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In this paper we study a class of weighted estimands, which we define as parameters that 

can be expressed as weighted averages of the underlying heterogeneous treatment effects. 

The popular ordinary least squares (OLS), two-stage least squares (2SLS), and two-way 

fixed effects (TWFE) estimands are all special cases within our framework. Our focus is on 

answering two questions concerning weighted estimands. First, under what conditions 

can they be interpreted as the average treatment effect for some (possibly latent) 

subpopulation? Second, when these conditions are satisfied, what is the upper bound on 

the size of that subpopulation, either in absolute terms or relative to a target population 

of interest? We argue that this upper bound provides a valuable diagnostic for empirical 

research. When a given weighted estimand corresponds to the average treatment effect 

for a small subset of the population of interest, we say its internal validity is low. Our paper 

develops practical tools to quantify the internal validity of weighted estimands.
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1 Introduction

Estimating average treatment e↵ects is an important objective in many areas of empirical research. Applied

researchers usually believe that treatment e↵ects are heterogeneous, which means that they vary across units.

Yet, many researchers also favor using well-established estimation methods that were not originally designed

with treatment e↵ect heterogeneity in mind. These methods may be chosen because of their computational

simplicity, comparability across studies, e↵ectiveness at incorporating high-dimensional covariates, and other

reasons. In turn, these methods often lead to estimands that can be represented as weighted averages of the

underlying treatment e↵ects of interest.

For example, consider a scenario where unconfoundedness holds given covariates X. Let treatment D be

binary, (Y (1), Y (0)) be potential outcomes, and let ⌧0(X) = E[Y (1)� Y (0) | X] be the conditional average

treatment e↵ect, or CATE, for covariate value X. Following Angrist (1998), if we additionally assume that

E[D | X] is linear in X, the population regression of Y on a constant, treatment D, and covariates X yields

a coe�cient on D that can be written as

�OLS =
E[var(D | X)⌧0(X)]

E[var(D | X)]
,

a weighted average of CATEs with nonnegative weights that integrate to 1. This parameter will be equal to

the average treatment e↵ect, E[Y (1)� Y (0)], if and only if var(D | X) and ⌧0(X) are uncorrelated.

In this paper we are concerned with a general class of weighted estimands that can be expressed as follows:

µ(a, ⌧0) :=
E[a(X)w0(X)⌧0(X)]

E[a(X)w0(X)]
=

E[a(X)⌧0(X) | W0 = 1]

E[a(X) | W0 = 1]
, (1.1)

where W0 2 {0, 1} is an indicator for a subpopulation, ⌧0(X) = E[Y (1)� Y (0) | W0 = 1, X] are the CATEs

given covariates X in the same subpopulation W0, w0(X) = P(W0 = 1 | X) is the probability of being in this

subpopulation given X, and a(X) is an identified weight function. The regression estimand above belongs

to this class, which can be seen by letting W0 = 1 with probability 1, and letting the weight function a(X)

be the conditional variance of treatment given covariates. Under some assumptions, this class also includes

the two-stage least squares (2SLS) and two-way fixed e↵ects (TWFE) estimands in instrumental variables

and di↵erence-in-di↵erences settings, as well as many other parameters. Here, the leading cases of W0 are

compliers in the case of 2SLS and treated units in the case of TWFE. In the case of 2SLS, we would thus

interpret ⌧0(X) as the average treatment e↵ect for compliers with covariates X.

There are two main questions that this paper seeks to answer. The first is whether, and under what

circumstances, the estimand in (1.1) corresponds to an average treatment e↵ect of the form E[Y (1)� Y (0) |
W

⇤ = 1], where W
⇤ 2 {0, 1} is an indicator for a (possibly latent) subpopulation of W0. An a�rmative

answer to this question would endow a specific weighted estimand with some degree of validity as a causal

parameter, given that it would then measure the average e↵ect of treatment for a subset of all units.

The second and primary aim of this paper is to quantify the degree of validity of µ(a, ⌧0) as a causal

parameter. To do this, we characterize the size, and the size relative to W0, of subpopulations W ⇤ associated

with the estimand in (1.1). More plainly, we ask how large P(W ⇤ = 1) and P(W ⇤ = 1 | W0 = 1) can be

in the representation µ(a, ⌧0) = E[Y (1) � Y (0) | W ⇤ = 1]. If these probabilities can be large, the estimand
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corresponds to the average treatment e↵ect for a (relatively) large subpopulation, and when they are small,

it corresponds to the average e↵ect for a (relatively) small number of units. If E[Y (1)�Y (0) | W0 = 1] is the

target parameter, we interpret a large value of P(W ⇤ = 1 | W0 = 1) as evidence of a high degree of internal

validity of µ(a, ⌧0) with respect to the target. If P(W ⇤ = 1), the corresponding marginal probability, is large,

we say that µ(a, ⌧0) is highly representative of the underlying population.

The answer to our questions about subpopulation existence and size depends on the information we

have about the CATE function, ⌧0. Specifically, in one case, we may want to know whether µ(a, ⌧0) can be

written as E[Y (1)�Y (0) | W ⇤ = 1] for any choice of ⌧0, or without any knowledge of this function. If this is

the case, then we know that the interpretation of µ(a, ⌧0) as a causal parameter is robust to heterogeneous

treatment e↵ects of any form, including the most adversarial CATE functions. We can also answer the

second question about the maximum values of P(W ⇤ = 1) and P(W ⇤ = 1 | W0 = 1) without needing to

estimate or know the structure of the CATEs. In a second case, we may want to know how representative

µ(a, ⌧0) is given knowledge of the CATE function. While the resulting maximum values of P(W ⇤ = 1) and

P(W ⇤ = 1 | W0 = 1) are less useful as measures of robustness than in the first case—after all, if the researcher

knows or estimates the entire CATE function, they can as well report any average of ⌧0(X) that may be

relevant—we consider this problem to be of independent theoretical interest. Additionally, if the researcher

estimates and compares the maximum values of P(W ⇤ = 1) or P(W ⇤ = 1 | W0 = 1) in both cases, they

can evaluate the importance of treatment e↵ect heterogeneity for the interpretation of µ(a, ⌧0) in a given

application.

In the first case, when the CATE function is unrestricted, we formally show that µ(a, ⌧0) can be written

as the average treatment e↵ect for a subpopulation of W0 if and only if a(X) � 0 with probability 1

given W0 = 1. The contrapositive of this statement is that the incidence of “negative weights,” that is,

P(a(X) < 0 | W0 = 1) > 0, implies that µ(a, ⌧0) cannot be represented as an average treatment e↵ect for

some subpopulation uniformly in ⌧0. This result provides a novel justification for the commonly invoked

requirement that the weights underlying a suitable estimand must all be positive. In a related contribution,

Blandhol, Bonney, Mogstad, and Torgovitsky (2022) have shown that, for estimands that do not depend

on potential outcome levels, the lack of negative weights is a su�cient and necessary condition for the

weighted estimand to be “weakly causal,” that is, to guarantee that the sign of ⌧0 will be preserved whenever

it is uniform across all units. We also provide simple expressions for the maxima of P(W ⇤ = 1) and

P(W ⇤ = 1 | W0 = 1). We show how knowledge of the estimand and of these expressions can be used to

construct simple bounds on the target parameter. We also propose an analog estimator for our measure

of internal validity. We then establish the nonstandard limiting distribution of this estimator, and describe

inference procedures for it.

In the second case, when the CATE function is assumed to be known, we show that µ(a, ⌧0) can be

written as an average treatment e↵ect whenever it lies in the convex hull of CATE values, a weaker criterion

than having nonnegative weights. The maximum values of P(W ⇤ = 1) and P(W ⇤ = 1 | W0 = 1) now depend

on ⌧0, and can be obtained via linear programming when X is discrete. We show the solution to this linear

program also admits a closed-form expression even when the support of X includes discrete, continuous, and

mixed components. This expression can be used to derive plug-in estimators.

Besides theoretical interest, we argue that P(W ⇤ = 1) and P(W ⇤ = 1 | W0 = 1) are a practically relevant

measure that may be appealing to applied researchers. First, as stated above, our initial results demonstrate
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that two commonly invoked criteria for weighted estimands—that they lack negative weights and that they

lie in the convex hull of CATE values—are necessary and su�cient (under di↵erent assumptions) for the

existence of their causal representation, that is, for P(W ⇤ = 1) and P(W ⇤ = 1 | W0 = 1) to be strictly

positive. This suggests that researchers invoking these criteria are (indirectly) interested in whether their

estimands can be represented as an average treatment e↵ect for some subpopulation. If this is the case,

it makes sense to better understand this implicit subpopulation, similar to how it is standard practice in

instrumental variables settings to study the subpopulation of compliers. Relatedly, even though our main

results concern subpopulation size, we also show that the distribution of covariates in the implicit subpopu-

lation is identified. Thus, practitioners can examine whether this subpopulation has similar characteristics

as the entire population, and report the associated sample statistics.

Second, we argue that when E[Y (1) � Y (0) | W0 = 1] is the parameter of interest, it is reassuring for

P(W ⇤ = 1 | W0 = 1) to be large. For one, related claims have been made by other researchers. Mogstad

and Torgovitsky (2024) assert that “[t]arget parameters that reflect larger subpopulations of the population

of interest are more interesting than those that reflect smaller and more specific subpopulations.” In a

setting with multiple instrumental variables, van ’t Ho↵, Lewbel, and Mellace (2024) argue that the largest

subpopulation of compliers is generally more interesting than other complier subpopulations. However, we

also formalize this claim and show how to construct bounds on E[Y (1)�Y (0) | W0 = 1] that only depend on

P(W ⇤ = 1 | W0 = 1), µ(a, ⌧0), and a support restriction. The bounds are easy to compute and converge to a

point as P(W ⇤ = 1 | W0 = 1) approaches 1. Indeed, large values of P(W ⇤ = 1) and P(W ⇤ = 1 | W0 = 1), our

primary measures of interest, guarantee that the weighted estimand is not “too di↵erent” from E[Y (1)�Y (0)]

and E[Y (1)� Y (0) | W0 = 1].

Literature Review

This paper is related to a large literature studying weighted average representations of common estimands,

including ordinary least squares (OLS), 2SLS, and TWFE in additive linear models. Some of the con-

tributions to this literature include Angrist (1998), Humphreys (2009), Aronow and Samii (2016), Bland-

hol, Bonney, Mogstad, and Torgovitsky (2022), S loczyński (2022), Chen (2024), and Goldsmith-Pinkham,

Hull, and Kolesár (2024) for OLS; Imbens and Angrist (1994), Angrist and Imbens (1995), Kolesár (2013),

S loczyński (2020), and Blandhol, Bonney, Mogstad, and Torgovitsky (2022) for 2SLS; and de Chaisemartin

and D’Haultfœuille (2020), Goodman-Bacon (2021), Sun and Abraham (2021), Athey and Imbens (2022),

Caetano and Callaway (2023), Borusyak, Jaravel, and Spiess (2024), and Callaway, Goodman-Bacon, and

Sant’Anna (2024) for TWFE.

A common view in much of this literature, attributable to Imbens and Angrist (1994), is that causal inter-

pretability of weighted estimands requires all weights to be positive. For example, Sun and Abraham (2021)

explicitly associate “reasonable weights” with weights that “sum to one and are non-negative.” Blandhol,

Bonney, Mogstad, and Torgovitsky (2022) show that the lack of negative weights and level dependence is

necessary and su�cient for an estimand to be “weakly causal,” that is, to guarantee sign preservation when

all treatment e↵ects have the same sign. In this paper we focus on the related problem of whether a weighted

estimand can be written as the average treatment e↵ect for some (possibly latent) subpopulation. While the

lack of negative weights is essential in our framework when the CATE function is unrestricted, negative and

nonuniform weights play a similar role when the CATE function is assumed to be known, at least as long as
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the weighted estimand lies in the convex hull of CATE values. This point is related to the negative view of

both negative and nonuniform weights in Callaway, Goodman-Bacon, and Sant’Anna (2024).

Some papers focus on weighted averages of heterogeneous treatment e↵ects as legitimate targets in their

own right rather than as probability limits of existing estimators. Hirano, Imbens, and Ridder (2003)

introduce the class of weighted average treatment e↵ects, which are a subclass of the more general class

of estimands in (1.1). Li, Morgan, and Zaslavsky (2018) discuss the connection between weighted average

treatment e↵ects and implicit target subpopulations. However, the internal validity and representativeness

of weighted estimands have received very little attention to date.

One exception is de Chaisemartin (2012, 2017), who revisits the interpretation of the instrumental vari-

ables (IV) estimand in the framework of Imbens and Angrist (1994). First, de Chaisemartin (2012) studies

the size of the largest subpopulation whose average treatment e↵ect is equal to that of compliers. While

this question is similar to ours, the corresponding subpopulation size is not point identified, unlike in this

paper. Our framework is also more general and includes instrumental variables settings as a special case.

Second, when the usual monotonicity assumption is violated, de Chaisemartin (2012, 2017) reinterprets the

IV estimand as the average treatment e↵ect for a subset of compliers. In our framework, this result can be

seen as an existence result in an intermediate case between the setting where ⌧0 is unrestricted and where

it is fixed. The specific homogeneity assumption considered by de Chaisemartin (2012, 2017) allows him to

salvage the causal representation of the IV estimand despite the incidence of negative weights.

Another exception is Aronow and Samii (2016), who explicitly acknowledge that the OLS estimand,

like the local average treatment e↵ect of Imbens and Angrist (1994), corresponds to the average e↵ect for

a “highly specific subpopulation” rather than the entire population, and consequently is not necessarily

representative of that population. Then, Aronow and Samii (2016) focus on whether mean covariate values

are similar in the entire sample and in the “e↵ective sample” used by OLS. We focus on the size of the

implicit subpopulation, which is di↵erent and complementary. We also extend the results on mean covariate

values to the entire distribution of covariates and to other weighted estimands besides OLS.

Yet another exception is Miller, Shenhav, and Grosz (2023), who focus on (one-way) fixed e↵ects esti-

mands and argue that it is problematic if “switchers,” that is, fixed-e↵ect groups with nonzero variation in

treatment, are a small subset of the sample. They also recommend that applied researchers report the sample

size when limited to “switcher groups.” In this paper we build a general framework to study the internal

validity and representativeness of weighted estimands, with the fixed e↵ects estimand (equivalent to OLS)

as a special case. We argue, similar to Miller, Shenhav, and Grosz (2023), that if a given weighted estimand

corresponds to the average treatment e↵ect for a small subpopulation, then it may not be an appropriate

target parameter, unless that subpopulation is interesting in its own right.

Plan of the Paper

We organize the paper as follows. In Section 2, we provide a more detailed discussion of the OLS estimand,

which is our motivating example. In Section 3, we develop our theoretical framework and examine the

conditions under which the estimand in (1.1) has a causal representation as an average treatment e↵ect over

a population. In Section 4, we establish our main results on the absolute and relative size of subpopulations

associated with the estimand in (1.1), which we propose as measures of representativeness and internal

5



validity of weighted estimands. In Section 5, we revisit our motivating example from Section 2 and apply

our theoretical results to additional examples of weighted estimands. In particular, we study 2SLS with a

binary instrument and TWFE under parallel trends assumptions. In Section 6, we briefly discuss estimation

and inference for the proposed measures. In Section 7, we provide an empirical application to the e↵ects of

unilateral divorce laws on female suicide, as in Stevenson and Wolfers (2006) and Goodman-Bacon (2021). In

Section 8, we conclude. The appendix contains our proofs as well as several additional results and derivations.

2 Motivating Example

Here we provide a more detailed discussion of the OLS estimand, which is our initial theoretical example.

We postpone the discussion of the 2SLS and TWFE estimands to Section 5. In the initial example, we have

a binary treatment D 2 {0, 1}, potential outcomes (Y (1), Y (0)), covariate vector X, and realized outcome

Y = Y (D). We make the following two assumptions.

Assumption 2.1 (Unconfoundedness). Let

1. Conditional independence: (Y (1), Y (0)) ?? D | X;

2. Overlap: p(X) := P(D = 1 | X) 2 (0, 1) almost surely.

Following Angrist (1998), we can establish that �OLS, the coe�cient on D in the linear projection of Y on

(1, D,X), satisfies the representation in (1.1). The following proposition summarizes Angrist’s (1998) result.

Proposition 2.1. Suppose Assumption 2.1 holds. Suppose p(X) is linear in X. Then

�OLS =
E[p(X)(1� p(X)) · E[Y (1)� Y (0) | X]]

E[p(X)(1� p(X))]
.

The linearity assumption can be removed if we instead regress Y on (1, D, h(X)) where h(X) is a vector of

functions of X such that p(X) is in their linear span. The overlap assumption can also be weakened since it

is not required for �OLS to be defined.

Proposition 2.1 implies that we can write �OLS as

�OLS =
E[a(X)⌧0(X)]

E[a(X)]
,

where a(X) = p(X)(1 � p(X)) and ⌧0(X) = E[Y (1) � Y (0) | X]. Here we implicitly set W0 = 1 with

probability 1. Thus, the regression coe�cient �OLS is a weighted average of CATEs whose weights are

p(X)(1� p(X)). Note that �OLS = ATE := E[Y (1)� Y (0)] if and only if a(X) and ⌧0(X) are uncorrelated,

which is the case, for example, when p(X) or ⌧0(X) is constant.

An alternative representation of this estimand can be obtained by focusing on the subpopulation of

treated units, D = 1. Let W0 = D, ⌧0(X) = E[Y (1)� Y (0) | D = 1, X] = E[Y (1)� Y (0) | X], which follows

from conditional independence, and let ã(X) = 1� p(X). Then, we can write

�OLS =
E[(1� p(X))w0(X)⌧0(X)]

E[(1� p(X))w0(X)]
=

E[ã(X)w0(X)⌧0(X)]

E[ã(X)w0(X)]
,
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where w0(X) = P(D = 1 | X) = p(X). Yet another representation can be obtained when focusing on the

subpopulation of untreated units by letting W0 = 1�D. We omit details for brevity.

We will return to this example in Section 5 after establishing conditions under which weighted estimands

have a causal representation (Section 3) and identifying the size of subpopulations that are represented by

these estimands (Section 4).

3 Causal Representation of Weighted Estimands

We now consider a general class of weighted estimands. In this section, we show necessary and su�cient

conditions for an estimand in this class to have a causal representation as an average treatment e↵ect over a

subpopulation. We provide these conditions under various assumptions—including no assumptions—on the

heterogeneity of treatment e↵ects.

Recall the earlier setting where we let D 2 {0, 1} denote a binary treatment variable, and let (Y (1), Y (0))

denote the corresponding potential outcomes under treatment and control, respectively. Let X 2 supp(X) ✓
RdX denote a dX -vector of covariates, where supp(·) denotes the support of a random vector. We suppose

that (Y (1), Y (0), D,X) are drawn from a common population distribution FY (1),Y (0),D,X .

Let W0 2 {0, 1} be an indicator variable used to denote a subpopulation {W0 = 1} and let ⌧0(X) =

E[Y (1)� Y (0) | W0 = 1, X] denote the conditional average treatment e↵ect given X in that subpopulation.

For example, this subpopulation can be the entire population by setting W0 = 1 almost surely, in which

case ⌧0 denotes the usual CATE function. It can also denote the subpopulation of treated units by setting

W0 = D. In the presence of a binary instrument Z, the complier subpopulation is defined by setting

W0 = (D(1) > D(0)), whereD(1) andD(0) are potential treatments. In this case, ⌧0 denotes the conditional

local average treatment e↵ect or conditional LATE.

Note that ⌧0 is defined for all values of X such that w0(X) = P(W0 = 1 | X) > 0.1 Throughout this

paper, we assume that P(W0 = 1) > 0, so that this subpopulation has a positive mass, which avoids technical

issues associated with conditioning on zero-probability events.

Also recall the weighted estimands of equation (1.1):

µ(a, ⌧0) =
E[a(X)w0(X)⌧0(X)]

E[a(X)w0(X)]
=

E[a(X)⌧0(X) | W0 = 1]

E[a(X) | W0 = 1]
.

The estimands we consider have the above representation and satisfy the following regularity conditions.

Assumption 3.1 (Regularity). Let E[⌧0(X)2] < 1, E[a(X)2] < 1, and E[a(X) | W0 = 1] > 0.

The first two restrictions are weak regularity assumptions that ensure the finiteness of the numerator of

µ(a, ⌧0). We rule out E[a(X) | W0 = 1] = 0 since it implies the estimand does not exist. The estimand in

(1.1) is unchanged if the sign of a(X) is reversed, so E[a(X) | W0 = 1] > 0 is a sign normalization.

1While ⌧0(X) is only defined when w0(X) > 0, we set ⌧0(X)w0(X) = 0 when w0(X) = 0.
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3.1 Alternative Representations of Weighted Estimands

The weighted estimands of equation (1.1) can also be written as a weighted sum when X is discrete, or an

integral when X is continuous. In the discrete case, let supp(X) = {x1, . . . , xK}, let pk := P(X = xk) > 0

for k = 1, . . . ,K, and assume W0 = 1 almost surely for simplicity. Then,

µ(a, ⌧0) =
KX

k=1

!k⌧0(xk) where !k =
a(xk)pkPK
l=1 a(xl)pl

, (3.1)

which are weights that sum to one. The representations in (1.1) and (3.1) are equivalent as we can obtain

a(xk) (up to scale) as the ratio !k/pk, and !k is defined as a function of {(a(xk), pk)}Kk=1 in equation (3.1).

From equation (3.1), we can see that a(xk) being constant ensures !k = pk, or that the estimand is the

ATE. Moreover,

a(xk)

a(xk0)
=

!k

!k0

� pk

pk0
,

which is the ratio of the relative weights of covariate cells {X = xk} and {X = xk0} in the estimand (!k/!k0)

and in the population (pk/pk0). The inequality a(xk) > a(xk0) indicates that covariate cell {X = xk} is

overweighted relative to {X = xk0}, when compared to their relative weights in the population.

Alternatively, consider the case where X is continuously distributed with density2 fX . Still assuming

W0 = 1 almost surely, we can write

µ(a, ⌧0) =

Z

supp(X)
!(x)⌧0(x) dx where !(x) =

a(x)fX(x)R
supp(X) a(x)fX(x) dx

(3.2)

is a weight function that integrates to 1. We focus on the representation in equation (1.1) since it seamlessly

accommodates discrete, continuous, and mixed covariates.

3.2 Regular Subpopulations

The first question we address is whether an estimand defined by (1.1) can be represented as E[Y (1)�Y (0) |
W

⇤ = 1], where W
⇤ 2 {0, 1} is binary and {W ⇤ = 1} characterizes a subpopulation of {W0 = 1}. Formally,

{W ⇤ = 1} forms a subpopulation if {W ⇤ = 1} ✓ {W0 = 1} or, equivalently, if W ⇤  W0 almost surely.

We impose some structure on this problem by restricting how these subpopulations may be formed. We

will consider what we call “regular subpopulations,” which we define here.

Definition 3.1. Let W
⇤ 2 {0, 1} such that P(W ⇤ = 1) > 0. Say {W ⇤ = 1} is a regular subpopulation of

{W0 = 1} if

1. (Inclusion) P(W ⇤ = 1 | W0 = 0) = 0;

2. (Conditional independence) W ⇤ ?? (Y (1), Y (0)) | X,W0 = 1.

2With respect to the Lebesgue measure.
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For convenience, we will abbreviate this as “W ⇤ is a regular subpopulation of W0”. We denote the set of

regular subpopulations of W0 as

SP(W0) = {W ⇤ 2 {0, 1} : W ⇤ is a regular subpopulation of W0}.

We consider subpopulations with positive masses that are subsets of {W0 = 1}. The second and main

requirement is that regular subpopulations do not depend on potential outcomes when conditioning on X

and the original population W0 = 1. While this may seem restrictive, it allows for rich and natural classes of

subpopulations. For example, consider the unconfoundedness restriction of Section 2 and let W0 be the entire

population, i.e. P(W0 = 1) = 1. In this case, regular subpopulations must satisfy W
⇤ ?? (Y (1), Y (0)) | X, or

be unconfounded. Regular subpopulations include the population of all treated (or untreated) individuals,

i.e. W ⇤ = D (or W ⇤ = 1�D), and any subpopulation characterized by a subset of supp(X). More generally,

they include any subpopulation that can be described through a combination of (D,X,U) where U is

independent from (Y (1), Y (0), X). For example, a subpopulation characterized by “fraction a(x) of units

with covariate X = x for all x 2 supp(X)” can be constructed as W ⇤ = (U  a(X)) where U ⇠ Unif(0, 1)

is independent from (Y (1), Y (0), X).

The conditional independence requirement rules out subpopulations that directly depend on the potential

outcomes such as W ⇤ = (Y (1) � Y (0)), the subpopulation of those who benefit from treatment. Note that

P(W ⇤ = 1 | X) = P(Y (1) � Y (0) | X) and P(W ⇤ = 1) = P(Y (1) � Y (0)) are not point-identified under

unconfoundedness. Another way to view this requirement is that regular subpopulations are policy relevant

in the sense that we could design a policy that targets a regular subpopulation. Indeed, a policy maker may

observe X and can use U to randomly target a fraction of units with specific values of X, but cannot observe

potential outcomes.

These particular subpopulations enjoy a number of useful properties. Two of them are characterized in

the following proposition.

Proposition 3.1 (Properties of regular subpopulations). Suppose that P(W0 = 1) > 0 and W
⇤ 2 SP(W0).

1. Suppose P(W ⇤ = 1 | W0 = 1, X) > 0. Then,

E[Y (1)� Y (0) | W ⇤ = 1, X] = E[Y (1)� Y (0) | W0 = 1, X]. (3.3)

2. Suppose E[⌧0(X)2] < 1. Then,

E[Y (1)� Y (0) | W ⇤ = 1] =
E[w⇤(X)⌧0(X) | W0 = 1]

E[w⇤(X) | W0 = 1]
= µ(w⇤

, ⌧0), (3.4)

where w
⇤(x) := P(W ⇤ = 1 | X = x,W0 = 1).

The first part of this proposition shows that average e↵ects within the original population W0 and regular

subpopulation W
⇤ are the same when conditioning on X. For example, this holds under unconfoundedness

for the subpopulation of treated individuals, W ⇤ = D. The second property allows us to write the average

e↵ect for W
⇤ = 1 using the same functional µ(·, ·) that was used to characterize the class of estimands we

analyze. This property will be used when studying the mapping between weighted estimands and average

e↵ects for regular subpopulations of W0.
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We conclude this subsection by showing that regular subpopulations are transitive, or that regular sub-

populations of a regular subpopulation of W0 are also regular subpopulations of W0.

Lemma 3.1 (Transitivity of regular subpopulations). Suppose W
⇤ is a regular subpopulation of W 0 and

that W 0 is a regular subpopulation of W0. Then, W ⇤ is a regular subpopulation of W0.

3.3 Existence of a Causal Representation for Weighted Estimands

We now consider necessary and su�cient conditions for the weighted estimand µ(a, ⌧0) to be written as the

average treatment e↵ect within a regular subpopulation of W0. As we will show, these conditions depend on

what is assumed about the function ⌧0 = E[Y (1)� Y (0) | X = ·,W0 = 1].

For example, if ⌧0 is constant in X, then any weighted estimand satisfying (1.1) equals E[Y (1)� Y (0) |
W0 = 1], the average treatment e↵ect within population {W0 = 1}. This is the case even when the sign of

weight function a(X) varies with X. However, if ⌧0 is nonconstant, the existence of causal representations

will depend on the weight function a(X). Among other cases, we will consider the case where no restrictions

are placed on function ⌧0, and in this case, the existence of a causal representation of µ(a, ⌧0) will require

the sign of a(X) to be constant.

To formalize this, let T denote a class of functions such that ⌧0 2 T and define

W(a;W0, T ) = {W ⇤ 2 SP(W0) : µ(a, ⌧0) = E[Y (1)� Y (0) | W ⇤ = 1] for all ⌧0 2 T }.

This is the set of regular subpopulations of W0 such that the estimand µ(a, ⌧0) = E[Y (1)� Y (0) | W ⇤ = 1]

for all ⌧0 functions in the set T . If the set W(a;W0, T ) is empty, then estimand µ(a, ⌧0) cannot be written

as an average treatment e↵ect over a regular subpopulation of W0 uniformly in ⌧0 2 T . We use this set to

formally define a notion of uniform causal representation.

Definition 3.2. A weighted estimand µ(a, ⌧0) has a causal representation uniformly in ⌧0 2 T if

W(a;W0, T ) 6= ;.

Recall that E[Y (1) � Y (0) | W ⇤ = 1] = µ(w⇤
, ⌧0) where w

⇤(X) = P(W ⇤ = 1 | W0 = 1, X), so W
⇤ 2

W(a;W0, T ) if µ(a, ⌧0) = µ(w⇤
, ⌧0) for all ⌧0 2 T . We examine further two main cases for the set T .

3.3.1 Existence Uniformly in ⌧0

We begin by considering the largest class of functions in which ⌧0 lies: the class of all functions, subject to

the moment condition in Assumption 3.1 that ensures the existence of µ(a, ⌧0). We denote this class by

Tall := {⌧0 : E[⌧0(X)2] < 1}.

In this function class, we show the existence of a causal representation is equivalent to the estimand’s weights

being nonnegative. In what follows, let amax := sup(supp(a(X) | W0 = 1)) be the essential supremum of

a(X) given W0 = 1.
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Theorem 3.1. Let µ(a, ⌧0) be an estimand satisfying equation (1.1). Suppose Assumption 3.1 holds and

that amax < 1. Then, µ(a, ⌧0) has a causal representation uniformly in ⌧0 2 Tall if and only if

P(a(X) � 0 | W0 = 1) = 1.

A uniform (in Tall) causal representation exists if and only if a(X) is nonnegative on the support of X |
{W0 = 1}. To give some intuition on why the sign of a(X) must be nonnegative with probability 1, we

present a contradiction that occurs when a(X) can be negative. Suppose that P(a(X) < 0 | W0 = 1) > 0

and consider the “adversarial” CATE function ⌧�(X) = (a(X) < 0). This CATE function is nonnegative

for all X, and implies a positive average e↵ect only for units with negative weights. However, it yields a

strictly negative weighted estimand, µ(a, ⌧�) = E[a(X) (a(X) < 0) | W0 = 1]/E[a(X) | W0 = 1] < 0.

Clearly, µ(a, ⌧�) cannot be the average treatment e↵ect for any subpopulation of W0, because averaging a

nonnegative CATE function over any subpopulation cannot yield a negative average.

Conversely, if a(X) � 0, our proof constructively defines a regular subpopulation W
⇤ for which the

average e↵ect is equal to the weighted estimand µ(a, ⌧0) uniformly in ⌧0 2 Tall. Let

W
⇤ =

✓
U  a(X)

amax

◆
·W0,

where U ⇠ Unif(0, 1) ?? (Y (1), Y (0), X,W0). This is a regular subpopulation of W0 for which the probability

of inclusion, conditional on X and W0 = 1, is proportional to a(X). We can also interpret µ(a, ⌧0) as the

average e↵ect of an intervention in which units with covariate value X are treated randomly with probability

a(X)/amax given W0 = 1. From this construction, we can see that w
⇤(X) = P(W ⇤ = 1 | W0 = 1, X) is

proportional to a(X), and therefore E[Y (1)� Y (0) | W ⇤ = 1] = µ(w⇤
, ⌧0) = µ(a, ⌧0) uniformly in ⌧0.

The condition amax < 1 restricts our attention to subpopulations with positive mass. We note that

amax is bounded above in each of our theoretical examples in Sections 2 and 5, implying that this condition

trivially holds in these cases.

As mentioned earlier, the condition that weights are nonnegative is commonly invoked and was shown in

Blandhol, Bonney, Mogstad, and Torgovitsky (2022) to be equivalent to an estimand being “weakly causal,”

which means that it is guaranteed to match the sign of ⌧0 whenever that sign is the same across all units.

Thus, in the class of weighted estimands we consider, estimands have a causal representation uniformly in

Tall if and only if they are weakly causal. This connection is formally established in Appendix A.

3.3.2 Existence for a Given ⌧0

We now provide an existence result that requires the causal representation to exist only for the given ⌧0,

rather than uniformly for ⌧0 in the larger set Tall. The following result depends on the CATE function ⌧0 in

the population, whereas Theorem 3.1’s condition depended only on the weight function a(X) and the nature

of the covariates’ support. Thus, the distribution of the potential outcomes will have an impact on the

existence of a causal representation given ⌧0. Using the notation from Definition 3.2, a causal representation

exists if and only if W(a;W0, {⌧0}) 6= ;. The following theorem characterizes this existence.

Theorem 3.2. Let µ(a, ⌧0) be an estimand satisfying equation (1.1). Suppose Assumption 3.1 holds. Then,
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µ(a, ⌧0) has a causal representation for the given ⌧0 if and only if

µ(a, ⌧0) 2 S(⌧0;W0) := {t 2 R : P(⌧0(X)  t | W0 = 1) > 0 and P(⌧0(X) � t | W0 = 1) > 0}.

The existence condition in Theorem 3.2 is weaker than the one in Theorem 3.1 since we no longer require

this representation to be valid for any CATE function, but rather just for the one that is identified from

the population. The necessary and su�cient condition in this theorem is rather weak, since it only requires

that the estimand is in the convex hull of the support of the CATEs. This means µ(a, ⌧0) has a causal

representation even with negative weights, as long as there are CATEs smaller and greater than µ(a, ⌧0).

We can see this support condition holds for all ⌧0 2 Tall if and only if µ(a, ⌧0) is in the support of ⌧0(X)

for any ⌧0 2 Tall. This is precisely the case when the weights a(X) are nonnegative since it guarantees

inf(supp(⌧0(X) | W0 = 1))  µ(a, ⌧0)  sup(supp(⌧0(X) | W0 = 1)) for any function ⌧0.

3.3.3 Existence in Intermediate Cases

Analyzing the causal representation of an estimand under no restrictions on ⌧0 could be viewed as unnec-

essarily conservative in some settings. At the other extreme, assuming knowledge of ⌧0 may be unrealistic,

especially in scenarios where X has many components which makes the estimation of ⌧0 more challenging.

For example, some shape constraints may be known to hold for ⌧0. In some economic applications one

may posit that ⌧0 is monotonic or convex in some components of X, or positive/negative over a subset of

supp(X | W0 = 1). In these cases, the existence of a causal representation may occur under weaker condi-

tions than those in Theorem 3.1, but stronger than those in Theorem 3.2. In particular, one may be able to

relax the requirement that a(X) � 0 without requiring that ⌧0 be completely known to the researcher. The

following proposition shows this is the case when ⌧0(X) is assumed to be linear in X.

Proposition 3.2. Let µ(a, ⌧0) be an estimand satisfying equation (1.1). Suppose Assumption 3.1 holds and

define

Tlin = {⌧0 2 Tall : ⌧0(X) = c+ d
0
X : (c, d) 2 R1+dX}.

Then, µ(a, ⌧0) has a causal representation uniformly in ⌧0 2 Tlin if and only if

E[a(X)X | W0 = 1]

E[a(X) | W0 = 1]
2 conv(supp(X | W0 = 1)),

where conv(·) denotes the convex hull.

The above proposition shows that restricting the class of CATE functions ⌧0 belongs to may remove the re-

quirement that a(X) � 0 for the existence of a uniform causal representation for an estimand. In particular,

the requirement here is that E[a(X)X|W0=1]
E[a(X)|W0=1] lies in the convex hull of the support of X given W0 = 1. When

X is scalar, this consists of an interval. This condition does not require a(X) be nonnegative. For example,

if supp(X) = {0, 1, 2} and W0 = 1 almost surely, then any combination of values of (a(0), a(1), a(2)) such

that E[a(X)X]/E[a(X)] 2 [0, 2] = conv(supp(X)) implies a causal representation. Let P(X = x) = 1/3

for x 2 {0, 1, 2} and (a(0), a(1), a(2)) = (1,�1, 1). Here units with X = 1 have a negative weight, but
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E[a(X)X]/E[a(X)] = 1 2 [0, 2], implying that the corresponding weighted estimand has a causal represen-

tation uniformly in ⌧0 2 Tlin.

We consider another class of CATE functions that restricts their heterogeneity. For K � 0, let

TBD(K) =

(
⌧0 2 Tall : sup

x,x02supp(X|W0=1)
|⌧0(x)� ⌧0(x

0)|  K

)
.

This function class uniformly bounds di↵erences of the CATE function. When K = 0, the CATE function

is constant, and thus equal to E[Y (1) � Y (0) | W0 = 1]. When K > 0, CATEs may di↵er in value, but the

maximum discrepancy between two CATEs is bounded above by K. We show that restricting the CATEs

to satisfy this bounded di↵erence assumption does not remove the requirement that a(X) be nonnegative,

unless K = 0, in which case all a functions yield a causal representation uniformly in TBD(0). We formalize

this in the next proposition.

Proposition 3.3. Let µ(a, ⌧0) be an estimand satisfying equation (1.1). Suppose Assumption 3.1 holds.

Then, µ(a, ⌧0) has a causal representation uniformly in TBD(K) when K > 0 if and only if

P(a(X) � 0 | W0 = 1) = 1.

The estimand µ(a, ⌧0) has a causal representation uniformly in TBD(0) for any a(·).

To understand this proposition, consider the adversarial CATE function ⌧
�(X) = K · (a(X) < 0), a

member of TBD(K), and assume P(a(X) � 0) < 1. Then we obtain the same contradiction we discussed

after Theorem 3.1, where the CATE is nonnegative for all covariate values but the estimand is negative,

implying that it cannot be written as an average e↵ect over a subpopulation.

These last two propositions show that the impact of restrictions on ⌧0 on the requirement that a(X) be

nonnegative critically depends on the nature of these restrictions. Generalizations to additional or empirically

motivated function classes are left for future work.

4 Quantifying the Internal Validity of Weighted Estimands

Many estimands will admit causal representations, but their associated subpopulations {W ⇤ = 1} will

generally di↵er. Also, a weighted estimand may not always correspond to the target estimand a researcher

is interested in. For example, a researcher may be interested in setting E[Y (1)�Y (0) | W0 = 1], the average

e↵ect in population {W0 = 1}, as the target parameter. In general, this parameter di↵ers from estimand

µ(a, ⌧0).

However, the set of subpopulations corresponding to a weighted estimand can be used to understand

how representative the weighted estimand is of the target. For example, we may seek estimands for which

P(W ⇤ = 1 | W0 = 1) attains values closest to 1, since they have a higher degree of internal validity with

respect to the target E[Y (1) � Y (0) | W0 = 1]. At one extreme, an estimand for which P(W ⇤ = 1 | W0 =

1) = 1 would be deemed to have the highest degree of internal validity for this target parameter since it

would equal E[Y (1)� Y (0) | W0 = 1].

We convert this interpretation in a formal measure of internal validity that we define here.
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Definition 4.1 (Internal validity). Let

P (a,W0; T ) = sup
W⇤2W(a;W0,T )

P(W ⇤ = 1 | W0 = 1)

denote the measure of internal validity of weighted estimand µ(a, ⌧0) over function class T .

Formally, P (a,W0; T ) is the sharp upper bound on P(W ⇤ = 1 | W0 = 1) for any regular subpopulation

W
⇤ of W0 such that the weighted estimand µ(a, ⌧0) has a causal representation as the average treatment

e↵ect over subpopulation W
⇤. Note that we set P (a,W0; T ) = 0 when W(a;W0, T ) is empty. This object

depends on the chosen function class T , as did Theorems 3.1 and 3.2 in the previous section. Given the

above terminology and assuming that E[Y (1)� Y (0) | W0 = 1] is the target, we call P (a,W0; T ) a measure

of the internal validity of estimand µ(a, ⌧0), and we use this definition in the remainder of the paper.

We can also compute the maximum value of P(W ⇤ = 1) across W ⇤ 2 W(a;W0, T ), which measures the

largest share of the entire population for which the weighted estimand has a causal representation. We refer

to this measure as a measure of representativeness. The measures of internal validity and representativeness

are the same when W0 = 1 almost surely.

Definition 4.2 (Representativeness). Let

P (a,W0; T ) · P(W0 = 1) = sup
W⇤2W(a;W0,T )

P(W ⇤ = 1)

denote the measure of representativeness of weighted estimand µ(a, ⌧0) over function class T .

Note that P(W ⇤ = 1) = P(W ⇤ = 1 | W0 = 1) · P(W0 = 1) since W
⇤ is a subpopulation of W0. This

maximum value of P(W ⇤ = 1) gives the internal validity of the weighted estimand with respect to target

estimand E[Y (1) � Y (0)], the average treatment e↵ect in the population from which the sample is drawn.

Our measures of internal validity and representativeness are closely linked and a subpopulation will maximize

P(W ⇤ = 1) if and only if it maximizes P(W ⇤ = 1 | W0 = 1). We will also show how to use these measures

to obtain simple bounds on target estimands.

We now derive explicit expressions for P (a,W0; T ). As earlier, we break down our results in two cases,

the first being when ⌧0 is unrestricted.

4.1 Quantifying Internal Validity Uniformly in ⌧0

Without imposing any restrictions on the CATE function, except for the existence of second moments, the

maximum value that P(W ⇤ = 1 | W0 = 1) can achieve is given by the following theorem.

Theorem 4.1. Let µ(a, ⌧0) be an estimand satisfying equation (1.1). Suppose Assumption 3.1 holds and

that amax < 1. If P(a(X) � 0 | W0 = 1) = 1, then

P (a,W0; Tall) =
E[a(X) | W0 = 1]

amax
.

If P(a(X) � 0 | W0 = 1) < 1, then P (a,W0; Tall) = 0.
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Here we see that the maximum size of a subpopulation characterizing the estimand µ(a, ⌧0) depends on a(X)

through two terms: its conditional mean in the numerator, and its supremum amax in the denominator. This

bound can be computed at what Imbens and Rubin (2015) call the “design stage” of the study, that is,

without any knowledge of the conditional distribution of the outcome. The bound depends solely on the

weight function a(·) and the distribution of X | {W0 = 1}.

To understand the supremum’s role in this expression, let w
⇤(X) = P(W ⇤ = 1 | X,W0 = 1) and note

that µ(a, ⌧0) = E[Y (1)� Y (0) | W ⇤ = 1] is equivalent to writing

µ(a, ⌧0) =
E[a(X)⌧0(X) | W0 = 1]

E[a(X) | W0 = 1]
=

E[w⇤(X)⌧0(X) | W0 = 1]

E[w⇤(X) | W0 = 1]
= µ(w⇤

, ⌧0) (4.1)

for all ⌧0 2 Tall. Equation (4.1) holding for all ⌧0 requires w⇤(X) to be exactly proportional to a(X). While

the range of a(X) is unconstrained, w⇤(X) must lie in [0, 1] to be a valid conditional probability. Since we

seek to maximize P(W ⇤ = 1 | W0 = 1) = E[w⇤(X) | W0 = 1], we let w⇤(X) be the largest multiple of a(X)

that lies in [0, 1] with probability 1, which is defined below:

W
⇤ =

✓
U  a(X)

amax

◆
·W0 and w

⇤(X) =
a(X)

amax
.

Here, U ⇠ Unif(0, 1) and U ?? (Y (1), Y (0), X,W0). This population places relatively more weight on units

with larger values of a(X). Specifically, the population {W ⇤ = 1} contains a random subset of {W0 = 1}
where the probability of inclusion is proportional to a(X). Thus, units with larger values of a(X) are more

likely to be included in W
⇤. All units in {W0 = 1} with X such that a(X) = amax are included in W

⇤,

whereas no units where a(X) = 0 are included.

The construction of this subpopulation is illustrated in Figure 1 for the case where x is continuous

and where we omit the conditioning on W0 = 1 for simplicity. We seek to maximize P(W ⇤ = 1) =
R
w

⇤(x)fX(x) dx with the requirement that w
⇤(x)  1 (or, equivalently, w⇤(x)fX(x)  fX(x)) and that

w
⇤(x) is a multiple of a(x). In the figure, we see that amax > 1 and thus the largest multiple of a(x) that is

weakly smaller than 1 is illustrated by the gray curve. The area under this curve is precisely P(W ⇤ = 1). Note

that the area under fX(x) is one, so closer alignment of the gray curve and the density fX(x) corresponds

to more representative estimands.

Several further comments about Theorem 4.1 are in order.

Remark 4.1 (Estimands and their corresponding interventions). We note that estimand µ(a, ⌧0) is invariant

to the scale of a(·) and thus can be written as

µ(a, ⌧0) =
E
h
a(X)
amax

⌧0(X) | W0 = 1
i

E
h
a(X)
amax

| W0 = 1
i ,

where a(X)/amax 2 [0, 1] almost surely when weights are nonnegative. From this representation, we can

link estimand µ(a, ⌧0) with an intervention where fraction a(X)/amax of units with covariate value X and

W0 = 1 are treated. For example, if W0 = 1 almost surely and a(X) = amax, then µ(a, ⌧0) is the average

treatment e↵ect, E[Y (1) � Y (0)], and it measures the average e↵ect of treatment among all units. Under

15



Figure 1: Characterizing a Representative Subpopulation Uniformly in Tall
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unconfoundedness, we also note that the average treatment e↵ect on the treated (ATT) can be written as

E[Y (1)� Y (0) | D = 1] =
E[P(D = 1 | X) · ⌧0(X)]

E[P(D = 1 | X)]
.

Thus, a weighted estimand with weights a(X) = P(D = 1 | X) can be interpreted either as the e↵ect of

an intervention where fraction P(D = 1 | X) of units with covariate X are treated or as the e↵ect of an

intervention where all treated units are treated. In our setting, we can interpret any weighted estimand with

nonnegative weights as the e↵ect of treatment for a feasible intervention defined only in terms of X, W0,

and independent noise U ⇠ Unif(0, 1) via W
⇤ = (U  a(X)/amax) ·W0. However, some of these estimands

correspond to interventions that are more likely to be of interest to researchers, such as the ATE or ATT.

Remark 4.2 (Uniqueness of representative subpopulations). It is also worth noting that the subpopulation

maximizing the level of internal validity is generally not unique. The population W
⇤ = (U  a(X)/amax) ·

W0 will generally change if U is replaced by another draw from a uniform distribution. The probability

(conditional on X) of any unit being part of W ⇤ does not change with the draw of U , but whether any given

unit is part of subpopulation {W ⇤ = 1} cannot be determined.

Remark 4.3 (Distributional characteristics of representative subpopulations). We can generally identify
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distributional characteristics of units within the population W
⇤. For example, when W0 is set to 1 almost

surely, we can write the average values of g(X) among subpopulation {W ⇤ = 1} as

E[g(X) | W ⇤ = 1] =
E[g(X)w⇤(X)]

E[w⇤(X)]
=

E[g(X)a(X)]

E[a(X)]
,

a simple function of weights a(·) and the marginal distribution of X. We can recover the average covariate

values in {W ⇤ = 1} by setting g(X) = X, or the entire distribution by considering g(X) = (X  x) for all

x 2 RdX . Reporting the average covariate values of units within and outside of W ⇤ can be of interest when

assessing the representativeness of µ(a, ⌧0).

Remark 4.4 (Defining the target estimand from the weighted estimand). Suppose we consider E[Y (1) �
Y (0) | W ⇤ = 1] to be the target estimand, where W

⇤ = (U  a(X)/amax) · W0 is the subpopulation for

which µ(a, ⌧0) = E[Y (1)� Y (0) | W ⇤ = 1] uniformly in ⌧0. For example, in the case of the OLS estimand in

Section 2, this consists of a subpopulation where the probability of inclusion is proportional to var(D | X),

the conditional variance of treatment. If this subpopulation is the target, it would be reasonable to infer

that the measure of internal validity of the estimand µ(a, ⌧0) is the maximum value of 1. Indeed, this is the

case because the estimand can be written as

µ(a, ⌧0) = E[Y (1)� Y (0) | W ⇤ = 1]

and {W ⇤ = 1} is trivially the largest regular subpopulation of {W ⇤ = 1}. This illustrates how the internal

validity of µ(a, ⌧0) is entirely dependent on the target estimand. On the other hand, the representativeness

of the weighted estimand, as measured by the largest value of P(W ⇤ = 1), is independent of this target. In

this case, it is less than one unless W ⇤ = 1 almost surely, or that the weighted estimand actually equals the

ATE. Theorem 4.4 below can also be applied to obtain this intuition.

We now consider a simple example to give further intuition for Theorem 4.1.

4.1.1 Illustrative Example: A Single Binary Covariate

Consider an estimand µ(a, ⌧0) where W0 = 1 almost surely, a(X) � 0, and where X is binary with support

supp(X) = {1, 2}. Let px = P(X = x) for x 2 {1, 2}. As in Section 3.1, the weighted estimand can be

written as a linear combination of the two CATEs:

µ(a, ⌧0) =
a(1)p1
E[a(X)]

⌧0(1) +
a(2)p2
E[a(X)]

⌧0(2) := !1⌧0(1) + !2⌧0(2).

Let ATE = E[Y (1)� Y (0)] be the target estimand, which can be written as

ATE = p1⌧0(1) + p2⌧0(2).

If a(1) = a(2), the relative weights placed on {X = 1} and {X = 2} by the estimand are equal to p1/p2, the

ratio of the weights placed by the ATE. Therefore, the estimand equals the ATE and thus clearly has the

maximum degree of internal validity with respect to the ATE. Applying Theorem 4.1, we can directly see
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that

P (a,W0; Tall) =
E[a(X)]

supx2{1,2} a(x)
=

a(1)p1 + a(2)p2
max{a(1), a(2)} =

a(2)(p1 + p2)

a(2)
= 1

when a(1) = a(2).

However, when a(1) 6= a(2), the estimand’s weights di↵er from (p1, p2), the population weights for

the two covariate cells. For concreteness, let (p1, p2) = (0.2, 0.8) and (a(1), a(2)) = (0.24, 0.09), where

the latter correspond, for example, to the OLS weights of Proposition 2.1 when the propensity score is

(p(1), p(2)) = (0.4, 0.1). In this case, (!1,!2) = (0.4, 0.6) and thus

µ(a, ⌧0) = 0.4 · ⌧0(1) + 0.6 · ⌧0(2) and ATE = 0.2 · ⌧0(1) + 0.8 · ⌧0(2).

Relative to the ATE, µ(a, ⌧0) overrepresents the population with X = 1 and underrepresents the population

with X = 2. The largest subpopulation {W ⇤ = 1} that causally represents the estimand can be constructed

by combining subsets of the subpopulations defined by {X = 1} and {X = 2}. Specifically, let

W
⇤ = (X = 1) +

✓
U  a(2)

a(1)
, X = 2

◆
= (X = 1) +

✓
U  3

8
, X = 2

◆
,

where U ⇠ Unif(0, 1) is independent of (Y (1), Y (0), X). This is a regular subpopulation that contains all

units with X = 1 and three eighths of units with X = 2, selected uniformly at random. Therefore

P(W ⇤ = 1 | X = 1) = w
⇤(1) = 1 and P(W ⇤ = 1 | X = 2) = w

⇤(2) =
3

8
,

which yields P(W ⇤ = 1) = p1w
⇤(1) + p2w

⇤(2) = 0.5. The same quantity can be obtained from Theorem

4.1, which implies that P (a,W0; Tall) = E[a(X)]/
⇣
supx2{1,2} a(x)

⌘
= (a(1)p1 + a(2)p2) /a(1) = 0.5. The

average treatment e↵ect in this subpopulation is given by

E[Y (1)� Y (0) | W ⇤ = 1] =
E[w⇤(X)⌧0(X)]

P(W ⇤ = 1)

= 2 (1 · ⌧0(1) · 0.2 + 3/8 · ⌧0(2) · 0.8)

= 0.4 · ⌧0(1) + 0.6 · ⌧0(2),

which equals µ(a, ⌧0) for any choice of ⌧0. Note that the relative weights placed on {X = 1} and {X = 2}
in subpopulation {W ⇤ = 1} are given by

P(X = 1 | W ⇤ = 1)

P(X = 2 | W ⇤ = 1)
=

0.4

0.6
=
!1

!2
,

matching the ratio of the weights on {X = 1} and {X = 2} assigned by the estimand. The subpopulation

{W ⇤ = 1} cannot expand while preserving this ratio since it already includes all units with X = 1. Therefore,

W
⇤ is the largest subpopulation for which µ(a, ⌧0) = E[Y (1)� Y (0) | W ⇤ = 1] for any ⌧0.
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4.2 Using the Measure of Internal Validity to Bound Average E↵ects

The subpopulation size in Theorem 4.1 can be used to bound the target estimand E[Y (1)� Y (0) | W0 = 1].

Consider a scenario where only the weighted estimand µ(a, ⌧0), which we assume has a causal representation

uniformly in Tall, and its internal validity are known. For example, this could be the case if a researcher uses

a weighted estimand (e.g., OLS) and reports the measure we propose in Definition 4.1 to quantify its degree

of internal validity for the ATE. To simplify notation, assume that W0 = 1 almost surely. Abstracting from

sample uncertainty, we only assume knowledge of the weighted estimand µ(a, ⌧0) and its internal validity,

given by P (a,W0; Tall). We can decompose the target estimand, here the ATE, as

E[Y (1)� Y (0)] = E[Y (1)� Y (0) | W ⇤ = 1] · P(W ⇤ = 1) + E[Y (1)� Y (0) | W ⇤ = 0] · (1� P(W ⇤ = 1))

for a W
⇤ 2 W(a;W0, Tall). If we have knowledge of bounds for the treatment e↵ect E[Y (1)�Y (0) | W ⇤ = 0],

e.g. from the support of the potential outcomes, we can obtain bounds on E[Y (1) � Y (0)]. For example, if

supp(Y (1)� Y (0)) = [B`, Bu], bounds for the target estimand are given by

[µ(a, ⌧0) · P(W ⇤ = 1) +B` · (1� P(W ⇤ = 1)), µ(a, ⌧0) · P(W ⇤ = 1) +Bu · (1� P(W ⇤ = 1))] . (4.2)

The width of these bounds is minimized when P(W ⇤ = 1) is maximized, or when it equals the measure of

internal validity for µ(a, ⌧0), given by P (a,W0; Tall). The resulting bounds are

⇥
µ(a, ⌧0) · P (a,W0; Tall) +B` · (1� P (a,W0; Tall)), µ(a, ⌧0) · P (a,W0; Tall) +Bu · (1� P (a,W0; Tall))

⇤
.

(4.3)

If P (a,W0; Tall) = 1, it is easy to see that the estimand equals the ATE and that the bounds in (4.3) collapse to

a point. However, the ATE is not uniquely determined from (µ(a, ⌧0), P (a,W0; Tall)) when P (a,W0; Tall) < 1.

The width of these bounds is (Bu�B`)·(1�P (a,W0; Tall)). Hence for fixed (B`, Bu), this width decreases

linearly with P (a,W0; Tall). Moreover, values of P (a,W0; Tall) close to 1, or high degrees of internal validity,

lead to narrow bounds. For example, if outcomes are binary with support {0, 1}, then [B`, Bu] = [�1, 1] and

knowing the values of (µ(a, ⌧0), P (a,W0; Tall)) constrains the ATE to lie in

⇥
µ(a, ⌧0) · P (a,W0; Tall)� (1� P (a,W0; Tall)), µ(a, ⌧0) · P (a,W0; Tall) + (1� P (a,W0; Tall))

⇤
.

In this case, the bounds are centered at the estimand multiplied by our measure of internal validity, while

the width of the bounds equals 2 · (1� P (a,W0; Tall)). It is easy to obtain a sample analog of these bounds

by combining estimators for µ(a, ⌧0) and our proposed estimator for P (a,W0; Tall) from Section 6 below.

We note that bounds on E[Y (1)�Y (0)] may be tightened by assuming knowledge of other aspects of the

joint distribution of (Y (1), Y (0), D,X). For example, if knowledge of a(·) is assumed, additional constraints

on E[Y (1) � Y (0)] can help narrow the bounds given in (4.3). We focus here on the case where we add a

single piece of additional information to µ(a, ⌧0), namely its internal validity, and how simple bounds can be

obtained from the estimand and our proposed measure. We leave refinements of such bounds under di↵erent

information sets to future work.
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Bounding Average E↵ects with Negative Weights

Now consider a case where the weighted estimand µ(a, ⌧0) has weights that are sometimes negative, i.e.,

P(a(X) < 0) > 0. We continue to assume that W0 = 1 almost surely. In this case, we know that µ(a, ⌧0) does

not have a causal representation uniformly in ⌧0 2 Tall and thus we cannot write µ(a, ⌧0) = E[Y (1)� Y (0) |
W

⇤ = 1] uniformly in ⌧0. However, simple algebra reveals that an estimand with negative weights can be

written as a weighted di↵erence of two nonnegatively weighted estimands:

µ(a, ⌧0) =
E[(a(X) (a(X) � 0) + a(X) (a(X)  0))⌧0(X)]

E[a(X)]

= !
+ · µ(a · (a � 0), ⌧0)� !

� · µ((�a) · (a  0), ⌧0),

where !+ := E[a(X) (a(X) � 0)]/E[a(X)] and !� := E[�a(X) (a(X)  0)]/E[a(X)] are both nonnegative,

and !
+ � !

� = 1. We note that (!+
,!

�) = (1, 0) when the estimand’s weights are nonnegative, so this

decomposition can be obtained regardless of the sign of a. Thus, by Theorem 3.1, we can write

µ(a, ⌧0) = !
+ · E[Y (1)� Y (0) | W+ = 1] � !

� · E[Y (1)� Y (0) | W� = 1], (4.4)

where W
+ and W

� characterize two disjoint, regular subpopulations. As above, suppose we want to bound

E[Y (1)� Y (0)], the average treatment e↵ect. Using the law of iterated expectations, we can write

E[Y (1)� Y (0)] = P(W+ = 1) · E[Y (1)� Y (0) | W+ = 1] + P(W� = 1) · E[Y (1)� Y (0) | W� = 1]

+
⇥
1� P(W+ = 1)� P(W� = 1)

⇤
· E[Y (1)� Y (0) | W+ +W

� = 0]. (4.5)

Substituting equation (4.4) in (4.5) and assuming that E[Y (1) � Y (0) | W
� = 1] and E[Y (1) � Y (0) |

W
+ +W

� = 0] lie in [B`, Bu] yields

E[Y (1)� Y (0)]  P(W+ = 1)

!+
· µ(a, ⌧0) +

✓
1� P(W+ = 1)

!+

◆
·Bu

as an upper bound for the ATE. A lower bound is obtained by replacing Bu with B`. Thus, the ATE lies in

the interval


P(W+ = 1)

!+
· µ(a, ⌧0) +

✓
1� P(W+ = 1)

!+

◆
·B`,

P(W+ = 1)

!+
· µ(a, ⌧0) +

✓
1� P(W+ = 1)

!+

◆
·Bu

�
. (4.6)

This interval is similar to the interval in (4.3), but the latter is only valid when weights are nonnegative.

These intervals are identical when weights are nonnegative because !+ = 1 and P(W+ = 1) = P(W ⇤ = 1)

in that case. In order to compute the interval in (4.6) and minimize its length, one needs to maximize the

value of P(W+ = 1), which corresponds to the level of internal validity of the estimand µ(a · (a � 0), ⌧0)

where a · (a � 0) � 0, and compute the value of !+. This interval depends only on the ratio of the two

quantities, which can be written as

P(W+ = 1)

!+
 P (a · (a � 0),W0; Tall)

!+
=

E[a(X) (a(X) � 0)]/ sup(supp(a(X) (a(X) � 0)))

E[a(X) (a(X) � 0)]/E[a(X)]
=

E[a(X)]

amax
.
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This last expression equals the level of internal validity of the original estimand µ(a, ⌧0) when it is assumed

(perhaps incorrectly) to have nonnegative weights. Thus, procedures used to quantify the internal validity

of weighted estimands can also be used on estimands with negative weights if the goal is to bound average

e↵ects. As mentioned earlier, these bounds do not make use of the entire distribution of (Y,D,X), but

simply of the original estimand µ(a, ⌧0) and of E[a(X)]/amax, the expression for the level of internal validity

under nonnegative weights.

4.3 Quantifying Internal Validity Given ⌧0

We can also ask how internally valid a weighted estimand can be, given knowledge of the CATE function.

In this case, the object of interest is

P (a,W0; {⌧0}) = sup
W⇤2W(a;W0,{⌧0})

P(W ⇤ = 1 | W0 = 1), (4.7)

where ⌧0 is a given CATE function. Since ⌧0 is known, the condition W
⇤ 2 W(a;W0, {⌧0}) can be written

as

µ(a, ⌧0) =
E[w⇤(X)⌧0(X) | W0 = 1]

E[w⇤(X) | W0 = 1]

or, equivalently,

E[(⌧0(X)� µ(a, ⌧0))w
⇤(X) | W0 = 1] = 0, (4.8)

where w
⇤(X) = P(W ⇤ = 1 | W0 = 1, X). Equation (4.8) is a linear constraint on the conditional probability

of being in subpopulation W
⇤. Additionally, the objective function P(W ⇤ = 1 | W0 = 1) = E[w⇤(X) |

W0 = 1] is linear in w
⇤. Thus, the optimization in (4.7) can be cast as a linear program. To see this,

consider as an example the case where W0 = 1 almost surely and where X is discrete with finite support,

i.e. supp(X) = {x1, . . . , xK}. Let fk := P(W ⇤ = 1, X = xk) denote the probability of being in subpopulation

W
⇤ and having covariate value xk. Note that fk 2 [0, pk] where pk = P(X = xk).

We can write the above optimization problem as

max
(f1,...,fK)�0

KX

k=1

fk such that fk  pk for k 2 {1, . . . ,K},

and
KX

k=1

(⌧0(xk)� µ(a, ⌧0))fk = 0,

a finite-dimensional linear program. This program has a feasible solution if ⌧0(xk) � µ(a, ⌧0) is not strictly

positive or strictly negative for all k, meaning that the weighted estimand lies in the convex hull of CATE

values, which is precisely stated in the condition for Theorem 3.2. While there exist many methods for

solving linear programs, the value function can be obtained through an algorithm that is simple to describe

analytically.

Let f = (f1, . . . , fK), p = (p1, . . . , pK), and tµ = (⌧0(x1)� µ(a, ⌧0), . . . , ⌧0(xK)� µ(a, ⌧0)). Without loss
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of generality, assume that ⌧0(x1)� µ(a, ⌧0)  ⌧0(x2)� µ(a, ⌧0)  · · ·  ⌧0(xK)� µ(a, ⌧0).

1. Set f = p.

2. If t0µf = 0, end the algorithm and report
PK

k=1 fk.

3. If t0µf 6= 0:

(a) If t0µf > 0, let k⇤ = max{k 2 {1, . . . ,K} : fk = pk} and set fk⇤ = max

⇢
0,

�
Pk⇤�1

k=1 (⌧0(xk)�µ(a,⌧0))pk

⌧0(xk⇤ )�µ(a,⌧0)

�
.

(b) If t0µf < 0, let k⇤ = min{k 2 {1, . . . ,K} : fk = pk} and set fk⇤ = max

⇢
0,

�
PK

k=k⇤+1(⌧0(xk)�µ(a,⌧0))pk

⌧0(xk⇤ )�µ(a,⌧0)

�
.

4. Go to step 2.

When µ(a, ⌧0) exceeds E[Y (1)� Y (0) | W0 = 1], this algorithm reduces the weights associated with smallest

CATEs until µ(a, ⌧0) equals E[Y (1) � Y (0) | W ⇤ = 1] for some subpopulation. When µ(a, ⌧0) < E[Y (1) �
Y (0) | W0 = 1], the same procedure is instead applied to the largest CATEs. The support assumption of

Theorem 3.2 guarantees that this algorithm ends.

When X is not discretely supported, the problem can still be cast as a linear program, but its dimension

may be infinite, which generates di�culties in implementation. However, we show this program has an

analytical solution for the size of the subpopulation of interest, P(W ⇤ = 1 | W0 = 1). The following theorem

gives its expression and is valid when vector X has an arbitrary kind of distribution, with continuous,

discrete, and mixed components, as is often the case in empirical applications.

Theorem 4.2. Let µ(a, ⌧0) be an estimand satisfying equation (1.1). Suppose Assumption 3.1 holds. Let

Tµ = ⌧0(X)� µ(a, ⌧0). If µ(a, ⌧0) 2 S(⌧0;W0),

P (a,W0; {⌧0})

=

8
>>>>>>>>><

>>>>>>>>>:

P(Tµ  ↵
+ | W0 = 1)� E[Tµ (Tµ↵+)|W0=1]

↵+

where ↵+ = inf{↵ 2 R : E[Tµ (Tµ  ↵) | W0 = 1] � 0} if µ(a, ⌧0) < E[Y (1)� Y (0) | W0 = 1]

P(Tµ � ↵
� | W0 = 1)� E[Tµ (Tµ�↵�)|W0=1]

↵�

where ↵� = sup{↵ 2 R : E[Tµ (Tµ � ↵) | W0 = 1]  0} if µ(a, ⌧0) > E[Y (1)� Y (0) | W0 = 1]

1 if µ(a, ⌧0) = E[Y (1)� Y (0) | W0 = 1].

(4.9)

If µ(a, ⌧0) /2 S(⌧0;W0), then P (a,W0; {⌧0}) = 0.

The computation of these bounds can be done using a linear programming algorithm when X is discrete, or

through plug-in estimators of the terms in equation (4.9) regardless of the nature of the support of X.

In this setting, the value P (a,W0; {⌧0}) is larger when the truncated subpopulations are smaller. In

particular, this is the case when there are a few units with extreme values of ⌧0 whose removal has a large

impact on the estimand, but a small impact on the share of the population.

Theorem 4.2 can also be illustrated visually. In Figure 2, the probability density function of ⌧0(X) is

drawn. In this figure, it is assumed that ⌧0(X) is continuously distributed, that W0 = 1 almost surely, and
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Figure 2: Characterizing a Representative Subpopulation When ⌧0 Is Known
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Notes: The figure assumes that ⌧0(X) is continuously distributed, that W0 = 1 almost surely, and that µ <
E[⌧0(X)] = ATE.

that µ < E[⌧0(X)] = ATE. The representative subpopulation is obtained by trimming away covariate values

that correspond to ⌧0(X) � ↵
+, where ↵+ is determined by the equation E[⌧0(X) | ⌧0(X)  ↵

+] = µ. The

size of the shaded area is the measure of internal validity.

4.3.1 Illustrative Example: A Single Continuous Covariate

To illustrate the previous theorem, let X be a continuously distributed covariate with support [xL, xU ]. Let

W0 = 1 almost surely, and let µ := µ(a, ⌧0) denote the estimand. Also, for simplicity assume that ⌧0(x)

is increasing in x and that ⌧0(xL) < µ < ⌧0(xU ). Without loss of generality, let E[Y (1) � Y (0)] � µ. If

E[Y (1)�Y (0)] = µ, then the estimand is perfectly representative of the population since it equals the average

treatment e↵ect over it. Now consider the case where E[Y (1) � Y (0)] > µ. In this case, the estimand is

larger than the ATE so it is not representative of the entire population.

We are seeking the largest subpopulation {W ⇤ = 1} such that E[Y (1)�Y (0) | W ⇤ = 1] = µ. Equivalently,

we can seek the smallest subpopulation {W� = 1} such that, when it is removed from the original population,

the average treatment e↵ect equals µ. The subpopulation {W� = 1} is related to {W ⇤ = 1} via W
�+W

⇤ =

1. We will search for W� such that E[Y (1)� Y (0) | W� = 0] = µ and P(W� = 1) is minimized.
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Since the ATE exceeds µ, we must have that E[⌧0(X) | W� = 1] > µ. For a given subpopulation of

size P(W� = 1), removing the subpopulation with the largest values of ⌧0(x) yields the largest decrease in

E[Y (1)� Y (0) | W� = 0]. Therefore, P (a,W0; {⌧0}) is obtained by removing a subpopulation of the kind

W
�(↵) = (⌧0(X) > ↵)

for a given threshold ↵. This subpopulation consists of units whose CATEs exceed ↵. This threshold is

determined by the constraint E[⌧0(X) | W�(↵) = 0] = µ, or

E[⌧0(X) | ⌧0(X)  ↵] = µ. (4.10)

This constraint states that once units with covariate values satisfying ⌧0(X) > ↵ are removed, the average

treatment e↵ect for the remaining units equals the weighted estimand. Since we assumed ⌧0 is increasing,

W
⇤ corresponds to all units with covariate values below threshold � = ⌧

�1
0 (↵). Therefore,

W
⇤ = (X  �

+),

where �+ = ⌧
�1
0 (↵+) and ↵

+ is the unique solution to (4.10). How large P(W ⇤ = 1) is depends on the

size of this fraction of removed units. A smaller subpopulation needs to be removed when ⌧0(X) has a long

right tail, and a larger subpopulation needs to be removed when the distribution of ⌧0(X) in this right tail

is shorter.

4.4 Generalizing to Subpopulations

The results from the previous two sections can be generalized to cases where we hold the average e↵ect for a

subset of W0 as the object of interest. Let W 0 be a regular subpopulation of W0 and E[Y (1)�Y (0) | W 0 = 1]

be the target parameter. In analogy with the previous sections, we ask (i) when does there exist a regular

subpopulation W
⇤ of W 0 such that µ(a, ⌧0) can be written as the average treatment e↵ect over W ⇤ and (ii)

how representative of W 0 is this estimand.

For concreteness, consider the example of Section 2 where W0 = 1. We can let W
0 = D, the treated

subpopulation, and have the ATT as the target parameter. This section’s results can be used to show that

there exists a uniform causal representation of the OLS estimand as an average e↵ect for a subpopulation of

the treated units. These results also allow us to compute the internal validity of the OLS estimand for this

target subpopulation.

We first present a result showing conditions for the existence of such population W
⇤ in the case where

⌧0 is unrestricted, and when ⌧0 is fixed. In what follows, we let w0(X) = P(W 0 = 1 | X,W0 = 1).

Theorem 4.3. Let µ(a, ⌧0) be an estimand satisfying equation (1.1). Suppose Assumption 3.1 holds and

that W 0 is a regular subpopulation of W0.

1. (Uniformly in ⌧0) Suppose sup(supp(a(X)/w0(X) | W0 = 1)) < 1.3 Then, there exists W
⇤ 2

W(a;W 0
, Tall) if and only if P(a(X) � 0 | W 0 = 1) = 1.

3We use the conventions 0/0 = 1 and a/0 = 1 when a > 0.
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2. (Given ⌧0) There exists W ⇤ 2 W(a;W 0
, {⌧0}) if and only if µ(a, ⌧0) 2 S(⌧0;W 0).

Note that letting W
0 = W0 yields Theorems 3.1 and 3.2 as special cases since W0 is a regular subpopulation

of itself by definition.

The condition sup(supp(a(X)/w0(X) | W0 = 1)) < 1 rules out uniform causal representations if there

are covariate values for which a(x) is strictly positive but are not represented in W
0, i.e. P(W 0 = 1 | X =

x,W0 = 1) = 0 when a(x) > 0. For example, if W 0 is a subpopulation of W0 defined by a subset of covariate

values such that W 0 = (X 2 X0) ·W0, then W
0 is a regular subpopulation but will fail the above inequality

if a(X) > 0 for X 2 supp(X | W0 = 1) \ X0. In the case where ⌧0 is known, the existence of a representative

subpopulation of W 0 is equivalent to the estimand being in the convex hull of supp(⌧0(X) | W 0 = 1).

Regarding the internal validity of a weighted estimand, we generalize Theorems 4.1 and 4.2 and ask how

large P(W ⇤ = 1 | W 0 = 1) can be given that W ⇤ is a regular subpopulation of W 0, which is itself a regular

subpopulation of W0.

Theorem 4.4. Let µ(a, ⌧0) be an estimand satisfying equation (1.1). Suppose Assumption 3.1 holds and

that W 0 is a regular subpopulation of W0.

1. (Uniformly in ⌧0) Suppose sup (supp (a(X)/w0(X) | W0 = 1)) < 1. If P(a(X) � 0 | W 0 = 1) = 1, then

P (a,W 0; Tall) = E[a(X) | W0 = 1] · P(W0 = 1)

P(W 0 = 1)
· inf

✓
supp

✓
w

0(X)

a(X)
| W 0 = 1

◆◆
.

If P(a(X) � 0 | W 0 = 1) < 1, then P (a,W 0; Tall) = 0.

2. (Given ⌧0) If µ(a, ⌧0) 2 S(⌧0;W 0), then

P (a,W 0; {⌧0})

=

8
>>>>>>>>><

>>>>>>>>>:

P(Tµ  ↵
+ | W 0 = 1)� E[Tµ (Tµ↵+)|W 0=1]

↵+

where ↵+ = inf{↵ 2 R : E[Tµ (Tµ  ↵) | W 0 = 1] � 0} if µ(a, ⌧0) < E[Y (1)� Y (0) | W 0 = 1]

P(Tµ � ↵
� | W 0 = 1)� E[Tµ (Tµ�↵�)|W 0=1]

↵�

where ↵� = sup{↵ 2 R : E[Tµ (Tµ � ↵) | W 0 = 1]  0} if µ(a, ⌧0) > E[Y (1)� Y (0) | W 0 = 1]

1 if µ(a, ⌧0) = E[Y (1)� Y (0) | W 0 = 1].

If µ(a, ⌧0) /2 S(⌧0;W 0), then P (a,W 0; {⌧0}) = 0.

We can also use this result to obtain bounds on P(W ⇤ = 1) or P(W ⇤ = 1 | W0 = 1). This can be done by

noting that W ⇤ is a subpopulation of both W
0 and W0, so

P(W ⇤ = 1) = P(W ⇤ = 1 | W 0 = 1) · P(W 0 = 1) and P(W ⇤ = 1 | W0 = 1) =
P(W ⇤ = 1 | W 0 = 1) · P(W 0 = 1)

P(W0 = 1)
.

Thus, bounds on these probabilities are trivially obtained from the bound on P(W ⇤ = 1 | W 0 = 1) from

Theorem 4.4 and knowledge of (P(W 0 = 1),P(W0 = 1)).
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5 Applications to Common Estimands

Here we consider three identification strategies where commonly used estimands follow the structure of

equation (1.1). We show how the results in Sections 3 and 4 apply in each of these cases. For simplicity,

we assume that amax = sup(supp(a(X) | W0 = 1)) = supx2supp(X|W0=1) a(x) for the remainder of the paper.

This condition is satisfied when a(·) is continuous or when X has finite support, for example. We also note

that our assumption amax < 1 holds trivially in every case considered below.

5.1 Unconfoundedness

5.1.1 Causal Representation and Internal Validity of OLS

In Section 2, we provided the expression for the coe�cient on D in a population regression of Y on (1, D,X):

�OLS =
E[p(X)(1� p(X))⌧0(X)]

E[p(X)(1� p(X))]
.

Suppose the target estimand is the average treatment e↵ect, i.e. W0 = 1 almost surely. By Theorem 3.1,

there exists a regular subpopulation W
⇤ such that �OLS equals the average treatment e↵ect over W ⇤ since

the weight function a(X) = p(X)(1 � p(X)) is nonnegative. By Theorem 4.1, the upper bound on the size

of subpopulation W
⇤ is given by

P (a,W0; Tall) =
E[p(X)(1� p(X))]

supx2supp(X) p(x)(1� p(x))
.

A corresponding subpopulation W
⇤ can be written as

W
⇤ =

 
U  p(X)(1� p(X))

supx2supp(X) p(x)(1� p(x))

!

where U ⇠ Unif(0, 1) ?? (Y (1), Y (0), X). This is a subpopulation where units which have a larger variation

in treatment given their covariate values are more likely to be included. The size of this subpopulation is

largest when var(D | X) = p(X)(1� p(X)) is constant, in which case P(W ⇤ = 1 | X) = 1. This is the case if

and only if p(X) has support equal to {b, 1� b} for some b 2 (0, 1). This is implied by D ?? X, or random

assignment. It can also be achieved if there exists a partition of supp(X) where P(D = 1 | X) = b on one

element and P(D = 1 | X) = 1 � b on its complement. Whenever var(p(X)(1 � p(X))) > 0, {W ⇤ = 1} will

be a strict subpopulation.

The size of this subpopulation is the expectation of var(D | X) divided by its maximum value. There

are a few ways this expression can be further simplified or bounded. Its numerator is bounded above by

var(D) = P(D = 1) · P(D = 0), which is particularly simple to estimate. As for the denominator, it is

a nonsmooth functional of p(·). However, if X is continuously distributed, it may be likely that p(X) is

continuously distributed and thus that 1/2 2 supp(p(X)). If this is the case, supx2supp(X) p(x)(1� p(x)) =

1/4. Combining these two approximations yields

P (a,W0; Tall)  4 · P(D = 1) · P(D = 0),
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when the support of p(X) includes 1/2. This bound is trivial when P(D = 1) = 1/2, but is informative

when the unconditional treatment probability is close to 0 or 1. For example, if P(D = 1) = 0.1, the OLS

estimand cannot causally represent more than 36% of the population. This is consistent with the result in

S loczyński (2022) that the OLS estimand is more similar to the ATE when P(D = 1) is close to 1/2.

When 1/2 2 supp(p(X)), we can also compute bounds on the ATE derived from the OLS estimand,

bounds on the support of (Y (1), Y (0)), and our measure of representativeness P (a,W0; Tall). Following the

expression in (4.3), bounds on the ATE are given by

[(�OLS �B`) · 4E[var(D | X)] +B`, (�OLS �Bu) · 4E[var(D | X)] +Bu] .

Estimating these bounds requires the estimation of one additional quantity beyond the OLS estimand, which

is the expectation of var(D | X). The width of these bounds depends crucially on Bu �B`, or the width of

the support for unit-level treatment e↵ects.

Alternatively, we can assess the internal validity of �OLS with respect to an alternative estimand such as

E[Y (1)� Y (0) | D = 1], the average treatment e↵ect on the treated. In this case, we can write

�OLS =
E[(1� p(X))w0(X)⌧0(X)]

E[(1� p(X))w0(X)]
,

where w0(X) = P(D = 1 | X) = p(X), the propensity score, and ã(X) = P(D = 0 | X) = 1 � p(X).

Applying Theorem 4.1 yields that

P (ã, D; Tall) =
E[1� p(X) | D = 1]

supx2supp(X|D=1)(1� p(x))
=

E[p(X)(1� p(X))]

P(D = 1) · supx2supp(X|D=1)(1� p(x))

is the largest value that P(W ⇤ = 1 | D = 1) can take. Once again, this bound depends only on the propensity

score and the distribution of X. This bound can also be obtained by using Theorem 4.4 and setting W0 = 1

and W
0 = D. This subpopulation satisfies

P(W ⇤ = 1 | X,D = 1) =
1� p(X)

1� infx2supp(X|D=1) p(X)

so units with smaller propensity scores are more likely to be included in W
⇤, given that they are treated.

P (ã, D; Tall) is maximized at 1 when p(X) is constant, or if D ?? X. In this case, P(W ⇤ = 1 | D = 1) = 1

and P(W ⇤ = 1) = P(D = 1).

If p(X) takes values close to 0, this bound equals

P (ã, D; Tall) =
E[p(X)(1� p(X))]

P(D = 1)
 P(D = 1) · P(D = 0)

P(D = 1)
= P(D = 0).

This suggests that the OLS estimand is more representative of the ATT when the fraction of untreated units

is larger. This again echoes the results in S loczyński (2022) on the relationship between P(D = 1) and the

interpretation of the OLS estimand.

We can also assess the internal validity of �OLS given ⌧0(X) = E[Y (1)�Y (0) | X]. For simplicity, assume

that ⌧0(X) has a continuous distribution and, without loss of generality, assume that ATE > �OLS. Then,
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using Theorem 4.2, we obtain

P (a,W0; {⌧0}) = P(⌧0(X)  b
⇤),

where b
⇤ satisfies E[⌧0(X) | ⌧0(X)  b

⇤] = �OLS. The quantity P (a,W0; {⌧0}) is largest when the least

amount of trimming needs to be applied. This is the case when the trimmed values are largest, or when

E[⌧0(X) | ⌧0(X) � b] is large when b is near the maximum of supp(⌧0(X)). More concretely, if some covariate

values in supp(X) have large CATEs, then considering a subpopulation that removes only a small subset

of supp(X)—those corresponding to large CATE values—can allow E[⌧0(X) | ⌧0(X)  b
⇤] and �OLS to be

equal.

5.2 Instrumental Variables

5.2.1 Relevant Results on 2SLS

Consider an endogenous binary treatment D 2 {0, 1} and a binary instrument Z 2 {0, 1}. Potential treat-

ments, denoted by (D(1), D(0)), are linked to the realized treatment through Z, that is, D = D(Z). Potential

outcomes, Y (d, z) for d, z 2 {0, 1}, may depend on both D and Z in the absence of an exclusion restriction.

Let Y = Y (D,Z) be the realized outcome. As before, let X denote covariates. We make the following

assumptions.

Assumption 5.1 (Instrument validity). We have

1. Exogeneity: (Y (0, 0), Y (1, 0), Y (0, 1), Y (1, 1), D(1), D(0)) ?? Z | X;

2. Exclusion: P(Y (d, 0) = Y (d, 1)) = 1 for d 2 {0, 1};

3. First stage: e(X) := P(Z = 1 | X) 2 (0, 1) and P(D(1) = 1 | X) 6= P(D(0) = 1 | X) almost surely.

We also make one of the following two nested monotonicity assumptions.

Assumption 5.2 (Strong monotonicity). P(D(1) � D(0) | X) = 1 almost surely.

Assumption 5.3 (Weak monotonicity). There exists a subset of the support of X such that P(D(1) �
D(0) | X) = 1 on it and P(D(1)  D(0) | X) = 1 on its complement.

The first instrumental variables estimand we consider was originally studied by Angrist and Imbens (1995).

In addition to Assumptions 5.1 and 5.3, suppose that the model for X is saturated, with K possible com-

binations of covariate values, i.e. let supp(X) = {x1, . . . , xK}. Let XS = (1, (X = x1), . . . , (X = xK�1))

and ZS = (Z,Z · (X = x1), . . . , Z · (X = xK�1)) = ZXS , where ZS is the constructed instrument vector.

The estimand in Angrist and Imbens (1995) is the following 2SLS estimand:

�2SLS :=

⇣
E [W 0

SQS ] (E [Q0
SQS ])

�1 E [Q0
SWS ]

⌘�1
E [W 0

SQS ] (E [Q0
SQS ])

�1 E [Q0
SY ]

�

1

,

where WS = (D,XS), QS = (ZS , XS), and [·]k denotes the kth element of the corresponding vector. This

estimand has been studied by Angrist and Imbens (1995), Kolesár (2013), S loczyński (2020), and Bland-

28



hol, Bonney, Mogstad, and Torgovitsky (2022), and the specific representation in Proposition 5.1 follows

S loczyński (2020).

Proposition 5.1. Suppose Assumptions 5.1 and 5.3 hold. Suppose X is discrete with finite support. Then

�2SLS =
E
h
e(X)(1� e(X)) · P (D(1) 6= D(0) | X)2 · E[Y (1)� Y (0) | D(1) 6= D(0), X]

i

E[e(X)(1� e(X)) · P(D(1) 6= D(0) | X)2]

=
E [| cov(D,Z | X)| · E[Y (1)� Y (0) | D(1) 6= D(0), X] | D(1) 6= D(0)]

E[| cov(D,Z | X)| | D(1) 6= D(0)]
.

This means that we can write �2SLS as

�2SLS =
E[a(X)w0(X)⌧0(X)]

E[a(X)w0(X)]
,

where W0 = (D(1) 6= D(0)) is the population of compliers and defiers, w0(X) = P(D(1) 6= D(0) | X),

⌧0(X) = E[Y (1)� Y (0) | D(1) 6= D(0), X], and a(X) = e(X)(1� e(X)) · P(D(1) 6= D(0) | X) = | cov(D,Z |
X)|, a nonnegative weight function. Note that �2SLS = LATE := E[Y (1)� Y (0) | D(1) 6= D(0)] if and only

if a(X) is uncorrelated with ⌧0(X) given D(1) 6= D(0).

The practical limitation of focusing on �2SLS is that applied researchers rarely create additional instru-

ments by interacting the original instrument with covariates (cf. Blandhol, Bonney, Mogstad, and Torgovit-

sky, 2022), which is how ZS is constructed to obtain �2SLS above. A more practically relevant estimand is

the “noninteracted” IV estimand,

�IV :=
h
(E [Q0

W ])
�1 E [Q0

Y ]
i

1
,

where Q = (Z,X) and W = (D,X). To introduce one of the representations of �IV below, define

c(X) := sign
⇣
P [D(1) � D(0) | X]� P [D(1)  D(0) | X]

⌘
,

where sign(·) is the sign function. We also make the following “rich covariates” assumption on the instrument

propensity score, which is implied by the saturated specification in Proposition 5.1.

Assumption 5.4 (Rich covariates). e(X) is linear in X.

Under the instrument validity assumption, the rich covariates assumption, and either monotonicity assump-

tion, S loczyński (2020) obtains the following representations for the “noninteracted” IV estimand.

Proposition 5.2. Suppose Assumptions 5.1, 5.3, and 5.4 hold. Then

�IV =
E[c(X) · e(X)(1� e(X)) · P(D(1) 6= D(0) | X) · E[Y (1)� Y (0) | D(1) 6= D(0), X]]

E[c(X) · e(X)(1� e(X)) · P(D(1) 6= D(0) | X)]

=
E[c(X) · var(Z | X) · E[Y (1)� Y (0) | D(1) 6= D(0), X] | D(1) 6= D(0)]

E[c(X) · var(Z | X) | D(1) 6= D(0)]
.

Suppose Assumptions 5.1, 5.2, and 5.4 hold instead. Then

�IV =
E[e(X)(1� e(X)) · P(D(1) > D(0) | X) · E[Y (1)� Y (0) | D(1) > D(0), X]]

E[e(X)(1� e(X)) · P(D(1) > D(0) | X)]
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=
E[var(Z | X) · E[Y (1)� Y (0) | D(1) > D(0), X] | D(1) > D(0)]

E[var(Z | X) | D(1) > D(0)]
.

It follows that we can write �IV as

�IV =
E[a(X)w0(X)⌧0(X)]

E[a(X)w0(X)]

under either monotonicity assumption. Under weak monotonicity, W0 = (D(1) 6= D(0)), w0(X) =

P(D(1) 6= D(0) | X), ⌧0(X) = E[Y (1) � Y (0) | D(1) 6= D(0), X], and possibly negative weights a(X) =

c(X) · var(Z | X). Under strong monotonicity, W0 = (D(1) > D(0)), w0(X) = P(D(1) > D(0) | X),

⌧0(X) = E[Y (1)� Y (0) | D(1) > D(0), X], and nonnegative weights a(X) = var(Z | X) � 0.

5.2.2 Causal Representation and Internal Validity of 2SLS

Consider again the setting of Section 5.2.1. The estimand �2SLS can be characterized as µ(a2SLS, ⌧0) for

a2SLS(X) = | cov(D,Z | X)|, W0 = (D(1) 6= D(0)), w0(X) = P(D(1) 6= D(0) | X), and ⌧0(X) =

E[Y (1)� Y (0) | D(1) 6= D(0), X].

Since a2SLS(X) � 0, there exists a subpopulation of {D(1) 6= D(0)} such that �2SLS is an average

treatment e↵ect over that subpopulation. The maximum size of that subpopulation is given by

P (a2SLS,W0; Tall) =
E[a2SLS(X) | W0 = 1]

supx2supp(X|W0=1) a2SLS(x)
=

E[| cov(D,Z | X)| | D(1) 6= D(0)]

supx2supp(X|D(1) 6=D(0)) | cov(D,Z | X = x)| .

The maximum value of P(W ⇤ = 1 | W0 = 1) is obtained when | cov(D,Z | X)| does not depend on X. This

occurs, for example, when the instrument and the fraction of units for which D(1) 6= D(0) are independent

of X. In this case, we have that �2SLS = E[Y (1) � Y (0) | W0 = 1], the average e↵ect of treatment in the

complier and defier subpopulation.

Under weak monotonicity, the IV estimand has the sameW0 and w0(X), but has aIV(X) = sign(P(D(1) �
D(0) | X)�P(D(1)  D(0) | X)) ·var(Z | X) = c(X) ·var(Z | X) instead. If P(c(X) = �1) > 0, then weights

are negative with positive probability and there does not exist a causal representation for the estimand �IV

that is uniform in ⌧0 2 Tall. However, there will exist a causal representation given ⌧0 if the support condition

of Theorem 3.2 holds, i.e. if �IV lies in the support of ⌧0(X).

If we assume strong monotonicity (Assumption 5.2), then aIV(X) = var(Z | X) � 0 and

P (aIV,W0; Tall) =
E[aIV(X) | W0 = 1]

supx2supp(X|W0=1) aIV(x)
=

E[var(Z | X) | D(1) > D(0)]

supx2supp(X|D(1)>D(0)) var(Z | X = x)
.

Here the internal validity of the IV estimand is maximized when var(Z | X) is constant, which occurs when

Z is independent of X. In this case, �IV equals LATE. The quantities P (aIV,W0; Tall) and P (a2SLS,W0; Tall)
are not ranked uniformly in the distributions of (D(1), D(0), X, Z) as there are data-generating processes

that make each of these two quantities larger than the other. For example, if var(Z | X) is constant but

P(D(1) 6= D(0) | X) is not, then P (a2SLS,W0; Tall) < P (aIV,W0; Tall). This scenario is plausible if Z

is randomly assigned and X is a vector of pre-assignment characteristics. This inequality is reversed if

a2SLS(X) = | cov(D,Z | X)| is constant but P(D(1) 6= D(0) | X) is not. They are equally representative
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when P(D(1) 6= D(0) | X) is constant. In this case, the estimands are equal, so this is not unexpected.

5.3 Di↵erence-in-Di↵erences

5.3.1 Relevant Results on TWFE

Now suppose units are observed for T periods and, for t 2 {1, . . . , T}, denote binary treatment byDt 2 {0, 1},
potential outcomes (Yt(1), Yt(0)), and realized outcome Yt = Yt(Dt). We assume units are untreated prior

to period G 2 {2, 3, . . . , T} [ {+1}, receive the treatment in period G, and remain treated thereafter. We

assume no units are treated in the first time period. This may include a group that remains untreated

throughout, for which G = +1. Thus, Dt = (G  t). The panel is balanced, that is, no group appears or

disappears over time.

The two-way fixed e↵ects estimand is often used in this setting, and consists of regressing the outcome

on the treatment indicator, group indicators, and period indicators. Using partitioned regression results, the

coe�cient on treatment indicator is

�TWFE :=

1
T

PT
t=1 E

h
D̈tYt

i

1
T

PT
t=1 E

h
D̈2

t

i ,

where D̈t = Dt � 1
T

PT
s=1 Ds � E[Dt] +

1
T

PT
s=1 E[Ds].

We assume a version of parallel trends most similar to the one in de Chaisemartin and D’Haultfœuille

(2020).

Assumption 5.5 (Di↵erence-in-di↵erences). We have

1. supp(G) = {2, 3, . . . , T} [ {+1};

2. For all t 2 {2, . . . , T} and g, g
0 2 supp(G), we have that E[Yt(0)�Yt�1(0) | G = g] = E[Yt(0)�Yt�1(0) |

G = g
0].

We use a proposition that is essentially a special case of Theorem 1 in de Chaisemartin and D’Haultfœuille

(2020) to obtain a representation of the two-way fixed e↵ects estimand as a weighted average.

Proposition 5.3. Suppose Assumption 5.5 holds. Then

�TWFE =

1
T

PT
t=1 E

h�
1� 1

T

PT
s=1 E[Ds | G]� E[Dt] +

1
T

PT
s=1 E[Ds]

�
· P(Dt = 1 | G) · E[Yt(1)� Yt(0) | G,Dt = 1]

i

1
T

PT
t=1 E

h�
1� 1

T

PT
s=1 E[Ds | G]� E[Dt] +

1
T

PT
s=1 E[Ds]

�
· P(Dt = 1 | G)

i .

We show the above representation satisfies equation (1.1) by introducing an auxiliary variable P that is

uniformly distributed on {1, . . . , T} independently from {(Yt(0), Yt(1), G)}Tt=1. This period variable denotes

the time period and we use it to define (Y (1), Y (0), Y,D) := (YP (1), YP (0), YP , DP ), which are potential

outcomes, the realized outcome, and treatment at random period P , respectively.
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Letting X = (G,P ), this means we can write �TWFE as

�TWFE =
E[a(X)w0(X)⌧0(X)]

E[a(X)w0(X)]
,

where W0 = D, w0(X) = P(D = 1 | G,P ) = D 2 {0, 1}, ⌧0(X) = E[Y (1) � Y (0) | D = 1, G, P ], and

the weight function a(X) = aTWFE(X) = 1 � P(D = 1 | G) � P(D = 1 | P ) + P(D = 1) is not generally

nonnegative.4 A nonnegative weight function can be obtained under the assumption that group-level average

treatment e↵ects are constant over time. This property was described in de Chaisemartin and D’Haultfœuille

(2020, Appendix 3.1) and Goodman-Bacon (2021, Section 3.1.1), and the resulting representations of the

two-way fixed e↵ects estimand are given in their Theorem S2 and equation (16), respectively. The following

proposition yields a simple expression for the weights in our setting.

Proposition 5.4. Suppose Assumption 5.5 holds and that E[Yt(1) � Yt(0) | D = 1, G] = E[Ys(1) � Ys(0) |
D = 1, G] for any s, t 2 {1, . . . , T}. Then

�TWFE =
E[aTWFE,H(G) · P(D = 1 | G) · E[Y (1)� Y (0) | D = 1, G]]

E[aTWFE,H(G) · P(D = 1 | G)]
,

where aTWFE,H(g) = P(D = 0 | G = g) · (P(D = 0 | P � g) + P(D = 1 | P < g)) � 0 for g 2 {2, . . . , T}.

As is the case of the representation in Proposition 5.3, the two-way fixed e↵ects estimand in Proposition 5.4

satisfies the representation in (1.1), with X = G, W0 = D, w0(X) = P(D = 1 | G), ⌧0(X) = E[Y (1)� Y (0) |
D = 1, G], and the weight function a(X) = aTWFE,H(G) � 0. This weight function is derived in the proof of

the proposition, and we show it is equivalent to equation (16) in Goodman-Bacon (2021) in Appendix G.

5.3.2 Causal Representation and Internal Validity of TWFE

We now consider the weights obtained in Proposition 5.4 under its assumptions. These weights are non-

negative and therefore Theorem 3.1 guarantees the existence of a causal representation for �TWFE uni-

formly in ⌧0 2 Tall. Using Theorem 4.1, the internal validity of �TWFE relative to target parameter

E[Y (1)� Y (0) | D = 1] is given by

P (aTWFE,H, D; Tall) =
E[aTWFE,H(G)w0(G)]

E[w0(G)] · supg2supp(G|D=1) aTWFE,H(g)

=

PT
g=2 var(D | G = g) · (P(D = 0 | P � g) + P(D = 1 | P < g)) · P(G = g)

P(D = 1) · supg2{2,...,T} P(D = 0 | G = g) · (P(D = 0 | P � g) + P(D = 1 | P < g))
.

Due to the absorbing nature of the treatment in our setting, all expressions involving the distribution of D

given P or G can be derived as a function of the marginal distribution of G. Therefore, P (aTWFE,H, D; Tall)
depends only on {P(G = g)}g2{2,...,T}.

To give some intuition, consider the case where T = 3 and therefore G 2 {2, 3,+1}. In this case,

4Here, ⌧0(X) is what Callaway and Sant’Anna (2021) call “the group-time average treatment e↵ect.”
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P (aTWFE,H, D; Tall) will simply be a function of (P(G = 2),P(G = 3)). Calculations yield that

P (aTWFE,H, D; Tall) =

8
>>><

>>>:

2P(G=2)+!P(G=3)
2P(G=2)+P(G=3) if ! < 1
!�12P(G=2)+P(G=3)

2P(G=2)+P(G=3) if ! > 1

1 if ! = 1,

where

! =
4� 2P(G = 2)� 4P(G = 3)

2� 2P(G = 2)� P(G = 3)
=

aTWFE,H(2)

aTWFE,H(3)
.

Therefore, the TWFE estimand is perfectly representative of the ATT if and only if ! = 1.

With some algebra, we can see that ! < 1 if and only if P(G = 3) > 2/3, while ! > 1 if and only if

P(G = 3) < 2/3. We can also see that P (aTWFE,H, D; Tall) is equal to 1 when P(G = 3) = 2/3, and that

the internal validity of the TWFE estimand declines as |P(G = 3) � 2/3| increases. This is due to weight

function aTWFE,H(g) being constant in g if and only if the fraction of units treated in the third period is

2/3. As before, constant weights imply that the weighted estimand equals the average treatment e↵ect over

{W0 = 1}, which corresponds to the treated subpopulation here.

6 Estimation and Inference

We now consider the estimation and inference for our measures of internal validity and representativeness.

We will focus our attention on the case when T = Tall. Estimation and inference for P (a,W0; {⌧0})
is related to the question of estimation and inference in linear programs with estimated constraints. See

Andrews, Roth, and Pakes (2023), Cox and Shi (2023), Fang, Santos, Shaikh, and Torgovitsky (2023), and

Cho and Russell (2024) for recent advances on this topic.

To measure internal validity, we seek to estimate

P (a,W0; Tall) =
E[a(X) | W0 = 1]

amax
=

E[a(X)w0(X)]

E[w0(X)] · amax
. (6.1)

Suppose we observe a random sample of size n, {(Wi, Xi)}ni=1, where Wi are a set of variables that allow

the estimation of a(·) and w0(·). For example, under unconfoundedness we can let Wi = Di since the

distribution of (D,X) is su�cient to identify a(·); the outcome’s distribution does not a↵ect P (a,W0; Tall).
In our instrumental variables examples, we let Wi = (Di, Zi).

Assuming the existence of estimators for a(·) and w0(·), we can propose the following analog estimator

for P (a,W0; Tall). Start by noting that we can estimate E[a(X) | W0 = 1] via

1
n

Pn
i=1 ba(Xi) bw0(Xi)

1
n

Pn
i=1 bw0(Xi)

,

which will be consistent under standard conditions on ba and bw0. However, estimating amax, the essential

supremum of a(X) given W0 = 1, is more delicate. In some of our examples, this supremum is known or can
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be bounded above without needing the use of data. For example, the OLS estimand under unconfoundedness

has weight function a(X) = p(X)(1� p(X)) which is naturally bounded above by 1/4. If X is continuously

distributed, it is possible that 1/4 lies in the support of a(X), and thus we may side-step the estimation

of this term. The IV estimand of Section 5.2.1 has weights aIV(X) = var(Z | X) which are also naturally

bounded above by 1/4. Similarly, a2SLS(X) = | cov(D,Z | X)| 
p

var(D | X) var(Z | X)  1/4 using the

Cauchy–Schwarz inequality. If knowledge of amax is not assumed, but supp(X | W0 = 1) is known and

a(x) is continuous5, then one could use supx2supp(X|W0=1) ba(x) as an estimator for amax. This estimator will

be consistent when ba(x) is consistent for a(x) uniformly in x 2 supp(X | W0 = 1). Many parametric and

nonparametric estimators for a(·) can be shown to satisfy this requirement.

In the case when supp(X | W0 = 1) is not known a priori, one can also estimate it. We focus the rest

of this section on one particularly common case, where X is discretely distributed. In this case, a(x) and

w0(x) can usually be estimated “cell-by-cell” and be
p
n-consistent with a limiting Gaussian distribution.

In this case, we will see that inference on P (a,W0; Tall) is generally nonstandard and, as a result, most

common bootstrap procedures fail. WhenX has a continuous component, there are many di↵erent estimation

approaches and the limiting distribution of estimators of P (a,W0; Tall) will vary with the type of estimators

(parametric/nonparametric), rate of convergence, type of knowledge assumed for supp(X | W0 = 1), etc.

We consider the following simple plug-in estimator which does not require knowledge of supp(X | W0 = 1):

b
P =

1
n

Pn
i=1 ba(Xi) bw0(Xi)

1
n

Pn
i=1 bw0(Xi) ·maxi: bw0(Xi)>cn ba(Xi)

,

where cn is a tuning parameter that converges to 0 as n ! 1. Note that this tuning parameter is absent when

w0 is known, such as under unconfoundedness: see Section 2. This estimator does not assume knowledge

of the support of X given W0 = 1, but it can also be implemented by taking the maximum over supp(X |
W0 = 1) when it is known.

Let supp(X) = {x1, . . . , xK} and denote by pj = P(X = xj) the frequency of cell j and let bpj =
1
n

Pn
i=1 (Xi = xj) denote its sample frequency. Let b✓ = (ba, bw0, bp) where ba = (ba(x1), . . . ,ba(xK)), bw0 =

( bw0(x1), . . . , bw0(xK)), and bp = (bp1, . . . , bpK). Let ✓ = (a,w0,p) denote their population counterparts.

We make the following assumptions on the behavior of the preliminary estimators.

Assumption 6.1 (Preliminary estimators). Let

p
n(b✓ � ✓)

d�! Z

where Z := (Za,Zw0 ,ZX) 2 R3K has a Gaussian distribution.

The above assumption is often satisfied when X has finite support since estimators for a(xj) and w0(xj) can

be obtained using only the observations for which Xi = xj . Note that the limiting distribution of Zw0 may

be degenerate. For example, if W0 = 1 a.s., then bw0(x) = w0(x) = 1 for all x 2 supp(X) and thus Zw0 = 0K

almost surely, where 0K is a K-vector of zeros.

The next theorem shows the consistency of bP and establishes the limiting distribution of this estimator.

To simplify the exposition, we use P to denote P (a,W0; Tall) in what follows.

5Note that a(x) is trivially continuous on finite support.
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Theorem 6.1 (Consistency and asymptotic distribution). Suppose Assumption 6.1 holds. Suppose cn =

o(1) and cn
p
n ! 1 as n ! 1. Suppose P 6= 0. Then, bP is consistent for P and

p
n(bP � P )

d�!  (Z),

where  is a continuous mapping defined in equation (6.2).

We now characterize the mapping  . Let Za(j) denote the jth element of Za and similarly define Zw0(j)

and ZX(j) for j 2 {1, . . . ,K}. Let

 (Z) =
KX

j=1

w0(xj)pj
P(W0 = 1)amax

Za(j) � E[a(X) | W0 = 1]

a2max

max
j2 X+

Za(j)

+
KX

j=1

(a(xj)� E[a(X) | W0 = 1])pj
P(W0 = 1)amax

Zw0(j) +
KX

j=1

(a(xj)� E[a(X) | W0 = 1])w0(xj)

P(W0 = 1)amax
ZX(j), (6.2)

where  X+ = {j 2 {1, . . . ,K} : a(xj) = amax}.

The mapping  is linear if and only if a(x) is maximized at a unique value x 2 supp(X | W0 = 1), and

nonlinear if multiple values maximize a(x). The linearity of this mapping crucially a↵ects the choice of the

inference procedure. When  is linear, the limiting distribution of bP is Gaussian and common bootstrap

procedures, such as the nonparametric bootstrap, are valid whenever they are valid for b✓.

However, when a(x) is maximized at more than one value, the limiting distribution of bP is nonlinear

in Z and non-Gaussian, because it depends on the maximum of two Gaussian variables. In these cases, it

can be shown (see Theorem 3.1 in Fang and Santos (2019)) that standard bootstrap approaches are invalid.

However, using the fact that the estimand P can be written as a Hadamard directionally di↵erentiable

mapping of ✓ implies that alternative bootstrap procedures, such as those proposed by Hong and Li (2018)

and Fang and Santos (2019), can be applied to obtain valid inferences on P .

We propose a bootstrap procedure that can be applied regardless of the linearity of  . In order to show

its validity, we assume that the limiting distribution Z can be approximated via a bootstrap procedure.

Assumption 6.2 (Bootstrap for first-step estimators). Let Z⇤ := (Z⇤
a,Z⇤

w0
,Z⇤

X) 2 R3K be a random vector

such that Z⇤ p Z, where p denotes convergence in probability conditioning on the data used to compute b✓.

This assumption is easily satisfied when bp are sample frequencies, (ba, bw0) are cell-by-cell estimators that are

asymptotically linear and Gaussian, and when Z⇤ is the distribution of these estimators under a standard

bootstrap approach. For example, under the nonparametric bootstrap we can let Z⇤
X(j) =

p
n(bp⇤j �bpj) where

bp⇤j = 1
n

PN
i=1 (X⇤

i = xj), where (X⇤
1 , . . . , X

⇤
n) are drawn from the empirical distribution of (X1, . . . , Xn).

Theorem 6.2 (Bootstrap validity). Suppose the assumptions of Theorem 6.1 hold and that Assumption

6.2 holds. Then,

b (Z⇤)
p  (Z)

as n ! 1, where b is defined in equation (6.3).
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We now characterize the mapping b . Let Z⇤
a(j) denote the jth element of Z⇤

a and similarly define Z⇤
w0

(j).

Let

b (Z⇤) =
KX

j=1

bw0(xj)bpj
bP(W0 = 1)bamax

Z⇤
a(j) �

bE[a(X) | W0 = 1]

ba2max

max
j2b X+

Z⇤
a(j)

+
KX

j=1

(ba(xj)� bE[a(X) | W0 = 1])bpj
bP(W0 = 1)bamax

Z⇤
w0

(j) +
KX

j=1

(ba(xj)� bE[a(X) | W0 = 1]) bw0(xj)
bP(W0 = 1)bamax

Z⇤
X(j), (6.3)

where

bE[a(X) | W0 = 1] =
1
n

Pn
i=1 ba(Xi) bw0(Xi)

1
n

Pn
i=1 bw0(Xi)

, bP(W0 = 1) =
1

n

nX

i=1

bw0(Xi), bamax = max
i: bw0(Xi)>cn

ba(Xi).

The set b X+ is defined as all elements j 2 {1, . . . ,K} for which ba(xj) is within ⇠n of the maximal value,

where ⇠n is a positive sequence satisfying ⇠n = o(1) and ⇠n
p
n ! 1 as n ! 1.

Formally,

b X+ =

⇢
k 2 {1, . . . ,K} : ba(xk) � max

i: bw0(Xi)>cn
ba(Xi)� ⇠n

�
.

The proof of Theorem 6.2 shows that this set consistently estimates  X+ and thus satisfies the conditions

of Theorem 3.2 in Fang and Santos (2019).

The bootstrap procedure is valid whether the limiting distribution is Gaussian or not. If we assume a(x)

is maximized at a single value, standard bootstrap procedures can also be used to approximate the limiting

distribution of bP .

We propose the following bootstrap procedure to compute a one-sided (1� ↵) confidence interval for P .

Algorithm 6.1 (One-sided confidence interval for P ). We compute the confidence interval in three steps:

1. Compute b✓ and bP using the random sample {(Wi, Xi)}ni=1;

2. For bootstrap samples b = 1, . . . , B, compute b✓⇤,b = (ba⇤,b, bw⇤,b
0 , bp⇤,b) and Z⇤,b =

p
n(b✓⇤,b � b✓);

3. Compute bq↵, the ↵ quantile of b (Z⇤,b), and report the interval
h
0, bP � bq↵/

p
n

i
.

We can also view these inferential problems through the lens of intersection or union bounds. For example,

we can write

P (a,W0; Tall) = inf
x2supp(X|W0=1)

E[a(X)w0(X)]

E[w0(X)] · a(x)
:= inf

x2supp(X|W0=1)
P (x).

Computing a one-sided confidence interval for P (a,W0; Tall) of the kind [0, bP
+
] can be cast as doing inference

on intersection bounds. Chernozhukov, Lee, and Rosen (2013) o↵er methods for such problems. Equivalently,

the computation of a one-sided confidence interval [bP
�
, 1] is related to inferential questions in union bounds:

see Bei (2024). We leave all details for future work.
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7 Empirical Application

In this section, we implement the proposed tools in an application to the e↵ects of unilateral divorce laws in

the U.S. on female suicide, as in Stevenson and Wolfers (2006). Between 1969 and 1985, 37 states (including

the District of Columbia) reformed their law by enabling each spouse to seek divorce without the other

spouse’s consent. Stevenson and Wolfers (2006) argue that these “unilateral” or “no-fault” divorce laws

reduced female suicide, domestic violence, and spousal homicide. The results on female suicide are also

replicated by Goodman-Bacon (2021), whose analysis we follow here.

Our sample consists of 41 states observed over the 1964–1996 period. The outcome of interest is the

state- and year-specific female suicide rate (per million women), as computed by the National Center for

Health Statistics (NCHS). The treatment is whether the state allowed unilateral divorce in a given year.

Following Goodman-Bacon (2021), our sample omits Alaska and Hawaii. Additionally, we omit Louisiana,

Maryland, North Carolina, Oklahoma, Utah, Vermont, Virginia, and West Virginia. These eight states (and

Alaska) had unilateral divorce laws preceding 1964 and are therefore always treated within our timeframe.

Panel A of Table 1 reports our baseline estimates of the average e↵ects of unilateral divorce laws on

female suicide. After we drop the eight always-treated states, the TWFE estimate, –0.604, becomes much

smaller in absolute value than the corresponding estimate in Goodman-Bacon (2021), –3.080. Unlike that

estimate, ours is also statistically insignificant, with p-value = 0.819.

The conclusion changes, however, when we explicitly target the average treatment e↵ect on the treated

Table 1: Internal Validity of the TWFE Estimand of the E↵ects of Unilateral Divorce Laws

A. Estimates of the e↵ects of unilateral divorce laws

TWFE
ATT

Callaway and Sant’Anna Wooldridge
–0.604 –10.220 –5.530
(2.622) (3.086) (3.650)

B. Internal validity of the TWFE estimand based on Proposition 5.3
uniformly in ⌧0 given ⌧0

bP(W ⇤ = 1) 0 0.3873
bP(W ⇤ = 1 | D = 1) 0 0.6216

C. Internal validity of the TWFE estimand based on Proposition 5.4
uniformly in ⌧0 given ⌧0

bP(W ⇤ = 1) 0.1400 0.4802
bP(W ⇤ = 1 | D = 1) 0.2246 0.7707

Notes: The dataset is Goodman-Bacon (2021)’s panel of the 1964–1996 U.S. The outcome is the state- and year-
specific female suicide rate (per million women), as computed by the National Center for Health Statistics (NCHS).
The treatment is whether the state allowed unilateral divorce in a given year. The sample includes the District of
Columbia but excludes Alaska and Hawaii, as in Goodman-Bacon (2021), as well as Louisiana, Maryland, North Carolina,
Oklahoma, Utah, Vermont, Virginia, and West Virginia, which had unilateral divorce laws preceding 1964. The measures
of internal validity “uniformly in ⌧0” are based on Theorem 4.1, while those “given ⌧0” are based on Theorem 4.2. The
latter measures require an estimate of the CATE function, which we obtain using the approach of Wooldridge (2021).
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Figure 3: The Distribution of baTWFE,H(g)/(supg2supp(G) baTWFE,H(g)) Based on Proposition 5.4

Notes: The values of baTWFE,H(g) are computed as bP(D = 0 | G = g) · (bP(D = 0 | P � g) + bP(D = 1 | P < g)). The
largest value is obtained for South Dakota. The “never-treated” states (Arkansas, Delaware, Mississippi, New York,
and Tennessee) have an imputed value of 0 for baTWFE,H(g) since they are not part of the treated subpopulation
and do not contribute to the TWFE estimand. The “always-treated” states (Louisiana, Maryland, North Carolina,
Oklahoma, Utah, Vermont, Virginia, and West Virginia) have values of baTWFE,H(g) displayed as 0 since these states
are dropped from our sample.

(ATT), that is, the average e↵ect for the largest subpopulation for which such an e↵ect is identified under

standard assumptions. Using the approach of Wooldridge (2021), we obtain an estimate of –5.530 with a

p-value of 0.138. The approach of Callaway and Sant’Anna (2021) produces an estimate of –10.220 and a

p-value of 0.001. These estimates are more strongly suggestive of a causal e↵ect of unilateral divorce laws

than the TWFE estimate.

While the TWFE estimate and the two estimates of the ATT are quite di↵erent, this paper focuses on

another implication of the nonuniformity of the TWFE weight function. We ask: How representative of

the underlying population is the TWFE estimand? What is the internal validity of this estimand if we

are interested in the treated subpopulation? Panel B of Table 1 reports our estimates of P(W ⇤ = 1) and

P(W ⇤ = 1 | D = 1) = P(W ⇤ = 1 | W0 = 1), based on the representation of the TWFE estimand in

de Chaisemartin and D’Haultfœuille (2020), revisited in our Proposition 5.3. First, because the weights on

some of the group-time average treatment e↵ects are negative, the TWFE estimand does not have a causal

interpretation uniformly in ⌧0, bP(W ⇤ = 1) = bP(W ⇤ = 1 | D = 1) = 0. Second, when we estimate the

CATE function and use these estimates in constructing the bounds, we conclude that the TWFE estimand

corresponds to the average treatment e↵ect for at most 62.16% of the treated units or 38.73% of the entire

population.

Panel C of Table 1 revisits these questions on the basis of the representation of the TWFE estimand in

Proposition 5.4. Here, we assume that group-level average treatment e↵ects are constant over time, which

eliminates the problem of negative weights. Indeed, we now conclude that the TWFE estimand has a causal
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interpretation uniformly in ⌧0, even if it is still not particularly representative of the underlying population

or the treated subpopulation. Our estimates of P(W ⇤ = 1) and P(W ⇤ = 1 | D = 1) are equal to 14.00%

and 22.46%, respectively. When we use the estimated CATE function in constructing the bounds, these

estimates increase to 48.02% and 77.07%. This is obviously much more than our initial estimate of 0, but

still substantially less than 1, guaranteed in the case of P(W ⇤ = 1 | D = 1) when using the estimation

methods in Callaway and Sant’Anna (2021), Wooldridge (2021), and other recent papers, each of which

explicitly targets the ATT.

Figure 3 provides another illustration of the weight function in Proposition 5.4 and the correspond-

ing measures of internal validity. Here, each state across the contiguous U.S. is associated with its value of

baTWFE,H(g)/(supg2supp(G) baTWFE,H(g)). This value is maximized at 1 for South Dakota. Because

P (aTWFE,H, D; Tall) = E[aTWFE,H(G) | D = 1]/(supg2supp(G) aTWFE,H(g)), our estimate of this parame-

ter, reported as 22.46% in Table 1, can be obtained as a weighted mean of the nonzero values in Figure 3

with weights equal to each state’s length of exposure to the treatment.

8 Conclusion

In this paper, we studied the representativeness and internal validity of a class of weighted estimands, which

includes the popular OLS, 2SLS, and TWFE estimands in additive linear models. We examined the condi-

tions under which such estimands can be written as the average treatment e↵ect for some (possibly latent)

subpopulation. In our main result, we derived the sharp upper bound on the size of that subpopulation.

We consider this bound to be a valuable diagnostic for empirical research. When a given estimand can

be shown to correspond to the average treatment e↵ect for a large subset of the population of interest, we

say its internal validity is high. In an application to the e↵ects of unilateral divorce laws in the U.S. on

female suicide, as in Stevenson and Wolfers (2006) and Goodman-Bacon (2021), we showed that the TWFE

estimand has a low degree of internal validity (assuming that the treated subpopulation is of interest), even

when we assume away the existence of negative weights. Because this result is then necessarily driven by

the nonuniformity of the TWFE weight function, it corroborates the negative view of both negative and

nonuniform weights in Callaway, Goodman-Bacon, and Sant’Anna (2024).
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Appendix

This appendix is organized as follows: Appendix A establishes the connection between weakly causal esti-
mands and uniform causal representations in Tall, Appendix B contains proofs for Section 3, Appendix C
contains proofs for Section 4, Appendix D contains proofs for Section 5, Appendix E contains proofs for
Section 6, Appendix F contains proofs for Appendix A, and Appendix G contains additional results and
derivations regarding di↵erence-in-di↵erences and associated weighted estimands.

A Connection Between Weakly Causal Estimands and Uniform
Causal Representations in Tall

We now establish equivalence between weakly causal estimands as defined in Blandhol, Bonney, Mogstad,
and Torgovitsky (2022) (henceforth, BBMT) and estimands that have uniform causal representations as in
Theorem 3.1. As in BBMT, consider the case where X has finite support and, as in this paper, assume the
treatment is binary. We also abstract from choice groups denoted by G in BBMT.

Since X has finite support, let supp(X | W0 = 1) = {x1, . . . , xK} and let ⌧ := (⌧(x1), . . . , ⌧(xK)) 2 RK

be the collection of CATEs. For d 2 {0, 1} let ⌫d(x) := E[Y (d) | X = x,W0 = 1] denote the average structural
function (ASF) which also conditions on W0 = 1, let ⌫d := (⌫d(x1), . . . , ⌫d(xK)) 2 RK , and let M ✓ R2K be
a set of possible ASFs such that (⌫0, ⌫1) 2 M. We now state the definition of weakly causal estimands from
BBMT (i.e., their Definition WC) in our setting which features binary treatments.

Definition A.1. The estimand � is weakly causal if the following statements are true for all (⌫0, ⌫1) 2 M:

1. If ⌫1 � ⌫0 � 0K ,6 then � � 0.

2. If ⌫1 � ⌫0  0K , then �  0.

Thus, an estimand is weakly causal if all CATEs having the same sign implies the estimand also has that
sign. Whether an estimand satisfies this condition also depends on M, the set of allowed ASFs. To compare
weak causality to our result on uniform causal representations, we consider Mall := R2K , the unrestricted
set of ASFs. The corresponding unrestricted set of CATE functions, which we denoted by Tall, allows ⌧ to
be any vector in RK . With these choices, we can show these two definitions are equivalent.

Proposition A.1. Let µ(a, ⌧0) be an estimand satisfying equation (1.1), and let W0 = 1 almost surely.
Suppose Assumption 3.1 holds and that amax < 1. Then µ(a, ⌧0) is weakly causal with M = Mall if and
only if it has a causal representation uniformly in Tall.

The proof of this proposition hinges on the equivalence, under some conditions, of weakly causal estimands
and estimands with nonnegative weights, as in Proposition 4 of BBMT. Also, as shown in Theorem 3.1,
estimands with nonnegative weights have a uniform causal representation in Tall. Therefore, a weighted
estimand has nonnegative weights if and only if it is weakly causal and if and only if it has a causal
representation uniformly in Tall. Thus, a weakly causal estimand admits a regular subpopulation W

⇤ such
that the estimand measures the average e↵ect of treatment over that subpopulation.

B Proofs for Section 3

Proof of Proposition 3.1. We begin by showing the first claim of the proposition. The equation

E[(Y (1)� Y (0))W ⇤ | W0 = 1, X] = E[Y (1)� Y (0) | W0 = 1, X]P(W ⇤ = 1 | W0 = 1, X) (B.1)

6Vector inequalities hold if they hold component-wise.
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holds since W
⇤ ?? (Y (1), Y (0)) | X,W0 = 1, which holds by Definition 3.1. Since P(W ⇤ = 1 | W0 = 1, X) is

assumed positive, we can divide both sides of equation (B.1) by it and obtain

E[Y (1)� Y (0) | W0 = 1, X] =
E[(Y (1)� Y (0))W ⇤ | W0 = 1, X]

P(W ⇤ = 1 | W0 = 1, X)

= E[Y (1)� Y (0) | W ⇤ = 1,W0 = 1, X]

= E[Y (1)� Y (0) | W ⇤ = 1, X],

where the second equality holds by definition, and the third holds from W
⇤ being a subpopulation of W0.

We now show the second claim of the proposition. Equation (3.4) can be obtained as follows:

E[Y (1)� Y (0) | W ⇤ = 1] = E[Y (1)� Y (0) | W ⇤ = 1,W0 = 1]

=
E[W ⇤(Y (1)� Y (0)) | W0 = 1]

E[W ⇤ | W0 = 1]

=
E[E[W ⇤(Y (1)� Y (0)) | X,W0 = 1] | W0 = 1]

E[P(W ⇤ = 1 | X,W0 = 1) | W0 = 1]

=
E[P(W ⇤ = 1 | W0 = 1, X)E[Y (1)� Y (0) | W0 = 1, X] | W0 = 1]

E[P(W ⇤ = 1 | W0 = 1, X) | W0 = 1]

=
E[w⇤(X)⌧0(X) | W0 = 1]

E[w⇤(X) | W0 = 1]

= µ(w⇤
, ⌧0).

The first equality follows from W
⇤ being a subpopulation of W0, the second from the definition of conditional

expectation and P(W ⇤ = 1) > 0, the third from the law of iterated expectations and W
⇤ = 1 implying

W0 = 1, the fourth from W
⇤ ?? (Y (1), Y (0)) | X,W0 = 1, and the fifth and sixth follow immediately.

Proof of Lemma 3.1. We verify that W
⇤ satisfies the two conditions in Definition 3.1. Condition 1 holds

since P(W ⇤ = 1 | W0 = 0) = P(W ⇤ = 1,W 0 = 1 | W0 = 0)  P(W 0 = 1 | W0 = 0) = 0. The first equality
follows from W

⇤  W
0 almost surely and the second from W

0 2 SP(W0). To verify condition 2, note that

P(W ⇤ = 1 | Y (1), Y (0), X,W0 = 1) = P(W ⇤ = 1,W 0 = 1 | Y (1), Y (0), X,W0 = 1)

= P(W ⇤ = 1 | Y (1), Y (0), X,W
0 = 1,W0 = 1)P(W 0 = 1 | Y (1), Y (0), X,W0 = 1)

= P(W ⇤ = 1 | Y (1), Y (0), X,W
0 = 1)P(W 0 = 1 | Y (1), Y (0), X,W0 = 1)

= P(W ⇤ = 1 | X,W
0 = 1)P(W 0 = 1 | X,W0 = 1)

= P(W ⇤ = 1 | X,W
0 = 1,W0 = 1)P(W 0 = 1 | X,W0 = 1)

= P(W ⇤ = 1,W 0 = 1 | X,W0 = 1)

= P(W ⇤ = 1 | X,W0 = 1).

The first and seventh line follow from W
⇤  W

0 almost surely. The second and sixth line follow from
factoring conditional probabilities. The third and fifth line follow from W

0  W0 almost surely. The fourth
line follows from W

0 ?? (Y (1), Y (0)) | X,W0 = 1 and W
⇤ ?? (Y (1), Y (0)) | X,W

0 = 1.

Proof of Theorem 3.1. This theorem follows as a special case of the first part of Theorem 4.3 when W
0 = W0.

This is because W0 is trivially a regular subpopulation of W0, and because the condition

sup(supp(a(X)/w0(X) | W0 = 1)) < 1

is equivalent to amax < 1. This equivalence follows from w
0(X) = P(W0 = 1 | X,W0 = 1) = 1 almost

surely.
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Proof of Theorem 3.2. This is a special case of the second part of Theorem 4.3 where we set W 0 = W0.

Proof of Proposition 3.2. First, we suppose there exists W ⇤ 2 W(a;W0, Tlin). Therefore, by Proposition 3.1,
we have that µ(a, ⌧0)� µ(w⇤

, ⌧0) = 0 for all ⌧0 2 Tlin where w
⇤(X) = P(W ⇤ = 1 | X,W0 = 1). Therefore,

0 = µ(a, ⌧0)� µ(w⇤
, ⌧0)

=
E[a(X)⌧0(X) | W0 = 1]

E[a(X) | W0 = 1]
� E[w⇤(X)⌧0(X) | W0 = 1]

E[w⇤(X) | W0 = 1]

=
E[a(X)(c+ d

0
X) | W0 = 1]

E[a(X) | W0 = 1]
� E[w⇤(X)(c+ d

0
X) | W0 = 1]

E[w⇤(X) | W0 = 1]

= d
0
✓
E[a(X)X | W0 = 1]

E[a(X) | W0 = 1]
� E[w⇤(X)X | W0 = 1]

E[w⇤(X) | W0 = 1]

◆

for all d 2 RdX , which implies that E[a(X)X|W0=1]
E[a(X)|W0=1] = E[w⇤(X)X|W0=1]

E[w⇤(X)|W0=1] . Letting u(x) = w
⇤(x)/E[w⇤(X) | W0 =

1], we have that

E[w⇤(X)X | W0 = 1]

E[w⇤(X) | W0 = 1]
=

Z

supp(X|W0=1)
xu(x) dFX|W0=1(x),

a convex combination of x values in supp(X | W0 = 1) because
R
supp(X|W0=1) u(x) dFX|W0=1(x) = 1. There-

fore, E[a(X)X|W0=1]
E[a(X)|W0=1] 2 conv(supp(X | W0 = 1)).

Now suppose that E[a(X)X|W0=1]
E[a(X)|W0=1] 2 conv(supp(X | W0 = 1)). Then, we can write E[a(X)X|W0=1]

E[a(X)|W0=1] asR
supp(X|W0=1) xu(x) dFX|W0=1(x) for some function u(x) � 0 satisfying

R
supp(X|W0=1) u(x) dFX|W0=1(x) = 1.

Let

W
⇤ =

✓
U  u(X)

sup(supp(u(X) | W0 = 1))

◆
·W0,

where U ⇠ Unif(0, 1) ?? (X,Y (1), Y (0),W0). Then W
⇤ is a regular subpopulation of W0 and w

⇤(X) =

P(W ⇤ = 1 | X,W0 = 1) = u(X)
sup(supp(u(X)|W0=1)) since u(X)

sup(supp(u(X)|W0=1)) 2 [0, 1] with probability 1 given

W0 = 1. Therefore, for all ⌧0(x) = c+ d
0
x 2 Tlin, we have that

µ(w⇤
, ⌧0) =

E[w⇤(X)⌧0(X) | W0 = 1]

E[w⇤(X) | W0 = 1]

=
E
h

u(X)
sup(supp(u(X)|W0=1))⌧0(X) | W0 = 1

i

E
h

u(X)
sup(supp(u(X)|W0=1)) | W0 = 1

i

=
E [u(X)⌧0(X) | W0 = 1]

E [u(X) | W0 = 1]

=
E [u(X)(c+ d

0
X) | W0 = 1]

E [u(X) | W0 = 1]

= c+ d
0E [u(X)X | W0 = 1]

E [u(X) | W0 = 1]

= c+ d
0E [a(X)X | W0 = 1]

E [a(X) | W0 = 1]

=
E [a(X)(c+ d

0
X) | W0 = 1]

E [a(X) | W0 = 1]

= µ(a, ⌧0).
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Therefore, by Proposition 3.1 we have that W ⇤ 2 W(a;W0, Tlin).

Proof of Proposition 3.3. We consider the K > 0 case first and the K = 0 case second.

Case 1: K > 0.

First, let P(a(X) � 0 | W0 = 1) < 1. We will show that W(a;W0, TBD(K)) = ; by way of contradiction.

Suppose there is a W
⇤ 2 W(a;W0, TBD(K)) and let w

⇤(X) = P(W ⇤ = 1 | X,W0 = 1) 2 [0, 1]. Let
⌧
⇤(x) = K · (a(x) < 0). This definition implies ⌧⇤ 2 TBD(K). Since W ⇤ 2 W(a;W0, TBD(K)) we must have

that µ(a, ⌧0) = µ(w⇤
, ⌧0) for all ⌧0 2 TBD(K). Since ⌧⇤ 2 TBD(K),

0 = µ(a, ⌧⇤)� µ(w⇤
, ⌧

⇤)

= E
✓

a(X)

E[a(X) | W0 = 1]
� w

⇤(X)

E[w⇤(X) | W0 = 1]

◆
⌧
⇤(X) | W0 = 1

�

= K · E
✓

a(X)

E[a(X) | W0 = 1]
� w

⇤(X)

E[w⇤(X) | W0 = 1]

◆
(a(X) < 0) | W0 = 1

�
. (B.2)

The right-hand side of (B.2) is K times the expectation of a nonpositive function. This follows from
a(X) (a(X) < 0)  0, w⇤(X) (a(X) < 0) � 0 by w

⇤(X) = P(W ⇤ = 1 | X,W0 = 1) � 0, E[a(X) | W0 =
1] > 0 by Assumption 3.1, and E[w⇤(X) | W0 = 1] = P(W ⇤ = 1 | W0 = 1) > 0 by W

⇤ 2 SP(W0). Since
K > 0, equation (B.2) implies the nonpositive function must equal 0 with probability 1 given W0 = 1:

1 = P
✓✓

a(X)

E[a(X) | W0 = 1]
� w

⇤(X)

E[w⇤(X) | W0 = 1]

◆
(a(X) < 0) = 0 | W0 = 1

◆

= P
✓
a(X) =

E[a(X) | W0 = 1]

E[w⇤(X) | W0 = 1]
· w⇤(X) | a(X) < 0,W0 = 1

◆
,

where the second equality follows from P(a(X) < 0 | W0 = 1) > 0. This implies a(X) equals a posi-
tive multiple of w⇤(X), a nonnegative quantity, with probability 1 given {a(X) < 0,W0 = 1}, an event
with positive probability that implies a(X) is strictly negative. This is a contradiction and therefore
W(a;W0, TBD(K)) = ;.

Second, suppose P(a(X) � 0 | W0 = 1) = 1. By Theorem 3.1, W(a;W0, Tall) 6= ;. Since TBD(K) ✓ Tall,
we have that W(a;W0, Tall) ✓ W(a;W0, TBD(K)). Therefore, W(a;W0, TBD(K)) 6= ;, which means that
µ(a, ⌧0) has a causal representation uniformly in ⌧0 2 TBD(K).

Case 2: K = 0.

When K = 0, the function class TBD(K) is the set of all constant functions. In this case, ⌧0(X) = t0, where
t0 2 R denotes a constant. Thus W(a;W0, TBD(0)) 6= ; for all weight functions a(·) since W0 2 SP(W0) and
because µ(a, ⌧0) = E[a(X)t0 | W0 = 1]/E[a(X) | W0 = 1] = t0 = E[Y (1)� Y (0) | W0 = 1] for all a(·).

C Proofs for Section 4

Proof of Theorem 4.1. This is a special case of the first part of Theorem 4.4 where we set W 0 = W0.

We begin with a technical lemma that we use to prove the subsequent theorems.

Lemma C.1. Suppose Assumption 3.1 holds. Let Tµ = ⌧0(X) � µ. Then, for any W
0 2 SP(W0), we have

that

1. The functions ↵ 7! E[Tµ (Tµ < ↵) | W 0 = 1] and ↵ 7! E[Tµ (Tµ � ↵) | W 0 = 1] are left-continuous.

2. The functions ↵ 7! E[Tµ (Tµ > ↵) | W 0 = 1] and ↵ 7! E[Tµ (Tµ  ↵) | W 0 = 1] are right-continuous.
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Proof of Lemma C.1. The function E[Tµ (Tµ < ↵) | W 0 = 1] is left-continuous if for any strictly increasing
sequence ↵n % ↵ we have that E[Tµ (Tµ < ↵n) | W 0 = 1] ! E[Tµ (Tµ < ↵) | W 0 = 1]. To see this
holds, note that fn(t) := t (t < ↵n) ! t (t < ↵) since t (t < ↵n) = 0 for all t � ↵, and t (t < ↵n) = t

whenever t < ↵ for su�ciently large n. The random variable |Tµ (Tµ < ↵n)| is dominated by |Tµ| and
E[|Tµ| | W 0 = 1] < 1 by Assumption 3.1 and by P(W 0 = 1) > 0. Therefore, by dominated convergence,
E[Tµ (Tµ < ↵n) | W 0 = 1] ! E[Tµ (Tµ < ↵) | W 0 = 1] hence E[Tµ (Tµ < ↵) | W 0 = 1] is left-continuous.
The function E[Tµ (Tµ � ↵) | W 0 = 1] is also left-continuous because E[Tµ (Tµ � ↵) | W 0 = 1] = E[Tµ |
W

0 = 1] � E[Tµ (Tµ < ↵) | W 0 = 1]. The lemma’s second claim can be similarly shown by considering a
sequence ↵n & ↵.

Proof of Theorem 4.2. To simplify the notation in the proof, let µ := µ(a, ⌧0). We break down this proof
into four cases.

Case 1: µ 2 S(⌧0;W0) and µ < E[Y (1)� Y (0) | W0 = 1]

We want to maximize P(W ⇤ = 1 | W0 = 1) over the subpopulations W ⇤ in W(a;W0, {⌧0}). Recall that W ⇤ 2
W(a;W0, {⌧0}) if µ = E[w⇤(X)⌧0(X)|W0=1]

E[w⇤(X)|W0=1] and W
⇤ 2 SP(W0) hold, where w

⇤(X) = P(W ⇤ = 1 | X,W0 = 1).
Therefore,

P (a,W0; {⌧0}) = max
W⇤2W(a;W0,{⌧0})

P(W ⇤ = 1 | W0 = 1)

= max
W⇤2{0,1}:µ=E[w⇤(X)⌧0(X)|W0=1]/E[w⇤(X)|W0=1],W⇤2SP(W0)

P(W ⇤ = 1 | W0 = 1)

 max
W⇤2{0,1}:µ=E[w⇤(X)⌧0(X)|W0=1]/E[w⇤(X)|W0=1]

E[P(W ⇤ = 1 | X,W0 = 1) | W0 = 1]

= max
w⇤:µ=E[w⇤(X)⌧0(X)|W0=1]/E[w⇤(X)|W0=1],w⇤(X)2[0,1]

E[w⇤(X) | W0 = 1].

We will first show a closed-form expression for an upper bound for P (a,W0; {⌧0}). Then, we will show
that this upper bound can be attained by a corresponding W

+ 2 W(a;W0, {⌧0}), and therefore it equals
P (a,W0; {⌧0}).

Before proceeding, let ↵+ = inf{↵ 2 R : R(↵) � 0} where R(↵) = E[Tµ (Tµ  ↵) | W0 = 1]. By
construction, ↵+ � 0. By µ < E[Y (1) � Y (0) | W0 = 1] we also have that ↵+

< +1. By Lemma C.1, R
is a right-continuous function, and therefore R(↵+) = lim↵&↵+ R(↵) � 0. We now claim that ↵+

> 0. To
show this claim, assume ↵+ = 0. Then, 0  R(↵+) = R(0) = E[Tµ (Tµ  0) | W0 = 1]  0, which implies
P(⌧0(X) = µ | W0 = 1) = 1. This is ruled out by the assumption that µ > E[Y (1) � Y (0) | W0 = 1] =
E[⌧0(X) | W0 = 1]. Therefore, ↵+

> 0.

We now show an upper bound for P (a,W0; {⌧0}). For all w⇤ such that µ = E[w⇤(X)⌧0(X) | W0 =
1]/E[w⇤(X) | W0 = 1] and w

⇤(X) 2 [0, 1], we have that

E[w⇤(X) | W0 = 1] =
E[w⇤(X)↵+ | W0 = 1]

↵+

=
E[w⇤(X)(↵+ � Tµ) | W0 = 1]

↵+
+

E[w⇤(X)Tµ | W0 = 1]

↵+

=
E[w⇤(X)(↵+ � Tµ) | W0 = 1]

↵+

=
E[w⇤(X)(↵+ � Tµ) (Tµ  ↵

+) | W0 = 1]

↵+
+

E[w⇤(X)(↵+ � Tµ) (Tµ > ↵
+) | W0 = 1]

↵+

 E[1 · (↵+ � Tµ) (Tµ  ↵
+) | W0 = 1]

↵+
+

E[0 · (↵+ � Tµ) (Tµ > ↵
+) | W0 = 1]

↵+

= E[ (Tµ  ↵
+) | W0 = 1]� E[Tµ (Tµ  ↵

+) | W0 = 1]

↵+

:= P
+
.
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The third equality follows from µ = E[w⇤(X)⌧0(X) | W0 = 1]/E[w⇤(X) | W0 = 1]. The inequality follows
from {0, 1} being lower/upper bounds for w⇤(X).

Therefore, P (a,W0; {⌧0})  P
+. We now show that this inequality is binding by finding W

+ 2
W(a;W0, {⌧0}) such that P(W+ = 1 | W0 = 1) = P

+.

Let

w
+(X) =

8
><

>:

1 if Tµ < ↵
+

1� R(↵+) (P(Tµ=↵+|W0=1) 6=0)
↵+P(Tµ=↵+|W0=1) if Tµ = ↵

+

0 if Tµ > ↵
+
.

This function is bounded above by 1 because R(↵+) � 0 and ↵+
> 0. To show w

+ is bounded below by 0,
consider cases where P(Tµ = ↵

+ | W0 = 1) or R(↵+) equal and di↵er from 0. If P(Tµ = ↵
+ | W0 = 1) = 0 or

R(↵+) = 0, then w
+(X) 2 {0, 1} ✓ [0, 1] and it is therefore bounded below by 0. If P(Tµ = ↵

+ | W0 = 1) > 0
and R(↵+) > 0, then

1� R(↵+)

↵+P(Tµ = ↵+ | W0 = 1)
=
↵
+P(Tµ = ↵

+ | W0 = 1)� E[Tµ (Tµ  ↵
+) | W0 = 1]

↵+P(Tµ = ↵+ | W0 = 1)

=
E[Tµ (Tµ = ↵

+) | W0 = 1]� E[Tµ (Tµ  ↵
+) | W0 = 1]

↵+P(Tµ = ↵+ | W0 = 1)

=
�E[Tµ (Tµ < ↵

+) | W0 = 1]

↵+P(Tµ = ↵+ | W0 = 1)
.

By the definition of ↵+ as an infimum, we must have that R(↵+ � ") < 0 for all " > 0, implying that
R(↵) is discontinuous at ↵+. By Lemma C.1, E[Tµ (Tµ < ↵) | W0 = 1] is left-continuous and satisfies
E[Tµ (Tµ < ↵) | W0 = 1]  R(↵). Therefore, since R(↵+ � ") < 0 for all " > 0, we must have that
E[Tµ (Tµ < ↵

+ � ") | W0 = 1] < 0 for all " > 0. Letting " & 0 yields that E[Tµ (Tµ < ↵
+) | W0 = 1]  0.

Therefore �E[Tµ (Tµ < ↵
+) | W0 = 1]/(↵+P(Tµ = ↵

+ | W0 = 1)) � 0 and w
+(X) � 0 in that case as well.

Next, we compute

E[w+(X) | W0 = 1] = E[ (Tµ < ↵
+) | W0 = 1]

+

✓
1� R(↵+) (P(Tµ = ↵

+ | W0 = 1) 6= 0)

↵+P(Tµ = ↵+ | W0 = 1)

◆
E[ (Tµ = ↵

+) | W0 = 1]

= E[ (Tµ < ↵
+) | W0 = 1] + P(Tµ = ↵

+ | W0 = 1)

� E[Tµ (Tµ  ↵
+) | W0 = 1]

↵+
(P(Tµ = ↵

+ | W0 = 1) 6= 0)

= P(Tµ  ↵
+ | W0 = 1)� E[Tµ (Tµ  ↵

+) | W0 = 1]

↵+

= P
+
.

The indicator function disappears in the third equality because P(Tµ = ↵
+ | W0 = 1) = 0 implies E[Tµ (Tµ 

↵
+) | W0 = 1] = 0 as shown above.

Finally we verify that E[w+(X)⌧0(X)|W0=1]
E[w+(X)|W0=1] = µ. This condition is equivalent to E[w+(X)Tµ | W0 = 1] = 0,

which we verify here:

E[w+(X)Tµ | W0 = 1] = E[Tµ (Tµ < ↵
+) | W0 = 1]

+

✓
1� R(↵+) (P(Tµ = ↵

+ | W0 = 1) 6= 0)

↵+P(Tµ = ↵+ | W0 = 1)

◆
E[Tµ1(Tµ = ↵

+) | W0 = 1]

= E[Tµ (Tµ  ↵
+) | W0 = 1]� R(↵+) (P(Tµ = ↵

+ | W0 = 1) 6= 0)

↵+P(Tµ = ↵+ | W0 = 1)
↵
+P(Tµ = ↵

+ | W0 = 1)
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= R(↵+)�R(↵+) (P(Tµ = ↵
+ | W0 = 1) 6= 0)

= R(↵+) (P(Tµ = ↵
+ | W0 = 1) = 0).

Therefore, E[w+(X)Tµ | W0 = 1] equals 0 when R(↵+) = 0. When R(↵+) > 0, we have that P(Tµ = ↵
+ |

W0 = 1) > 0 as shown earlier. So E[w+(X)Tµ | W0 = 1] is also equal to 0 in this case.

We conclude the proof by showing that w
+(X) corresponds to P(W+ = 1 | X,W0 = 1) for some

W
+ 2 SP(W0). Let U ⇠ Unif(0, 1) satisfy U ?? (Y (1), Y (0), X,W0) and define

W
+ =

✓
(Tµ < ↵

+) +

✓
Tµ = ↵

+
, U  1� R(↵+) (P(Tµ = ↵

+ | W0 = 1) 6= 0)

↵+P(Tµ = ↵+ | W0 = 1)

◆◆
·W0.

By construction, W+ 2 {0, 1}, P(W+ = 1 | X,W0 = 1) = w
+(X), P(W+ = 1 | W0 = 0) = 0, and

W
+ ?? (Y (1), Y (0)) | X,W0 = 1. Also, since µ 2 S(⌧0;W0), P(Tµ  0 | W0 = 1) = P(⌧0(X)  µ | W0 =

1) > 0. Since ↵+
> 0 we have that P(W+ = 1 | W0 = 1) � P(Tµ < ↵

+ | W0 = 1) � P(Tµ  0 | W0 = 1) > 0.
Therefore W

+ is a regular subpopulation of W0 for which P(W+ = 1 | W0 = 1) = P
+, hence P

+ is the
maximum.

Case 2: µ 2 S(⌧0;W0) and µ > E[Y (1)� Y (0) | W0 = 1]

As in case 1,

P (a,W0; {⌧0})  max
w⇤:µ=E[w⇤(X)⌧0(X)|W0=1]/E[w⇤(X)|W0=1],w⇤(X)2[0,1]

E[w⇤(X) | W0 = 1].

Before proceeding, let ↵� = sup{↵ 2 R : L(↵)  0} where L(↵) = E[Tµ (Tµ � ↵) | W0 = 1]. By
construction, ↵�  0 and by µ > E[Y (1)� Y (0) | W0 = 1] we have that ↵�

> �1. By Lemma C.1, L is a
left-continuous function, and therefore L(↵�) = lim↵%↵� L(↵)  0. Similarly to case 1, we can show that
↵
�
< 0.

We now show an upper bound for P (a,W0; {⌧0}). For all w⇤ such that µ = E[w⇤(X)⌧0(X) | W0 =
1]/E[w⇤(X) | W0 = 1] and w

⇤(X) 2 [0, 1], we have that

E[w⇤(X) | W0 = 1] =
E[w⇤(X)↵� | W0 = 1]

↵�

=
E[w⇤(X)(↵� � Tµ) | W0 = 1]

↵� +
E[w⇤(X)Tµ | W0 = 1]

↵�

=
E[w⇤(X)(↵� � Tµ) | W0 = 1]

↵�

=
E[w⇤(X)(↵� � Tµ) (Tµ � ↵

�) | W0 = 1]

↵� +
E[w⇤(X)(↵� � Tµ) (Tµ < ↵

�) | W0 = 1]

↵�

 E[1 · (↵� � Tµ) (Tµ � ↵
�) | W0 = 1]

↵� +
E[0 · (↵� � Tµ) (Tµ < ↵

�) | W0 = 1]

↵�

= E[ (Tµ � ↵
�) | W0 = 1]� E[Tµ (Tµ � ↵

�) | W0 = 1]

↵�

:= P
�
,

which follows a similar argument as above. This implies P (a,W0; {⌧0})  P
�. We now show that this

inequality is an equality by finding W
� 2 W(a;W0, {⌧0}) such that P(W� = 1 | W0 = 1) = P

�.

Let

w
�(X) =

8
><

>:

1 if Tµ > ↵
�

1� L(↵�) (P(Tµ=↵�|W0=1) 6=0)
↵�P(Tµ=↵�|W0=1) if Tµ = ↵

�

0 if Tµ < ↵
�
.
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The rest of the proof symmetrically follows the one for the previous case.

Case 3: µ 2 S(⌧0;W0) and µ = E[Y (1)� Y (0) | W0 = 1]

Note that W
⇤ = W0 is the largest regular subpopulation of W0. Since E[Y (1) � Y (0) | W

⇤ = 1] =
E[Y (1)� Y (0) | W0 = 1], we have that P(W ⇤ = 1 | W0 = 1) is trivially maximized at 1.

Case 4: µ /2 S(⌧0;W0)

By Theorem 3.2, there does not exist a regular subpopulation W
⇤ satisfying µ = E[Y (1) � Y (0) | W ⇤ = 1]

and therefore the supremum equals 0 by its definition.

Proof of Theorem 4.3.

Part 1: T = Tall
(=)) First, suppose there exists W ⇤ 2 W(a;W 0

, Tall). Using the law of iterated expectations and letting
w

0(X) = P(W 0 = 1 | W0 = 1, X), we can write

µ(a, ⌧0) =
E[a(X)⌧0(X) | W0 = 1]

E[a(X) | W0 = 1]

=
E
h

a(X)
w0(X)⌧0(X)w0(X) | W0 = 1

i

E
h

a(X)
w0(X)w

0(X) | W0 = 1
i

=
E
h

a(X)
w0(X)⌧0(X)W 0 | W0 = 1

i

E
h

a(X)
w0(X)W

0 | W0 = 1
i

=
E
h

a(X)
w0(X)⌧0(X) | W 0 = 1,W0 = 1

i
P(W 0 = 1 | W0 = 1)

E
h

a(X)
w0(X) | W 0 = 1,W0 = 1

i
P(W 0 = 1 | W0 = 1)

=
E
h

a(X)
w0(X)E[Y (1)� Y (0) | W0 = 1, X] | W 0 = 1

i

E
h

a(X)
w0(X) | W 0 = 1

i

=
E
h

a(X)
w0(X)E[Y (1)� Y (0) | W 0 = 1, X] | W 0 = 1

i

E
h

a(X)
w0(X) | W 0 = 1

i

:= µ
0
✓

a

w0 , ⌧0

◆
.

The second equality is valid due to sup(supp(a(X)/w0(X) | W0 = 1)) < 1. The third and fourth follow
from the law of iterated expectations, and the fifth from W

0 being a subpopulation of W0. The second to
last line follows from Proposition 3.1 and from sup(supp(a(X)/w0(X) | W0 = 1)) < 1 implying P(w0(X) >
0 | W0 = 1) > 0.

Similarly, we can write E[Y (1) � Y (0) | W ⇤ = 1] = µ
0(w⇤

, ⌧0) where w
⇤(X) = P(W ⇤ = 1 | W 0 = 1, X).

Therefore, by Proposition 3.1, we have that µ0
⇣

a
w0 , ⌧0

⌘
� µ

0(w⇤
, ⌧0) = 0 for all ⌧0 2 Tall.

Let ⌧⇤(X) = a(X)/w0(X)
E[a(X)/w0(X)|W 0=1] �

w⇤(X)
P(W⇤=1|W 0=1) . We have sup(supp(a(X)/w0(X) | W0 = 1)) < 1 and

E[w⇤(X)2]  1 by construction. Hence, E[⌧⇤(X)2] < 1 and ⌧⇤ 2 Tall.

Thus, we must have µ
0
⇣

a
w0 , ⌧

⇤
⌘
� µ

0(w⇤
, ⌧

⇤) = 0. Expanding this equality yields

0 = µ
0
✓

a

w0 , ⌧
⇤
◆
� µ

0(w⇤
, ⌧

⇤)
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= E

⌧
⇤(X)

✓
a(X)/w0(X)

E[a(X)/w0(X) | W 0 = 1]
� w

⇤(X)

P(W ⇤ = 1 | W 0 = 1)

◆
| W 0 = 1

�

= E[⌧⇤(X)2 | W 0 = 1].

This implies that P(⌧⇤(X) = 0 | W 0 = 1) = 1. In turn, this implies that

P
✓
a(X) =

w
0(X)w⇤(X)E[a(X)/w0(X) | W 0 = 1]

P(W ⇤ = 1 | W 0 = 1)
| W 0 = 1

◆
= 1. (C.1)

We have that w
⇤(X) � 0 and w

0(X) � 0 almost surely, and P(W ⇤ = 1 | W 0 = 1) > 0 by the assumption
that W ⇤ 2 W(a;W 0

, Tall). Also, E[a(X)/w0(X) | W 0 = 1] = E[a(X) | W0 = 1]/P(W 0 = 1 | W0 = 1) > 0 by
Assumption 3.1 and by W

0 being a regular subpopulation of W0. Therefore, P(a(X) � 0 | W 0 = 1) = 1.

((=) Second, suppose that P(a(X) � 0 | W 0 = 1) = 1 and fix ⌧0 2 Tall. Let w
0(X) = P(W 0 = 1 |

X,W0 = 1). As in the first part of the proof, recall that

µ(a, ⌧0) =
E
h

a(X)
w0(X)E[Y (1)� Y (0) | W 0 = 1, X] | W 0 = 1

i

E
h

a(X)
w0(X) | W 0 = 1

i

:= µ
0
✓

a

w0 , ⌧0

◆
.

Let U ⇠ Unif(0, 1) where U ?? (Y (1), Y (0), X,W0,W
0), and define

W
⇤ =

✓
U  a(X)/w0(X)

sup(supp(a(X)/w0(X) | W 0 = 1))

◆
·W 0

.

We verify that W ⇤ is a regular subpopulation of W 0. First, we see that P(W ⇤ = 1) > 0 because

P(W ⇤ = 1) = P(W ⇤ = 1 | W 0 = 1)P(W 0 = 1) + P(W ⇤ = 1 | W 0 = 0)P(W 0 = 0)

= P
✓ ✓

U  a(X)/w0(X)

sup(supp(a(X)/w0(X) | W 0 = 1))

◆
·W 0 = 1 | W 0 = 1

◆
P(W 0 = 1)

= E

P
✓
U  a(X)/w0(X)

sup(supp(a(X)/w0(X) | W 0 = 1))
| X,W

0 = 1

◆
| W 0 = 1

�
P(W 0 = 1)

= E


a(X)/w0(X)

sup(supp(a(X)/w0(X) | W 0 = 1))
| W 0 = 1

�
P(W 0 = 1)

=
E[a(X)/w0(X) | W 0 = 1]P(W 0 = 1)

sup(supp(a(X)/w0(X) | W 0 = 1))

=
E[a(X) | W0 = 1]P(W0 = 1)

sup(supp(a(X)/w0(X) | W 0 = 1))

> 0.

The second equality follows from P(W ⇤ = 1 | W 0 = 0) = 0, which holds by the construction of W ⇤. The

fourth equality holds from U ?? (X,W
0) and from a(X)/w0(X)

sup(supp(a(X)/w0(X)|W 0=1)) 2 [0, 1] almost surely givenW
0 =

1. The sixth equality holds from E[a(X)/w0(X) | W 0 = 1] = E[a(X) | W0 = 1]/P(W 0 = 1 | W0 = 1) and
from W

0 being a subpopulation of W0. To establish the final inequality, recall that P(W 0 = 1) and E[a(X) |
W0 = 1] are positive by assumption. Also sup(supp(a(X)/w0(X) | W 0 = 1))  sup(supp(a(X)/w0(X) |
W0 = 1)) < 1 since supp(a(X)/w0(X) | W 0 = 1) is a subset of supp(a(X)/w0(X) | W0 = 1). That W

⇤

satisfies the two properties of Definition 3.1 holds immediately. Therefore, W ⇤ is a regular subpopulation of
W

0.
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Finally, let

w
⇤(X) = P(W ⇤ = 1 | X,W

0 = 1)

= P
✓
U  a(X)/w0(X)

sup(supp(a(X)/w0(X) | W 0 = 1))
| X,W

0 = 1

◆

=
a(X)/w0(X)

sup(supp(a(X)/w0(X) | W 0 = 1))
.

Letting E[Y (1)� Y (0) | X,W
0 = 1] = ⌧0(X) 2 Tall and using Proposition 3.1, we can see that

E[Y (1)� Y (0) | W ⇤ = 1] =
E[w⇤(X)⌧0(X) | W 0 = 1]

E[w⇤(X) | W 0 = 1]

=
E
h

a(X)/w0(X)
sup(supp(a(X)/w0(X)|W 0=1))⌧0(X) | W 0 = 1

i

E
h

a(X)/w0(X)
sup(supp(a(X)/w0(X)|W 0=1)) | W 0 = 1

i

=
E
h

a(X)
w0(X)⌧0(X) | W 0 = 1

i

E
h

a(X)
w0(X) | W 0 = 1

i

=
E[a(X)⌧0(X) | W0 = 1]

E[a(X) | W0 = 1]

= µ(a, ⌧0).

Since ⌧0 2 Tall was arbitrary, we have that W ⇤ 2 W(a;W 0
, Tall) which concludes the proof.

Part 2: T = {⌧0}
To simplify the notation in the proof, we let µ := µ(a, ⌧0).

(=)) First, let µ /2 S(⌧0;W 0) and suppose there exists W
⇤ 2 W(a;W 0

, {⌧0}). Since µ /2 S(⌧0;W 0), we
can without loss of generality suppose that P(⌧0(X)  µ | W 0 = 1) = 0, which implies P(⌧0(X) > µ | W 0 =
1) = 1. Since W

⇤ 2 W(a;W 0
, {⌧0}), we can write by Proposition 3.1

µ = E[Y (1)� Y (0) | W ⇤ = 1]

=
E[P(W ⇤ = 1 | X,W

0 = 1)E[Y (1)� Y (0) | X,W
0 = 1] | W 0 = 1]

E[P(W ⇤ = 1 | X,W 0 = 1) | W 0 = 1]

=
E[P(W ⇤ = 1 | X,W

0 = 1)⌧0(X) | W 0 = 1]

E[P(W ⇤ = 1 | X,W 0 = 1) | W 0 = 1]

� E[P(W ⇤ = 1 | X,W
0 = 1)µ | W 0 = 1]

E[P(W ⇤ = 1 | X,W 0 = 1) | W 0 = 1]
= µ. (C.2)

The inequality is strict unless E[(⌧0(X)� µ| {z }
>0 w.p.1

)P(W ⇤ = 1 | X,W
0 = 1)| {z }

2[0,1]

| W 0 = 1] = 0 holds. This holds if

P((⌧0(X)� µ)P(W ⇤ = 1 | X,W
0 = 1) = 0 | W 0 = 1) = 1, which in turns occurs if and only if P(P(W ⇤ = 1 |

X,W
0 = 1) = 0 | W 0 = 1) = 1. This implies P(W ⇤ = 1 | W 0 = 1) = 0 and P(W ⇤ = 1) = P(W ⇤ = 1 | W 0 =

1)P(W 0 = 1) = 0, a contradiction of W ⇤ 2 W(a,W 0
, {⌧0}). Therefore, the inequality in (C.2) is strict and

yields µ > µ, a contradiction. Therefore, W(a;W 0
, {⌧0}) = ; when µ /2 S(⌧0;W 0).

((=) Second, let µ 2 S(⌧0;W 0). Let

X� = {x 2 supp(X) : ⌧0(x)  µ} and X+ = {x 2 supp(X) : ⌧0(x) � µ}.

By µ 2 S(⌧0;W 0), P(X 2 X� | W 0 = 1) = P(⌧0(X)  µ | W 0 = 1) > 0. Similarly, P(X 2 X+ | W 0 = 1) > 0.
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Let U ⇠ Unif(0, 1) where U ?? (Y (1), Y (0), X,W
0
,W0). For u 2 [0, 1], let

W
⇤(u) = ( (U > u,X 2 X�) + (U  u,X 2 X+)) ·W 0

.

We can see that W
⇤(u) 2 {0, 1}, that W

⇤(u) ?? (Y (1), Y (0)) | X,W
0 = 1, and that P(W ⇤(u) = 1 | W 0 =

0) = 0. To show that W
⇤(u) characterizes a regular subpopulation of W 0, we also show that it is nonzero

with positive probability:

P(W ⇤(u) = 1 | W 0 = 1) = P( (U > u,X 2 X�) + (U  u,X 2 X+) = 1 | W 0 = 1)

= P(U > u,X 2 X� | W 0 = 1) + P(U  u,X 2 X+ | W 0 = 1)

= (1� u)P(X 2 X� | W 0 = 1) + uP(X 2 X+ | W 0 = 1)

> 0

for all u 2 [0, 1]. Therefore, P(W ⇤(u) = 1) = P(W ⇤(u) = 1 | W 0 = 1)P(W 0 = 1) > 0 by P(W 0 = 1) > 0.
Hence, W ⇤(u) 2 SP(W 0) for all u 2 [0, 1].

For a given u, we have that w⇤(X;u) := P(W ⇤(u) = 1 | X,W
0 = 1) = (1� u) (X 2 X�) + u (X 2 X+).

Therefore, using Proposition 3.1,

E[Y (1)� Y (0) | W ⇤(u) = 1] =
E[w⇤(X;u)E[Y (1)� Y (0) | X,W

0 = 1] | W 0 = 1]

E[w⇤(X;u) | W 0 = 1]

=
E[((1� u) (X 2 X�) + u (X 2 X+))⌧0(X) | W 0 = 1]

E[((1� u) (X 2 X�) + u (X 2 X+)) | W 0 = 1]

=
(1� u)E[ (X 2 X�)⌧0(X) | W 0 = 1] + uE[ (X 2 X+)⌧0(X) | W 0 = 1]

(1� u)P(X 2 X� | W 0 = 1) + uP(X 2 X+ | W 0 = 1)
.

By construction, ⌧0(X) (X 2 X�)  µ (X 2 X�) and ⌧0(X) (X 2 X+) � µ (X 2 X+) almost surely.
Therefore,

E[Y (1)� Y (0) | W ⇤(0) = 1] =
E[ (X 2 X�)⌧0(X) | W 0 = 1]

P(X 2 X� | W 0 = 1)
 E[ (X 2 X�)µ | W 0 = 1]

P(X 2 X� | W 0 = 1)
= µ

and

E[Y (1)� Y (0) | W ⇤(1) = 1] =
E[ (X 2 X+)⌧0(X) | W 0 = 1]

P(X 2 X+ | W 0 = 1)
� E[ (X 2 X+)µ | W 0 = 1]

P(X 2 X+ | W 0 = 1)
= µ.

By the continuity of E[Y (1) � Y (0) | W ⇤(u) = 1] in u and the intermediate value theorem, there exists
u
⇤ 2 [0, 1] such that µ = E[Y (1)� Y (0) | W ⇤(u⇤) = 1] and W

⇤(u⇤) 2 W(a;W 0
, {⌧0}).

Proof of Theorem 4.4.

Part 1: T = Tall
First suppose P(a(X) � 0 | W 0 = 1) = 1. From Theorem 4.3, there exists W

⇤ 2 W(a;W 0
, Tall). Written

di↵erently, we have that

E
h

a(X)
w0(X)⌧0(X) | W 0 = 1

i

E
h

a(X)
w0(X) | W 0 = 1

i = µ(a, ⌧0) = E[Y (1)� Y (0) | W ⇤ = 1] =
E [P(W ⇤ = 1 | X,W

0 = 1)⌧0(X) | W 0 = 1]

E [P(W ⇤ = 1 | X,W 0 = 1) | W 0 = 1]

for all ⌧0 2 Tall. From derivations in the proof of Theorem 4.3 (see equation (C.1)) we have that P(C · a(X)
w0(X) =

P(W ⇤ = 1 | X,W
0 = 1) | W 0 = 1) = 1 for some positive constant C > 0.

Since P(W ⇤ = 1 | X,W
0 = 1)  1 almost surely given W

0 = 1, we must have C · a(X)/w0(X)  1 almost
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surely given W
0 = 1. This means C is bounded above by inf(supp(w0(X)/a(X) | W 0 = 1)), which is strictly

positive by assumption. Therefore,

P(W ⇤ = 1 | W 0 = 1) = E[P(W ⇤ = 1 | X,W
0 = 1) | W 0 = 1]

 inf

✓
supp

✓
w

0(X)

a(X)
| W 0 = 1

◆◆
E

a(X)

w0(X)
| W 0 = 1

�

= inf

✓
supp

✓
w

0(X)

a(X)
| W 0 = 1

◆◆ E
h

a(X)
w0(X)W

0
i

P(W 0 = 1)

= inf

✓
supp

✓
w

0(X)

a(X)
| W 0 = 1

◆◆

· E

E

a(X)

w0(X)
W

0 | X,W0 = 1

�
| W0 = 1

�
P(W0 = 1)

P(W 0 = 1)

= inf

✓
supp

✓
w

0(X)

a(X)
| W 0 = 1

◆◆
· E[a(X) | W0 = 1]

P(W0 = 1)

P(W 0 = 1)
.

The fifth line follows from W
0 being a subpopulation of W0, and the last line follows from the law of iterated

expectations.

This upper bound is sharp because it is attained by setting

W
⇤ =

✓
U  a(X)/w0(X)

sup(supp(a(X)/w0(X) | W 0 = 1))

◆
·W 0

and noting that W ⇤ 2 W(a;W 0
, Tall) from the proof of Theorem 4.3.

Now suppose P(a(X) � 0 | W 0 = 1) < 1. By Theorem 4.3, W(a;W 0
, Tall) = ; and therefore P (a,W 0; Tall)

is zero.

Part 2: T = {⌧0}
In this case, we seek to maximize P(W ⇤ = 1 | W 0 = 1) subject to W

⇤ 2 W(a;W 0
, {⌧0}). Using Proposition

3.1, we can write E[Y (1) � Y (0) | W ⇤ = 1] as E[⌧0(X)P(W ⇤ = 1 | X,W
0 = 1) | W 0 = 1]/E[P(W ⇤ = 1 |

X,W
0 = 1) | W 0 = 1]. The result then follows from a direct application of Theorem 4.2 that replaces W0 by

W
0 in its statement and P(W ⇤ = 1 | X,W0 = 1) by P(W ⇤ = 1 | X,W

0 = 1) in the proofs.

D Proofs for Section 5

Proof of Proposition 5.3. We begin by noting that

�TWFE =
1
T

PT
t=1 E[D̈tYt]

1
T

PT
t=1 E[D̈2

t ]

=

PT
t=1 E[D̈tYt | P = t]P(P = t)
PT

t=1 E[D̈2
t | P = t]P(P = t)

=
E[D̈Y ]

E[D̈2]
,

where the second equality follows from the uniform distribution of P which is independent from (D̈t, Yt) for
all t 2 {1, . . . , T}. The third equality follows from defining D̈ := D̈P . We also note that

D̈P = DP � 1

T

TX

s=1

Ds �
TX

t=1

E[Dt] (P = t) +
TX

s=1

E[Ds]E[ (P = s)]
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= D � 1

T

TX

s=1

(G  s)� E[D | P ] + E[D]

= D � E[D | G]� E[D | P ] + E[D].

The third equality follows from E[D | G] = E[ (G  P ) | G] = 1
T

PT
s=1 (G  s) = 1

T

PT
s=1 Ds. We break

down the rest of this proof into four steps.

Step 1: Splitting the Numerator in Two

We have that

E[D̈Y ] = E[D̈(Y (0) +D(Y (1)� Y (0)))] = E[D̈E[Y (0) | G,P ]] + E[D̈DE[Y (1)� Y (0) | G,P ]].

The first equality follows from Y = Y (0) +D(Y (1)� Y (0)) and the second from iterated expectations and
E[D | G,P ] = D.

Step 2: First Numerator Term

We have that

E[D̈E[Y (0) | G,P ]] = E[D̈✓(G,P )] = E[D̈✓̈(G,P )],

where ✓(G,P ) = E[Y (0) | G,P ]. The second equality follows by properties of projections and from defining
✓̈(G,P ) as follows:

✓̈(G,P ) := ✓(G,P )� E[✓(G,P ) | G]� E[✓(G,P ) | P ] + E[✓(G,P )]

= E[Y (0) | G,P ]� E[Y (0) | G]� E[Y (0) | P ] + E[Y (0)].

Then, we note that

✓̈(g0, t0) = E[Y (0) | G = g
0
, P = t

0]� E[Y (0) | G = g
0]� E[Y (0) | P = t

0] + E[Y (0)]

= E[Yt0(0) | G = g
0]� 1

T

TX

t=1

E[Yt(0) | G = g
0]�

X

g2G

 
E[Yt0(0) | G = g]� 1

T

TX

t=1

E[Yt(0) | G = g]

!
P(G = g)

=
1

T

TX

t=1

E[Yt0(0)� Yt(0) | G = g
0]�

X

g2G

 
1

T

TX

t=1

E[Yt0(0)� Yt(0) | G = g]

!
P(G = g).

Assumption 5.5.2 implies that for any pair t, t0 2 {1, . . . , T} and any g
0 2 G

E[Yt0(0)� Yt(0) | G = g
0] = E[Yt0(0)� Yt(0)].

This can be shown for t
0
> t by writing E[Yt0(0) � Yt(0) | G = g

0] =
Pt0

s=t+1 E[Ys(0) � Ys�1(0) | G = g
0] =

Pt0

s=t+1 E[Ys(0)�Ys�1(0)] = E[Yt0(0)�Yt(0)]. Similar derivations show this holds for t0 < t. The case where
t
0 = t is trivial. Therefore,

✓(g0, t0) =
1

T

TX

t=1

E[Yt0(0)� Yt(0) | G = g
0]�

X

g2G

 
1

T

TX

t=1

E[Yt0(0)� Yt(0) | G = g]

!
P(G = g)

=
1

T

TX

t=1

E[Yt0(0)� Yt(0)]�
X

g2G

 
1

T

TX

t=1

E[Yt0(0)� Yt(0)]

!
P(G = g)

= 0
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for all (g0, t0) 2 G ⇥ {1, . . . , T}, which implies E[D̈E[Y (0) | G,P ]] = 0.

Step 3: Second Numerator Term

We can write

E[D̈DE[Y (1)� Y (0) | G,P ]] = E[(D � E[D | G]� E[D | P ] + E[D])DE[Y (1)� Y (0) | G,P ]]

= E[(1� E[D | G]� E[D | P ] + E[D])DE[Y (1)� Y (0) | G,P ]]

= E[(1� E[D | G]� E[D | P ] + E[D])E[D(Y (1)� Y (0)) | G,P ]]

= E[(1� E[D | G]� E[D | P ] + E[D])E[Y (1)� Y (0) | G,P,D = 1]P(D = 1 | G,P )].

The first equality is by definition, the second by D
2 = D, the third by E[D | G,P ] = D, and the fourth by

the law of total probability.

Step 4: Denominator

In this step, we show that

E[D̈2] = E[(D � E[D | G]� E[D | P ] + E[D])D]

= E[(1� E[D | G]� E[D | P ] + E[D])D]

= E[(1� E[D | G]� E[D | P ] + E[D])P(D = 1 | G,P )].

The first line is obtained from properties of linear projections, the second from D
2 = D, and the third from

D = P(D = 1 | G,P ).

We conclude the proof by noting the equivalence of integrating over the distribution of P and averages over
time periods, which shows the equivalence between

�TWFE =
E[(1� E[D | G]� E[D | P ] + E[D])E[Y (1)� Y (0) | G,P,D = 1]P(D = 1 | G,P )]

E[(1� E[D | G]� E[D | P ] + E[D])P(D = 1 | G,P )]

and the expression in Proposition 5.3.

Proof of Proposition 5.4. Proposition 5.3 and P(D = 1 | G,P ) = D yielded

�TWFE =
E[(1� E[D | G]� E[D | P ] + E[D])DE[Y (1)� Y (0) | G,P,D = 1]]

E[(1� E[D | G]� E[D | P ] + E[D])D]
.

Since E[Y (1) � Y (0) | G,P,D = 1] = E[Y (1) � Y (0) | G,D = 1] by assumption, we can use the law of
iterated expectations to obtain

�TWFE =
E[E[(1� E[D | G]� E[D | P ] + E[D])D | G]E[Y (1)� Y (0) | G,D = 1]]

E[E[(1� E[D | G]� E[D | P ] + E[D])D | G]]
.

We now calculate the conditional expectation E[(1 � E[D | G] � E[D | P ] + E[D])D | G = g] for g 2 G. If
g = +1, then this conditional expectation is 0 by construction, so we focus on the case where g 2 {2, . . . , T}.
For these derivations, we let FG(p) := P(G  p) denote the cdf of G at p.

E[(1� E[D | G]� E[D | P ] + E[D])D | G = g]

= E[D | G = g]

✓
1� E[D | G = g]� E[E[D | P ]D | G = g]

E[D | G = g]
+ E[D]

◆

= E[D | G = g]

✓
1� E[ (G  P ) | G = g]� E[FG(P ) (G  P ) | G = g]

E[ (G  P ) | G = g]
+ E[E[ (G  P ) | P ]]

◆
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= E[D | G = g]

✓
1� E[ (g  P )]� E[FG(P ) (g  P )]

E[ (g  P )]
+ E[FG(P )]

◆

= E[D | G = g] (1� E[ (g  P )]� E[FG(P ) | g  P ]

+ E[FG(P ) | g  P ]E[ (g  P )] + E[FG(P ) | g > P ]E[ (g > P )])

= E[D | G = g]E[ (g > P )](1 + E[FG(P ) | g > P ]� E[FG(P ) | g  P ])

= E[D | G = g](1� E[D | G = g])(1 + E[D | g > P ]� E[D | g  P ])

= P(D = 1 | G = g)P(D = 0 | G = g)(P(D = 1 | P < g) + P(D = 0 | P � g)).

The first equality follows from E[D | G = g] > 0 for g 2 {2, . . . , T}. The second follows from D = (G  P )
and the law of iterated expectations, the third from G ?? P , the fourth from definitions of conditional
expectations and the law of iterated expectations, the fifth from combining terms, the sixth from the law of
iterated expectations again, and the last line is obtained by the fact that D 2 {0, 1}. The representation in
Proposition 5.4 follows.

E Proofs for Section 6

We use the following lemma in the proof of Theorem 6.1.

Lemma E.1. Let ✓ = (✓(1), . . . , ✓(K)) 2 RK and define the mapping � : RK ! R by �(✓) = maxj2{1,...,K} ✓(j).
Then, � is Hadamard directionally di↵erentiable (HDD) for all ✓ 2 RK tangentially to RK with directional
derivative at ✓ in direction h 2 RK equal to

�
0
✓(h) = max

j2argmaxk2{1,...,K} ✓(k)
h(j).

Proof of Lemma E.1. Let hn ! h 2 RK and tn & 0 as n ! 1. Then,

�(✓ + tnhn)� �(✓)

tn
=

maxk2{1,...,K}(✓(k) + tnhn(k))�maxk2{1,...,K} ✓(k)

tn
.

Let ⇥max = {j 2 {1, . . . ,K} : ✓(j) = maxk2{1,...,K} ✓(k)} and let jmax be an element of ⇥max. Then,
maxk2{1,...,K} ✓(k) = ✓(jmax) and thus

�(✓ + tnhn)� �(✓)

tn
= max

⇢
✓(1)� ✓(jmax)

tn
+ hn(1), . . . ,

✓(K)� ✓(jmax)

tn
+ hn(K)

�
.

For each j 2 ⇥max, (✓(j)�✓(jmax))/tn+hn(j) = hn(j) ! h(j). For each j /2 ⇥max, (✓(j)�✓(jmax))/tn ! �1
since ✓(j)� ✓(jmax) < 0 and tn & 0. Therefore, by continuity of the maximum operator in its arguments,

�(✓ + tnhn)� �(✓)

tn
! max

j2⇥max

h(j).

Proof of Theorem 6.1. We begin by showing the consistency of bP for P .

Part 1: Consistency

The estimators ( 1n
Pn

i=1 ba(Xi) bw0(Xi),
1
n

Pn
i=1 bw0(Xi)) are consistent for (E[a(X)w0(X)],E[w0(X)]) since

their components are assumed consistent by Assumption 6.1. More explicitly, we can write

1

n

nX

i=1

ba(Xi) bw0(Xi) =
KX

j=1

ba(xj) bw0(xj)bpj
p�!

KX

j=1

a(xj)w0(xj)pj = E[a(X)w0(X)]
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by the continuous mapping theorem. The consistency of 1
n

Pn
i=1 bw0(Xi) for E[w0(X)] is similarly established.

We now consider the maximum term in the denominator. We can write

max
i: bw0(Xi)>cn

ba(Xi) = max
x: 1n

Pn
i=1 (Xi=x)>0, bw0(x)>cn

ba(x).

Let X+ = {x 2 supp(X) : w0(x) > 0}, which equals supp(X | W0 = 1), and let bX+ = {x : 1
n

Pn
i=1 (Xi =

x) > 0, bw0(x) > cn}. We first show that P( bX+ = X+) ! 1 as n ! 1. To see this, first consider xj 2 X+.
Then,

P(xj 2 bX+) = P
 
1

n

nX

i=1

(Xi = xj) > 0 \ bw0(xj) > cn

!

� P
 
1

n

nX

i=1

(Xi = xj) > 0

!
+ P ( bw0(xj) > cn)� 1.

The above inequality was obtained from

P(A \B) = 1� P(Ac [B
c) � 1� (P(Ac) + P(Bc)) = P(A) + P(B)� 1,

where A and B are Borel sets.

We have that P( 1n
Pn

i=1 (Xi = xj) > 0) ! 1 since 1
n

Pn
i=1 (Xi = xj)

p�! pj > 0. We also have that

P( bw0(xj) > cn) = P( bw0(xj)� cn > 0) ! 1 because bw0(xj)� cn
p�! w0(xj) > 0 by cn = o(1) and w0(xj) > 0,

which follows from xj 2 X+. Therefore, P(xj 2 bX+) � P( 1n
Pn

i=1 (Xi = xj) > 0)+P( bw0(xj) > cn)�1 ! 1
as n ! 1.

Now let xj /2 X+. Then

P(xj /2 bX+) = P
 
1

n

nX

i=1

(Xi = xj) = 0 [ bw0(xj)  cn

!

� P( bw0(xj)  cn)

= P(
p
n bw0(xj) 

p
ncn).

By Assumption 6.1,
p
n bw0(xj) =

p
n( bw0(xj) � w0(xj))

d�! Zw0(j) = Op(1), since w0(xj) = 0 for xj /2 X+.

Also
p
ncn ! +1 by the theorem assumption. Therefore, P(

p
n bw0(xj) 

p
ncn) ! 1 and P(xj /2 bX+) ! 1

as n ! 1. Because of this,

P( bX+ = X+) = P

0

@
\

xj2X+

{xj 2 bX+} \
\

xj /2X+

{xj /2 bX+}

1

A

= 1� P

0

@
[

xj2X+

{xj /2 bX+} [
[

xj /2X+

{xj 2 bX+}

1

A

� 1�

0

@
X

j:xj2X+

P(xj /2 bX+) +
X

j:xj /2X+

P(xj 2 bX+)

1

A

! 1�

0

@
X

j:xj2X+

0 +
X

j:xj /2X+

0

1

A

= 1.
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Using this, we obtain

P
✓
max
x2 bX+

ba(x) = max
x2X+

ba(x)
◆

� P( bX+ 2 X+) ! 1,

which yields

max
i: bw0(Xi)>cn

ba(Xi) = max
x2 bX+

ba(x) = max
x2X+

ba(x) + op(1).

By the consistency of ba for a, the continuity of the maximum operator, and the continuous mapping theorem,
maxx2X+ ba(x) p�! maxx2X+ a(x). Because X+ = supp(X | W0 = 1) is a finite set of points, we also have
that maxx2X+ a(x) = sup(supp(a(X) | W0 = 1)). Another application of the continuous mapping theorem

su�ces to show that bP is consistent for P .

Part 2: Asymptotic Distribution

We first establish the joint limiting distribution of terms (i)
p
n( 1n

Pn
i=1 ba(Xi) bw0(Xi)�E[a(X)w0(X)]), (ii)p

n( 1n
Pn

i=1 bw0(Xi) � E[w0(Xi)]), and (iii)
p
n(maxi: bw0(Xi)>cn ba(Xi) � maxx2X+ a(x)). The terms (i) and

(ii) can be expanded as follows using a first-order expansion:

p
n

 
1

n

nX

i=1

ba(Xi) bw0(Xi)� E[a(X)w0(X)]

!
=

p
n

0

@
KX

j=1

ba(xj) bw0(xj)bpj �
KX

j=1

a(xj)w0(xj)pj

1

A

=
KX

j=1

�
w0(xj)pj

p
n(ba(xj)� a(xj)) + a(xj)pj

p
n( bw0(xj)� w0(xj)) + a(xj)w0(xj)

p
n(bpj � pj)

�
+ op(1)

(E.1)

and

p
n

 
1

n

nX

i=1

bw0(Xi)� E[w0(X)]

!
=

p
n

0

@
KX

j=1

bw0(xj)bpj �
KX

j=1

w0(xj)pj

1

A

=
KX

j=1

�
pj
p
n( bw0(xj)� w0(xj)) + w0(xj)

p
n(bpj � pj)

�
+ op(1). (E.2)

For term (iii), we use the expansion

p
n

✓
max

i: bw0(Xi)>cn
ba(Xi)� max

x2X+
a(x)

◆
=

p
n

✓
max

i: bw0(Xi)>cn
ba(Xi)� max

x2X+
ba(x)

◆
(E.3)

+
p
n

✓
max
x2X+

ba(x)� max
x2X+

a(x)

◆
. (E.4)

The term in (E.3) is of order op(1) because

P
✓p

n

✓
max

i: bw0(Xi)>cn
ba(Xi)� max

x2X+
ba(x)

◆
= 0

◆
= P

✓
max
x2 bX+

ba(x) = max
x2X+

ba(x)
◆

� P( bX+ 2 X+) ! 1

as shown above.

The term in (E.4) can be analyzed using Theorem 2.1 in Fang and Santos (2019), which generalizes the
delta method to the class of Hadamard directionally di↵erentiable functions. Using Lemma E.1, we have
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that

p
n

✓
max
x2X+

ba(x)� max
x2X+

a(x)

◆
= max

xj2argmaxx2X+ a(x)

p
n (ba(xj)� a(xj)) + op(1)

:= max
j2 X+

p
n (ba(xj)� a(xj)) + op(1). (E.5)

Combining the expressions in (E.1), (E.2), and (E.5) with the delta method yields

p
n(bP � P ) =

1

P(W0 = 1)maxx2X+ a(x)

KX

j=1

�
w0(xj)pj

p
n(ba(xj)� a(xj)) + a(xj)pj

p
n( bw0(xj)� w0(xj))

+a(xj)w0(xj)
p
n(bpj � pj)

�

� E[a(X) | W0 = 1]

P(W0 = 1)maxx2X+ a(x)

KX

j=1

�
pj
p
n( bw0(xj)� w0(xj)) + w0(xj)

p
n(bpj � pj)

�

� E[a(X) | W0 = 1]

maxx2X+ a(x)2
max

j2 X+

p
n (ba(xj)� a(xj)) + op(1)

=  (
p
n(ba� a),

p
n(bw0 �w0),

p
n(bp� p)) + op(1)

d�!  (Z)

by the continuity of  and Assumption 6.1.

Proof of Theorem 6.2. We verify the validity of the bootstrap by appealing to Theorem 3.2 in Fang and
Santos (2019). We show that their Assumption 4 holds by showing the mapping b satisfies | b (h0)� b (h)| 
Cnkh0 � hk for any h

0
, h 2 R3K and for Cn = Op(1), and by showing that b (h) p�!  (h) for all h 2 R3K .

Let h = (h1, h2, h3) and h
0 = (h0

1, h
0
2, h

0
3).

| b (h0)� b (h)| 

������

KX

j=1

bw0(xj)bpj
bP(W0 = 1)maxi: bw0(Xi)>cn ba(Xi)

(h0
1(j)� h1(j))

������

+

�����
bE[a(X) | W0 = 1]

maxi: bw0(Xi)>cn ba(Xi)2

 
max

j2b X+

h
0
1(j)� max

j2b X+

h1(j)

!�����

+

������

KX

j=1

(ba(xj)� bE[a(X) | W0 = 1])bpj
bP(W0 = 1)maxi: bw0(Xi)>cn ba(Xi)

(h0
2(j)� h2(j))

������

+

������

KX

j=1

(ba(xj)� bE[a(X) | W0 = 1]) bw0(xj)
bP(W0 = 1)maxi: bw0(Xi)>cn ba(Xi)

(h0
3(j)� h3(j))

������



0

@
KX

j=1

bw0(xj)2bp2j
bP(W0 = 1)2 maxi: bw0(Xi)>cn ba(Xi)2

1

A
1/2

kh0
1 � h1k (E.6)

+
|bE[a(X) | W0 = 1]|

maxi: bw0(Xi)>cn ba(Xi)2

����� max
j2b X+

h
0
1(j)� max

j2b X+

h1(j)

����� (E.7)

+

0

@
KX

j=1

(ba(xj)� bE[a(X) | W0 = 1])2bp2j
bP(W0 = 1)2 maxi: bw0(Xi)>cn ba(Xi)2

1

A
1/2

kh0
2 � h2k (E.8)
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+

0

@
KX

j=1

(ba(xj)� bE[a(X) | W0 = 1])2 bw0(xj)2

bP(W0 = 1)2 maxi: bw0(Xi)>cn ba(Xi)2

1

A
1/2

kh0
3 � h3k, (E.9)

where we applied the Cauchy–Schwarz inequality several times. Note that the maximum function is Lipschitz
with Lipschitz constant one and therefore

����� max
j2b X+

h
0
1(j)� max

j2b X+

h1(j)

����� 
X

j2b X+

|h0
1(j)� h1(j)|


KX

j=1

|h0
1(j)� h1(j)|


p
Kkh0

1 � h1k. (E.10)

Combining equations (E.6)–(E.9) with the consistency of (ba, bw0, bp) established in Theorem 6.1 shows that

| b (h0)� b (h)|  Cnkh0 �hk for any h
0
, h 2 R3K and for Cn = Op(1). Therefore, by Remark 3.4 in Fang and

Santos (2019), showing b (h) p�!  (h) for all h 2 R3K su�ces.

Thus we now consider the consistency of the di↵erent components of b (h). Applying Theorem 6.1, we
can show that

KX

j=1

bw0(xj)bpj
bP(W0 = 1)maxi: bw0(Xi)>cn ba(Xi)

h1(j) =
KX

j=1

w0(xj)pj
P(W0 = 1) supx2X+ a(x)

h1(j) + op(1),

bE[a(X) | W0 = 1]

maxi: bw0(Xi)>cn ba(Xi)2
=

E[a(X) | W0 = 1]

supx2X+ a(x)2
+ op(1),

KX

j=1

(ba(xj)� bE[a(X) | W0 = 1])bpj
bP(W0 = 1)maxi: bw0(Xi)>cn ba(Xi)

h2(j) =
KX

j=1

(a(xj)� E[a(X) | W0 = 1])pj
P(W0 = 1) supx2X+ a(x)

h2(j) + op(1),

KX

j=1

(ba(xj)� bE[a(X) | W0 = 1]) bw0(xj)
bP(W0 = 1)maxi: bw0(Xi)>cn ba(Xi)

h3(j) =
KX

j=1

(a(xj)� E[a(X) | W0 = 1])w0(xj)

P(W0 = 1) supx2X+ a(x)
h3(j) + op(1).

It remains to show that maxj2b X+
h1(j) = maxj2 X+ h1(j) + op(1). This holds if the set b X+ is consistent

for  X+ , which we establish here. Let k 2  X+ . Then,

P(k 2 b X+) = P
 
ba(xk) � max

j2 bX+
ba(xj)� ⇠n

!

= P
 
p
n(ba(xk)� max

j2 bX+
ba(xj)) � �

p
n⇠n

!

= P
 
p
n(max

j2X+
ba(xj)� max

j2 bX+
ba(xj)) � �

p
n⇠n

!
.

The third equality follows from k 2  X+ . By the proof of Theorem 6.1,
p
n(maxj2X+ ba(xj)�maxj2 bX+ ba(xj)) =

op(1). Since �
p
n⇠n ! �1, P(k 2 b X+) ! P(0 � �1) = 1 when k 2  X+ .

Now suppose that k /2  X+ . Then,

P(k 2 b X+) = P(ba(xk) � max
j2 bX+

ba(xj)� ⇠n)
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! P(a(xk) � max
j2X+

a(xj)� 0) = 0,

where the last equality holds from k /2  X+ . Therefore, P(b X+ =  X+) ! 1 as n ! 1. This implies
b (h) p�!  (h), which concludes the proof.

F Proofs for Appendix A

Proof of Proposition A.1. By Theorem 3.1, µ(a, ⌧0) has a uniform causal representation in Tall if and only
if a(xk) � 0 for k 2 {1, . . . ,K}. Therefore, it is su�cient to show the equivalence between weakly causal
estimands and estimands with nonnegative weights. A similar result was shown in Proposition 4 of BBMT,
but we nevertheless provide a proof here to account for the slight di↵erences in notation.

Suppose µ(a, ⌧0) is weakly causal. Let ⌫1 = ( (a(x1) < 0), . . . , (a(xK) < 0)) and ⌫0 = 0K . Trivially,
(⌫1, ⌫0) 2 Mall and ⌧� := ⌫1� ⌫0 2 Tall, where ⌧� � 0K . Since µ(a, ⌧0) is weakly causal, µ(a, ⌧�) � 0 where

µ(a, ⌧�) =
E[a(X)⌧�(X) | W0 = 1]

E[a(X) | W0 = 1]
=

1

E[a(X) | W0 = 1]

KX

k=1

a(xk) (a(xk) < 0)P(X = xk | W0 = 1) � 0.

This implies a(xk) � 0 for all k 2 {1, . . . ,K}. Thus, µ(a, ⌧0) has a uniform causal representation in Tall.
Now suppose µ(a, ⌧0) has a uniform causal representation in Tall, or that a(xk) � 0 for k = 1, . . . ,K.

Then, for any (⌫0, ⌫1) 2 Mall such that ⌧ := ⌫1 � ⌫0 � 0K , we have that

µ(a, ⌧) =
1

E[a(X) | W0 = 1]

KX

k=1

a(xk)⌧(xk)P(X = xk | W0 = 1) � 0.

The inequality holds because a(xk) and ⌧(xk) are nonnegative for all k 2 {1, . . . ,K}. This last inequality is
reversed if we instead assume that ⌧  0K . Thus, µ(a, ⌧0) is weakly causal.

G Di↵erence-in-Di↵erences

Goodman-Bacon (2021) provides the following representation of the two-way fixed e↵ects estimand under
the assumption that group-level average treatment e↵ects are constant over time:

�TWFE =
X

k: var(D|G=k)>0

"
k�1X

j=1

�
k
jk +

KX

j=k+1

�
k
kj

#
· E[Y (1)� Y (0) | G = k,D = 1],

where

�
k
jk =

P(G = j) · P(G = k) · P(D = 1 | G = k) ·
⇥
P(D = 1 | G = j)� P(D = 1 | G = k)

⇤

var(D?(Gt1 ,...,GtK�1
,P1,...,PT ))

and

�
k
kj =

P(G = j) · P(G = k) ·
⇥
1� P(D = 1 | G = k)

⇤⇥
P(D = 1 | G = k)� P(D = 1 | G = j)

⇤

var(D?(Gt1 ,...,GtK�1
,P1,...,PT ))

.
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Here A
?B is used to denote the residual in the linear projection of A on (1, B). It is also the case thatP

k: var(D|G=k)>0

P
l>k

�
�
k
kl+�

l
kl

�
= 1.7 When we compare this representation with Proposition 5.4, that is,

�TWFE =
E[aTWFE,H(G) · P(D = 1 | G) · E[Y (1)� Y (0) | G,D = 1]]

E[aTWFE,H(G) · P(D = 1 | G)]

=

P
k: var(D|G=k)>0 P(G = k) · aTWFE,H(k) · P(D = 1 | G = k) · E[Y (1)� Y (0) | G = k,D = 1]

P
k: var(D|G=k)>0 P(G = k) · aTWFE,H(k) · P(D = 1 | G = k)

,

it becomes clear that, for each group k other than the always treated and the never treated,

aTWFE,H(k) · P(D = 1 | G = k) =
k�1X

j=1

P(G = j) · P(D = 1 | G = k) ·
⇥
P(D = 1 | G = j)� P(D = 1 | G = k)

⇤

+
KX

j=k+1

P(G = j) ·
⇥
1� P(D = 1 | G = k)

⇤⇥
P(D = 1 | G = k)� P(D = 1 | G = j)

⇤
,

and this, in turn, implies that

aTWFE,H(k) =
k�1X

j=1

P(G = j) ·
⇥
P(D = 1 | G = j)� P(D = 1 | G = k)

⇤

+
KX

j=k+1

P(G = j) ·
⇥
P(D = 1 | G = k)� P(D = 1 | G = j)

⇤
· 1� P(D = 1 | G = k)

P(D = 1 | G = k)
. (G.1)

G.1 Equivalence of Weight Functions

We now show that the weights obtained in equation (G.1) are equivalent to those in Proposition 5.4. First,
we rewrite the weights in (G.1) as follows:

aTWFE,H(k) =
k�1X

j=1

P(G = j) ·
⇥
P(D = 1 | G = j)� P(D = 1 | G = k)

⇤

+
KX

j=k+1

P(G = j) ·
⇥
P(D = 1 | G = k)� P(D = 1 | G = j)

⇤
· 1� P(D = 1 | G = k)

P(D = 1 | G = k)

= P(D = 1, G < k)� P(G < k)E[D | G = k] + (1� E[D | G = k])P(G > k)

� 1� E[D | G = k]

E[D | G = k]
P(D = 1, G > k)

= P(D = 1, G < k)� P(G < k)E[D | G = k] + P(G > k)� E[D | G = k]P(G > k)

� 1

E[D | G = k]
P(D = 1, G > k) + P(D = 1, G > k)

= P(D = 1, G 6= k)� E[D | G = k]P(G 6= k) + P(G > k)

✓
1� E[D | G > k]

E[D | G = k]

◆

= (E[D]� E[D | G = k]P(G = k))� E[D | G = k]P(G 6= k) + P(G > k)

✓
1� E[D | G > k]

E[D | G = k]

◆

7The result in Goodman-Bacon (2021) technically also includes a weight �kU attached to the contrast between group k
and the never-treated group. We subsume this weight under �k

kj , and likewise subsume the weight on the contrast with the

always-treated group under �k
jk.
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= E[D]� E[D | G = k] + P(G > k)

✓
1� E[D | G > k]

E[D | G = k]

◆
.

For k 2 {2, . . . , T}, the weights in Proposition 5.4 are equal to

E[1� E[D | G]� E[D | P ] + E[D] | G = k] = 1� E[D | G = k]� E[D | P � k] + E[D], (G.2)

because they are the average of the weights in Proposition 5.3 conditional on G = k. The proof of Proposition
5.4 explicitly shows that

E[1� E[D | G]� E[D | P ] + E[D] | G = k] = P(D = 0 | G = k) · (P(D = 0 | P � k) + P(D = 1 | P < g)).

Let us look at the di↵erence between the weights in (G.1) and (G.2). Fix k 2 {2, . . . , T} and write

(1� E[D | G = k]� E[D | P � k] + E[D])�
✓
E[D]� E[D | G = k] + P(G > k)

✓
1� E[D | G > k]

E[D | G = k]

◆◆

= 1� E[D | P � k]� P(G > k) +
E[D (G > k)]

E[D | G = k]

= E[ (G  k)]� E[D (P � k)]

E[ (P � k)]
+

E[D (G > k)]

E[ (k  P )]

=
1

E[ (k  P )]
(FG(k)E[ (k  P )] + E[D (G > k)]� E[D (P � k)])

=
1

E[ (k  P )]
(FG(k)E[ (k  P )] + E[ (k < G  P )]� E[E[D | P ] (P � k)])

=
1

E[ (k  P )]
(FG(k)E[ (k  P )] + E[E[ (k < G  P ) | P ]]� E[FG(P ) (P � k)])

=
1

E[ (k  P )]
(FG(k)E[ (k  P )] + E[(FG(P )� FG(k)) (P � k)]� E[FG(P ) (P � k)])

=
1

E[ (k  P )]
(FG(k)E[ (k  P )] + E[FG(P ) (P � k)]� FG(k)E[ (P � k)]� E[FG(P ) (P � k)])

= 0.

Therefore, the weights in Proposition 5.4 and equations (G.1) and (G.2) are all equal to one another.
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