang (2024) have shown that the importation of plastic waste by POEs led to a significant

increase in PM2.5 levels. On the other hand, the estimation results from Table 7, suggesting

lower water pollution levels from FOEs are intriguing. Given the evidence presented in Table 7,

it is possible that the waste imported by FOEs is less contaminated, or FOEs have used more

environmentally friendly technologies to recycle the waste, resulting in a reduced environmental

burden. The di!erential e!ects across firm ownership could likely be attributed to various

factors, including the initial levels of technology adoption, the scale of operations, and the firms’

capacity to invest in cleaner technologies (Huang and Chang, 2019).

20It is possible that the results regarding FOEs are influenced by the type of waste imported by FOEs, particularly if FOEs
primarily import paper waste, a type that does not significantly impact oxygen levels. We explore this potential by excluding all
FOEs that import paper waste. The results in column (2) remain virtually unchanged in this specification.
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6 Mechanisms

In this section, we provide formal evidence on the potential mediators and channels explaining

our results. As described in Section 2, both landfill and industrial wastewater discharge generated

from the recycling process can contribute to water pollution. Therefore, we exploit the changes

in waste management practices brought by the National Sword policy to investigate whether and

to what extent each type of waste—plastics, textiles, paper, and slag—pollutes water through

these two channels.

Using annual data on landfill and industrial water discharge reported by each prefecture,

we first examine the association between landfill, industrial wastewater and dissolved oxygen.

This analysis is conducted through a simple OLS regression, controlling for prefecture-fixed

e!ects. The results summarized in Appendix Table A11 confirm that landfill and industrial

water discharge are indeed negatively associated with the dissolved oxygen levels in the water

and lead to a higher frequency of suboptimal dissolved oxygen readings.

Next, we formally assess the impact of the import ban policy on landfill volumes and industrial

water discharge as potential channels. We employ a di!erence-in-di!erences specification in this

analysis and explore these channels through each of the four types of banned waste. This allows

us to examine the post-policy e!ects by waste type through the interaction between the logarithm

of waste imported in 2017 and a post-policy indicator. The findings are reported in Table 8, with

the top panel presenting results for landfill volumes and the bottom panel focusing on industrial

wastewater discharge.

Consistent with the objective of the National Sword policy, our analysis shows a significant

reduction in landfill volumes in prefectures that previously imported significant amounts of

waste, with the largest decreases observed in regions importing textiles and paper. Furthermore,

the bottom panel in Table 8 indicates a decline in industrial water discharge, particularly in

prefectures that imported textiles and, to a lesser extent, slag. However, the e!ect on plastic

and paper is not statistically significant at the conventional level, suggesting that the recycling

process of these two types of waste in China is unlikely to consume a large amount of water.

Both Shi and Zhang (2023) and Unfried and Wang (2024) indicated the possible impact
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of open fires on air quality during waste processing. Their findings raise concerns about an

alternative pollution pathway: from air to water transmission. Pollutants in the air could be

deposited into water bodies through rainfall, leading to water pollution. However, our estimation

results on upstream and downstream prefectures show that the waste ban policy has spillover

e!ects only on downstream control prefectures, but not upstream prefectures, suggesting this

pathway is unlikely. If pollution were initially airborne and then deposited in water bodies, the

e!ects would not be strictly confined to downstream locations but would also correlate with

wind patterns. For example, previous studies have identified a pollution source as “upwind” if

it is within 45 degrees of the dominant quarterly wind vector that passes through the monitor

(Freeman et al., 2019; Axbard and Deng, 2024). The absence of patterns correlating with wind

implies that pollution mainly operates directly through water, rather than air. This highlights

the e”cacy of the policy in addressing water pollution and enhancing environmental health.21

7 Discussion and Conclusion

This paper provides one of the first pieces of causal evidence on the impact of a major waste

reduction policy on water quality in a developing country often labeled a “pollution haven.”

We examine the e!ects of waste management practices on water pollution by analyzing China’s

National Sword policy, enacted in January 2018, which banned the import of plastics, textiles,

vanadium slag, and paper. Leveraging the sharp decline in waste imports following the policy’s

implementation, our study documents significant short-run improvements in water quality.

The most pronounced improvements were observed in areas that imported slag, with notable

gains also seen in regions that imported plastics, textiles, and, to a lesser extent, paper. Fur-

thermore, downstream prefectures experienced positive environmental spillovers, consistent with

natural water flow patterns. Our findings o!er valuable insights into the policy debate on the

environmental consequences of waste management, highlighting the critical role of regulation in

21Given the prevalence of illegal dumping of both industry waste and household waste across China (Kang et al., 2020; Jiao et al.,
2024), it is possible that some of the imported waste and their recycling residuals may have been illegally dumped. Due to a lack of
data on the volume of illegal dumping, we are unable to quantify the e!ect of each type of waste through this channel. Nonetheless,
given the estimated positive e!ects of the waste ban policy on water quality indicators, our results likely represent lower-bound
estimates in the presence of illegal dumping.
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improving water quality. While the policy had a substantial initial impact, its e!ects appear to

diminish over time—an area that warrants further investigation in future research.
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Figure 1: Monthly import of the waste that was banned on January 1, 2018

(a) All four types of banned waste

(b) By type of waste

Data source: China Customs Statistics (CCS) database.
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Figure 2: Prefectures have automated water monitoring stations and upload real-time data on

CNEMC website during 2015-2019
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Figure 3: Water quality during the transition period (Sept. 1, 2017 – Dec. 31, 2017) by waste

importing status

Notes: The graphs show that the water qualities have gradually improved during the transition period in the prefectures imported
waste in 2017 (Subfigure a, b and c), while the water qualities remained relatively stable in prefectures did not import any waste
and thus not a!ected by the policy (Subfigure d, e and f). The transition period is the period right after the National Sword Policy
was announced in Aug. 2017, but before it fully came into e!ect in Jan. 2018. Each point in the subfigures denotes the sample
average of water dissolved oxygen outcome for a 10-day bin. The lines plot a first-degree polynomial estimated using all the points
shown in the graph. Suboptimal dissolved oxygen level indicates DO → 6.5; Extremely low dissolved oxygen level indicates DO→ 3.
All outcome variables are filtered by month and day-fixed e!ects.
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Figure 4: Distribution of water dissolved oxygen around the waste ban cuto!
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Notes: Each point denotes the sample average of water dissolved oxygen outcome for a 10-day bin. The cuto! date is January
1, 2018. Observations during the transition period of Sept-Dec 2017 are dropped. The date right before the cuto! is August 31,
2017. The lines plot a first-degree polynomial estimated separately on either side of the day cuto!. Suboptimal dissolved oxygen
level indicates DO → 6.5; Extremely low dissolved oxygen level indicates DO → 3. All outcome variables are filtered by month and
day-fixed e!ects.

38



Figure 5: Illustration of measured distance from an upstream prefecture with waste import to a

water monitoring station located in a downstream prefecture without waste import

39



Figure 6: Placebo test: Assign the Waste Ban Policy on January 1, 2016

Note: The figures plot the results of the regression discontinuity design, using the outcome variables reported in the subfigures
respectively. The sample is restricted to prefectures that imported any banned waste in 2017 (treated prefectures). The placebo
test assumes that Day 0 is January 1, 2016. To be consistent with the estimation used to identify the actual policy, samples
between September 1 and December 31, 2015, are dropped. The date right before the cuto! date is August 31, 2015. The lines plot
a first-degree polynomial estimated separated on either side of the day cuto!. Suboptimal dissolved oxygen level indicates DO→6.5;
Extremely low dissolved oxygen level indicates DO→3. All outcome variables are filtered by month and day-fixed e!ects.

40



Table 1: Descriptive Statistics

All Before the policy After the policy After-Before

(2015-2017) (2018-2019) (change)
(1) (2) (3) (4)

DO

Raw 7.775 7.628 8.098 0.471
[2.651] [2.649] [2.629] (0.014)***

Filtered 0.000 -0.112 0.246 0.358
[2.302] [2.360] [2.150] (0.012)***

Suboptimal DO (DO↑6.5)

Raw 0.289 0.307 0.249 -0.057
[0.453] [0.461] [0.433] (0.002)***

Filtered 0.000 0.014 -0.030 -0.044
[0.418] [0.430] [0.390] (0.002)***

Extremely Low DO (DO↑3)

Raw 0.044 0.049 0.030 -0.019
[0.205] [0.219] [0.170] (0.001)***

Filtered 0.000 0.006 -0.013 -0.019
[0.204] [0.217] [0.168] (0.001)***

Obs. 154,532 104,596 49,936 154,532
Notes: Raw variables represent unadjusted data. Filtered variables are generated by regressing each of the raw
variables on month-fixed e!ects and day-fixed e!ects. The residuals from these regressions denote the filtered
variables. Standard deviations are in square parentheses. Standard errors are presented in round parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 2: RD Estimates of the Waste Import Ban on Water Quality

Any Waste Plastics Textiles Vanadium Slag Paper No Waste
(1) (2) (3) (4) (5) (6)

Panel A
DO 2.654*** 2.505*** 3.323*** 5.594*** 0.729 0.141

(0.620) (0.674) (0.941) (1.488) (1.068) (0.415)

SD. of outcome 2.411 2.389 2.509 2.279 2.314 2.089
Observations 17,353 11,258 7,183 1,376 5,147 19,037
Bandwidth 225.1 168.3 207.1 200.9 217.8 177.9

Panel B
Suboptimal DO -0.237*** -0.263*** -0.259** -0.636*** -0.200 -0.035

(0.065) (0.072) (0.105) (0.061) (0.130) (0.062)

SD. of outcome 0.467 0.459 0.460 0.416 0.450 0.479
Observations 11,043 11,501 6,040 1,303 4,545 16,228
Bandwidth 139.4 172.2 171.6 187.7 189.6 150.1

Panel C
Extremely Low DO -0.108* -0.103 -0.162* -0.076 -0.103 0.013

(0.056) (0.065) (0.090) (0.079) (0.078) (0.029)

SD. of outcome 0.285 0.273 0.290 0.265 0.239 0.220
Observations 18,408 15,987 9,395 2,685 5,937 23,789
Bandwidth 240.5 247 282.6 389.9 256.2 228.1
# of prefectures 32 26 14 2 9 61
Waste (1000 ton/Pref.) 161.5 93.11 9.98 172.9 251.32 0

Notes: Each cell reports the estimate from a separate regression of Equation (1). Prefectures included in each
column are determined by their waste-importing status in 2017, as indicated in the top row of the table. The
cuto! date is January 1, 2018. Observations during the transition period of Sept-Dec 2017 are dropped. The date
right before the cuto! is August 31, 2017. The outcome variables for each panel are presented in the left column:
dissolved oxygen level (DO); a dummy indicating DO<=6.5 (Suboptimal DO); and a dummy indicating DO<=3
(Extremely low DO). All outcome variables are filtered by month and day-fixed e!ects. All estimations use the
optimal bandwidth selected through the procedure outlined by Cattaneo et al. (2019) and employ a local linear
specification of the running variable, days. A triangular kernel is applied. The e!ective number of observations
is reported. Standard errors are clustered at the prefecture level. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 3: Spillover E!ects on Upstream and Downstream Prefectures

Upstream Downstream

Distance < 150km Distance < 50km
(1) (2) (3)

Panel A
DO -0.030 0.732 0.857

(0.609) (0.724) (0.826)

Observations 11,792 4,838 4,115

Panel B
Suboptimal DO 0.088 -0.206* -0.235**

(0.082) (0.118) (0.117)

Observations 11,792 4,838 4,115

Panel C
Extremely Low DO 0.032 -0.060 -0.083

(0.025) (0.079) (0.091)

Observations 11,792 4,838 4,115

Bandwidth 200 200 200
# of prefectures 44 16 14

Notes: Each cell reports the estimate from a separate regression of Equation (1). Only prefectures that did not
import any banned waste in 2017 are included. These prefectures are divided into upstream or downstream based
on their location relative to the waste-importing prefectures. Distance from the downstream water monitoring
station to the boundary of the waste-importing prefectures is measured as illustrated in Figure 5. The cuto!
date is January 1, 2018. Observations during the transition period of Sept-Dec 2017 are dropped. The date
right before the cuto! is August 31, 2017. The outcome variables for each panel are presented in the far left
column: dissolved oxygen level (DO); a dummy indicating DO<=6.5 (Suboptimal DO); and a dummy indicating
DO<=3 (Extremely Low DO). All outcome variables are filtered by month and day-fixed e!ects. A bandwidth
of 200 days is applied to all columns for easy comparison across columns. All other RDD model specifications
are the same as in Table 2. The e!ective number of observations is reported. Standard errors are clustered at
the prefecture level. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 4: RD Di!erence-in-Di!erences Estimates

RD Estimates RD-DinD Estimates DinD Estimates

Optimal Bandwidth Half Bandwidth Double Bandwidth 2015–2019
(1) (2) (3) (4) (5)

Panel A: DO
RD 1.252***

(0.424)
Treated*Post 0.825** 1.851*** 0.608** 0.434**

(0.332) (0.568) (0.250) (0.179)
Imported Waste Volume in 2017*Post 0.132* 0.250** 0.131*** 0.073**

(0.066) (0.118) (0.047) (0.035)
Observations 31,800 31,800 17,095 60,059 131,619
Bandwidth 204 204 102 408

Panel B: Suboptimal DO
RD -0.120**

(0.051)
Treated*Post -0.135*** -0.276*** -0.055* -0.045

(0.048) (0.073) (0.033) (0.027)
Imported Waste Volume*Post -0.028*** -0.045** -0.020*** -0.011

(0.011) (0.017) (0.007) (0.007)
Observations 29,221 29,221 15,596 54,787 131,619
Bandwidth 185 185 92 370

Panel C: Extremely Low DO
RD -0.017

(0.030)
Treated*Post -0.060** -0.119*** -0.053*** -0.039***

(0.026) (0.045) (0.019) (0.014)
Imported Waste Volume*Post -0.015** -0.024** -0.014*** -0.008**

(0.007) (0.011) (0.004) (0.003)
Observations 34,002 34,002 18,320 64,101 131,619
Bandwidth 219 219 108 438

Note: 32 Prefectures imported banned waste in 2017 (treated) and 44 upstream prefectures that did not import any waste (control)
are included. Column 2-5 reports the DinD estimator of the interaction term indicated in the left side of the table. Each cell
reports the estimation of a separate regression. Treated dummy equals one if a prefecture is treated, and zero if the prefecture
is an upstream control prefecture. Imported waste in 2017 is measured in logarithmic form and set to zero for upstream control
prefectures. Observations during the transition period of Sept-Dec 2017 are dropped. The outcome variables for each panel are:
dissolved oxygen level (DO); a dummy indicating DO¡=6.5 (Suboptimal DO); and a dummy indicating DO¡=3 (Extremely Low DO).
All outcome variables are filtered by month and day fixed e!ects. Prefecture fixed e!ects and a Post dummy (equals one if a date
is after January 1, 2018) are included in column 2-4. Column 5 control of Year fixed e!ects instead of the Post dummy. E!ective
number of observations is reported. Standard errors are clustered at the prefecture level. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 6: Placebo Tests

Policy come into e!ect
On January 1, 2016

(drop Sept-Dec, 2015)

Cut-o! on
Sept 1, 2016

Cut-o! on
Sept 1, 2015

(1) (2) (3)
Panel A

DO 0.192 0.025 -0.343
(0.513) (0.467) (0.481)

Observations 5960 10486 7194
Bandwidth 85.84 173.5 100.9

Panel B
Suboptimal DO -0.061 -0.093 0.001

(0.075) (0.096) (0.091)

Observations 7681 10851 8294
Bandwidth 109.1 179.3 115.1

Panel C
Extremely Low DO -0.013 -0.001 0.040

(0.046) (0.051) (0.061)

Observations 9,414 14,001 9,987
Bandwidth 135 226.7 137.7

Notes: The table falsely assigns the waste ban policy at three dates in each of the columns. In column 1, the cuto!
date is January 1, 2016; observations during the transition period of Sept-Dec 2015 are dropped. In columns 2
and 3, the cuto! date is September 1, 2016, and September 1, 2015, respectively. Each cell reports the estimate
from a separate regression of Equation (1). Only treated prefectures (i.e., imported banned waste in 2017) are
included. The outcome variables for each panel are presented in the far left column: dissolved oxygen level (DO);
a dummy indicating DO<=6.5 (Suboptimal DO); and a dummy indicating DO<=3 (Extremely Low DO). All
outcome variables are filtered by month and day-fixed e!ects. All RDD model specifications are the same as in
Table 2. The e!ective number of observations is reported. Standard errors are clustered at the prefecture level.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 7: RD Estimates of the Waste Import Ban on Water Quality by Firm Ownership

Foreign→50% Domestic>50% Private→50%
(1) (2) (3)

Panel A
DO 1.773 2.805*** 2.761***

(1.101) (0.716) (0.757)

Observations 4422 12852 11888
Bandwidth 249.5 217.7 213.5

Panel B
Suboptimal DO -0.328*** -0.236*** -0.225***

(0.101) (0.080) (0.085)

Observations 2924 11131 10647
Bandwidth 157.2 185.5 189.3

Panel C
Extremely Low DO -0.015 -0.128* -0.139**

(0.074) (0.067) (0.070)

Observations 4,172 13,478 12,600
Bandwidth 233.1 228.6 227.2
# of Prefectures in all Panels: 8 24 22

Notes: The table divides samples based on importers’ ownership. Column 1: Prefectures where Foreign Owned
Enterprises (FOEs) imported at least 50% of the banned waste in 2017 are included. Column 2: Prefectures,
where domestic importers (i.e., importers that are not FOEs) imported more than 50% of the banned waste in
2017, are included. Column 3: Prefectures where Private Owned Enterprises (POEs) imported at least 50% of
the banned waste in 2017 are included. Each cell reports the estimate from a separate regression of Equation (1).
The outcome variables for each panel are presented in the far left column: dissolved oxygen level (DO); a dummy
indicating DO<=6.5 (Suboptimal DO); and a dummy indicating DO<=3 (Extremely Low DO). The cuto! date
is January 1, 2018. Observations during the transition period of Sept-Dec 2017 are dropped. The date right
before the cuto! is August 31, 2017. All outcome variables are filtered by month and day-fixed e!ects. All RDD
model specifications are the same as in Table 2. The e!ective number of observations is reported. Standard
errors are clustered at the prefecture level. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 8: Potential Mechanisms

(1) (2) (3) (4)
Panel A: Landfill

lnPlastic2017*Post -16.650*
(9.497)

lnTextile2017*Post -53.878**
(20.854)

lnSlag2017*Post -23.524
(18.090)

lnPaper2017*Post -29.066**
(12.671)

Observations 1,625 1,625 1,625 1,625
R-squared 0.941 0.941 0.941 0.942

Panel B: Industry Waste Water Discharge
lnPlastic2017*Post 1.241

(4.990)
lnTextile2017*Post -9.446**

(4.155)
lnSlag2017*Post -3.398*

(2.034)
lnPaper2017*Post 4.292

(8.508)

Observations 1,326 1,326 1,326 1,326
R-squared 0.843 0.844 0.842 0.843

Notes: The unit of observation is at the prefecture-year level. Outcome variables in Panel A and Panel B are
landfill volume (in thousand tons) and industrial wastewater discharge (in million tons), respectively. The post
dummy equals one if the year is on or after 2018. All columns control for prefecture fixed e!ects, and year fixed
e!ects. Standard errors are clustered at the prefecture level.*** p < 0.01, ** p < 0.05, * p < 0.1.
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Appendix A Waste Ban Policy and the Ban list

On July 18, 2017, the Chinese government notified WTO regarding its intention to ban four

types of waste imported to China, including plastic waste from living sources, vanadium slag,

unsorted wastepaper and textile materials. The formal announcement of the waste ban policy

was made public on August 10, 2017, through Decree No. 39, 2017, by the Ministry of Ecology

and Environment (MEE). Decree No. 39 is published on the MEE website.22 See Appendix

Table A1 for the items banned by this policy. Below is the translation of the decree:

Announcement on the Release of the “Catalogue of Imported Waste Management”

(2017)

In accordance with the laws and regulations including the Solid Waste Pollution Prevention

and Control Law of the People’s Republic of China, the Basel Convention on the Control of

Transboundary Movements of Hazardous Wastes and their Disposal, and the Measures for the

Administration of the Import of Solid Wastes, the Ministry of Ecology and Environment, the

Ministry of Commerce, the National Development and Reform Commission, the General Ad-

ministration of Customs, and the General Administration of Quality Supervision, Inspection

and Quarantine have adjusted and revised the existing “Catalogue of Prohibited Import of Solid

Wastes,” “Catalogue of Restricted Import of Solid Wastes Used as Raw Materials,” and “Cat-

alogue of Unrestricted Import of Solid Wastes Used as Raw Materials”: Four categories of 24

types of solid wastes, including waste plastics from domestic sources (8 categories), unsorted

wastepaper (1 category), waste textile raw materials (11 categories), and vanadium slag (4 cat-

egories), have been adjusted from the “Catalogue of Restricted Import of Solid Wastes Used as

Raw Materials” to be included in the “Catalogue of Prohibited Import of Solid Wastes”.

This announcement shall be e!ective from December 31, 2017. Announcement No. 80 of 2014

issued by the Ministry of Ecology and Environment, the Ministry of Commerce, the National

Development and Reform Commission, the General Administration of Customs, and the General

Administration of Quality Supervision, Inspection and Quarantine, as well as Announcement

No. 3 of 2017, are hereby repealed simultaneously.

Hereby announced.

Attachments:

1. Catalogue of Prohibited Import of Solid Wastes

2. Catalogue of Restricted Import of Solid Wastes Used as Raw Materials

3. Catalogue of Unrestricted Import of Solid Wastes Used as Raw Materials

Ministry of Ecology and Environment

Ministry of Commerce

22Source: https://www.mee.gov.cn/gkml/hbb/bgg/201708/t20170817_419811.htm



National Development and Reform Commission

General Administration of Customs

General Administration of Quality Supervision, Inspection and Quarantine

August 10, 2017

Appendix B Waste Recycling and Water Pollution

This section documents evidence of how the recycling process could potentially pollute water.

Paper:

Typically, the initial stage of paper recycling involves sorting and removing contaminants

(plastic, metal, and non-paper materials) from unsorted paper waste. The paper recycling

process has the potential to discharge polluting water. The scale of the recycling facility and

what recycled paper would be used to produce largely determine its environmental impact on

water (Gavrilescu et al., 2008). A key contributor to water pollution in this process is deinking

(bleaching), a procedure that eliminates ink from recycled paper and generates various pollutants

in the wastewater system. The deinking process is essential for recycling waste paper into high-

grade paper, particularly for products like tissue, printing, and writing paper that require a

high level of whiteness. However, when producing paperboard from waste paper, the deinking

process is typically unnecessary (Han et al., 2021). There is evidence suggesting that recycled

paper mills producing packaging papers, such as corrugated paper or cardboard, often have

the lowest freshwater requirements (Jung and Kappen, 2014). The scale of production also

matters, with larger facilities more likely to use water e”ciently. Due to the natural process of

paper recycling which requires more capital and technology compared to recycling plastic, paper

recycling facilities are typically larger compared to plastic waste processing facilities in China.

Vanadium slag:

Vanadium-containing slag, a by-product of the metallurgical and steel production industries,

is classified as toxic due to its potential environmental and health risks (Shyrokykh et al., 2023;

Das et al., 2021). Recycling vanadium slag requires large amounts of water, and the process

generates substantial volumes of polluted water. The extraction process of vanadium from

slag produces acidic or alkaline wastewater (Yang and Yang, 2023). It is documented that the

production of one ton of vanadium product from vanadium slag results in the generation of 30-50

tons of ammonia-contaminated water (Li et al., 2017). Moreover, this wastewater contains high

concentrations of sodium and ammonium sulphates, making it di”cult to reuse (Shyrokykh et

al., 2023).

Plastic:

Plastic waste and its residues may end up in rivers if not properly managed. Chemical leaching

and the formation of biofilms resulting from disposal into water bodies can contribute to lower

levels of dissolved oxygen in the water. When plastic waste facilities are overwhelmed, illegal



dumping of plastic waste into water bodies is often observed. Several studies have indicated that

China’s rivers carry almost one million metric tonnes (1 Mt, more than half of the world’s total)

of plastic into the seas each year (Zhang et al., 2018). The decomposition process of organic

matter or chemicals dumped in plastic waste could consume water oxygen; waste in the water

body could block sunlight and reduce the photosynthesis activities which produce oxygen.

Textile:

Textiles often contain dyes and chemical finishes, and during the recycling process, these sub-

stances may be discharged into water, leading to water pollution (Laizer et al., 2022). Moreover,

the bleaching and dyeing procedures employed in textile recycling can themselves contribute to

water pollution by releasing chemicals. Dyes present in water hinder the penetration of light,

eventually diminishing photosynthetic activities and oxygen levels (Bafana et al., 2009; Laizer

et al., 2022). Unused textile waste commonly ends up in incineration and landfills. Landfills

have the potential to cause water pollution by facilitating the leakage and decomposition of

biodegradable waste, leading to soil and groundwater pollution (Dhir, 2021).

Appendix C Alternative Water Outcomes

In Appendix Table A2, our analysis expands to encompass a wider array of water quality indica-

tors, including PI (indicative of carbon dioxide levels), ammonia nitrogen (AN), and pH levels,

to comprehensively assess the broader environmental impacts of the National Sword policy. We

concentrate on AN and PI readings that are classified as category IV or V according to the Chi-

nese government’s o”cial water quality classification system in this analysis. These categories

represent the highest levels of pollution: PI readings of 10 and above are categorized as pollution

level IV, indicating significant contamination, while readings of 15 or higher are classified as level

V, denoting severe pollution. Similarly, AN concentrations of 1.5 and above are categorized as

level IV pollution, and readings over 2 are classified as level V, denoting extremely high water

pollution levels. Furthermore, our investigation extends to pH levels, particularly those falling

below the optimal 6.5 threshold recommended by the U.S. Environmental Protection Agency

(EPA).

The findings summarized in Appendix Table A2 indicate a pronounced reduction in category

IV and V water pollution readings, indicating a significant decrease in a range of harmful pol-

lutants and a reduction in instances of low pH levels. This sizable reduction in water pollutants

demonstrates the comprehensive impact of the National Sword policy on improving water qual-

ity and ecosystem health. Moreover, when analyzing results by the type of banned waste, we

observe notable di!erences in the impact on water pollution indicators. Particularly, we find

that the prevalence of the PI and AN readings classified as highly polluted has significantly

decreased, especially following the ban on paper and textile waste imports. This variation il-

lustrates the distinct environmental footprints associated with the disposal and management



processes of di!erent types of waste. Overall, results in Appendix Table A2 o!er a more detailed

picture of the environmental benefits of the waste ban policy, providing evidence of its e”cacy in

reducing pollution levels across a spectrum of harmful pollutants and contributing to the overall

health of aquatic ecosystems and water quality.
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Figure A.1: Prefectures imported the banned waste in 2017 (Conditional on prefectures with a

water monitoring station)

(a) Plastic (b) Texile

(c) Vanadium Slag (d) Paper



Figure A.2: Examine of smoothness in observations around cut-o!:



Figure A.3: Discontinuity in prefecture-level variables associated with environmental outcomes





Figure A.4: Annual production of outputs that likely use imported waste as inputs

Unit: Intermediate textiles account for the annual production of both yarn and cloth. The cloth, as reported by the National
Bureau of Statistics of China, is measured in meters. To convert the length of the cloth to its weight, we assume that each meter
weighs 0.2 kg. Data source: National Bureau of Statistics of China



Appendix Tables

Table A1: Type and name of the waste banned from importing after January 1, 2018

Waste Item Number in HS Code Waste name in English Waste name in Chinese

Document 2017-

39

Slag 18 2619000021 Vanadium-containing slag and

smelting slag produced by the

smelting of steel, with a vana-

dium pentoxide (V2O5) content

exceeding 20%, excluding granular

smelting slag produced by the

smelting of steel.

儡瀡鐡鐢戡両甡瘡吡鐣洡渡〡無

渡Ａ丢氡匡丣鐣吡鄡>20%Ｂ儡瀡

鐡鐢戡両甡瘡簡爡無渡阡夡Ｃ

19 2619000029 Vanadium-containing slag and

smelting slag produced by other

smelting of steel (excluding granu-

lar smelting slag produced by the

smelting of steel)

儢两儡瀡鐡鐢戡両甡瘡吡鐣洡渡〡

無渡Ｂ儡瀡鐡鐢戡両甡瘡簡爡無渡

阡夡Ｃ

30 2620999011 Slag, ash, and residues of other met-

als and their compounds, contain-

ing by weight more than 20% of

V2O5 (other than those from the

manufacture of iron or steel)

吡儢两鄢尡匢儢匡吢爢瘡眡渡〡眡

瀢匢次渡Ａ丢氡匡丣鐣>20%Ｂ儡瀡

鐡鐢戡両甡瘡阡夡Ｃ

31 2620999019 Slag, ash, and residues of other met-

als and their compounds, contain-

ing by weight more than 10% but

not exceeding 20% of V2O5(other

than those from the manufacture of

iron or steel)

吡 儢 两 鄢 尡 匢 儢 匡 吢 爢 瘡 眡

渡〡眡瀢匢次渡Ａ10%<丢氡匡丣

鐣→20%瘡Ｂ儡瀡鐡鐢戡両甡瘡阡

夡Ｃ

Plastic 53 3915100000 Waste and scrap of ethylene

polymers (waste and scrap of

ethylene polymers, excluding

aluminum-plastic composite film)

严瀣耡吢爢瘡帡砡攡匢並脡攡(严瀣

耡吢爢瘡帡砡攡匢並脡攡Ａ丧匣戢

鐤堡夢吢脢)

54 3915100000 Waste and a scrap of ethylene poly-

mers (aluminum-plastic composite

film)

严瀣耡吢爢瘡帡砡攡匢並脡攡(鐤堡

夢吢脢)

55 3915200000 Waste and scrap of styrene poly-

mers

舡严瀣耡吢爢瘡帡砡攡匢並脡攡

56 3915300000 Waste and scrap of vinyl chloride

polymers

氢严瀣耡吢爢瘡帡砡攡匢並脡攡

57 3915901000 Waste and scrap of polyethy-

lene terephthalate (PET waste and

scrap, excluding waste PET bever-

age bottles (bricks))

耡嬡舡丣產鄣严丣鄤帡砡攡匢並脡

攡(PET瘡帡砡攡匢並脡攡Ａ丧匣戢

帡PET餡攡琡Ｂ砢Ｃ)

58 3915901000 Waste and a scrap of polyethylene

terephthalate (waste PET beverage

bottles (bricks))

耡嬡舡丣產鄣严丣鄤帡砡攡匢並脡

攡(帡PET餡攡琡(砢))



Waste Item Number in HS Code Waste name in English Waste name in Chinese

Document 2017-

39

59 3915909000 Waste and scrap of other plastics

(waste and scrap of other plastics,

excluding waste shattered CDs)

儢两堡攡瘡帡砡攡匢並脡攡(儢两堡

攡瘡帡砡攡匢並脡攡Ａ丧匣戢帡儣

瘢砣砡攡)

60 3915909000 Waste and scrap of other plastics

(waste shattered CDs)

儢两堡攡瘡帡砡攡匢並脡攡(帡儣瘢

砣砡攡)

Paper 68 4707900090 Other recovered paper or paper-

board, including unsorted waste

and scrap (including unsorted

waste and scrap)

儢两嘡攢縡戣縡朡(匣戢朢刡逡瘡帡

砡吣)

Textile 69 5103109090 Noils of fine hair of other wild ani-

mal

儢两刢爢縢欢瘡萡欢

70 5103209090 Waste of fine hair of other animal

(including yarn waste but excluding

garnetted stock)

儢两刢爢縢欢帡攡(匣戢帡縣縤Ａ丧

匣戢嘡攢縥縦)

71 5103300090 Waste of coarse hair of other animal

(including yarn waste but excluding

garnetted stock)

儢两刢爢簢欢帡攡(匣戢帡縣縤Ａ丧

匣戢嘡攢縥縦)

72 5104009090 Garnetted stock of fine or coarse

hair of other animal

儢两刢爢縢欢戣簢欢瘡嘡攢縥縦

73 5202100000 Yarn waste string (including waste

cotton yarn)

帡校縣縤(匣戢帡校縤)

74 5202910000 Garnetted stock 校瘡嘡攢縥縦

75 5202990000 Other cotton waste 儢两帡校

76 5505100000 Waste of synthetic fibres of man-

made fibres (including noils, yarn

waste and garnetted stock)

吢戤縥縦帡攡Ｂ匣戢萡縧〡帡縣匢

嘡攢縥縦Ｃ

77 5505200000 Waste of artificial fibres of man-

made fibres (including noils, yarn

waste and garnetted stock)

丨逢縥縦帡攡Ｂ匣戢萡縧〡帡縣匢

嘡攢縥縦Ｃ

79 6310100010 Sorted new or not used rags, in-

cluding scrap twine, cordage, rope

and cables and worn out articles of

twine, of textile materials

攣瘡戣朢伡産輡瘡縨縩朣攡刣縪

刡戥瘡砡縩爢笡Ｂ攣瘡戣朢伡産輡

瘡Ａ匣戢帡縤〡縫〡紡〡缡匢儢刣

吣Ｃ

81 6310900010 Other new or not used rags, in-

cluding scrap twine, cordage, rope

and cables and worn out articles of

twine, of textile materials

攣瘡戣朢伡産輡瘡縨縩朣攡刣儢两

砡縩爢笡Ｂ攣瘡戣朢伡産輡瘡Ａ匣

戢帡縤〡縫〡紡〡缡匢儢刣吣Ｃ

Notes: The list of banned items was compiled by comparing the Catalogue of Prohibited Import of Solid Wastes published

in Decree No. 39, 2017 with the one published in Decree No. 40, 2015. This list has been further verified in accordance

with Article 10.6 through a notification to the WTO on July 18, 2017.



Table A2: Alternative Water Quality Indicators

Any Waste Plastics Vanadium Slag Textiles Paper
(1) (2) (3) (4) (5)
Panel A: PI Pollution Level IV

Import Waste Ban -0.016*** -0.018** -0.018 -0.021*** -0.031***
(0.006) (0.007) (0.019) (0.006) (0.010)

Observations 5,614 4,505 1,785 2,755 1,590
Bandwidth 67.25 68.20 230.6 70.12 63.82

Panel B: PI Pollution Level V
Import Waste Ban -0.009*** -0.009*** -0.008*** -0.007*** -0.008***

(0.000) (0.000) (0.000) (0.000) (0.001)

Observations 3,043 3,450 219 4,155 2,348
Bandwidth 36.42 52.57 24.65 107.4 94.80

Panel C: AN Pollution Level IV
Import Waste Ban -0.014 -0.019 -0.063** -0.041** -0.037***

(0.031) (0.035) (0.028) (0.019) (0.010)

Observations 19,506 15,877 1,879 6,073 2,505
Bandwidth 258.9 261.2 232.9 164.5 97.51

Panel D: AN Pollution Level V
Import Waste Ban -0.021 -0.023 -0.046 -0.053*** -0.037***

(0.026) (0.030) (0.030) (0.014) (0.008)

Observations 19,833 13,877 1,780 4,519 2,031
Bandwidth 263.7 224.8 221.1 116.5 78.60

Panel E: pH Level Lower than 6.5
Import Waste Ban -0.038*** -0.039*** -0.040*** -0.042*** -0.049***

(0.003) (0.004) (0.000) (0.006) (0.011)

Observations 7,969 6,735 281 3,747 2,461
Bandwidth 90.84 95.61 29.55 93.31 96.27

Notes: The sample is restricted to prefectures that imported any type of banned waste before 2017. The cuto!
date is January 1, 2018. Observations during the transition period of Sept-Dec 2017 are dropped. PI Pollution
Levels IV or V indicate that permanganate index levels are equal to or higher than 10 mg/L and 15 mg/L,
respectively. AN Pollution Levels IV or V denote that ammonia nitrogen levels are equal to or higher than 1.5
mg/L and 2 mg/L, respectively. All outcome variables are filtered by month and day-fixed e!ects. All RDD
model specifications are the same as in Table 2. The e!ective number of observations is reported. Standard
errors are clustered at the prefecture level. *** p < 0.01, ** p < 0.05, * p < 0.1.



Table A3: Summary Statistics for Prefecture-level Indicators

Variable Obs Mean Std. dev.
Panel A

Industry wastewater discharge 1,326 50.91 70.06
Landfill 1,625 353.80 566.73

Panel B
GDP 2,628 2220.35 3151.06
Number of large firms 2,461 1027.12 1400.26
Population 2,023 352.33 288.50
Number of college 2,227 7.89 13.67

Note: Prefecture-year level data are reported. Data covers the years 2015-2019 in Panel A and 2014-2020 in
Panel B, respectively.

Table A4: Prefecture level import of banned waste (Unit: 1000 tons)

Waste import in 2017 Waste import during 2015-2017

Type of waste Total # of Prefectures Total # of Prefectures

Any types 5,168.35 32 15,970.11 38
Plastic 24,20.86 26 7,115.55 32
Textiles 139.74 14 401.41 18
Vanadium Slag 345.86 2 896.68 7
Paper 2,261.89 9 7,556.47 11

Note: The table reports the imports of banned waste in 93 prefectures where automated water monitoring stations
are installed.



Table A5: Parallel Trend Test

DO Suboptimal DO Extremely Low DO
(1) (2) (3)

Panel A: Use a dummy to indicate treatment status
Treated*2016 0.076 0.017 -0.014

(0.179) (0.026) (0.016)
Treated*2017 0.152 0.020 -0.001

(0.182) (0.032) (0.018)
Treated*Post 0.510** -0.033 -0.043**

(0.205) (0.035) (0.020)
Observations 131,619 131,619 131,619
R-squared 0.207 0.149 0.118

Panel B: Use waste import volumn to indicate treatment statu
DO Suboptimal DO Extremely Low DO

Imported Waste Volume in 2017*2016 -0.017 0.009 -0.001
(0.050) (0.006) (0.004)

Imported Waste Volume in 2017*2017 0.014 0.008 0.001
(0.038) (0.007) (0.004)

Imported Waste Volume in 2017*Post 0.073* -0.006 -0.007**
(0.038) (0.009) (0.004)

Observations 131,619 131,619 131,619
R-squared 0.206 0.150 0.117

Note: The base year is 2015 and is omitted in the regression. Prefecture fixed e!ects and Year fixed e!ects are
controlled. Standard errors are clustered at the prefecture level. *** p < 0.01, ** p < 0.05, * p < 0.1.



Table A6: RD Estimates of the Waste Import Ban on Water Quality, Adding Transition Period

Any Waste Plastics Textiles Slag Paper No Waste
(1) (2) (3) (4) (5) (6)

Panel A: DO
Waste Import Ban 2.559*** 2.823*** 3.197*** 4.595 0.692 0.077

(0.591) (0.690) (0.737) (1.304) (0.770) (0.389)
Transition 0.942** 0.923* 1.203** 1.947 -0.164 -0.108

(0.423) (0.492) (0.496) (0.545) (0.650) (0.215)

Observation 22,431 15,472 9,451 1,850 6,797 27,307
Panel B: Suboptimal DO

Waste Import Ban -0.293*** -0.309*** -0.279** -0.637* -0.222 0.022
(0.067) (0.077) (0.100) (0.076) (0.136) (0.059)

Transition -0.150** -0.146** -0.156** -0.346 -0.107 0.080*
(0.055) (0.060) (0.067) (0.123) (0.111) (0.041)

Observations 16,128 15,714 8,343 1,771 6,199 18,991
Panel C: Extremely Low DO

Waste Import Ban -0.122** -0.115** -0.144* -0.077 -0.058 0.021
(0.051) (0.055) (0.076) (0.050) (0.066) (0.028)

Transition -0.081* -0.077* -0.087 -0.083 -0.014 0.017
(0.040) (0.044) (0.060) (0.060) (0.036) (0.016)

Observations 23,566 20,202 11,628 3,160 7,560 32,001
Notes: Each cell reports the estimate from a separate regression of Equation (1), with a Transition dummy
added. “Transition” is a dummy variable that represents the period from September 1, 2017, to December 31,
2017. “Waste Import Ban” is a dummy variable that applies to dates on or after January 1, 2018. The date right
before the cuto! is August 31, 2017. To compare with the results in Table 2, the optimal bandwidth estimated
in Table 2 is added before and after the transition period in all estimations. Prefectures included in each column
are determined by their waste-importing status in 2017. The outcome variables for each panel are presented in
the far left column: dissolved oxygen level (DO); a dummy indicating DO<=6.5 (Suboptimal DO); and a dummy
indicating DO<=3 (Extremely Low DO). All outcome variables are filtered by month and day-fixed e!ects. All
estimations employ a local linear specification of the running variable, days. Standard errors are clustered at the
prefecture level. *** p < 0.01, ** p < 0.05, * p < 0.1.



Table A7: Drop Prefectures Imported Small Amount of Waste

Plastics Textiles Vanadium Slag Paper
(1) (2) (3) (4)

Panel A
DO 2.495*** 2.708*** 4.614*** 1.431

(0.704) (0.956) (1.512) (1.128)

Observations 11,529 6,824 1,633 4,110
Bandwidth 187.7 215.6 192.3 222.5

Panel B
Suboptimal DO -0.228*** -0.279*** -0.388* -0.235*

(0.078) (0.094) (0.216) (0.134)

Observations 10,458 5,643 2,157 3,568
Bandwidth 168 172.8 256.2 189.2

Panel C
Extremely Low DO -0.099 -0.115 -0.058 -0.162*

(0.068) (0.076) (0.081) (0.090)

Observations 14,067 6,954 2,928 4,442
Bandwidth 232.3 220.9 348.8 243.1
# of prefectures dropped 3 2 0 4

Notes: For each type of waste, prefectures that imported only a small amount of the waste are dropped. A small
amount is defined as less than 10% of the median value of each type of waste. The cuto! date is January 1,
2018. Observations during the transition period of Sept-Dec 2017 are dropped. The date right before the cuto!
is August 31, 2017. The outcome variables for each panel are presented in the far left column: dissolved oxygen
level (DO); a dummy indicating DO<=6.5 (Suboptimal DO); and a dummy indicating DO<=3 (Extremely Low
DO). All RDD model specifications are the same as in Table 2. The e!ective number of observations is reported.
Standard errors are clustered at the prefecture level. *** p < 0.01, ** p < 0.05, * p < 0.1.



Table A8: Drop Prefectures Imported Small Amount of Waste and Using Prefectures Imported

Only One Type of Waste

Plastic Only Textile Only Paper Only
(1) (2) (3)
Panel A

DO 2.190** 4.191*** 0.739
(0.981) (1.207) (0.748)

Observations 5,395 880 1,628
Bandwidth 190.9 190.9 285.6

Panel B
Suboptimal DO -0.315*** -0.479*** -0.271

(0.112) (0.157) (0.258)

Observations 5,742 694 1,336
Bandwidth 203.3 150.9 224.1

Panel C
Extremely Low DO -0.090 -0.183 -0.144

(0.112) (0.207) (0.119)

Observations 6,402 2,842 1,415
Bandwidth 228 631.5 242
# of prefectures 11 3 3

Notes: For each type of waste, prefectures that imported only a small amount of waste are dropped. A small
amount is defined as less than 10% of the median value of each type of waste. Furthermore, we exclusively focus
on prefectures that imported only one type of waste in 2017. The cuto! date is January 1, 2018. Observations
during the transition period of Sept-Dec 2017 are dropped. The date right before the cuto! is August 31, 2017.
The outcome variables for each panel are presented in the far left column: dissolved oxygen level (DO); a dummy
indicating DO<=6.5 (Suboptimal DO); and a dummy indicating DO<=3 (Extremely Low DO). All RDD model
specifications are the same as in Table 2. The e!ective number of observations is reported. Standard errors are
clustered at the prefecture level. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table A9: Compare waste import with Production in 2017

Waste Type Production

Plastic 5.8 Primary-form Plastic 84.6
Textile 0.3 Intermediate Textile 45.7
Vanadium slag 1.5 Steel 1046.4
Paper 4.3 Machine-made Paper and Paper Board 125.4

Notes: Unit is in million tons. Production data is from the National Bureau of Statistics China. Intermediate
textiles account for the annual production of both yarn and cloth. The cloth, as reported by the National Bureau
of Statistics of China, is measured in meters. To convert the length of the cloth to its weight, we assume that
each meter weighs 0.2 kg.



Table A10: RD Estimates of the Waste Import Ban on Water Quality in Provinces with Production

but No Waste Imports

Plastic Textile Steel Paper
(1) (2) (3) (4)
Panel A

DO 0.124 0.305 0.124 0.147
(0.415) (0.410) (0.415) (0.417)

Observations 19,037 16,414 19,037 18,959
Bandwidth 177.3 176.7 177.3 178.3

Panel B
Suboptimal DO -0.027 -0.064 -0.027 -0.035

(0.062) (0.062) (0.062) (0.062)

Observations 16,014 13,266 16,014 15,981
Bandwidth 148.8 142.7 148.8 149.4

Panel C
Extremely Low DO 0.015 -0.012 0.015 0.014

(0.028) (0.028) (0.028) (0.029)

Observations 23,170 24,248 23,170 23,156
Bandwidth 222.1 270 222.1 224.6

Notes: Samples are restricted to provinces that produced plastics, textiles, steel, or paper in 2017 (as listed in
the top row of each column) and did not import any banned waste in 2017. The cuto! date is January 1, 2018.
Observations during the transition period of Sept-Dec 2017 are dropped. All outcome variables are filtered by
month and day-fixed e!ects. All RDD model specifications are the same as in Table 2. The e!ective number
of observations is reported. Standard errors are clustered at the prefecture level. *** p < 0.01, ** p < 0.05, *
p < 0.1.



Table A11: Association between Waste Disposal and Water Quality Indicators

Dissolved Oxygen Suboptimal Dissolved
Oxygen

Extremely Low Dissolved
Oxygen

(1) (2) (3) (4) (5) (6)
Landfill -0.644*** 0.012* 0.021***

(0.034) (0.006) (0.003)
Industry wastewater discharge -0.260*** 0.039*** 0.035***

(0.018) (0.003) (0.002)
Observations 136,250 158,097 136,250 158,097 136,250 158,097
R-squared 0.002 0.000 0.001 0.000 0.001 0.000

Notes: Each column regresses the dissolved oxygen indicator on the landfill or industry water discharge.
Prefecture-fixed e!ects are included. The logarithm value of landfill and industry water discharge is used.
The sample is restricted to prefectures that imported any type of banned waste before 2017. Standard errors in
parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.


