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When formal insurance is unavailable, mutual insurance among households can serve as an 

alternative. This paper analyzes a game between economic agents facing uncertainty and 

maximizing discounted utility without enforceable contracts or access to capital markets. 

While autarky is always a possible outcome, under high discount factors, a mutually 

beneficial trigger-strategy equilibrium can be achieved. Full insurance is possible with 

strongly negatively correlated endowments, while partial insurance is generally feasible. 

The analysis highlights environments wherein varying levels of insurance can emerge, with 

applications to real-world institutional contexts.
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1 Introduction

One of the main purposes of financial markets is to allocate risks, usually with conse-

quences for the intertemporal allocation of resources. It is widely recognized, however,

that financial markets fail to allocate risks wholly e!ciently. First, there are risks

that are hard or impossible to insure against. For instance, technological progress may

make human capital obsolete, leading to large losses of lifetime income, and ill health

may make it impossible to pursue certain professional careers, with like losses. Second,

even if extensive financial instruments are available, inadequate financial literacy may

prevent people from choosing optimal portfolios from available securities. Lusardi and

Mitchell (2014) survey the large literature on this subject.

Allocating risks e!ciently is equally, if not more important, in less developed countries,

whose financial markets are correspondingly less well-developed. This is particularly so

in rural communities, wherein climactic fluctuations can be very damaging. The central

question is, how do the inhabitants of such communities deal with risk? Townsend

(1994), in his seminal study of three villages in India’s semiarid Deccan plateau, notes

that farmers do not fully exploit various diversification opportunities, such as diverse

choices of soils and crops. A related question, therefore, is whether there is scope for

specific policies. There are several institutions that might help in reducing risk, but

these are not always successful. In India, for instance, the take-up rate of commercial

index insurance against rainfall risk is extremely low. While price is important, Cole

et al. (2013) find that non-price barriers, especially lack of trust, are equally so.

Formal and informal credit, including micro-credit and loans from local moneylenders,

may well play an important role in smoothing consumption, but households also have

other measures at their disposal. For instance, employment outside the village might

compensate for idiosyncratic agricultural shortfalls, though such earnings may them-

selves be risky. Storage of grain from one year to the next is another possibility, albeit

annual storage losses are not especially small. As for the sale of means of production,

such as bullocks and land, this is a rather drastic, but not very rare, step.

The present paper analyzes the option of gifts, that is, of non-contractual giving and

receiving, driven by a mutual insurance motive. The approach is based on the obser-

vation that households may insure each other by means of voluntary gifts when other

forms of insurance are not available or very limited. Here, we lean on Townsend’s (1994:
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587) finding that most of the smoothing was e”ected through credit and gifts, where the

terms of many informal loans might well have had a strong state-contingent component.

the model

The actors in the basic model are two economic agents, who live a countably infinite

number of periods and play the strategic game described below. In this setting, the rel-

evant trade-o”s are in sharp relief. Going beyond bilateral relationships, small groups

of three or more players are treated in Section 5. This extension also covers the possi-

bility of increasing returns to the size of the group, with an associated augmentation

of the group’s aggregate endowment. It is applicable to formal, individual loans to a

voluntary group whose members are subject to several and joint liability. The focus

on small groups also reflects the fact that transactions involving outright gifts and

informal credit between households are confined to relatives or good neighbors – not

all fellow villagers are friends – and the transactions are often based on an ongoing

relationship.

At each date, a player is exposed to uncertainty with respect to his or her future in-

dividual endowment or productivity. Players maximize expected discounted utility.

Contracts between agents are not enforceable.1 A player is not obliged to make or

receive any transfers against his or her will. In this attempt to analyze the problem,

we consider a model without access to exogenous capital markets. The players then

have incentives to provide some mutual insurance without contractual agreement. Pro-

duction is introduced indirectly in Section 5. Following some preliminaries on the key

trade-o” in Section 2, the game is set out in detail in Section 3.

In a “non-autarkic equilibrium”, one player is willing to give in some states of nature,

since it is in the other player’s interest to give in return in others. Thus, the ancient

principle do ut des is implemented. This principle is encountered in many social set-

tings and adopted as a premise in social exchange theory; see, e.g., Rolo” (1981). As

an illustration, when inviting somebody to lunch or o”ering to do somebody a favor,

we typically hope that the other person will accept and reciprocate in the future; but

we can force that person neither to accept, nor to reciprocate. We are free, however,

to discontinue our advances if they are rejected or not reciprocated. This compelling

1The players are free to conclude contracts, but a contract would only stipulate what the players
would do anyhow.
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resemblance between social exchange and economic exchange helps to understand the

basic idea behind our formal results. Yet the analogy does not go any further. The

analysis of the present paper does not explain social exchange in situations where the

mutual insurance motive is missing.

the results

The game always has an autarkic equilibrium. When endowments are perfectly neg-

atively correlated across two players (Section 4) and discount factors are su!ciently

high, full-insurance plans can be implemented as subgame perfect Nash equilibrium

outcomes. Such equilibria, which both players prefer to autarky, are composed of trig-

ger strategies, whereby the players revert to autarky forever after either has deviated

from the equilibrium path.2 Under fairly mild restrictions, full insurance is also im-

plementable when there are three or more players, whose endowments are necessarily

imperfectly correlated (see Section 5). Partial insurance plans can be implemented

when the individual endowment streams are Bernoulli processes and are independent

across players. When the endowment streams of two players are perfectly positively

correlated, insurance may be impossible; but that is an exceptional case. In general,

when there is imperfect correlation, partial insurance is feasible – and obtainable –

through an implicit contract, i.e., as the outcome of a subgame perfect equilibrium.

Section 6 treats a model with an arbitrary correlation structure. The two players’

endowment streams are parametrized in such a way that, generically, there is a feasi-

ble insurance plan benefiting both players. In Section 7, we extend the basic model

to analyze exogamy, where marriage alliances involve geographically widely separated

villages, and hence go beyond smoothing mechanisms within a village.

Our findings provide a rationale why full insurance can occur in a village economy or

beyond, even in the absence of capital markets. It is compatible with equilibrium play

wherein a household receives a sequence of positive payments from other households,

while passing through a number of periods of bad luck. In contrast to some of the

literature, consumption in equilibrium tends to be uninformative about risk-bearing

preferences. Households’ consumption may be perfectly or strongly correlated with

2A similar intuition underlies a social insurance system where non-complying members are excluded
forever; cf. Taub (1989). Such a scheme is actually used for voluntary mutual health insurance mem-
bership of high income individuals in Germany. Further notice that su!ciently long finite punishment
phases instead of “grimm triggers” will do, at the cost of more complicated notation.
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aggregate consumption, despite large di”erences in risk aversion. This conclusion is

not restricted to the binary distributions in our leading examples. Exceptions are very

impatient and risk-tolerant households, who may not participate in mutual insurance,

since they do not satisfy the participation constraint.

related literature

Several authors investigate risk and insurance in selected villages, just looking at in-

come and consumption data for the households in the sample and disregarding any

institutional details of borrowing, lending and insurance. Townsend (1994) assumes

that individuals’ preferences exhibit constant absolute risk aversion (CARA), though

an earlier working paper also treats constant relative risk aversion (CRRA). Chiappori

et al. (2014) use data from the Townsend Thai Monthly Survey, covering a total of

16 villages and assume CRRA. A further premise is that (a) risk-tolerant households

might insure more risk-averse households against some of the aggregate risk and, as a

consequence, (b) the consumption of more risk-tolerant households shows a stronger

co-movement with aggregate consumption.3 As a rule, full insurance at the village level

cannot be rejected. Consumption is mainly determined by aggregate consumption and

risk preferences, where there is evidence of heterogeneity in the latter.

Kimball (1988) uses a highly symmetric model to assess the plausibility of an informal

system of consumption loans among farmers in medieval England that could serve as

insurance against crop failure. The model of Coate and Ravallion (1993) is closest

to ours. In essence, they treat the special case of ex ante symmetry of two agents in

all respects: identical risk and time preferences, and symmetry of endowment distri-

butions. This allows them to define the best informal insurance arrangement (best

implementable contract) and the first-best solution, to compare the two, and to per-

form comparative statics analysis. In contrast, heterogeneity is a salient feature of

our treatment. The leading case of Section 4 encompasses heterogeneous risk and time

preferences, and asymmetric endowment streams. The three or more players in Section

5 exhibit like heterogeneity. Fafchamps (1992) discusses the inherent incentive and in-

formation problems of mutual insurance. He argues that because of these problems,

mutual insurance may be bilateral rather than global group insurance. Friendship and

kinship render some other households more trustworthy and more likely to become

3Despite its intuitive appeal, the assertion that (a) implies (b) need not hold; see Appendix A for
details. Risk tolerance is defined to be the reciprocal value of risk aversion.
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mutual insurance partners. In turn, partners can acquire relation-specific information

over time and develop further mutual trust.

Among other earlier models of self-enforcing mutual insurance, Haller (1992) deals

with sovereign debt and Thomas and Worrall (1988) with self-enforcing wage con-

tracts. Udry (1994), in one of his models, considers two households – the “household”

and its “partner” – who agree on oral loan contracts. The repayment obligations are

not explicitly specified, but well-understood and state-contingent. There are just two

periods, so that contracts cannot be self-enforcing. Rather, there exists a community

or family authority entrusted with monitoring and enforcement.

To the extent that mutual insurance schemes are bilateral, networks or graphs may de-

scribe which pairs of households (or individuals) are able to engage in mutual insurance.

Households form the nodes of the network. A direct link between a pair of households

signifies that the pair can engage in mutual insurance. Bloch et al. (2008) start with

an exogenously given network based on criteria like spatial proximity, friendship, fam-

ily, social or professional contacts. While transfers between partnered households –

individuals in their language – are suggested by a social norm, the insurance scheme

is nonetheless self-enforcing: if a household does not make the transfers required by

the social norm, some or all direct links to the household may be dropped and, conse-

quently, the household will have fewer opportunities of mutual insurance in the future.

Thus, links can be broken, but new links can never be formed. It turns out that the

stable networks under this kind of dynamics tend to be either “thickly connected” or

“thinly connected”, while intermediate degrees of connectedness are less likely.

Gersbach and Haller (2017) evaluate, by means of examples, the risk-sharing capacity

of markets versus the risk-sharing capacity of multi-member households. A household

may provide insurance to some or all of its members through pooling of resources. The

household may also engage in competitive exchange in a complete market setting. In

the absence of aggregate risk, the possibility of various configurations is demonstrated.

Insurance and risk allocation only through markets, only through households, and

through both markets and households all prove to be equilibrium outcomes for specific

model parameters.
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2 The Basic Trade-o!

Let household i’s one-period income or endowment be a real-valued random variable

R̃i = R̃+r̃i, which depends on R̃, a random variable that arises from social or aggregate

risks for the community or village to which i belongs, and r̃i, a random variable that

represents i’s idiosyncratic component and is stochastically independent of aggregate

risk.

Starting from Haller (1992), suppose players ALAN (A) and ESTHER (E) have sep-

arable inter-temporal preferences, with discount factors ω → (0, 1) and ε → (0, 1),

respectively. A faces the following alternatives:

(i) Make a positive transfer to E. This sacrifice causes a current utility loss #u,

but A preserves a reputational collateral #U in all future periods.

(ii) Fail to make the transfer. Then A avoids the current utility loss, but loses the

reputational collateral.

A would make the transfer if and only if #u ↑
∑→

t=1 ω
t ·#U , i.e.,

#u ↑ ω

1↓ ω
·#U. (1)

That is, (1) is equivalent to
#u

#U
↑ ω

1↓ ω
or

#u/#U

1 +#u/#U
↑ ω. When #u > 0 and

#U > 0 are given, the inequality is satisfied for ω su!ciently close to 1.

Similarly, E, when trading o” a potential current loss #v caused by a transfer to A

against a positive reputational collateral #V , would make the transfer if and only if

#v ↑ ε

1↓ ε
·#V. (2)

These conditions also hold when there are three or more players (see Section 5).

It is important to note that 1↓ω and 1↓ε, respectively, are the players’ pure impatience

rates for utility, whereas the concavity of their utility functions represents both inter-

temporal substitutability and preferences over lotteries. There are compelling reasons

to suppose that people are impatient in this sense, but the rate itself is arguably very

small when the unit period is a year, which is a natural assumption for rural commu-

nities. In the contrasting setting of the U:S., Fullerton and Rodgers (1993) calibrate

a general equilibrium model wherein death is certain at the age of 80, and arrive at
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the rate 0.005. Villagers in poor countries face a more hazardous environment, but it

seems doubtful that their impatience rates exceed 0.025. In what follows, therefore, it

is assumed that the players’ discount factors are indeed quite close to 1.

This fact does not, however, imply that inequalities (1) and (2) always hold. Risk-

neutral players find no advantage in smoothing, but they are very likely to be somewhat

impatient, so that deferring any amount of consumption in the present in exchange for

the same amount in the future entails a cost. For such players, lending at any sure

interest rate exceeding their impatience rates is attractive, but voluntary, reciprocal

exchange is not. In the setting of Section 4, #U = 0 if the player is risk neutral, so

that (1) is then violated when the probability of a bad draw is positive.

Turning to the other aspect of players’ preferences, they are assumed to be risk averse

(u↑↑ < 0 and v↑↑ < 0). Let u and v be defined for all positive levels of consumption.

A discussion of the players’ coe!cients of relative risk aversion, ϑu(c) ↔ ↓cu↑↑(c)/u↑(c)

and ϑv(c) ↔ ↓cv↑↑(c)/v↑(c), as a measures of their respective risk aversion, is needed.

Consider the normalisations u(1) = v(1) = u↑(1) = v↑(1) = 1. It is proved in Appendix

B that if ϑu(c) ↗ 1 ↘c → (0, 1), then u(0) is not defined (i.e., u ≃ ↓⇐ as c ≃ 0).

If u (or v) is thus unbounded from below, the agent is said to exhibit ‘strong’ risk

aversion. An ubiquitous example is u = 1 + ln c. Observe, however, that introducing

an additional parameter to avoid the singularity at c = 0 imposes a restriction on ϑu.

The form u = k1[ln(c + e↓1) + 1], where k1 satisfies ln(1 + e↓1) = (1/k1) ↓ 1, yields

↓u↑↑c/u↑ = c/(c + e↓1) < 1 ↘c → [0, 1], so that strong risk aversion is ruled out by the

normalisation u(0) = 0.

If, instead, 1 > ϑu(c) ↗ ϑu(1) ↘c → (0, 1), then it is shown in Appendix B that u(0)

is defined if and only if cu↑ goes to a finite limit as c ≃ 0. These two conditions are

therefore su!cient for ‘weak’ risk aversion, in the sense that u(0) is bounded from

below. The normalisation u(0) = 0 can now be imposed. A standard example (see

Section 4.3) is u = cω, where ϖ → (0, 1), which satisfies u(0) = 0 and u(1) = 1, but not

u↑(1) = 1.

To sum up this preliminary, if the smallest realized endowment b > 0, then both strong

and weak risk aversion are covered without the occurrence of a singularity. A positive

value of b may be interpreted as the certainty of some minimum level of emergency

support from outside, presumably in the form of government relief. If, on the contrary,

b = 0, then the restriction on preferences expressed by ϑ must be taken into account.
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3 The Two-Player Game

The game is played by ALAN and ESTHER, each living infinitely many periods t =

0, 1, 2, . . . . There is a single, non-storable, perfectly divisible commodity. ALAN’s en-

dowment stream is given as a sequence of independent random variables Ã0, Ã1, Ã2, . . .

with values in [0, 1], ESTHER’s is a sequence of independent random variables Ẽ0, Ẽ1, Ẽ2, . . .

with values in [0, 1]. For brevity, let Ã denote the stochastic process (Ãt) and Ẽ denote

the process (Ẽt). Let ($,F, P ) be the underlying probability space, i.e., Ãt : $ ≃ [0, 1]

and Ẽt : $ ≃ [0, 1] for all t. Assume all Ãt and Ẽt to be discrete random variables. This

assumption avoids measurability problems. It also permits us to narrow terminology for

the purposes of this paper as follows. Given a discrete random variable X̃ : $ ≃ [0, 1],

call r → [0, 1] a realization of X̃ if and only if P (X̃ = r) > 0. Given a finite or infinite

sequence of discrete random variables, X̃t : $ ≃ [0, 1], t = 0, . . . , T where T → N0 or

T = ⇐, a path of the stochastic process (X̃t) is a sequence Xt, t = 0, . . . , T , in [0, 1]

such that Xt is a realization of X̃t for all t.

At date t, the players realize At and Et, respectively, yielding the total endowment

At+Et. ALAN consumes an amount at ↗ 0 and ESTHER an amount et ↗ 0 such that

at + et = At + Et and each of at and et can take values in [0, 2].

ALAN’s utility derived from a consumption stream a = (a0, a1, a2, . . .) is

U(a) =
∑

t ω
tu(at) where u : [0, 2] ≃ R is increasing and strictly concave, ω → (0, 1).

ESTHER’s utility derived from a consumption stream e = (e0, e1, e2, . . .) is

V (e) =
∑

t ε
tv(et) where v : [0, 2] ≃ R is increasing and strictly concave, ε → (0, 1).

At date t, when the realizations At and Et are common knowledge, the players proceed

like in a coordination game.4 ALAN announces a net trade zt → [↓At, Et] and ESTHER

announces a net trade zt → [↓At, Et], where all net trades are measured relative to

ALAN.5 If the announcements are incompatible, i.e., zt ⇒= zt, then at = At, et = Et.

If the announcements are compatible, i.e., zt = zt = zt, then ALAN’s consumption is

at = At + zt, ESTHER’s consumption is et = Et ↓ zt.

A history prior to announcements at time 0 is a pair of realizations h0 = (A0, E0).

4Alternatively, the players might proceed like in a Nash demand game. This would yield the same
results while rendering description and notation a bit more complicated.

5A net trade z → R means that the amount z of the commodity is transferred from ESTHER to
ALAN so that ALAN consumes At + z and ESTHER consumes Et ↓ z. ALAN cannot demand more
than Et from ESTHER, and she no more than At from ALAN, if their announcements are to be
feasible.
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For t ↗ 1, a history prior to announcements at time t is a [2(t + 1) + 2t]-tuple

ht = ((A0, E0), . . . , (At, Et); (b0, b0), . . . , (bt↓1, bt↓1)) where A0, . . . , At is a path of the

process Ã0, . . . , Ãt, E0, . . . , Et is a path of the process Ẽ0, . . . , Ẽt, b0, . . . , bt↓1 is a history

of ALAN’s prior announcements and b0, . . . , bt↓1 is a history of ESTHER’s prior an-

nouncements. Let Ht denote the set of histories prior to announcements at time t. Con-

ditional on the history ht → Ht, which is common knowledge prior to moves at time t,

the players make simultaneous moves at time t: ALAN chooses bt → M(ht) = [↓At, Et],

while ESTHER chooses bt → M(ht). A strategy for ALAN is a sequence of mappings

S1t : Ht ≃ [↓1, 1] such that S1t(ht) → M(ht) for each t → N0, ht → Ht. A strategy for

ESTHER is a sequence of mappings S2t : Ht ≃ [↓1, 1] such that S2t(ht) → M(ht) for

each t → N0, ht → Ht.

Denote S1 = (S1t), S2 = (S2t). Then for any pair of paths A = (At) of (Ãt) and

E = (Et) of (Ẽt), the play of strategies S1 and S2 induces consumption streams a =

a(S1, S2, A, E) and e = e(S1, S2, A, E), with resulting utilities U(a) and V (e). The

players maximize their respective expected utilities:

Ū(Sl, S2) = EU(a(S1, S2, A, E)),

V̄ (S1, S2) = EV (e(Sl, S2, A, E)),

where E denotes the expectation with respect to the underlying distribution of (A,E)’s.

Since the Ãt’s and Ẽt’s are discrete and U and V are intertemporally separable, Ū and

V̄ are well defined.

Let %1 and %2 denote the sets of ALAN’s and ESTHER’s strategies, respectively. Then

& = ({1, 2},%1,%2, Ū , V̄ )

is the normal form of our strategic game of giving and receiving. A Nash equilibrium

of & is defined in the usual way. Note that in the extensive form outlined above, each

history ht → Ht gives rise to a subgame &(ht) starting in period t. Conversely, each

proper subgame is identified by its prior history ht.6 A subgame perfect equilibrium in

the sense of Selten (1975) is defined in the usual way.

Observe that, regardless of the other player’s announcement, each player can always

secure the status-quo (autarky) outcome at = At, et = Et by announcing 0. This con-

forms to our premise that a player cannot be forced to make or to receive any transfer.

6Since the players make their first moves once h0 is common knowledge, the proper subgames of ”
are the relevant ones.
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Indeed, there always exists the “autarkic” subgame perfect Nash equilibrium

given by S1t ↔ 0, S2t ↔ 0 for all t → N0, which gives rise to autarky in each period.

We are concerned above all, however, with non-autarkic, subgame-perfect Nash equi-

libria. We call an equilibrium (S1, S2) of & non-autarkic, if there is a path A = (At)

of the process Ã and a path E = (Et) of the process Ẽ with S1, S2, A, and E inducing

consumption paths a = (at) = a(S1, S2, A, E) and e = (et) = e(S1, S2, A, E) such that

(at, et) ⇒= (At, Et) for at least one t.

Our subsequent analysis does not rely on the theory of stochastic games, as exhibited

in Friedman (1986), although the model fits into that framework. The reason is that

we are interested in obtaining results not merely for the existence of an equilibrium,

but rather for particular types of equilibria. We shall resort to (non-stationary) trigger

strategies when investigating non-autarkic equilibria. Trigger strategy equilibria have

been thoroughly studied in Friedman (1971), except for the stochastic ingredient and

elaboration on mutual insurance opportunities.

4 Two Players: Perfect Negative Correlation of En-

dowments

The special case of perfect negative correlation between the two players’ endowments

at each date t is highly stylized, yet it proves to be instructive. Assume the binomial

random variables Ã0, Ã1, Ã2, . . . to be independent and identically distributed (i.i.d.)

with P (Ã0 = b) = 1↓ p and P (Ã0 = 1) = p, where p → (0, 1) and the ‘bad’ realization

b → [0, 1). Further, let Ẽt(ϱ) = (1 + b) ↓ Ãt(ϱ) for ϱ → $, t → N0. Thus the two

endowments are perfectly negatively correlated, and there is only individual risk.

4.1 Mutual insurance: weak risk aversion

The players can benefit from mutual insurance. Indeed, many non-autarkic, subgame

perfect equilibria are possible if the discount factors are su!ciently close to 1. Consider,

in particular, the pair of certain consumption paths given by at = p = EÃ0 and

et = 1 ↓ p = EẼ0 for all t, where b = 0, with u(0) = v(0) = 0, u(1) = v(1) = 1. This

pair has the following three properties:

1. In all periods, each player receives full and fair intra-temporal insurance, with

11



respective expected utility gains

#U = u(E[At])↓ E[u(At)]) = u(p)↓ p,

#V = v(E[Et])↓ E[u(Et)]) = v(1↓ p)↓ (1↓ p).

2. These insurance plans are feasible. When At = 1, ALAN has to transfer the

amount 1↓ p to ESTHER, su”ering a temporary loss #u = u(1)↓ u(p). When

At = 0, ESTHER has to transfer the amount p to ALAN, su”ering a temporary

loss #v = v(1)↓ v(1↓ p).

3. The said plans a = (p, p, p, . . .) and e = (1 ↓ p, 1 ↓ p, . . .) can be implemented

via a subgame perfect trigger-strategy equilibrium. To this end, define a pair of

trigger strategies S1 = (S1t) and S2 = (S2t) recursively as follows:

For h0 → H0 : Si0(h0) = p↓ A0.

For t ↗ 1, ht → Ht:

Sit(ht) =

{
p↓ At if S1 and S2 were followed up to period t↓ 1,
0 if deviation from S1 or S2 occurred in some prior period.

Clearly, the joint strategy (S1, S2) yields the desired outcome. Since the autarkic

equilibrium is subgame perfect, it can be used as a trigger. If the values#U,#u,#V,#v

satisfy (1) and (2), then standard arguments show that (S1, S2) is a (non-stationary)

subgame perfect Nash equilibrium of &. The findings so far are summarized in

Proposition 1 (Full Insurance Equilibrium) If the agents’ preferences exhibit weak

risk aversion and the binary variates Ãt and Ẽt are perfectly negatively correlated, the

full insurance plans a = (p, p, . . .) and e = (1↓ p, 1↓ p, . . .) can be implemented via a

subgame perfect trigger-strategy equilibrium if and only if (1) and (2) hold.

Remarks. First, consider the case where Ã0, Ã1, . . ., are arbitrary, i.i.d. discrete

random variables and Ẽt = 1↓ Ãt for all t such that 0 and 1 belong to the support of

Ã0. Denote µ = EÃ0. Assume once more u↑ > 0, u↑↑ < 0, v↑ > 0, v↑↑ < 0, u(0) = v(0) =

0, u(1) = v(1) = 1. Then one obtains analogous results for the full insurance plans

a = (µ, µ, . . .) and e = (1↓ µ, 1↓ µ, . . .).

Second, the full insurance plans a = (1/2, 1/2, . . .) and e = (1/2, 1/2, . . .) can be

implemented when the players are identical in all respects, save that when one draws

1, the other draws b = 0; that is to say, the players di”er only across states of nature.

The latter di”erence, not those in their risk aversion, impatience or mean endowments,

su!ces as the basis for trade.
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4.2 The riskiness of endowments

The riskiness of the agent’s endowment has two elements: a reduction in the parameter

b increases the spread and reduces the mean, whereas a reduction in p also reduces the

mean, but leaves the spread unchanged. In what follows, the only assumptions are

that u is strictly concave, u(1) = 1 and, concerning the parameter b, that ϑu behaves

in a particular way as c ≃ 0.

Let Āt ↔ EÃt = p+ (1↓ p)b. We have

#u

#U
=

1↓ u(Āt)

u(Āt)↓ [p+ (1↓ p)u(b)]
=

1↓ u[p+ (1↓ p)b]

u[p+ (1↓ p)b]↓ [p+ (1↓ p)u(b)]
. (3)

If u(b) ≃ ↓⇐ as b ≃ 0, then #U ≃ ⇐ and #u/#U ≃ 0, so that conditions (1) and

(2) do not bind for all b su!ciently close to zero, even when the respective impatience

rates are close to zero. This is the first result.

If, on the contrary, u approaches some finite lower bound as c ≃ 0, then #u/#U is

bounded away from zero, so that the said conditions may bind when the respective

impatience rates are close to zero. It is seen from (3), however, that they will not bind

if |u(b)| is su!ciently large.

Di”erentiating (3) w.r.t. b, we have

ς(#u/#U)

ςb
= ↓1↓ p

Q2
·
(
u↑(Āt)Q+ [u↑(Āt)↓ u↑(b)][1↓ u(Āt)]

)
,

= ↓1↓ p

Q2
·
(
u↑(Āt)[1↓ Eu(Ãt)]↓ u↑(b)[1↓ u(Āt)]

)
, (4)

where Q ↔ u(Āt)↓ Eu(Ãt) = u(Āt)↓ [p+ (1↓ p)u(b)]. Hence,

ς(#u/#U)

ςb
>
< 0 according as

u↑(b)

1↓ Eu(Ãt)
>
<

u↑(Āt)

1↓ u(Āt)
.

The strict concavity of u implies u↑(b) > u↑(Āt); but u(Āt) > Eu(Ãt), so that the sign

of the derivative is ambiguous without further assumptions. It will be positive if b is

su!ciently small, u↑(b) is su!ciently large and p is not too close to zero. Otherwise,

the said sign depends on the curvature of u over the interval [b, 1].

So much for the spread parameter b. Turning to p, we can rewrite #u/#U as

#u

#U
=

(
(1↓ p)[1↓ u(b)]

1↓ u(Āt)
↓ 1

)↓1

, (5)
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which is decreasing in p if and only if (1↓p)/[1↓u(Āt)] is increasing in p. Di”erentiating

w.r.t. p, we have

ς{(1↓ p)/[1↓ u(Āt)]}
ςp

=
↓[1↓ u(Āt)] + (1↓ p)ςu(Āt)/ςp

[1↓ u(Āt)]2
,

=
↓[1↓ u(Āt)] + (1↓ p)(1↓ b)u↑(Āt)

[1↓ u(Āt)]2
. (6)

Now, ↓[1↓u(Āt)]+(1↓p)(1↓b)u↑(Āt) >
< 0 according as (1↓ Āt))u↑(Āt) >

< 1↓u(Āt), or

u↑(Āt) >
< [1↓ u(Āt)]/(1↓ Āt). The slope of the chord connecting the points (Āt, u(Āt))

and (1, u(1) = 1) is [1↓u(Āt)]/(1↓ Āt), which is smaller than the slope of the tangent

to u at (Āt, u(Āt)); for u is strictly concave.

4.3 Risk aversion and decisions

We examine how risk aversion a”ects households’ mutual insurance decisions. For ease

of comparison, we assume CRRA, where the value ϑ = 1 is regarded as separating

weak from strong risk aversion. For that value, u = ln c+1: u is bounded neither from

below nor from above, with u(1) = u↑(1) = 1.

Weak risk aversion. Up to a normalization, u(c) = cω and v(c) = cε for c ↗ 0, where

ϖ → (0, 1), φ → (0, 1), and 1 ↓ ϖ and 1 ↓ φ are, respectively, ALAN’s and ESTHER’s

constant coe!cients of relative risk aversion. For the binary distributions considered

above, this yields

#U = pω ↓ p, #V = (1↓ p)ε ↓ (1↓ p) ↔ qε ↓ q,

#u = 1↓ pω, #v = 1↓ (1↓ p)ε ↔ 1↓ qε.

If the discount factors are su!ciently close to 1, so that (1) and (2) do not bind, then:

(i) The full insurance equilibrium is independent of the players’ risk aversion, with

an exception noted below; so that

(ii) the players consume p and q = 1↓ p, respectively, in every period; and

(iii) each player’s consumption co-moves with aggregate consumption, albeit the

latter is unvarying.
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There is no equilibrium if either player is risk neutral; for #U = 0 ↘p → (0, 1) if ϖ = 1

and #V = 0 ↘q → (0, 1) if ε = 1. In fact, equilibrium is ruled out if either is only

slightly risk averse: to be precise, if ϖ ↗ ω or φ ↗ ε, respectively (see Appendix C).

These findings for weak risk aversion stand in stark contrast to those of Chiappori et al.

(2014), wherein, in a general equilibrium setting, less risk averse households acquire less

insurance and their consumption exhibits more co-movement with aggregate supply.

The same findings hold for strong risk aversion, as we now demonstrate.

Strong risk aversion. For u and v to be defined for all outcomes, let the variates Ãt

and Ẽt have the common support [b, 1], b → (0, 1). Then u = 2 ↓ 1/cω, v = 2 ↓ 1/cε

where ϖ > 0, φ > 0, and ϖ + 1 and φ + 1 are now the respective coe!cients of relative

risk aversion; and u(1) = v(1) = 1. Hence,

#U =
1↓ p(1↓ bω)

bω
↓ 1

[p+ (1↓ p)b]ω
, #V =

1↓ (1↓ p)(1↓ bε)

bε
↓ 1

[(1↓ p) + pb]ε
;

#u = ↓1 +
1

[p+ (1↓ p)b]ω
, #v = ↓1 +

1

[(1↓ p) + pb]ε
.

In virtue of the strict concavity of u and v, #U > 0 and #V > 0. Since b < 1, #u > 0

and #v > 0. It is still the case that (1) and (2) do not bind if, ceteris paribus, the

discount factors are su!ciently close to 1. Indeed, (1) and (2) do not bind when b is

su!ciently close to 0, even when the discount factors are not close to 1, a result that

follows from the fact that #U ≃ ⇐ and #V ≃ ⇐ as b ≃ 0.

4.4 Full insurance thresholds

Various aspects of risk a”ect decisions when (1) or (2) binds. We focus on ALAN;

mutatis mutandis, the same findings apply to ESTHER. We call

ω↔ ↔ #u/#U

1 +#u/#U
.

ALAN’s full insurance threshold, since the full-insurance equilibrium of Proposition

1 requires ω↔ ↑ ω. For any given ω, ALAN is interested in playing the full-insurance

equilibrium path provided ω↔ is small enough. Whenever ω↔ exceeds ω, ALAN will

drop out of this equilibrium and forego full insurance for good. In a sense, a player

with a high ω↔ is less eager to obtain full and fair insurance. We now investigate how

ω↔ responds to changes in model parameters other than ω. Since ω↔ is an increasing

function of #u/#U , it su!ces to perform comparative statics on the latter.

15



First, there is the riskiness of endowments. It has been shown in Section 4.2 that if b is

su!ciently small, u↑(b) is su!ciently large and p is not too close to zero, then #u/#U

is increasing in b: that is, a reduction in the spread of Ãt then increases the threshold

value ω↔. Otherwise, the sign of the derivative depends on the curvature of u over the

interval [b, 1].

It is also shown in Section 4.2 that#u/#U is decreasing in p, which implies ςω↔/ςp < 0:

Proposition 2 ALAN’s full insurance threshold value is decreasing in p.

It should be noted that these results concerning b and p rest on neither the assumption

that ϑ be constant, nor that it be less than 1.

One might expect that greater risk renders an agent more eager to be insured. That

depends, however, on the specific terms of insurance. Suppose ALAN’s risk increases

in the sense that 1↓ p increases, and thus also reduces EÃt. Then, ceteris paribus, ω↔

increases. Hence, ALAN becomes less inclined to participate in mutual insurance on

the terms specified in Proposition 1. The reason is that when p is small, full and fair

insurance guarantees a low level of consumption to ALAN and a high level to ESTHER.

They may end up in a di”erent equilibrium that provides full insurance, but is unfair

to ESTHER and superfair to ALAN.

Turning to the agents’ preferences for risk bearing, we assume CRRA.

Weak risk aversion. As before, let b = 0.

Proposition 3 If u(c) = cω, the full insurance threshold value is increasing in ϖ.

For #u/#U = (1↓ pω)/(pω ↓ p), pω = eω·ln p, ςpω/ςϖ = ln p · pω yield

ς(#u/#U)

ςϖ
=

1

(pω ↓ p)2
·[↓ ln p ·pω ·(pω↓p)↓ln p ·pω ·(1↓pω)] =

↓ ln p · pω · (1↓ p)

(pω ↓ p)2
> 0.

As ALAN becomes more risk averse, ϖ decreases and ω↔ decreases. Hence, ceteris

paribus, a more risk-averse household is more eager to participate in mutual insurance.

With such preferences for risk bearing, a uniform change (scaling) of wealth prior

to insurance has no e”ect on the players’ eagerness to participate in the full-insurance

equilibrium. To prove this claim, let Ãt and Ẽt be replaced by kÃt and kẼt, respectively,

with k > 0. The corresponding full and fair insurance consumption paths are a =
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(kp, kp, . . .) for ALAN and e = (k(1↓ p), k(1↓ p), . . .) for ESTHER. For ALAN,

#U = u(kp)↓ pu(k) = kωpω ↓ pkω = kω(pω ↓ p)

and

#u = u(k)↓ u(kp) = kω ↓ kωpω = kω(1↓ pω),

so that #u/#U = (1↓ pω)(pω ↓ p) is independent of k. Likewise for ESTHER.

Thus, even wealthy individuals can fully rely on informal insurance schemes when

underlying inequality (arising from ALAN’s p ⇒= ESTHER’s q) is constant. Equally

important is that poor households can then achieve full insurance. In some communi-

ties, it has been shown that they do not purchase formal insurance (Cole et al., 2013),

so that achieving full insurance through informal means is crucial.

Strong risk aversion. Let b > 0 and u = 2↓ 1/cω, where the degree of risk aversion

is now increasing in ϖ (ϑ = 1 + ϖ). Eq. (5) specialises to

#u

#U
=

[
(1↓ p)

(
(b↓ω ↓ 1)

↓1 + Āt
↓ω

)
↓ 1

]↓1

↔ [(1↓ p)B(ϖ)↓ 1]↓1,

Di”erentiating w.r.t. ϖ, we have

ςB

ςϖ
= ↓ (bĀt)↓ω

(Āt
↓ω ↓ 1)2

[
(1↓ Āt

ω
) ln b↓ (1↓ bω) ln Āt

]
,

so that
ςB

ςϖ
>
< 0 according as

ln Āt

1↓ Āt
ω

>
<

ln b

1↓ bω
.

Now, for any given b, Āt is increasing in p, where Āt = b when p = 0. Hence, if

ln Āt/(1 ↓ Āt
ω
) is increasing in Āt, induced by increases in p, B will increase with ϖ,

thus reducing the threshold value ω↔. Let x = Āt, where Āt < 1. The derivative of

(1↓ xω)↓1 ln x is
(1↓ xω) + ϖxω ln x

x(1↓ xω)2
.

Let ↼ = 1 ↓ ϖ ln x ↓ x↓ω. Then ↼(1) = 0 and ↼↑ = ↓(ϖ/x)(1 ↓ x↓ω) > 0 ↘x → (0, 1).

Hence, ↓ϖ ln x < x↓ω ↓ 1, (1 ↓ xω) + ϖxω ln x > 0 ↘ϖ > 0, and ω↔ is decreasing in ϖ,

that is, increasing in the player’s risk aversion, as in Proposition 3.

A definite result now holds for changes in b. We have

ω↔ =
(↓Āω + 1)/[(Ā/b)ω[1↓ p(1↓ bω)]↓ 1]

1 + (↓Āω + 1)/[(Ā/b)ω[1↓ p(1↓ bω)]↓ 1]
,
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where Ā = p+ (1↓ p)b = EÃt. It is seen that, in the limit as b ≃ 0, ω↔ ≃ 0: ALAN’s

full insurance threshold goes to zero, in keeping with intuition, since u is unbounded

from below as c approaches zero.

5 Three or More Players

Let the aggregate endowment be proportional to the number of players. When there

are three players, label them i = 1, 2, 3, where, w.l.o.g., ALAN becomes i = 1 and

the aggregate endowment is 3/2. In the first variation, player 1 obtains the aggregate

endowment with probability p and its complement q = 1 ↓ p is allocated equally

between the other two: Each obtains the aggregate endowment with probability q2 =

q3 = (1↓p)/2. The players’ individual endowments are negatively, but now imperfectly

correlated, since in each state of nature, two of them obtain zero. Routine calculations

yield the following correlation coe!cients: between players 1 and 2,

ϑ12 (= ϑ13) = ↓ 1

1 + p

[
2p

1↓ p

]1/2
,

and between players 2 and 3,

ϑ23 = ↓2(1↓ p)

(1 + p)2
.

Note that players 2 and 3 may di”er in their discount factors and aversion to risk.

Proceeding as in Section 4.3 with weak risk aversion, for player 1,

#U = (p · 3/2)ω ↓ p(3/2)ω, #u = (3/2)ω ↓ (p · 3/2)ω,

so that the transfer for full insurance for all three players will be made if, and only if,

1↓ pω ↑ ω

1↓ ω
(pω ↓ p),

that is, simply condition (1) once more. For player 2, the corresponding condition is

1↓
(
1↓ p

2

)ε2

↑ ε2
1↓ ε2

[(
1↓ p

2

)ε2

↓ 1↓ p

2

]
,

which can be rearranged as

↽(p; 3) ↔
(
1↓ p

2

)ε2

+ ε2

(
1↓ 1↓ p

2

)
↗ 1. (7)
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It is proved in Appendix C that, in the game involving 1 and 2 alone, conditions (1)

and (2) hold as strict inequalities ↘ϖ → (0,ω) and ↘φ2 → (0, ε2) when p lies in some

measurable interval that includes p = 1/2. Consider, therefore, p = 1/2 and φ2 = 1/2.

Then ↽(p; 3) > 1 ↘ε2 > 2/3. Likewise, for player 3: when φ3 = 1/2, ↽(p; 3) > 1 ↘ε3 >

2/3. It follows not only that there is a full-insurance equilibrium for this constellation of

parameter values, but also that there is such an equilibrium for a dense set of parameter

values in the neighbourhood of p = 1/2, with φ3 di”ering somewhat from φ2 and q2

from q3, subject to q2 + q3 = 1 ↓ p. When p = 1/2, ϑ12 = ϑ13 = ↓2
⇑
2/3 ⇓ ↓0.9428,

and ϑ23 = ↓4/9.

Generalising to n players, the aggregate endowment is n/2. Condition (1) continues to

hold for player 1, whose average endowment is pn/2, and for the rest, we obtain the

condition

↽(p;n) ↔
(
1↓ p

n↓ 1

)εi

+ εi

(
1↓ 1↓ p

n↓ 1

)
↗ 1, i = 2, 3, . . . , n.

This will hold, for example, for p = 1/2 if n is not much greater than 3, the φi are

clustered about one half and the εi are su!ciently close to 1.

In the second variation, player 1 obtains merely the original expected value of his

endowment as additional players are introduced, the aggregate endowment being n/2

as in the first variation. When n = 2, player 1 obtains the endowment 1 with probability

p(2) and zero with probability 1↓p(2). Let p ↔ p(2), so that with n players, he obtains

n/2 with probability 2p/n and zero with probability 1 ↓ 2p/n. The spread increases

with n, making him worse o” and mutual insurance less attractive. With a third player,

as in the first variation,

ϑ12 (= ϑ13) = ↓ 6

3 + 4p

[
p

3↓ 2p

]1/2

and

ϑ23 = ↓1

4

[
3/4↓ p

(3/2↓ p)(3/4 + p)2

]
.

When n = 3, player 1 will make the required transfer if and only if

(3/2)ω ↓ pω ↑ ω

1↓ ω

[
pω ↓ 2p

3
(3/2)ω

]
,

which can be rearranged as

↼(p; 3) ↔ (1↓ ω)[(1↓ ω) + 2ωp/3] ↑ (2p/3)ω.
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Note that ↼(p; 3) < (1 ↓ ω)(1 ↓ ω/3) ↘p → (0, 1). Since ω is close to 1, this condition

is easily satisfied, even when p is quite small. To illustrate with p = 1/2 and ϖ = 1/2

once more, (1↓ω)(1↓ω/3) ↗ (1/3)1/2 ↘ω > 0.79. he endowments are also less strongly

negatively correlated than in the first variation: when p = 1/2, ϑ12 = ϑ13 = ↓3/5 and

ϑ23 = ↓1/25.

For n players, the condition in question becomes

↼(p;n) ↔ (1↓ ω)[(1↓ ω) + ω(2p/n)] ↑ (2p/n)ω.

As in the first variation, this condition will hold for all values of p and ϖ each in some

substantial interval enclosing 1/2 when n is not much greater than 3.

Turning to players 2 and 3, let q2(3) = q3(3) = [1↓ p(3)]/2 = 1/2↓ p/3. Player 2, on

realising 3/2, will make the transfer in question if and only if

↽(q; 3) ↔ [q2(3)]
ε2 + ε2(1↓ q2(3)) ↗ 1,

which has the same form as (7), with q2(3) = 1/2↓ p/3 replacing 1/2↓ p/2. It is seen

that this condition will be satisfied if ε2 is close to 1 and p is su!ciently close to 1/2,

implying that q2(3) is close to 1/3. It follows, as before, that there is a full-insurance

equilibrium when n is not much larger than 3 and p lies in some interval enclosing 1/2.

When there are just two players in the present setting, di”erences in the expected

values of their endowments, i.e., p ⇒= 1/2, do not pose a strong barrier to trade in

the form of a full insurance arrangement. Each can seek out a suitable partner, with

autarky as the outside option. When there are three or more players, however, the

question of whether the group is stable, or can be formed in the first place, arises in a

pressing way. An examination of the two variations yields some insights.

5.1 Beyond pure insurance: group size

In the second variation, player 1 does better with just one partner than two or more.

If presently a member of a group of three or more players, he might find a suitable one

outside the group and so depart to form a group with her alone. Now, a key feature

of both variations above is that the aggregate endowment, n/2, is proportional to

the number of players. Yet it is quite possible that there are complementarities among

players that result in increasing returns to the size of the group. If, for example, players
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have heterogeneous factor endowments, or engage in certain forms of collective action,

then the aggregate output of the composite good available to n players can exceed n/2

and so create possibilities that go beyond pure insurance.

When n = 2, player 1 obtains an expected utility of pω with full insurance. Suppose

the aggregate endowment with n players is k(n)n/2, where k(2) = 1, k(n) > 1 ↘n ↗ 3.

Then player 1 obtains p(n)[k(n)n/2]ω = p(2/n)1↓ω[k(n)]ω, which exceeds pω if and only

if k(n) > [n/2p](1↓ω)/ω. It is clear that, cet. par., this is more likely to hold if player

1 is fairly risk tolerant, i.e., ϖ is close to, but less than, ω. Let p = 1/3 and ϖ = 0.9.

Then k(4) must exceed 61/9 = 1.22 if player 1 is to prefer being in a group of 4.

An interesting kind of such collective action is the voluntary formation of a small

group for the purposes of obtaining formal loans, wherein its members are subject to

several and joint liability for all the individual loans. Siamwalla et al. (1990) describe

a successful programme for Thai cultivators. Under this contract, repayment in each

period is enforced legally whatever be the members’ individual realizations; but as the

foregoing argument makes clear, the group will survive if the loans yield su!ciently

large augmentations of its members’ endowment streams, the alternative being autarky

and hence no access to such loans and the gains they yield.

This kind of collective action is not the only means of achieving increasing returns

through the formation of a group. A stream of income secured by mutual insurance

also provides risk-averse members with an incentive to reallocate their productive en-

dowments so as to obtain more output on average. Suppose that under such an ar-

rangement, player 1’s endowment in the first variation becomes the augmented variate

Ã1t = 1 + ⇀1 with probability p, and Ã1t = 0 with probability 1↓ p,

where ⇀1 exceeds 0 by an amount that depends on the gain #U . The corresponding

augmentations for the other players, ⇀i (i = 2, 3, . . . , n), are similarly defined. Then

the formation of the group yields the aggregate endowment n/2 +
∑i=n

i=1 ⇀i, so that

the group will be stable under conditions similar to those derived above, with the

di”erence that the aggregate augmentation is larger when the members, as a group,

are more risk-averse.
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5.2 Aggregate risk

Aggregate risk has been ruled out in Section 4 and thus far: R̃t = 0 in all states of

nature. Introducing a common component, let R̃t be an i.i.d. binomial variate, taking

the values 0 and ϑ > 0, with probabilities 1↓⇁ and ⇁, respectively. In the first variation

with three players, player 1 obtains the value

W1 = {⇁[p(3/2 + ϑ)ω + (1↓ p)ϑω] + (1↓ ⇁)p(3/2)ω} /(1↓ ω)

under perpetual autarky. The value under full, perpetual mutual insurance is

S1 = {⇁[(p · 3/2 + ϑ)ω] + (1↓ ⇁)(p · 3/2)ω} /(1↓ ω),

the aggregate risk being uninsurable when storage and savings are ruled out. When

R̃t = ϑ, player 1 will make the required transfer if and only if

(3/2 + ϑ)ω ↓ (p · 3/2 + ϑ)ω ↑ ω(S1 ↓W1).

When R̃t = 0, this condition becomes

(3/2)ω(1↓ pω) ↑ ω(S1 ↓W1),

which is clearly the more stringent of the two, since u is strictly concave. For it is when

the common component takes its smallest value and player 1’s idiosyncratic draw is

favourable that his willingness to make the required transfer is most put to the test.

Analogous expressions and the same argument hold for the other players. It is seen that

if ϑ is su!ciently small, so that autarky does not become relatively rather attractive,

then all the foregoing results also hold.

6 Arbitrary Correlation of Endowments

Although full mutual insurance is not always feasible, partial insurance is mostly so.

We begin the argument with a simple case. Let the random variables Ã0, Ã1, . . . , be

i.i.d. with P (Ã0 = 0) = 1 ↓ q and P (Ã0 = 1) = q. Likewise, let Ẽ0, Ẽ1, . . . , be i.i.d.

with P (Ẽ0 = 0) = 1↓ r and P (Ẽ0 = 1) = r, where q, r → (0, 1). Assume also that the

processes Ã and Ẽ are independent, and u↑ > 0, u↑↑ < 0, v↑ > 0, v↑↑ < 0, u(0) = v(0) =

0, u(1) = v(1) = 1.
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Full insurance is excluded, for it is impossible to equalize each player’s consumption

across states of nature. Yet it is possible to provide partial insurance. Put

s = P (Ã0 ⇒= Ẽ0) = (1↓ q)r + q(1↓ r) and p = P (Ã0 = 1 | Ã0 ⇒= Ẽ0) = q(1↓ r)/s,

and note that p > 0 and s > 0. Let the players consume at = p and et = 1 ↓ p,

whenever Ãt ⇒= Ẽt. This scheme provides partial insurance, with expected utility gains

#U = s · [u(p)↓p] and #V = s · [v(1↓p)↓ (1↓p)], respectively. The (maximal) utility

losses whenever a player provides insurance to the other player are #u = u(1) ↓ u(p)

and #v = v(1)↓ v(1↓ p). With these values, one obtains an analogue of Proposition

1.

When endowments across players are positively correlated, insurance opportunities

are less likely to arise; indeed, they may never arise at all. Consider the sequence of

i.i.d. random variables Ã0, Ã1, . . ., and Ẽt(ϱ) = f(Ãt(ϱ)) for t → N0, ϱ → $ where

f : [0, 1] ≃ [0, 1] is strictly increasing.

Example l. P (Ã0 = 0) = P (Ã0 = 1) = 1/2, f(R) = R for R → [0, 1], ω = ε =

1/2, u(c) = v(c) = c1/2 for c → [0, 2], a case of perfect positive correlation. Here, au-

tarky is an optimal allocation of resources, even intertemporally. Hence, no opportunity

for mutual insurance ever arises. ↭

To establish that even small deviations from perfect positive correlation can reopen

the door to insurance, consider

Example 2. P (Ã0 = 0) = 0.2, P (Ã0 = 0.5) = 0.4, P (Ã0 = 1) = 0.4, f(R) = R2 for

R → [0, 1], u(c) = v(c) = 5(c ↓ c2)/4 for c → [0, 2]. Then Ãt and Ẽt are positively

correlated, with correlation coe!cient 0.985. Since v↑(0.25) = 9/8, u↑(0.5) = 1, u↑(1) =

3/4, there is scope for mutual insurance. Let δ → (0, 0.5) be su!ciently small and

consider the following insurance plan. When At = 0.5, ALAN transfers the amount

|zt| = δ to ESTHER. When At = 1, ALAN receives the amount zt =
7
5δ from ESTHER.

For discount factors su!ciently close to 1, the plan can be obtained as subgame perfect

Nash equilibrium outcome, again using trigger strategies. ↭

Finally, we allow for arbitrary correlation of endowments across players. As a rule,

there are mutual insurance opportunities. It is seen from the argument in Example

1 that a necessary condition for them to arise is that the probability that one player

enjoys a relatively good draw when the other does not, be positive. We consider a class

of models wherein the endowment processes are parametrized as follows.
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There is a finite number - ↗ 2 of states k = 1, 2, . . . , -. Let K = {1, 2, . . . , -}. There is
a sequence of i.i.d. random variables ⇀t : $ ≃ K, t → N0, with ($,F, P ) the underlying

probability space. Denote p(k) = P (⇀0 = k) and assume p(k) > 0 for all k → K.

Further let u : [0, 2] ≃ R and v : [0, 2] ≃ R satisfy u(0) = v(0) = 0, u(1) = v(1) =

1, u↑ > 0, u↑↑ < 0, v↑ > 0, v↑↑ < 0.

From now on, K, ($,F, P ), (⇀t), u and v are fixed. A generic element of Rϑ is denoted

A = (A(1), . . . , A(-)), B = (B(1), . . . , B(-)), Z = (Z(1), . . . , Z(-)), etc.

The extended parameter space is S = [0, 1]ϑ ⇔ [0, 1]ϑ ⇔ (0, 1) ⇔ (0, 1). Each

parameter quadruplet (A,E,ω, ε) → S, with A = (A(1), . . . , A(-)) → [0, 1]ϑ, E =

(E(1), . . . , E(-)) → [0, 1]ϑ, ω, ε → (0, 1), determines a game & = &(A,E,ω, ε). Namely,

— u and v are the von Neumann-Morgenstern utility functions as in our general

model,

— ω and ε are the discount factors,

— the endowment processes (Ãt) and (Ẽt) are given by Ãt(ϱ) = A(⇀t(ϱ)) and

Ẽt(ϱ) = E(⇀t(ϱ)) for t → N0, ϱ → $.

The endowment parameter space is T = [0, 1]ϑ ⇔ [0, 1]ϑ, with generic elements

(A,E). Haller (1992) proves

Proposition 4 There exists an open and dense subset N↔ of T such that for every

(A,E) → N↔, one can find su!ciently high discount factors ω and ε such that the game

&(A,E,ω, ε) has a subgame perfect trigger strategy equilibrium which both players prefer

to autarky.

First, note that for A → [0, 1]ϑ, A(k) = 1 may hold for some k → K, but need not hold.

Similarly for E → [0, 1]ϑ. Second, the restriction (A,E) → [0, 1]ϑ⇔ [0, 1]ϑ can be relaxed.

Third, the players obtain di”erent draws in some states, which is a basis for trade.

7 Mutual Insurance through Exogamy

We apply the framework and insights to the custom of patrilocal exogamy in rural

India. Households i and j reside in villages k and l, respectively. At some point in the
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past, one of j’s daughters married one of i’s sons and took up residence in i’s household,

as custom requires.7 The associated material transactions, principally her dowry, are

ignored for present purposes. The villages are quite some distance apart, but usually

belong to the same agroclimatic region.8

Following the marriage, the households’ endowments are given by the variates

R̃it = ▷iR̃t + ↽iG̃kt + r̃ikt

and

R̃jt = ▷jR̃t + ↽jG̃lt + r̃jlt,

respectively, where ▷i and ▷j are their shares of aggregate (regional) risk R̃t and there

are village components G̃kt and G̃lt. The common component R̃t is i.i.d., as are the

other variates, so that R̃it and R̃jt are positively, but imperfectly, correlated.9 Exogamy

therefore yields a particular case of the structure in the final part of Section 6. In what

follows, we identify generic parameter constellations in the spirit of Proposition 4.

A marriage alliance normally involves households of roughly equal standing: let ▷i =

▷j = ▷. Suppose all variates are binomially distributed. Let $ϖiR = {ϑ1, ϑ2} and

P (▷iR̃t = ϑ2) = ⇁R, where the superscripts 1, 2 denote the lower and upper values.10

Suppose, further, that the villages are similar, so that ↽i = ↽j. Then $ϱiGk
= $ϱjGl

=

{g1, g2} and P (↽iG̃kt = g2) = ⇁G. The supports of r̃ikt and r̃jlt are the same, but the

probabilities may di”er, where P (r̃ikt = r2) = p and P (r̃jlt = r2) = q. (The daughter’s

move changes each family’s labour endowment and the members’ claims on its common

pot.) The assumption that the support of the distribution of an agent’s endowment is

7See Rosenzweig and Stark (1989) for an empirical investigation of the connection between exogamy
and consumption smoothing in some Indian villages.

8Karan and Iijima (1993) summarize the distances reported in the Indian literature, as well as
describing in detail practices in the four villages they investigated. The average distance separating
the two villages in the former studies was commonly about 20 km and varied somewhat by caste. In
two of the latter four villages, most respondents’ marriages had spans within 15 km, in the other two,
30-35 km. Distancing was notably greater among the respondents’ married children.

9In this connection, Newbery (1989) cites two empirical estimates. The correlation of measured July
rainfall at the opposite ends of ICRISAT’s research station was 0.61 (Walker and Jodha, 1982). The
station lies in the Deccan plateau and, at 1400 ha, would constitute a large village in its administrative
block. (Those 25 villages range in size from 200 to 1700 ha [Indian Village Directory, 2022].) The main
monsoon months are July and August. For the two closest rainfall stations in an area of southern
India, which are 40 km apart, Seabright (1987) reports a squared correlation coe!cient of 0.15 over a
30-year period.

10#ωiR denotes the set of outcomes for i in the absence of any dealings with j. With the plethora
of subscripts i, k, t, the introduction of the superscripts 1, 2 seems a clearer alternative, no integral
exponents being involved in what follows.
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the positive interval [b, 1] emerges as important in section 4. Hence, let ϑ1 > 0, g1 =

r1 = 0 and ϑ2 + g2 + r2 = 1, reflecting the idea that some emergency relief can always

be expected from outside the villages themselves, though ϑ1 may be very small. Under

autarky, EAit = (1↓⇁R)ϑ1+⇁Rϑ2+⇁Gg2+pr2 and EAjt = (1↓⇁R)ϑ1+⇁Rϑ2+⇁Gg2+qr2

for all t.

If regional agroclimatic conditions are poor (▷R̃t = ϑ1), realizations in which one

household has an endowment of just ϑ1 and the other more arise with strictly positive

probabilities. A transaction is then most attractive when i obtains ϑ1+g2+r2 and j just

ϑ1, and conversely. The probability of the former outcome, conditional on ▷R̃t = ϑ1,

is ⇁G · p · (1 ↓ ⇁G)(1 ↓ q); in the converse, it is ⇁G · q · (1 ↓ ⇁G)(1 ↓ p). Analogous

expressions arise when regional conditions are good: i obtains 1 and j obtains ϑ2, and

conversely, are both outcomes in which a transaction is especially attractive, though

not certain to occur.

Since all realizations are assumed to be known to both parties before the decision

whether to transact is made, the transaction can be made conditional on the regional

draw Rt. Proposition 4 establishes that, generically, su!ciently high discount factors

ensure the existence of a transaction that both households prefer to autarky. That

result does not, however, delineate the generic set of parameters. The current situation

can be modeled with - = 32 or fewer. The probabilities p, q and ⇁G are additional

parameters. We shall identify parameter constellations that are conducive to beneficial

mutual insurance, provided the discount factors are su!ciently large.

Consider ▷R̃t = ϑ1 and G̃kt ⇒= G̃lt. If i obtains ϑ1 + g2 + r2 and j obtains ϑ1, let i

transfer (1 ↓ p)(g2 + r2) to j; in the converse case, let j transfer (1 ↓ q)(g2 + r2) to

i. In all other outcomes, including G̃kt = G̃lt, let no transfers take place, by mutual

agreement. In Appendix D, it is shown that, in each period, i will gain from these

transfers relative to autarky if and only if

p(1↓ q)u[ϑ1 + p(g2 + r2)] + (1↓ p)qu[ϑ1 + (1↓ q)(g2 + r2)]

> p(1↓ q)u(ϑ1 + g2 + r2) + (1↓ p)u(ϑ1). (8)

Likewise, j will gain if and only if

q(1↓ p)v[ϑ1 + q(g2 + r2)] + (1↓ q)pv[ϑ1 + (1↓ p)(g2 + r2)]

> q(1↓ p)v(ϑ1 + g2 + r2) + (1↓ q)v(ϑ1). (9)
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These results accord with intuition, the transfers taking place only when, given G̃kt ⇒=
G̃lt, the individual draws match their respective village-level ones. If its realization is

favourable, household i gives up #u = u(ϑ1 + g2 + r2)↓ u[ϑ1 + p(g2 + r2)] in exchange

for the stream {#U}. Analogous expressions hold for j when so favoured.

The arrangement is more attractive to the household with the lower probability of the

good idiosyncratic draw r2; for what is transferred to the partner is then smaller than

what is received when things turn out badly. In the symmetric case p = q, conditions

(8) and (9) specialise to

u[ϑ1 + p(g2 + r2)] + u[ϑ1 + (1↓ p)(g2 + r2)] > u(ϑ1 + g2 + r2) + u(ϑ1)/p,

and

v[ϑ1 + p(g2 + r2)] + v[ϑ1 + (1↓ p)(g2 + r2)] > v(ϑ1 + g2 + r2) + v(ϑ1)/p,

respectively. With the normalisation u(ϑ1) = v(ϑ1) = 0, these hold for all p → (0, 1) in

virtue of the strict concavity of u and v. It follows by continuity that the arrangement

will be mutually advantageous for all pairs (p, q) such that p and q are su!ciently close

to each other, which is likely to hold when marriage alliances always involve both caste

and economic standing.

A similar argument holds when ▷R̃t = ϑ2, G̃kt ⇒= G̃lt and the individual draws match

their respective village-level ones, so that one household obtains 1 and the other ϑ2.

With the said normalisation, conditions (8) and (9) become, respectively,

p(1↓ q)u[(1↓ p)ϑ2 + p] + (1↓ p)qu[(1↓ q) + qϑ2] > p(1↓ q)u(1) + (1↓ p)u(ϑ2)

and

q(1↓ p)v[(1↓ q)ϑ2 + q] + (1↓ q)pv[(1↓ p) + pϑ2] > q(1↓ p)v(1) + (1↓ q)v(ϑ2).

In the symmetric case, these reduce to

u[(1↓ p)ϑ2 + p] + u[(1↓ p) + pϑ2] > u(1) + u(ϑ2)/p,

and

v[(1↓ p)ϑ2 + p] + v[(1↓ p) + pϑ2] > v(1) + v(ϑ2)/p,

which hold for all ϑ2 su!ciently close to ϑ1.
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The findings of Townsend (1994) and Chiappori et al. (2014) that, within a village, id-

iosyncratic risks are largely eliminated still leave exogamy with the potential advantage

of mitigating those at the village level. Household i’s endowment specialises, in this

idealized case, to R̃it = ▷iR̃t + ↽iG̃kt + pr2 and similarly for j, where their respective

neighbours are likely to be in the dark about what has happened in the other village.

When G̃kt ⇒= G̃lt, a transfer of (1 ↓ ⇁G)g2 from the household in the village with the

draw g2 may be attractive. When ▷R̃t = ϑ1 and G̃kt = g2, we have the condition

u[ϑ1 + (1↓ ⇁G)g
2 + pr2] + u(ϑ1 + ⇁Gg

2 + pr2) > u(ϑ1 + g2 + pr2),

which always holds. Likewise, for j,

v[ϑ1 + (1↓ ⇁G)g
2 + qr2] + v(ϑ1 + ⇁Gg

2 + qr2) > v(ϑ1 + g2 + qr2).

8 Concluding Remarks

We have found that bilateral mutual insurance outcomes may not reflect di”erences in

the partners’ preferences for risk bearing: di”erences that arise across states of nature

ex post can su!ce. If their preferences do di”er, then their consumption patterns can

have identical co-movements with aggregate consumption, in contrast to some of the

empirical findings in the literature. This can be explained by the co-existence of various

ways of risk sharing. Some households may resort to mutual insurance in combination

with other measures.

Under standard convexity assumptions, there can be no gains from trade if all agents

have the same economic characteristics, where it must be noted that this condition is

violated if, among otherwise identical agents, some agents do well and others badly in

certain states of nature, and conversely in certain other states. This conclusion ap-

plies, in particular, to insurance in village economies, especially when soils, elevation

and access to irrigation vary over plots, and so induce di”erences in the crops grown

and how they are cultivated. Di”erences in these and other household characteristics,

including those arising from di”erences across states, are conducive to insurance within

the village. Would greater di”erences strengthen the case for insurance, in particular,

bilateral mutual insurance? Recall that mutual insurance requires trust in, and famil-

iarity with, partners and is, therefore, usually restricted to partners linked by spatial

proximity, kinship, friendship, social or professional ties. Yet within these restrictions,
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a household may still have a choice of partners. Consider a rather a’uent household.

It can provide insurance to an extremely poor household, but would receive very little

in return, so that it might prefer to partner with another a’uent household, or even

forego mutual insurance altogether and rely on collateralized commercial loans. Thus,

while di”erences in household characteristics are conducive to insurance within the

village, greater di”erences need not make the emergence of bilateral mutual insurance

more likely. Marriage alliances of socially and economically similar families belonging

to widely separated villages confirm the potential advantages of geographical diversifi-

cation within such groups.

Furthermore, note that inter-temporal e!ciency need not obtain, even if intra-temporal

e!ciency is achieved via mutual insurance or otherwise.

Finally, new issues arise and are addressed in Section 5 when groups of three or more

households engage in mutual insurance. Since endowments within such a group are not

necessarily very strongly negatively correlated, the stability of a large group becomes

doubtful if the aggregate endowment of the group is proportional to group size. This

problem is mitigated when the aggregate endowment increases proportionally more

than group size and the group is small.
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Appendix A: Co-movement of Household and Aggregate Con-

sumption

Suppose that there are exactly two di”erent risk preferences with equal proportions

in the population, with half of the households risk neutral and the other half risk

averse. Let household i be risk-neutral, household j be risk averse, and both ▷iR̃ and

▷jR̃ be i.i.d. and uniformly distributed on [↓1, 1].11 Denote R̂ = ▷iR̃ = ▷jR̃. First,

consider Ĉi = (1 + ◁)R̂ and Ĉj = (1↓ ◁)R̂ for some ◁ → (0, 1). The risk neutral house-

hold i is indi”erent between R̂ and Ĉi, since both have zero mean. The risk averse

household j, with von Neumann-Morgenstern utility function u satisfying u↑ > 0 and

u↑↑ < 0, prefers Ĉj to R̂. This claim can be proved in two ways.

First, after suitable normalizations to ensure that u is bounded on the interval [↓1, 1],

we can di”erentiate E[u(Ĉi)] w.r.t. ◁:

d

d◁

[ 0

↓1

u((1↓ ◁)x)dx+

 1

0

u((1↓ ◁)x)dx

]
=

↓
[ 0

↓1

u↑((1↓ ◁)x)xdx+

 1

0

u↑((1↓ ◁)x)xdx

]
> 0,

for u↑((1↓ ◁)(↓x)) > u↑((1↓ ◁)x) ↘x > 0.

Second, the assertion follows by applying Proposition 6.D.2 in Mas-Colell et al. (1995).

Now suppose that household j pays i a fixed risk premium d > 0 so that they end up

with

C̃i = Ĉi + d = (1 + ◁)R̂ + d, C̃j = Ĉj ↓ d = (1↓ ◁)R̂↓ d.

Then for su!ciently small d, household i prefers C̃i to R̂, household j prefers C̃j to R̂,

and both C̃i and C̃j are perfectly correlated with R̂.

Next suppose that instead of paying a fixed risk premium, household j pays i extra

compensation in good states. Let δ → (0, 1↓ ◁) and consider C̃i and C̃j given by

C̃i =


(1 + ◁)R̂ if R̂ ↑ 0,

(1 + ◁+ δ)R̂ if R̂ > 0;

C̃j =


(1↓ ◁)R̂ if R̂ ↑ 0,

(1↓ ◁↓ δ)R̂ if R̂ > 0.

11That the means are zero simplifies computations; but the conclusion would not change if we
assumed a non-negative support.
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Then household i prefers C̃i to R̂ and for su!ciently small δ, household j prefers C̃j

to R̂. R̂ has mean µ = 0 and variance 02 = 1/3. Hence the covariance of C̃i and R̂ is

COVi = E[C̃iR̂] =
1

3
(1 + ◁) +

1

6
δ

and the covariance of C̃j and R̂ is

COVj = E[C̃jR̂] =
1

3
(1↓ ◁)↓ 1

6
δ.

C̃i has mean µi =
1

4
δ and variance

02
i = 1

2

 0

↓1((1 + ◁)x↓ 1
4δ)

2dx+ 1
2

 1

0 ((1 + ◁+ δ)x↓ 1
4δ)

2dx

= 1
2 [

1
3(1 + ◁)2 + 1

4(1 + ◁)δ + 1
16δ

2 + 1
3(1 + ◁+ δ)2 ↓ 1

4(1 + ◁+ δ)δ + 1
16δ

2]

= 1
2 [

2
3(1 + ◁)2 + 2

3(1 + ◁)δ + 1
3δ

2 ↓ 1
4δ

2 + 1
8δ

2]

= 1
2 [

2
3(1 + ◁)2 + 2

3(1 + ◁)δ + 5
24δ

2].

C̃j has mean µj = ↓1

4
δ and variance

02
j = 1

2

 0

↓1((1↓ ◁)x+ 1
4δ)

2dx+ 1
2

 1

0 ((1↓ ◁↓ δ)x+ 1
4δ)

2dx

= 1
2 [

1
3(1↓ ◁)2 ↓ 1

4(1↓ ◁)δ + 1
16δ

2 + 1
3(1↓ ◁↓ δ)2 + 1

4(1↓ ◁↓ δ)δ + 1
16δ

2]

= 1
2 [

2
3(1↓ ◁)2 ↓ 2

3(1↓ ◁)δ + 1
3δ

2 ↓ 1
4δ

2 + 1
8δ

2]

= 1
2 [

2
3(1↓ ◁)2 ↓ 2

3(1↓ ◁)δ + 5
24δ

2].

The correlation coe!cients ϑi for C̃i and R̂ and ϑj for C̃j and R̂ are given by

ϑi =
COVi

0i · 0
, ϑj =

COVj

0j · 0
.

Hence ϑi > ϑj if and only if [COVi]2 · 02
j > [COVj]2 · 02

i or

[2(1+◁)+δ]2·
[
2

3
(1↓ ◁)2 ↓ 2

3
(1↓ ◁)δ +

5

24
δ2
]
> [2(1↓◁)↓δ]2·

[
2

3
(1 + ◁)2 +

2

3
(1 + ◁)δ +

5

24
δ2
]
.

Disregarding higher order terms of δ caused by multiplication with δ2 in each bracket,

the left-hand side becomes

[4(1 + ◁)2 + 4(1 + ◁)δ] · [23(1↓ ◁)2 ↓ 2
3(1↓ ◁)δ]

= 8
3(1↓ ◁2)[(1↓ ◁2)↓ (1 + ◁)δ + (1↓ ◁)δ ↓ δ2].
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Doing the same on the right-hand side yields

[4(1↓ ◁)2 ↓ 4(1↓ ◁)δ] · [23(1 + ◁)2 + 2
3(1 + ◁)δ]

= 8
3(1↓ ◁2)[(1↓ ◁2) + (1↓ ◁)δ ↓ (1 + ◁)δ ↓ δ2].

Hence so far, both sides are identical. Collecting the remaining terms on the left-hand

side yields

2

3
(1↓ ◁)2δ2 ↓ 2

3
(1↓ ◁)δ3 +

5

24
δ4 +

5

6
(1 + ◁)2δ2 +

5

6
(1 + ◁)δ3.

Collecting the remaining terms on the right-hand side yields

2

3
(1 + ◁)2δ2 +

2

3
(1 + ◁)δ3 +

5

24
δ4 +

5

6
(1↓ ◁)2δ2 ↓ 5

6
(1↓ ◁)δ3.

The left-hand side exceeds the right-hand side if

1

6
(1 + ◁)2δ2 +

1

6
(1 + ◁)δ3 >

1

6
(1↓ ◁)2δ2 ↓ 1

6
(1↓ ◁)δ3,

which is the case. This shows ϑi > ϑj.

Finally suppose that instead of being overcompensated in good states, household i

provides less insurance in bad states. Then similar calculations show ϑi > ϑj again.

Appendix B: The Lower Bound of u and Relative Risk Aversion

Suppose there is a c1 > 0 such that ϑu(c) ↔ ↓u↑↑c/u↑ ↗ 1 ↘c < c1. In the limit-

ing case, ϑu = 1 ↘c, which implies u = ln c + 1 and u↑ = 1/c. Otherwise, and with

reference to that special case, normalise u such that u(1) = u↑(1) = 1 and suppose

ϑu(c) > 1 ↘c → [c0, 1], that is, ↓u↑↑c > u↑. Integrating (the l.h.s. by parts) over the

positive interval [c0, 1], we have ↓u↑(1) + u↑(c0)c0 + u(1) ↓ u(c0) > u(1) ↓ u(c0), or

u↑(c0) > 1/c0, where 1/c0 is the slope of ln c + 1 for c = c0. The latter inequality

holds for all c0 → (0, 1), so that u is everywhere steeper than ln c + 1 over the interval

(0, 1), and since ln c + 1 is unbounded from below, u must be likewise. The condition

ϑu(c) ↔ ↓u↑↑c/u↑ ↗ 1 ↘c → (0, 1) therefore implies ‘strong’ risk aversion. A special case

is the sub-family u = (1 + 1/ϖ)↓ 1/ϖcω, where ϖ > 0 and ϑu = 1 + ϖ.

Suppose, on the contrary, that there is a c1 > 0 such that 1 > ϑu(c) ↗ ϑu(c1) ↘c < c1.

Then, with c1 = 1, we have ↓u↑(1) + c0u↑(c0) ↗ (ϑu(1) ↓ 1)[u(1) ↓ u(c0)]. The nor-

malisations u(1) = u↑(1) = 1 yield u(c0) ↗ [1 ↓ c0u↑(c0)]/[1 ↓ ϑu(1)]. It follows that
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u(0) is bounded if and only if the limc↗0 cu↑ exists. The existence of the said limit and

1 > ϑu(c) ↗ ϑu(1) ↘c → (0, 1) are therefore su!cient conditions for weak risk aversion.

Appendix C: The Transfer Decision With Two Players

Weak risk aversion. For player A, condition (1) specialises to

1↓ pω ↑ ω

1↓ ω
· (pω ↓ p),

a rearrangement of which yields

↼(p; 2) ↔ pω + ω(1↓ p) ↗ 1. (10)

Since ω < 1, this condition is violated if A is risk neutral (ϖ = 1) and p < 1. It holds,

trivially, with equality ↘ϖ → (0, 1] if A faces no risk (p = 1). In what follows, A and E

are risk averse, with ϖ < ω, φ < ◁ and p → (0, 1).

The function ↼ is continuous and strictly concave ↘p → [0, 1], ϖ → (0, 1); ↼(0; 2) =

ω, ↼(1; 2) = 1; and ↼↑(p; 2) = ϖpω↓1 ↓ ω > 0 ↘p → (0, 1) if ϖ ↗ ω, which implies

↼ < 1 ↘p → (0, 1).

Noting that ↼↑(1; 2) = ϖ ↓ ω, it is seen that the restriction ϖ < ω implies ↼↑ < 0 for

all p su!ciently close to 1. Since ↼ is strictly concave and ↼↑(p; 2) ≃ ⇐ as p ≃ 0 and

ω is very close to 1, ϖ < ω implies ↼(p; 2) > 1 ↘p → (p↑, 1), where p↑ is close to 0. The

function ↼ attains a maximum for p = (ϖ/ω)1/(1↓ω). Now, ϖ1/(1↓ω) = exp[(1↓ϖ)↓1 ln ϖ].

Since ↓1 > (1↓ ϖ)↓1 ln ϖ > ↓1/ϖ, ϖ1/(1↓ω) → (e↓1/ω, e↓1). It follows from the fact that

ω is very close to 1 and ↼(1; 2) = 1 that ↼(p↑; 2) exceeds 1 by quite some margin. For

example, ϖ = 1/2 yields (ϖ/ω)1/(1↓ω) = 1/4ω2. Very conservatively, put ω = 0.95.

Then p↑ = 0.277 and ↼(p↑; 2) = 1.239.

For player E, put q = 1↓ p. Then condition (2) specialises to

1↓ qε ↑ ε

1↓ ε
· (qε ↓ q),

a rearrangement of which yields

↽(q; 2) ↔ qε + ε(1↓ q) ↗ 1. (11)

It is seen that ↽(q; 2) > 1 ↘q → (q↑, 1), where q↑( ⇒= 1↓ p↑) is close to 0, and that ↽(q↑; 2)

exceeds 1 by quite some margin. It then follows there is some extensive interval (p, p̄)
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enclosing p = 1/2 such that conditions (10) and (11) both hold as strict inequalities

for all p in that interval, thereby opening the possibility of a subgame perfect trigger-

strategy equilibrium with additional players.

Strong risk aversion. For player A, condition (1) specialises to

↓1 +
1

[p+ (1↓ p)b]ω
↑ ω

1↓ ω
·
(
1↓ p(1↓ bω)

bω
↓ 1

[p+ (1↓ p)b]ω

)
,

a rearrangement of which yields

[(p/b) + (1↓ p)]ω[bω + (1↓ bω)ω(1↓ p)] ↗ 1, b → (0, 1). (12)

This condition holds for all b su!ciently close to zero, whereby bω + (1↓ bω)ω(1↓ p) →
(ω(1↓ p), 1).

For player E, put q = 1↓ p. The required corresponding condition is

[(1↓ q)/b+ q]ε[bε + (1↓ bε)εq] ↗ 1, b → (0, 1), (13)

which holds for all b su!ciently close to 0. Thus, the possibility of a subgame perfect

trigger-strategy equilibrium with additional players also arises here, with b chosen such

that the l.h.s. is su!ciently greater than 1.

Appendix D: Exogamy

The transfer yields i the expected utility (recall that g1 = r1 = 0)

⇁G(1↓ ⇁G){pqu(ϑ1 + g2 + r2) + p(1↓ q)u[ϑ1 + p(g2 + r2)] + (1↓ p)u(ϑ1 + g2)}

+(1↓ ⇁G)⇁G{pu(ϑ1 + r2) + (1↓ p)qu[ϑ1 + (1↓ q)(g2 + r2)]}

+⇁2
G[pu(ϑ

1 + g2 + r2) + (1↓ p)u(ϑ1 + g2)] + (1↓ ⇁G)
2[pu(ϑ1 + r2) + (1↓ p)u(ϑ1)].

Autarky yields

⇁Gpu(ϑ
1 + g2 + r2) + ⇁G(1↓ p)u(ϑ1 + g2) + (1↓ ⇁G)[pu(ϑ

1 + r2) + (1↓ p)u(ϑ1)].

Hence, i gains

#U = ⇁G(1↓ ⇁G){pqu(ϑ1 + g2 + r2) + p(1↓ q)u[ϑ1 + p(g2 + r2)]

+(1↓ p)qu[ϑ1 + (1↓ q)(g2 + r2)]}↓ ⇁G(1↓ ⇁G)[pu(ϑ
1 + g2 + r2) + (1↓ p)u(ϑ1)].

Likewise

#V = ⇁G(1↓ ⇁G){pqv(ϑ1 + g2 + r2) + q(1↓ p)v[ϑ1 + q(g2 + r2)]

+(1↓ q)pv[ϑ1 + (1↓ p)(g2 + r2)]}↓ ⇁G(1↓ ⇁G)[qv(ϑ
1 + g2 + r2) + (1↓ q)v(ϑ1)].

37


