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have made equal time investments. We find that effort explains around 25 percent of 
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1 Introduction

The fact that educational achievement systematically differs between certain groups of students is

a central topic in educational research and practice. Achievement gaps by gender and by socioe-

conomic status (SES hereafter) have received special attention, because they are argued to be a

key factor in reproducing inequalities in socioeconomic outcomes and representation in adult life

(Bedard & Cho, 2010; Hanushek et al., 2019). To effectively remediate such gaps, understanding

what they reflect is crucial. Typically, analysis and discussion of achievement gaps perceive these

as reflecting differences in cognitive ability or acquired knowledge, and remediation of achieve-

ment gaps is consequently also targeted at these aspects. However, recent evidence shows that test

scores are also substantially driven by student effort during the test (Zamarro et al., 2016; Gneezy

et al., 2019), and that such effort typically differs across groups (Akyol et al., 2021; Borghans

et al., 2024).1 These observations beg the question to what extent gender and SES achievement

gaps can be attributed to differences in effort between these groups.

In this paper, we causally identify to what extent gender and SES achievement gaps are driven

by differences in test-taking effort. We use data from 14,981 9th grade students in the Netherlands

who take a low-stakes computerized test measuring IQ, math and reading achievement. The test

data have two key features: 1) they contain detailed timestamps, allowing us to infer question

response time as a measure of effort, 2) question order is randomly assigned across students, al-

lowing us to leverage exogenous variation in response time to estimate the causal effect of effort

on achievement.

Response time is an endogenous variable, as students may take more or less time depending

on the difficulty of the question and/or their own ability level. Crucially, this endogeneity bias

is not solved by including question and individual fixed effects, because this does not take into

account that they may interact: particular questions may be easier or more difficult for a particular

student, which can influence the effort s/he will put forth on that question. To tackle this source of
1For a more general discussion on the importance of effort for school achievement, see, e.g., Borghans et al.

(2008a).
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endogeneity, and to causally identify the effect of student effort on performance in IQ, math and

reading questions, we take advantage of the fact that students invest less time per question as these

move towards the end of the test (Tavares, 2022). Due to the randomness of the question position

in the test, we can isolate the exogenous variation in response time for a given question that stems

from test progression.

We find that extra response time has no effect on performance in the IQ test, but has a sizable

effect on achievement in the math and reading tests. The IV estimates are substantially larger than

the naive OLS estimates and estimates including student fixed effects. This shows that a negative

bias arises in the latter from students taking more time when a question is particularly difficult

to them. We find that ten seconds extra response time causally increases the probability of a full

score in math and reading by approximately 3 percentage points. Applying these causal estimates,

we find that the gender achievement gap in reading closes by 18.4 percent when there would be

no differences in response time. The SES achievement gaps in reading and math similarly close

by 27 percent and 21 percent, respectively. Conversely, the gender gap in math increases, since

girls perform worse on math while putting in more effort. When looking at average achievement

across math and reading, we find that student effort explains 49 [24] percent of the achievement

gap across gender [SES].

This paper brings together literature about the gender and SES achievement gaps and literature

about the role of effort in test taking. Studies on gender and SES achievement gaps are abound

in empirical research, as these are highly relevant to inequalities in society. Many studies aim

to discern the underlying reasons for the identified gaps. SES gaps have been highlighted as far

back as the Coleman report (Coleman, 1968) and have since particularly focused on the relative

contributions of (early) family circumstances (Heckman, 2000) and school quality (Jennings et al.,

2015; Reardon, 2016). The role of effort differences across SES groups has received little attention,

however.

For gender gaps, it is typically identified that female students perform substantially better in

reading, while math gender gaps tend to be more inconsistent across countries but, on average, in
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favour of male students (Ceci et al., 2014; Breda & Napp, 2019; Ellison & Swanson, 2023). Anal-

yses of the explanatory factors for these gaps in achievement have focused on many factors, in-

cluding the role of biological differences (Wilder & Powell, 1989), comparative advantage (Breda

& Napp, 2019), bias in class-level streaming (Bedard & Cho, 2010), stereotype threat (Spencer

et al., 1999), parental expectations (Bhanot & Jovanovic, 2005), and noncognitive skills (Cornwell

et al., 2013).2 Our study relates mostly to the latter. Nonetheless, we consider effort as a separate

concept that may be influenced by non-cognitive skills, and is a measure of direct behaviour rather

than of an underlying trait or skill. Additionally, research shows that student effort during a test

predicts test scores and that country differences in effort affect country rankings on standardized

tests such as PISA (Zamarro et al., 2016; Gneezy et al., 2019; Akyol et al., 2021). Moreover, stud-

ies have identified that such effort predicts future school outcomes (Xiong et al., 2011; Hernández

& Hershaff, 2015).

A central question in this literature is how to measure test effort. Setzer et al. (2013) reflect

on the capacity of response time to capture effort and argue in favour of this measure compared

to traditional effort measures.3 Alternative measures are self-reported effort, non-response rates,

careless answering behaviour, and performance decline. The first is subjective and subject to refer-

ence bias, non-response rates are ill-suited for multiple-choice questions, while careless answering

is better suited for surveys. Hence, response time provides an objective measure, comparable

across students, that can be used across different types of tests. Previous literature on response

time typically uses it to binarily classify responses as non-effortful vs. solution behaviour, and

assess overall test motivation or to analyse and improve item validity. This study is, to the best of

our knowledge, the first that explores the (causal) role of response time in explaining achievement

gaps.

This study also relates to research on performance decline across tests (Borghans & Schils,

2018; Zamarro et al., 2016; Borgonovi & Biecek, 2016; Brunello et al., 2018; Balart & Ooster-
2Fryer Jr & Levitt (2010) explore several of these potential explanations (differential investments, parental expec-

tations, biased tests) and find little evidence for each of them.
3The OECD includes response time among their effort and motivation indicators in PISA questions (OECD, 2019).
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veen, 2019). This literature shows that female and high SES students are better able to sustain

initial levels of performance compared to their male and low SES counterparts. This literature also

analyses effort in relation to achievement gaps (specifically by gender), but focuses on other di-

mensions of effort. In particular, while their focus is on an output measure (performance decline)

ours is on an input measure (response time). Second, our focus is not on effort decline but on

its level. Our study thus comes with a different aim and different potential implications. Studies

such as Balart & Oosterveen (2019) hold important implications for the sensitivity of measured

gender gaps in achievement across tests of different length. Our results predominantly pertain to

how effort (causally) contributes to achievement gaps in a given test, and what share of those gaps

it can explain.

In summary, we contribute to the literature by quantifying the causal effect of effort exerted

during a test, and using those estimates to explain the contribution of effort to achievement gaps

in math and reading. Importantly, previous work has assumed that the mismatch between student

knowledge and question content has negligible implications for delivered effort levels. We employ

an identification strategy that addresses this concern. We show that IV estimates are statistically

different from estimates from an OLS model with fixed effects, which rely on this assumption and

are thus biased. By doing so, we provide evidence on a potential determinant of achievement gaps

that has received little attention in this vast literature, and that may thus impact our understanding

of these gaps, and how they can potentially be remediated.

The remainder of the paper is organized as follows. Section 2 describes the data set and presents

descriptive statistics. Section 3 focuses on methodology and identification strategy. Section 4

reports and discusses our results, while Section 5 concludes.
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2 Data and Descriptive Statistics

We use data from the Onderwijsmonitor Limburg (OML hereafter), an ongoing regional educa-

tion monitor that gathers data since 2009 in Limburg, a province of the Netherlands.4 This is a

cooperative project between Maastricht University and both primary and secondary schools, with

a participation rate above 90 percent (Hirsch, 2017). We use testing data from students in 9th grade

(lower secondary school). Dutch primary education ends in 6th grade, after which students are

assigned to secondary school tracks that lead to specific labour market qualifications. There are

four main secondary school tracks: two are vocationally oriented (lower and upper vocational) and

two are academically oriented (general education and pre-university education).

OML administers a computerized test to 9th grade students, every two years, with the purpose

of research and providing feedback to schools. The test is administered in the classroom, within

a 50 minutes window and under teacher supervision. It comprises IQ, math and reading questions

and has three versions, depending on secondary school track: lower vocational students take test

version 1, upper vocational students take version 2 and academic-oriented tracks take version 3.

Table 1 shows how students are distributed across test versions.

In addition to the different versions that make sure that questions fit with the respective track

curriculum, students are randomly assigned to four different “routes”. Everyone starts with the IQ

block, after which students either get three blocks of math questions (25 percent of students), three

blocks of reading questions (25 percent), two blocks of math and one block of reading questions

(25 percent), or two blocks of reading and one block of math questions (25 percent). The four pos-

sible routes are thus: IQ-MA-MB-MC, IQ-RA-RB-RC, IQ-MA-RA-RC and IQ-RA-MA-MC. Table

1 shows by subject how many students have made the particular test.

The test software ensures transition between the blocks either when all questions are completed

or a time limit is reached. When a student is still in the first block after 10 minutes, s/he is

transitioned to the next block as soon as they submit an answer to the current question. For the
4OML is part of a larger cooperative program, Educatieve Agenda Limburg, between Maastricht University and

school boards in primary and secondary and higher professional education in Limburg. Limburg is one of the twelve
provinces of the Netherlands, covering the southeastern part of the country.
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Table 1: Descriptive Statistics: average, standard deviation and frequency

IQ Math Reading All

Total number of students 7,400 10,980 11,375 14,980

in 2012 3,136 4,657 4,939 6,399

in 2014 1,544 2,299 2,336 3,081

in 2016 2,720 4,024 4,100 5,470

Test version 1 1,488 2,231 2,292 3,010

Test version 2 2,161 3,144 3,283 4,304

Test version 3 3,751 5,605 5,800 7,636

Number of student-question pairs 137,192 172,172 75,415 384,779

% Female students 0.51 0.52 0.52 0.52
(0.50) (0.50) (0.50) (0.50)

% High SES students 0.39 0.39 0.42 0.40
(0.49) (0.49) (0.49) (0.49)

Score 57.03 44.73 66.13 53.31
(49.50) (48.19) (32.63) (46.81)

Response time 23.24 52.98 77.92 47.26
(17.80) (51.36) (65.80) (50.46)

Note: The first panel displays frequencies (e.g.: number of students in the sample), whereas the second shows sample
averages and standard deviations in parenthesis. Note that the a student may have been tested in more than one subject
in the same year.

second and third blocks, these limits are set at 15 minutes, whereas the fourth and last block has

no fixed time limit. Blocks are usually finished, especially in reading (98 percent of all cases) and

math (75 percent of all cases, with another 10 percent finishing all but one question). For the IQ

block, only 41 percent of students answer all questions.
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Additionally, questions are fully randomized inside each block.5 There are thus two forms of

randomization that create variation in question order. In the main empirical approach, we only use

the within-block variation, as we consider it more reliable. Variation in test routes does not only

determine whether math questions are received early or late in the test but also whether they are

preceded by reading questions or not, which may have an independent effect. Appendix Table E1

attests the random nature of question order within blocks in our sample.

The data collected during the test include question scores and timestamps for each question-

student pair. Timestamps are collected by “screen”: the software records whenever a new screen

with a new question appears, and when the answer to that question is submitted. In some instances,

there are multiple questions on the same screen (typically for reading when there are several ques-

tions about the same text). As we cannot deduce timestamps for each, we aggregate scores by

screen. We consider everything that appears jointly on one screen as a single question, while we

refer to subquestions within one screen as items. Question scores thus correspond to the percentage

of correctly answered items within each question for each student. All IQ questions are single-item

as are 90 percent of math questions. Reading questions are all multi-item. On average, each stu-

dent answers 18 IQ questions, 16 math questions and 8 reading questions. Figure 1 shows the

distribution of question scores for each subject in our sample. The average score equals 57 percent

for IQ questions, 45 percent for math questions and 66 percent for reading questions.

Timestamps are available for tests administered in 2012, 2014 and 2016.6 Response time of

student i to question j, in seconds (rij), corresponds to the difference between the two timestamps

recorded for each question-student pair. The first is the moment when question j (with all its items)

is displayed on the computer screen of student i, whereas the second corresponds to the moment

when student i submits an answer to question j.
5For half of the students, IQ questions are grouped within sub-blocks (according to type). Given our identification

strategy, we drop these student-question pairs, which explains the lower number of students under IQ in table 1. Test
versions represent groups of questions and some questions overlap across versions. For a detailed description of the
test, please see Tavares (2022).

6As shown in Table 1, the number of students with testing data is substantially lower in 2014. Because of planning
difficulties, only around half of all schools were able to administer the test. Results are very similar when we exclude
the 2014 cohort.
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Figure 1: Distribution of question score

(a) IQ (b) Math (c) Reading

We use the median absolute deviation method, with a threshold of 3, to identify right-tail

outliers in the distribution of response time. Response times of observations classified as outliers

are winsorized, and thus re-coded to the corresponding outlier value.7 After this adjustment, the

average response time equals 23.2 seconds for IQ questions, 53.0 seconds for math questions and

77.9 seconds for reading questions. Figure 2 shows the distribution of question response time for

each subject in our sample, after winsorizing outliers and demeaning question response time within

each subject.8

Figure 2: Distribution of question response time

(a) IQ (b) Math (c) Reading

The second part of the analysis is aimed at explaining gender and SES achievement gaps.
7Particularly, an observation (student-question pair) is classified as an outlier if its response time exceeds the

average response time plus 3 times the median absolute deviation from the question’s median response time, rij >

r̄j + 3 → median(|rij ↑ median(ri,j̄)|) for fixed j, where r̄j =
∑nj̄

i=1
rij

nj̄
. Response time of observations deemed

as outliers is recorded to r̄j + 3 →median(|rij ↑median(ri,j̄)|). Dropping outliers does not change our results. It
increases point estimates of the effect of response time on question score.

8Figure 2 shows that there is a relatively large set of short answers for math items. Excluding these does not
qualitatively change our results.
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Student gender is taken from the school administration and SES is collected from student and

parent questionnaires. Students are classified as coming from a high socioeconomic background

when at least one of the parents has finished tertiary education (either university of applied sciences

or university).

Figure 3 shows descriptive information on gender and SES gaps in performance and in question

response time. Panel (a) suggests that female students have higher average scores in reading than

male students, but lower scores in math. Average IQ scores are very similar by gender. Response

time averages are higher for female students than male students across all subjects. They are of

similar size for math and reading, and lower for IQ questions. Panel (b) shows that high SES

students have higher average scores as well as higher response times. Score differences are more

prominent in IQ than in math and reading. Response time differences are largest for math, both

absolutely and relatively, followed by reading and IQ. Figure 3 thus shows that there is variation in

response time by gender and SES, and therefore that such differences could potentially explain part

of achievement gaps. To quantify this, we first need to establish whether response time causally

contributes to achievement and, if so, by how much.

Figure 3: Average differences in performance and effort across groups

(a–1) Gender: score difference (a–2) Gender: time difference
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(b–1) SES: score difference (b–2) SES: time difference

Note: Both test score and response time are demeaned within subject. Question score in the figure excludes the effect of school year and question
characteristics. It corresponds to the (demeaned) residuals of regressing each question-student score on school year dummies and question fixed
effects.

3 Methodology

First, we aim to identify the causal effect of response time on question scores. Second, we aim to

quantify the implications of response time differences for gender and SES achievement gaps in IQ,

math and reading tests. The methodology adopted regarding the first is covered in subsection 3.1,

whereas the second is presented in subsection 3.2.

3.1 Estimating the causal effect of response time

We first specify the typical approach in estimating the effect of response time on scores. Equa-

tion 1 denotes question score for student i and question j (scoreij) as a function of demeaned

response time (r̃ij) (in seconds), question fixed effects (ωj) and student fixed effects (ω̈i).9 The

error term eij follows the standard assumptions. Standard errors are clustered at the student-level,

since individual scores are exposed to unobserved factors that are individual-specific.10

9We use a linear specification as our main focus is not on the behaviour of observations in the tails of the distribution
and we believe this is more suitable given our instrumental variable. Moreover, after including test controls and fixed
effects, the relation between exogenous response time and performance approaches a straight line. Results are similar
if higher order polynomials of response time are included, namely squared and cubic terms. We elaborate on this issue
in Section 4.3.

10Clustering at both question and student levels does not affect the significance of our results.
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scoreij = ωj + ω̈i + ε0r̃ij + eij (1)

The coefficient of interest in equation 1 is ε0. It reflects how the average probability to answer

question j correctly changes when student i devotes more time to question j, all else equal. We also

estimate equation 1 without both student and question fixed effects and with only question fixed

effects. This allows us to see how these typical correction approaches matter for the identified

effect of response time on score.

Question fixed effects absorb question features that are student and order-invariant (such as

difficulty), whereas student fixed effects control for student characteristics that are question and

order-invariant (such as general ability and motivation to engage with the test). There may be,

however, student-question factors that explain both question score and response time, in particular

the mismatch between question content and student knowledge. As students may adjust their

response time if they perceive the question as harder or easier, also net of average question difficulty

and average student performance, we suspect that response time may suffer from endogeneity as a

predictor of student performance.

In order to tackle this identification problem, we take advantage of random question order. It

ensures that question (and student) characteristics are independent of question position. In this

way, we capture the exogenous variation in response time that stems from test progression. We

estimate an IV model where the endogenous variable, r̃ij , is instrumented with the (demeaned)

relative question position in the test block (Q̃p
ij). The first stage equation thus becomes:

r̃ij = ωj + ω̈i + ϑ0Q̃
p
ij + ėij (2)

where r̃ij = rij ↑ rj , Q̃p
ij = Q

p
ij ↑Q

p
j , where Qp

j is the average question position inside the respec-

tive block. Equation 2 is estimated both with and without student fixed effects. If the exclusion

restriction is valid, the instrument should be independent of student fixed effects. A comparison

between the two estimations is an indicative test for the validity of the IV approach.
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Additionally, the instrument needs to be relevant, i.e. question position needs to be a strong

predictor of response time. Figure 4 shows how response time develops across the test. The left-

hand panel of figure 4 shows raw averages of response time over question position, while the

right-hand panel shows estimates for question position dummies in a regression that also includes

question fixed effects. Recall that there are different test versions for math and reading, and that

higher tracks typically answer more, and longer questions. This explains the flattening out of the

pattern at the end of the test in the raw graphs on the left. The corrected graphs, on the right,

show that the decline is monotonic and roughly linear across subjects. Moreover, this pattern is

persistently present also when split by gender or SES (see figure B1 in Appendix B.)

Figure 4: Response time over question position

(a–1) IQ: absolute response time (a–2) IQ: predicted decline w.r.t 1st question

(b–1) Math:absolute response time (b–2) Math: predicted decline w.r.t 1st question
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(c–1) Reading: absolute response time (c–2) Reading: predicted decline w.r.t 1st question

Note: Panels on the left-hand side of the figure show the average response time (in seconds) for each question position in the subject. Panels on
the right-hand side of the figure show the predicted response time decline (in seconds) for each question position, when controlling for question
fixed effects. This corresponds to the point estimates ω̂k obtained from regressing response time on question fixed effects, subject question position
and year dummies, namely rij = εj +

∑K
k=1 ωkQ

p
k +!Y ear→i + wij .

3.2 Estimating the implications for achievement gaps

Once the causal impact of response time on student performance is identified, we proceed to in-

vestigate whether differences in response time explain differences in performance, namely gender

and SES achievement gaps. We first estimate raw achievement gaps for each subject, as shown in

equation 3. These achievement gaps do not take the effect of response time on performance into

account.

Raw Gap : scoreij = ωj + ϖ
R
1 femalei + ϖ

R
2 high SESi + ϱ1V

→
i + ςij, (3)

In equation 3, ωj are question fixed effects, femalei takes value 1 for female students and 0

otherwise, high SESi takes value 1 when at least one of student i’s parents has completed tertiary

education and V
→
i is a vector of school year dummies.11 The raw achievement gaps are captured

by the coefficient estimates ϖ̂R1 and ϖ̂
R
2 in equation 3, which correspond to the average difference

in performance across gender and SES groups, respectively. Question fixed effects are included so

that we compare achievement gaps for the same questions.
11Results remain the same if we control for other test features, such as test version and block.
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We then estimate what remains of achievement gaps when differences in response time are

controlled for. Consistent with the setup of Section 3.1, we show and compare this for different

specifications. The naive OLS approach (equation 4) simply adds demeaned response time (r̃ij) to

the baseline regression (equation 3):

OLS Gap : scoreij = ωj + ε
OLS
1 femalei + ε

OLS
2 high SESi + ϑ2V

→
i + ϖ1r̃ij + ϱ̇ij (4)

Our preferred approach takes response time’s endogeneity into account, by estimating the

aforementioned IV approach that instruments response time with question position:






r̃ij = ωj + ς1Q̃
p
ij + ς2femalei + ς3high SESi + ϑ3V

→
i + vij

IV Gap : scoreij = ωj + ϖ2r̂ij + ε
IV
1 femalei + ε

IV
2 high SESi + ϑ4V

→
i + v̇ij

(5a)

(5b)

In model 5, r̃ij = rij ↑ rj , Q̃p
ij = Q

p
ij ↑Q

p
j . Note that r̂ij are the fitted values from equation 5a.

Equations 4 and 5 correspond to the specifications without student fixed effects. fixed effects.

To estimate achievement gaps including fixed effects we take a two-step procedure. First, we

estimate student fixed effects, ̂̈ωi from equation 1. Second, we regress student fixed effects on

gender and SES. In essence, this extracts the gender and SES components from the individual

fixed effects. This allows us to control for unobserved student characteristics and still ensure that

the estimated effect of response time is statistically identical across the two regressions.

For the naive OLS approach, this means that student fixed effect are estimated from equation

1, and then regressed on gender and SES:

OLS Gap w/ Student f.e. : ̂̈ωi = ωj + ε
OLSfe

1 femalei + ε
OLSfe

2 high SESi + ϑ5V
→
i
+ ϱ̈ij (6)

For the IV approach, student fixed effect are estimated from equation 1 but taking a 2SLS

procedure that includes equation 2 as the first stage. Then we regress estimated student fixed

effects on gender and SES:
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IV Gap w/ Student f.e. : ̂̈ωi = ωj + ϖ
IV Sfe
1 femalei + ϖ

IV Sfe
2 + ϱ6V

→
i + v̈ij, (7)

We formally test whether these new point estimates are significantly different from the raw

achievement gaps in equation 3, and between the different specifications that control for response

time.12

Aside from how long students think about a question, they can also differ in how hard they

think given a certain response time. Our implicit assumption is that a change in such mental effort

along the test is proportional to gender and SES group differences in response time effort. We

revisit this assumption in Section 4.3.

4 Results

This section is divided into two parts. In the first, we analyze the returns to response time. In

the second, we evaluate to what extent achievement gaps change when response time is taken into

account.

4.1 The causal effect of response time

Table 2 summarizes our findings for IQ, math and reading, respectively. The first three columns

of each panel display OLS estimates. Fixed effects are included sequentially: column 1 does not

include fixed effects, column 2 controls for question fixed effects and column 3 adds student fixed

effects (equation 1).

The last column of table 2 shows the IV estimates of the second stage of our 2SLS (equations

1 and 2). Column 4 does the same but without student fixed effects. In the last rows of these

columns, we report: (i) the first stage F-statistic, (ii) the p-value of a “Durbin-Wu-Hausman” test
12Testing whether achievement gaps change significantly from the base to the extended specifications is not straight-

forward. We use two different methods to perform such tests. One gives more accurate estimates, whereas the other
allows for a more straightforward procedure to test our hypotheses. Further details may be found in Appendix D.
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(DWH hereafter), and (iii) the F-statistic of the second stage regression. The first-stage F-statistics

are far above conventional critical values, providing formal confirmation to the earlier visual result

that response time declines significantly along the test.

Table 2: Returns to response time

OLS IV

(1) (2) (3) (4) (5)

Panel A: IQ
Response time 0.051↑↑↑ 0.162↑↑↑ -0.089↑↑↑ 0.007 0.011

(0.010) (0.011) (0.010) (0.055) (0.055)

N 137,192 137,192 137,183 137,192 137,183
F-stat 1st stage 2737.414 2746.409
P-value DWH test 0.004 0.066
F-stat 2nd stage 18.542 82.638 84.926 8.928 0.039

Panel B: Math
Response time 0.137↑↑↑ 0.243↑↑↑ 0.094↑↑↑ 0.356↑↑↑ 0.351↑↑↑

(0.003) (0.003) (0.003) (0.018) (0.018)

N 172,172 172,172 172,134 172,172 172,134
F-stat 1st stage 3927.763 3949.965
P-value DWH test 0.000 0.000
F-stat 2nd stage 893.726 2274.254 969.057 136.656 382.828

Panel C: Reading
Response time 0.052↑↑↑ 0.163↑↑↑ 0.058↑↑↑ 0.283↑↑↑ 0.285↑↑↑

(0.002) (0.003) (0.003) (0.025) (0.024)

N 75,415 75,415 75,363 75,415 75,363
F-stat 1st stage 680.629 699.744
P-value DWH test 0.000 0.000
F-stat 2nd stage 191.579 1218.772 466.705 54.803 135.745
Question fixed effects No Yes Yes Yes Yes
Student fixed effects No No Yes No Yes

Notes: All specifications control for school year, unless student fixed-effects are included. Question score
↑ [0, 100]. Response time is demeaned and winsorized for right-tail outliers. Standard errors in parenthesis
are clustered at student-level. Results remain significant if standard errors are clustered at both student and
question levels. In the endogeneity test H0 : response time is exogenous, with test statistic ↓ ϑ2

1. See Baum
et al. (2002) for details. + p < 0.1, ↑ p < 0.05, ↑↑ p < 0.01, ↑↑↑ p < 0.001

The DWH test allows us to verify whether OLS and IV estimates are equivalent. Its p-values

reflect that test statistics are far above critical values, leading us to reject the null hypothesis that

OLS and IV estimates are equal. Moreover, the low DWH p-values in column 5 confirm that an
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instrumental variable is necessary even after including student and question fixed effects.13

For IQ, OLS estimates in the full specification (column 3 of table 2) are negative, whereas

IV estimates are not statistically different from zero. Thus, regardless of how long one thinks

about a question, the likelihood to provide a correct answer does not increase significantly with

time invested. The negative OLS coefficient may be interpreted as reflecting the mismatch effect

between question content and student knowledge. When the mismatch is higher, the probability

to answer correctly is lower and students take longer to answer. When this channel is corrected,

point estimates become statistically insignificant. Given the strong first stage power, this result

is not driven by lack of a (meaningful) effort decline. The result may be due to the nature of

what IQ tests measure. Fluid intelligence, typically dubbed as relation-perceiving ability (Cattell,

1987), may thus not be responsive to effort increases. Note that response times for IQ are also

substantially shorter per question than for math and reading.

For math and reading, returns to response time are positive in all specifications. The results

from the simple OLS model in column 1 confirm earlier observations: predicted performance

increases with response time (Joseph, 2005). OLS estimates increase somewhat when question

fixed effects are added, reflecting that students think longer on more difficult questions. They

decrease again when student fixed effects are added, reflecting that higher-ability students think

longer.

In the IV approach, the point estimates of response time remain positive and statistically sig-

nificant, and effect sizes increase substantially. The comparison with the OLS estimates suggests

that students answer worse and think longer on questions that they “personally” perceive as more

difficult, leading to a downward bias in the estimated impact of response time on performance in

OLS models. Column 5 of panels B and C of Table 2 suggests that a 10 seconds increase in average

response time leads to an increase in the predicted probability of answering question j correctly of,

approximately, 3.5 percentage points (pp hereafter) in math questions and 2.9pp in reading, all else

equal. For math [reading] questions, this represents an 18.9 [12.8] percent increase in response
13Note that the specification in column 3 is the endogenous counterpart of column 5 used in the “DWH” test.
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time and a 7.8 [4.3] percent increase in the predicted probability of answering a question correctly.

Importantly, the IV models with and without student fixed effects provide near-identical results.

This indicates that the instrument does not correlate with time-invariant unobserved student char-

acteristics, providing evidence in favour of its validity. Compared to the most standard approach

in the literature (OLS with student fixed effects; column (3)), IV estimates are around four times

larger. The size of this bias is substantially larger than that caused by not controlling for students

or question fixed effects.

4.2 Implications for achievement gaps

We now evaluate to what extent gender and SES achievement gaps in IQ, math and reading change

when response time is controlled for. We present results for all subjects, but our analysis focuses on

math and reading. Firstly, question response time proved to be a relevant explanatory variable for

performance in these subjects. Secondly, these are the achievement gaps that hold more academic

and policy relevance. Results for IQ are depicted in the tables and figures for completeness.

Each panel of Figure 5 shows the estimated coefficients for female and high SES students, as

indicated in the horizontal axis, for each subject. Each set of estimates is composed of five markers

and their 95% confidence intervals. We start out with the raw gap (3), where response time is not

controlled for. This is followed by the specifications in which response time is corrected for: the

OLS and IV models, with and without student fixed effects. The underlying numbers for Figure 5

can be seen in Appendix Table C1.

Figure 5 shows that the gender achievement gap in reading decreases when response time is

accounted for. This decrease is around 10 percent in the basic OLS approach, 4 percent in the OLS

with student fixed effects, and 18 percent in the IV approach. The gender gap in math, which is in

favour of boys, increases when accounting for response time. This increase is around 100 percent

in the basic OLS model, 40 percent in the OLS with student fixed effects, and 150 percent in the

IV model. While these numbers are sizable, it should be kept in mind that they are relative to an

initial math gender gap that is relatively small. In an absolute sense, the change in the gender gap
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Figure 5: Estimated achievement gaps across specifications

(a) IQ (b) Math

(c) Reading
Notes: In the legend of each figure, the estimate labelled “Raw” stands for the raw achievement gap that does not control for response time. The
estimate labelled “OLS” introduces this control, without correcting for its potential endogenous nature, whereas “OLS Sfe” extracts gender and
SES achievement gaps from student fixed effects. The estimate labelled “IV” controls for the exogenous variation in response time, whereas “IV
Sfe” extracts gender and SES achievement gaps from student fixed effects. All specifications control for question fixed effects and school year
(unless student fixed effects are included). Regression tables may be found in Appendix C.

between the specifications is only slightly larger in math than in reading (1.5 versus 1.2; see Table

C1).

With respect to SES achievement gaps, implications are very similar between math and reading.

Both fall by around 15 percent in the basic OLS approach, 5 percent in the OLS with student fixed

effects, and around 20 to 25 percent in the IV specifications. Taken together, these results indicate

that the relevance of response time effort for achievement gaps is around 1.5 times larger than

when using the OLS specification that only contains question fixed effects, and around 4 times

larger than comparing to the standard approach of OLS with student fixed effects.
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To sum up, effort differences explain around 21 percent of the SES gap in math achievement,

27 percent of the SES gap in reading achievement, and 18 percent of the gender gap in reading

achievement. Conversely, accounting for effort increases the gender gap in math achievement by

157 percent.

While correcting for response time decreases the gender gap for one subject while increasing it

for another, the correction favours the achievement for boys in both subjects. It is a well-established

fact that girls have higher GPA’s than boys, which likely is a major cause for their higher final

educational attainment as well.14 If we look at the gender gap in average achievement across math

and reading, we find that response time explains around 49 percent.15

Lastly, we test whether these changes in achievement gaps across specifications are statistically

different from zero. Comparing coefficient estimates across models is not straightforward, since

a cross-model variance-covariance matrix must be estimated. We use two different methods to

perform these tests, which lead to the same conclusion for both math and reading. Please see

Appendix D for details. Appendix Table D4 summarizes our results, comparing achievement gaps

from equation 7 to equations 3, 4 and 6 in each column, respectively.16 At 5% significance level,

we may conclude that the gender and SES achievement gaps change significantly for both math

and reading.

4.3 Heterogeneity in the returns to response time

We have identified the return to response time using exogenous variation in question position, and

used these estimates to infer how effort contributes to achievement gaps. This implicitly assumes

that the causal effect of response time is homogeneous. Heterogeneous returns to response time

may have implications for its contribution to achievement gaps (1) when there is nonlinearity

in the returns to response time, and (2) when returns substantially differ by gender and/or SES.
14See, e.g., Breda & Napp (2019)
15Calculated by comparing the averaged raw gender gap across math and reading (column (1) in Table C1) to the

averaged corrected gender gap across math and reading (column (5) in Table C1).
16Auxiliary regressions available in appendix D.1
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Thirdly, given that our estimation approach exploits variation in response time along the test, our

conclusions may also be affected if returns are different depending on the stage of the test. We

review these three issues here, starting with the last.

Returns to response time may differ between beginning and end of the test. One could perceive

effort as consisting of how long students think and how hard students think. The former (labeled

D1) is the focus of our study which exploits that effort falls along the test; the latter (labeled D2)

is difficult to measure directly but may also change along the test.

If our causal returns to response time also pick up on D2, this could lead to bias in how we

use these estimates to explain achievement gaps. This bias depends on whether (level) differences

in D2 by gender and SES are proportional to differences in D2 along the test. For example, if

both D1 and D2 strongly drop along the test while effort differences by gender only consist of

D1 differences, we are overestimating how strong achievement gaps would close when effort gaps

would close.

We aim to identify whether D2 changes along the test, by examining the return to a second of

thinking time along the test. If D2 falls along the test, returns to response time should be higher

in the second half of the test (i.e. performance would drop stronger for a given drop in D1). We

estimate this in the first and second panels of Table 3. In the first panel, we interact (demeaned)

response time with a dummy that takes value 1 for the second half of the test. This corresponds to

the student-specific empirical median of question position for each subject. In the second panel,

we interact (demeaned) response time with question position in the subject. Estimates indicate that

their is no evidence that returns differ along the test. This suggests that return estimates can be

seen as clean from D2 changes, at least in this (relatively short) test. When we estimate returns

using only the first half of the test and apply those results to the analysis on achievement gaps,

results are virtually identical.

We conclude that there is little evidence that D2 changes along these tests and therefore our

results in Figure 5 should be mainly interpreted as the effect on achievement gaps of closing the

gap in D1. Moreover, under the assumption that gender/SES differences in D2 work in the same
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direction as differences in D1, our estimates are lower bounds of the full contribution of effort to

achievement gaps. Results from other literature suggest that D1 is relatively more malleable and

therefore the more policy-relevant of the two dimensions. For instance, Borghans et al. (2008b)

provide experimental evidence that financial incentives increase students’ thinking time and per-

formance simultaneously in a situation without time constraints, but that financial incentives do

not increase student performance when time constraints are tight.

In panel B, we explore whether the relation between score and response is nonlinear. To do

so, we add polynomial terms to our specification, namely the square of response time.17 The

point estimates for the squared term are statistically different from zero at 1% significance level.

However, they are small in magnitude. The IV results in Section 4.1 (column 5 of panels B and C

of table 2) suggest that an increase of 10 seconds in average response time leads to a percentage

increase in the predicted probability of answering a question correctly of 7.8 [4.4] percent for math

[reading] questions. When second-order polynomials are included, the corresponding figures are

8.8 and 5.2 percent, respectively. Thus, these approaches lead to qualitatively similar conclusions.

In panel C, we examine whether returns to response time differ by gender and SES groups, by

conducting separate regressions for each group. We find no significant difference in response time

returns across SES groups, but observe smaller returns for female students compared to males,

particularly in reading questions. A 10-second increase in response time increases the predicted

probability of correctly answering a reading question by 3.6 pp for males and 2.0 pp for females,

compared to the average return of 2.8 pp that we identified before for the whole sample. The figures

for math questions are more similar, with returns of 3.9 pp for males and 3.2 pp for females.

What does this heterogeneity imply for the relevance of effort for gender achievement gaps?

Given the heterogeneous results in Panel C, it depends on how the effort gap is closed: are boys

raising effort to the level of girls or are girls lowering effort to the level of boys (or a combination

thereof). In the former case, the male return is relevant. A back-of-the-envelope calculation shows

that this would imply that the gender achievement gap in reading closes by 25 percent. When using
17Appendix A provides details on our approach to instrumentalize response time squared.
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Table 3: Heterogeneity in the returns to response time

Math Reading

Panel A
Response timeij 0.271*** 0.271***

(0.024) (0.041)
Response timeij →Halfij 0.034 0.019

(0.051) (0.065)

Response timeij 0.417*** 0.213***
(0.037) (0.079)

Response timeij→Q
p
ij 0.005 0.031

(0.004) (0.032)
Panel B

Response timeij 0.436*** 0.348***
(0.024) (0.028)

Response time
2
ij -0.004*** -0.001***

(0.000) (0.000)
Panel C

Response timeij 0.392*** 0.355***
(0.027) (0.034)

Response timeij → Femalei -0.076** -0.151***
(0.036) (0.049)

Response timeij 0.362*** 0.283***
(0.023) (0.032)

Response timeij → SESi -0.030 0.008
(0.036) (0.050)

Notes: In panel A, the dummy variable halfij takes value 1 for the 2nd half of the test subject. This corresponds to
questions taking place after the median question position of each subject. We use the empirical median for each student
in each subject. Qp

ij
corresponds to question position in the subject. In panel C, we employ our 2SLS procedure and

explore either the gender or the SES gap, corresponding to the first and second specification in panel C, respectively.
Here, score is regressed on response time, an interaction term between the later and gender or SES (depending on
the heterogeneity effect we are studying). All regressions control for student and question fixed effects and standard
errors are clustered at the student level. In the first specification of panel A, fixed effects are interacted with the dummy
variable halfij ; in the second specification, fixed effects are interacted with the variable Q

p

ij
. In panel C, question

fixed effects are interacted with either gender or SES, depending on the heterogeneity we are analysing.
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the return estimates for girls (i.e. assuming that girls close the effort gap by reducing effort), the

result is that the gap would close by 15 percent. The same calculation using the average return

of 0.285 from Table 2 provides a figure of 20 percent. The relevant policy focus is likely the

scenario in which boys raise effort, making our earlier results a modest underestimation of how

effort contributes to the gender achievement gap in reading.

5 Conclusion

In this paper, we identify the causal return to response time and analyze how much of gender and

SES achievement gaps can be explained by differences in test effort between these groups. We

obtain causal estimates of the impact of question response time on student performance, relying on

random question order. Our findings suggest that accounting for student effort closes the gender

[SES] achievement gap in reading by 18 [27] percent, and the SES achievement gap in math by

21 percent. Gender achievement gaps in math widen by 157 percent when considered net of test

effort. When we look at averaged achievement across both math and reading, effort can explain

around 49 percent of the gender gap.

The main conclusion from the results of this study is not that closing these achievement gaps

will now become easier. Whether closing effort differences is easy or hard is a direction for future

research. Effective targeting of resources for remediation always depends on two aspects: impor-

tance and malleability. We have established the importance of effort in explaining achievement

gaps, so future studies are needed to tackle the question of malleability. The results from this

study have thus provided an alternative pathway through which achievement gaps may potentially

be remediated. Additionally, it is not our message that the corrected achievement gaps are more

accurate or better measures of gaps in educational achievement because they are net of effort. The

ability to deliver effort, also in low-stakes tests, may be a valuable skill in itself, with payoffs in

later life. Nonetheless, in order to effectively remediate achievement gaps, it is important that one

understands whether they originate from a difference in ability/knowledge, or from a difference in
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testing effort.

This study has provided a new perspective on achievement gaps by studying the (causal) role of

effort. This new avenue provides opportunities for further extensions in future research. For one,

the identified effects in this study pertain to a low-stakes test. The advantage of this setting is that

it induces substantial variation in effort. Still, results may be different for high-stakes tests. For

one, evidence shows that boys perform comparatively better on high-stakes tests compared to girls

(Azmat et al., 2016), which may be because their effort is more responsive to the change in stakes.

If so, the relevance of effort for achievement gaps in high-stakes settings will be smaller. Nonethe-

less, it should be emphasized that low-stakes tests are extensively used in education, e.g., to assess

retained knowledge, allowing teachers to adjust class content and pace. While doing so, it is rele-

vant to take into account the effort students may put forth during these assessments. Additionally,

low-stakes tests are highly dominant in research that aims to explain and target achievement gaps.

We have shown that effort is relevant in these settings. Another interesting avenue for future studies

would be to assess whether the typical strong variation in the gender gap in math across countries

could be explained by country variation in gender effort gaps in these (also typically low-stakes)

tests.

Secondly, more insights are needed on the underlying dimensions of test effort. While we have

provided indicative evidence that our causal estimates of response time are not strongly driven

by differences in how “hard” students think, the nature of response time differences still remains

somewhat of a black box. Disentangling the components that underlie effort differences along

the test and effort differences across groups may provide further insights into how effort can be

targeted to remediate gaps in achievement.

Finally, the role of effort in explaining outcomes and inequalities can be carried outside of ed-

ucational settings as well. Previous studies have shown that, e.g., careless answering behaviour in

low-stakes tasks significantly correlates with labour outcomes (Zamarro et al., 2018) and variation

in performance decline along tests predicts economic growth (Balart et al., 2018). In a similar

way, one may use differences in response time, or decline in response time, in achievement tests to
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predict outcomes in adult life. Alternatively, time investments made in non-educational settings,

such as working life, and how these may explain differences in labour market success, provide an

interesting avenue for future studies.
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A Including polynomials of response time

In this appendix we explain how we include higher order polynomials of response time in our

IV regression with the goal of showing that our results are robust to a functional form that is not

linear in this endogenous regression. The goal is to fit a 2SLS that includes a quadratic term of the

endogenous regressor. To do so, we follow the advice in Section 9.5 of Wooldridge (2001). We

first estimate the regression below and obtain its fitted values, r̂ij .

r̃ij = ωj + ϑ0Q̃
p
ij + φij

We calculate the square of these fitted values, r̂2ij , and use them as instruments for r̃2ij (using Stata

factor notation) in the regression below. This allows us to obtain exogenous estimates of ε12.

scoreij = ωj + ω̈i + ε11r̃ij + ε12r̃
2
ij + uij

B Predicted response time decline across groups

Figure B1: Response time over question position

(a–1) IQ: males (a–2) IQ: females
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(b–1) IQ: Low SES (b–2) IQ: High SES

(c–1) Math: males (c–2) Math: females

(d–1) Math: Low SES (d–2) Math: High SES
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(e–1) Reading: males (e–2) Reading: females

(f–1) Reading: Low SES (f–2) Reading: High SES

Note: no estimate for 1st position as the decline is with respect to the 1st question position in the subject test.
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C Estimated achievement gaps across specifications

This Appendix includes the regression tables associated with the point estimates presented in fig-

ure 5. All specifications control for academic year, unless student fixed-effects are included, and

question fixed effects. Response time is demeaned and winsorized. Standard errors in parenthesis

are clustered at student-level.
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Table C1: Achievement Gaps

(1) (2) (3) (4) (5)
Raw OLS OLS Sfe IV IV Sfe

IQ questions

Female 0.903+ 0.755+ 0.988↔ 0.897+ 1.194↔

(0.470) (0.459) (0.477) (0.472) (0.529)
High SES 7.220↔↔↔ 7.073↔↔↔ 7.303↔↔↔ 7.213↔↔↔ 7.272↔↔↔

(0.483) (0.473) (0.490) (0.485) (0.546)
N 137,192 137,192 137,183 137,192 137,183
F-stat 64.155 97.283 63.795 51.444 51.434

Math questions

Female -0.980↔ -2.040↔↔↔ -1.390↔↔↔ -2.537↔↔↔ -2.518↔↔↔

(0.392) (0.333) (0.366) (0.323) (0.315)
High SES 5.492↔↔↔ 4.696↔↔↔ 5.184↔↔↔ 4.322↔↔↔ 4.337↔↔↔

(0.416) (0.353) (0.387) (0.339) (0.332)
N 172,172 172,172 172,134 172,172 172,134
F-stat 49.872 1448.670 52.058 141.426 60.764

Reading questions

Female 6.640↔↔↔ 5.953↔↔↔ 6.392↔↔↔ 5.429↔↔↔ 5.420↔↔↔

(0.371) (0.334) (0.355) (0.342) (0.325)
High SES 2.310↔↔↔ 1.957↔↔↔ 2.183↔↔↔ 1.688↔↔↔ 1.683↔↔↔

(0.384) (0.348) (0.367) (0.344) (0.339)
N 75,415 75,415 75,363 75,415 75,363
F-stat 94.496 799.874 95.837 124.268 82.435
IV No No No Yes Yes
Response time No Yes Yes Yes Yes
Student fixed effects No No Yes No Yes
+
p < 0.1, ↑ p < 0.05, ↑↑ p < 0.01, ↑↑↑

p < 0.001
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D Estimation and Testing

This appendix describes how test hypotheses are conducted across models. Performing such tests

allows us to verify whether achievement gaps change significantly across specifications. We use

two estimation methods, conferring robustness to our results. Each method has advantages and

disadvantages, explored below.

This appendix is organized in subsections according to the estimation method employed. The

first subsection describes our preferred estimation technique. It relies on a user-written Stata com-

mand that increases the precision of IV estimates but does not allow for straightforward testing

across specifications. The second subsection uses a literature standard estimation procedure that

allows for straightforward testing across specifications, but whose predictions display higher stan-

dard errors.

D.1 Method 1: Using ivreghdfe

Given the fractional nature of our dependent variable, we would be interested in a command or

method that estimates a nonlinear model, e.g.: probit or logit. On the other hand, we must deal

with potential endogeneity of response time, a large set of fixed effects, and unobserved factors at

the individual level that require clustered standard error. At the time of our analysis, and to the

best of our knowledge, the most accurate, efficient and time-saving method to deal with such data

and model features, in Stata 17 (StataCorp, 2017), is the user-written command ivreghdfe (Baum

et al., 2002; Correia, 2017, 2018). It allows for:

1. high dimensional fixed effects;

2. the use of instrumental variables to correct for endogeneity;

3. clustering of standard errors at a level different than the fixed effect;

4. panels that are not nested within clusters.
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In this sense, our best alternative is to estimate a linear model using ivreghdfe, overcoming estima-

tion and feasibility limitations of nonlinear models. To be consistent, we employ reghdfe (Correia,

2017) to estimate specifications that do not suffer from endogeneity, as is the case of equation 3.

Although ivreghdfe allows us to obtain consistent and efficient estimates for achievement gaps,

it does not allow for a straightforward method to compare point estimates across specifications.

This is relevant for our analysis as we are interested in assessing whether achievement gaps change

significantly when response time is included in the model.

To perform such a test it is necessary to estimate the covariance between point estimates across

specifications. To test the equality of two coefficients, H0 : ϖ = ↼, the appropriate test statistic is:

t =
ϖ̂ ↑ ↼̂

↽̂(ϖ̂↗ϱ̂)

=
ϖ̂ ↑ ↼̂√

↽̂
2
ϖ̂
+ ↽̂

2
ϱ̂
↑ 2→ ↽̂ϖ̂,ϱ̂

↓ ⇀
2
1

This may be obtained by estimating a seemingly unrelated regression (SUR model), using the Stata

command suest (StataCorp, 2015). However the latter is incompatible with ivreghdfe, relying on

OLS regressions (reg). In order to circumvent this problem, we mimic suest’s procedure and adapt

it to our case. Our approach finds inspiration in example 3 of StataCorp (2015), under the title

SUEST.

We compare the estimated achievement gap from equation 7, which corrects for response time

edonegeneity and unobserved student characteristics, with the raw achievement gap from equation

3, the OLS gaps from equations 4 and 6. The latter also takes into account student unobserved

characteristics. All estimated achievement gaps take into account question characteristics. To

perform such comparisons, we stack our data as explained below, run auxiliary regressions and

test whether the relevant coefficients are statistically equal to 0.

Matrix 8 shows how data is stacked to compare estimated achievement gap from equation

7 to the ones estimated in equation 3 for a fixed number of students, N . We create a dummy

variable that identifies each specification (model) and a dependent variable, yij , that for equation 3

(model = 0) corresponds to student’s i score in question j (scoreij) and for equation 7 (model =
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1) corresponds to student’s i fixed effect from equation 2 (̂̈ωi).





model studentid(i) question(j) yij femi sesi yeari

0 1 A score1,A fem1 ses1 year1

0 1 B score1,B fem1 ses1 year1

. . . . . . .

. . . . . . .

. . . . . . .

0 N Z scoreN,Z femN sesN yearN

1 1 A2 ̂̈ω1 fem1 ses1 year1

1 1 B2 ̂̈ω1 fem1 ses1 year1

. . . . . . .

. . . . . . .

. . . . . . .

1 N Z2 ̂̈ωN femN sesN yearN





(8)

The next step is to estimate the following equation, with clustered standard errors at the student-

level, using reghdfe, as we do throughout our analysis. Please note that we estimate each subject

separately.

yij = ωj + ⇁1femalei + ⇁2high SESi + ⇁3yeari + ⇁4model+

+ ⇁5femalei →model + ⇁6high SESi →model + ⇁7yeari →model + ϱij

Coefficient estimates for ⇁1 and ⇁2, along with their standard errors, match their counterparts

obtained for equation 3 in our main analysis. Moreover, the sum of each main term with its

associated interaction term matches its estimated counterpart for equation 7.

Testing whether ϖR1 is statistically different from ϖ
IV Sfe
1 is equivalent to test if ⇁5 is different

from 0. In the same manner, H0 : ϖR2 = ϖ
IV Sfe
2 is equivalent to H0 : ⇁6 = 0. These ⇁ estimates

correspond to the difference between estimated achievement gaps across equations 3 and 7. When
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employing reghdfe, ⇁5 and ⇁6 capture the change in gender and SES achievement gaps, respec-

tively, stemming from the introduction of (demeaned) exogenous response time. In this manner,

we are left with a standard, within specification, t-test that is automatically reported by Stata after

any estimation command, namely H0 : ⇁k = 0 for k = 5, 6. Results are shown in column 3 of

tables D1, D2 and D3 for IQ, math and reading, respectively.

We are also interested in comparing estimates of equation 4 with the ones from equation 7. For

this purpose, we re-arrange our data in the following manner:





model studentid(i) question(j) yij r̈ij femi sesi yeari

1 1 A score1,A r̃1,A fem1 ses1 year1

1 1 B score1,B r̃1,B fem1 ses1 year1

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

1 N Z scoreN,Z r̃N,Z femN sesN yearN

0 1 A2 ̂̈ω1 0 fem1 ses1 year1

0 1 B2 ̂̈ω1 0 fem1 ses1 year1

. . . . . . . .

. . . . . . . .

. . . . . . . .

0 N Z2 ̂̈ωN 0 femN sesN yearN





(9)

We add a column with response time and reverse the model dummy. The next step is to estimate

the following specification using reghdfe and clustering standard errors at the student-level:

yij = ωj + ϕ1femalei + ϕ2high SESi + ϕ3yeari + ϕ4r̈ij + ϕ5model+

+ ϕ6femalei →model + ϕ7high SESi →model + ϕ8yeari →model + ϕ9r̈ij →model + ζij
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In this case, estimates of ϕ1, ϕ2, ϕ3 and ϕ4, along with their standard errors, match the ones

of equation 7. In a similar fashion as before, ϕ1 + ϕ6, ϕ2 + ϕ7, ϕ3 + ϕ8 and ϕ4 + ϕ9, as well as

their standard errors, match the coefficient estimates from equation 4. Our interest lies on ϕ6 and

ϕ7 and whether these are statistically different from zero. As before, a simple test (or evaluation of

the estimates’ p-values) suffices. Results are shown in column 5 of tables D1, D2 and D3 for IQ,

math and reading respectively.

Lastly, to compare OLS estimates from equation 6) with IV estimates from equation 7, we

organize our data as shown in matrix 10. The dependent variable (yij) now stacks student fixed

from equation 1 (̂̈ω
OLS

i ) and from equation 2 (̂̈ω
IV

1 ). Results are shown in column 7 of tables D1,

D2 and D3 for IQ, math and reading respectively.





model studentid(i) question(j) yij femi sesi yeari

0 1 A ̂̈ω
OLS

1 fem1 ses1 year1

0 1 B ̂̈ω
OLS

1 fem1 ses1 year1

. . . . . . . .

. . . . . . . .

. . . . . . . .

0 N Z ̂̈ω
OLS

N femN sesN yearN

1 1 A2 ̂̈ω
IV

1 fem1 ses1 year1

1 1 B2 ̂̈ω
IV

1 fem1 ses1 year1

. . . . . . .

. . . . . . .

. . . . . . .

1 N Z2 ̂̈ω
IV

N femN sesN yearN





(10)
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Table D4: Do achievement gaps change significantly? Using ivreghdfe

Gender SES

IV w/ Sfe vs: Raw OLS OLS w/ Sfe Raw OLS OLS w/ Sfe

IQ 0.000 0.000 0.000 0.000 0.000 0.000

Math 0.000 0.000 0.000 0.000 0.000 0.000

Reading 0.000 0.000 0.000 0.001 0.001 0.001

The table shows p-values corresponding to H0 : ςincrement = 0, as explained in Appendix D.1. Reject-
ing the null hypothesis suggests that achievement gaps change significantly from the specification in the col-
umn title compared to the one estimated in equation 7. For instance, the first column labelled “Raw” shows
the p-value corresponding to testing whether the estimated raw achievement gap equals the one estimated in
equation 7. As p-values are very close to zero, we reject the null hypothesis for all usual significance levels,
and conclude that achievement gaps change significantly.

D.2 Method 2: Using SUEST

To further validate the approach taken in the subsection above, we run a set of OLS regressions,

using the Stata command reg (StataCorp, 2015), and subsequently use suest to test the hypotheses

across specifications.18 In order to add question fixed effects, we make use of Stata factor notation.

Standard errors are then clustered when running suest. For the 2SLS estimation, we start by ob-

taining predictions for the first stage (equation 5a) in a similar fashion as the one explained above.

We include them in the second stage which is also estimated by means of reg and factor variable

notation to account for question fixed effects.

Table D5 shows p-values for the method presented in D.2. It relies on estimating seemingly

unrelated regressions and the covariance between tested estimates. Rejecting the null hypothesis

suggests that the change in point estimates is statistically different from zero. Main results remain

unchanged regardless of the method used.
18Stata commands as ivreg, areg, xtreg (StataCorp, 2015) are not supported by suest. Thus, we are left with reg.
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Table D5: Do achievement gaps change significantly? Using SUR

Gender SES

IV w/ Sfe vs: Raw OLS OLS w/ Sfe Raw OLS OLS w/ Sfe

IQ 0.000 0.000 0.000 0.000 0.000 0.000

Math 0.000 0.000 0.000 0.000 0.000 0.000

Reading 0.000 0.000 0.000 0.0008 0.001 0.0007

The table shows p-values for the equality of achievement gaps from a Seemingly Unrelated Estimation, as
explained in Appendix D.2. Rejecting the null hypothesis suggests that achievement gaps change significantly
from the specification in the column title compared to the one estimated in equation 7. For instance, the first
column labelled “Raw” shows the p-value corresponding to testing whether the estimated raw achievement
gap equals the one estimated in equation 7. As p-values are very close to zero, we reject the null hypothesis
for all usual significance levels, and conclude that achievement gaps change significantly.

The tables below allows to compare the estimated achievement gaps for each approach ex-

plained in this appendix. For math and reading especially, standard errors differ between the two

approaches in the IV estimation (columns 3 and 6). Point estimates are less precise when using

reg compared to ivreghdfe, leading to lower t-statistics and higher p-values, which make it harder

to reject the null hypothesis. This may explain the different conclusions regarding the SES gap in

reading, for instance (see table D4).
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E Additional tables

Table E1: Randomization test for question order

Subject – block P-values of Pearsonφ2 test

IQ 0.648 (24)

test version 1 test version 2 test version 3
Math – block A 0.99 (8) 0.85 (9) 0.59 (9)
Math – block B 1.00 (6) 1.00 (9) 1.00 (13)
Math – block C 1.00 (7) 1.00 (7) 0.99 (4)

Reading – block A 0.99 (3) 0.99 (3) 0.99 (5)
Reading – block B 1.00 (3) 0.99 (3) 1.00 (5)

P-values for Pearsonϑ2 tests with H0 : question order is random for each block of each
subject. Degrees of freedom in parenthesis.
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