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ABSTRACT
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Inventors’ Coworker Networks  
and Innovation*

This paper presents direct evidence on how firms’ innovation is affected by access to 

knowledgeable labor through co-worker network connections. We use a unique dataset 

that matches patent data to administrative employer–employee records from “Third 

Italy”—a region with many successful industrial clusters. Establishment closures displacing 

inventors generate supply shocks of knowledgeable labor to firms that employ the 

inventors’ previous co-workers. We estimate event-study models where the treatment 

is the displacement of a “connected” inventor (i.e., a previous coworker of a current 

employee of the focal firm). We show that the displacement of a connected inventor 

significantly increases connected inventors’ hiring. Moreover, the improved access to 

knowledgeable workers raises firms innovative activity. We provide evidence supporting 

the main hypothesized channel of knowledge transfer through firm-to-firm labor mobility 

by estimating IV specifications where we use the displacement of a connected inventor 

as an instrument to hire a connected inventor. Overall, estimates indicate that firms 

exploit displacements to recruit connected inventors and the improved capacity to employ 

knowledgeable labor within the network increases innovation.
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1 Introduction

A prominent feature of the labor market is firms’ tendency to recruit through informal
networks: surveys across OECD countries indicate that 15–50 percent of jobs are found
through social connections, while around 70 percent of US companies encourage referral-
based hiring (Pellizzari, 2010; Saygin, Weber, & Weynandt, 2019; Friebel, Heinz, Hoff-
man, & Zubanov, 2019). Researchers have speculated that firms benefit from using infor-
mal networks, for example, because of a reduction in information asymmetries, turnover,
and hiring costs. Studies exploring the possible advantages in terms of innovation are
limited, which is a pitfall given the importance of innovation for economic growth. In-
ventors are strategic to innovation but are a scarce factor of production: each given firm
has access to a very limited supply of inventors for recruitment with reduced frictions,
and thus informal connections could be a privileged channel to recruit them (Dustmann,
Glitz, Schönberg, & Brücker, 2016).

This is the first paper that presents direct evidence of the impact of increased access
to knowledgeable labor (i.e., inventors) through co-worker network connections on firms’
innovation.1 In confronting the non-trivial measurement challenges involved, we take ad-
vantage of a unique dataset that matches the universe of European Patent Office (EPO)
patents to administrative employer–employee records for the period 1987–2008 from the
so-called "Third Italy"—a macro-area in the North-East of the country characterized by a
high concentration of successful industrial clusters. We build on these data by construct-
ing the firm’s co-worker network of inventors; to our knowledge, this is the first study to
have done so. Firms’ innovative activity is proxied by the number of patent applications
to the EPO.

Our empirical strategy exploits the establishment closures that displace inventors in
the labor market, generating a shock to the supply of knowledgeable labor. Our approach
is similar to that of Eliason, Hensvik, Kramarz, & Skans (2017): we argue that the inven-
tor displacement shock may be more specific to connected firms, who may then experi-
ence increased access to knowledgeable labor and thus an improvement in their chances
of patenting compared to non-connected firms.

We estimate event-study models where the treatment is the displacement of a con-
nected inventor. This research design allows us to test for the presence of pre-trends in
the outcomes and enables us to recover the dynamics of the effects of interest. We doc-
ument that the displacement of a connected inventor significantly increases the hiring of
connected inventors. 2 Moreover, we show that improved access to knowledgeable work-

1In this paper, firm j is "connected" to an inventor if the latter has previously been a coworker of at least
one of firm j’s employees.

2The hires of non-connected inventors are not affected.
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ers raises firms innovative activity. Specifically, in the event study, the estimated average
increase in patent applications in the five years after a connected inventor’s displacement
is 0.27 standard deviations. The baseline analysis uses simple patent counts but conclu-
sions are very similar when we use citation-weighted patent counts.

We then verify empirically the evidence in favor of our main hypothesized channel:
knowledge transfer through firm-to-firm labor mobility. The underlying intuition is that
knowledge, which is mostly embedded in knowledge workers, spreads when these work-
ers move across firms (Dasgupta, 2012). Specifically, we assess the effect of hiring a con-
nected inventor on firms’ innovative activity by an instrumental variable approach, using
the displacement of a connected inventor as an instrument for the hire of a connected in-
ventor. Since inventors are scarce, firms compete to hire them; the firms connected to dis-
placed inventors through their employees may have a preferential channel to recruit them.
The impact of a connected inventor displacement on the firm’s capability to innovate then
occurs through hiring. An alternative hypothesis is that hiring decisions are taken based
on nepotism (Beaman & Magruder (2012); Wang (2013)). A positive estimated effect in
the IV regression is consistent with the hypothesis that informal connections reduce hiring
frictions and channel valuable information to firms, while a negative impact is consistent
with the hypothesis that nepotism plays a significant role in the recruitment process.

The IV estimates indicate that hiring a connected inventor raises innovation by ap-
proximately 0.6 patent applications—which is equivalent to an increase of 1.71 standard
deviations.3 This additional output is not restricted to the patents authored or co-authored
by the newly hired connected inventor, but it also refers to the patents exclusively au-
thored by the other workers of the destination firm. Thus, the addition of a new inventor
appears to "fertilize" the firm, spurring the development of new patent applications by its
employees.

A potential identification concern arises in case shocks to the supply of knowledgeable
labor partly capture market-level shocks (Cestone, Fumagalli, Kramarz, & Pica, 2016;
Gathmann, Helm, & Schönberg, 2020)). We do not expect this to be a major issue in our
context, since the closing establishments in our sample are mostly small to medium-sized
(median of around 100 employees), and thus the market effects originating from their
closure are likely to be rather limited. Nevertheless, to allay concerns of market effects,
we also control for the number of displaced workers in the local labor market (LLM) and
industry. Furthermore, we perform a "placebo"-type analysis, showing no effect from the
displacement of inventors with connections to other firms in the same LLM and industry
(i.e., firms different from the focal firm). Specifically, we investigate how innovation

3When interpreting these estimates it is important to highlight that the hire of a connected inventor is a
major change in terms of the workforce for the average firm in our data (Section 3.2).
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at firm j reacts to the displacement of inventors who are connected to other firms in the
same LLM and industry but not to the focal firm j.4 The results indicate that the estimated
average change over the five years following the placebo event is non-significant. While
we cannot completely rule out the possibility of market effects, the placebo result does
not appear consistent with this possibility.

Overall, our evidence indicates that firms take advantage of displacements to recruit
connected inventors. Moreover, the improved ability to employ connected inventors in-
creases firms patenting activity. More generally, our estimates suggest that informal con-
nections involving knowledgeable workers reduce hiring frictions and channel valuable
information to firms. We show that this process benefits firms’ innovation by expanding
the availability of knowledgeable labor. The percentage of connected inventor hires is
markedly larger than the connected employee share reported in other studies that do not
focus on inventors. This suggests that network effects are stronger for inventors than for
the average worker. The documented increase in firms patenting activity agrees with our
hypothesis of knowledge transferred through inventor mobility, while it is not consistent
with the alternative hypothesis that nepotism plays an important role in hiring decisions.

The remainder of this paper is organized as follows. Section 2 discusses the relation of
our paper to previous research. Section 3 presents the data and provides some background
information for "Third Italy", while Section 4 discusses our econometric strategy and
presents the results and various robustness checks. Finally, Section 5 concludes the paper.

2 Relation to Previous Research

Our work is mainly related to the literature on networks, workers’ mobility, and innova-
tion.

First, our paper is linked to research on the impact of networks on the labor market. A
first set of studies within this theme uses matched employer–employee data to explore net-
work effects on the labor market and related outcomes. The work of Eliason et al. (2017)
is closest to our paper. In particular, the authors assess the causal effect of co-worker con-
nections in the context of displacement and analyze firm-level outcomes, focusing on the
impact on total hires, value-added, and job separations. Our empirical strategy builds di-
rectly on theirs, using a similar type of supply shock and conceptual framework. Using an
armed-force test, Hensvik & Skans (2016) report that firms are able to hire workers with
higher cognitive skills when recruiting a previous colleague of their current employees.
Kramarz & Skans (2014) show that family ties are important to determine where young
workers find their first job, while Eliason, Hensvik, Kramarz, & Skans (2023) focus on

4See Eliason et al. (2017), p.5.

3



whether social connections can increase inequality and determine that high-wage workers
sort in high-wage firms because of their networks ("birds of a feather flock together"). Fi-
nally, Akcigit, Baslandze, & Lotti (2023) and Diegmann, Pohlan, & Weber (2024) study
the role of firms’ political connections in Italy and Germany, respectively.

A second body of work within the network literature analyzes the transmission of in-
formation through connections. Cingano & Rosolia (2012) and Glitz (2017) find that hav-
ing thicker networks of employed former coworkers increases the re-employment proba-
bility of workers displaced after a firm closure. Pellizzari (2010) hypothesizes that finding
a job through the network improves the quality of the match and thus raises wages, but
finds heterogeneous empirical results across countries. Schmutte (2015) reports evidence
of the positive sorting of high-ability workers to high-paying firms when their neighbors
are employed in high-paying firms. Battisti, Peri, & Romiti (2016) determines that people
who emigrate to German districts with larger co-ethnic networks are more likely to find
a job soon after arrival (see Topa (2011) for a review of additional studies in this area).
Saygin et al. (2019) combines features of these first two sets of studies and analyzes work-
related networks from the standpoint of both job seekers and hiring firms, using matched
employer–employee data. Their evidence indicates an important contribution of networks
in the transmission of job information and strongly suggests that the main channels are
knowledge transfer on demand-side conditions and job referrals.

A final set of studies related to networks analyses referral programs on a variety of
labor market outcomes. For example, Dustmann et al. (2016) and Glitz & Vejlin (2021)
document a larger initial wage premium and longer job tenure for referred workers. Burks,
Cowgill, Hoffman, & Housman (2015) find that in call centers and trucking, referred em-
ployees yield higher profits per worker than non-referred employees due to lower turnover
and recruiting costs, while in high-tech sectors they produce more patents. Friebel et al.
(2019) finds that having an employee referral program reduces attrition and decreases firm
labor costs.

We contribute to the literature on networks by specifically analyzing inventors and
innovation, and by using a research design that permits the testing of the presence of
pre-trends in the outcomes; it also enables us to recover the dynamics of the effects of
interest. Although the mechanisms we document may also apply to other types of workers
and outcomes, we focus on inventors and patenting firms since they are key drivers of
economic growth and are deemed to foster sizable positive social externalities (Bloom,
Schankerman, & Van Reenen, 2013; Bell, Chetty, Jaravel, Petkova, & Van Reenen, 2019).

Moreover, while the issues analyzed in this paper are of general interest, the specific
case of "Third Italy" is also important. This is a macro-region rich in networks of special-
ized producers frequently organized in industrial districts (IDs). IDs have been effective
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in promoting and adapting to technological change during the period of analysis (1987–
2008). This large economic area has been the focus of much research, both in Europe and
in the United States.5

Second, our paper is related to the literature on R&D spillovers, the mobility of R&D
personnel, and the implications of firm-to-firm labor mobility for firm-level outcomes.
Fons-Rosen (2013) finds that foreign direct investment has a greater impact on the host
economy in terms of knowledge diffusion when firms relocate inventors from the already
established R&D labs in their home country to newly developed labs in the host country.
Maliranta, Mohnen, & Rouvinen (2009) report that the firms involved in non-R&D ac-
tivities hiring workers from R&D-intensive firms tend to perform better.6 Balsvik (2011)
offers a detailed account of the productivity gains linked to worker flows from foreign
multinationals to domestic firms in Norway.7 Parrotta & Pozzoli (2012) provide evi-
dence from Denmark regarding the positive impact of the recruitment of "knowledge car-
riers" –technicians and highly educated workers recruited from a donor firm—on a firm’s
value-added. Stoyanov & Zubanov (2012) show that Danish firms that hire workers from
more productive firms increase their productivity. Fons-Rosen, Kalemli-Ozcan, Sorensen,
Villegas-Sanchez, & Volosovych (2017) explore the impact of FDI on the productivity of
host-country firms and show that inventor mobility across sectors is a key channel of
technology transfer. Serafinelli (2019) finds evidence of labor market-based knowledge
spillovers in the Veneto region of Italy.

Our findings are consistent with these empirical contributions. Unlike the above au-
thors, who focus on the relationship between labor mobility and productivity, we also shed
light on a broader question: how firms’ innovation is affected by access to knowledgeable
labor through co-worker network connections, particularly through inventors. Although
inventors are not the only workers who may transfer relevant information from one firm
to another, they undoubtedly have the largest potential to do so.

Third, our paper is related to the literature on knowledge diffusion, inventors, and in-
novation (Kantor & Whalley, 2014; Fons-Rosen, Scrutinio, & Szemeredi, 2016; Moretti,

5Brusco (1983); Piore & Sabel (1984); Trigilia (1990); Whitford (2001); Becattini, Bellandi, & De Pro-
pris (2014); Trigilia (2020)

6Bloom et al. (2013) determine the impact of technology spillovers and that of the product market rivalry
of R&D (negative business-stealing effects on the product market). They analyze a 20-year panel of US
firms and show that knowledge spillovers quantitatively dominate product market spillovers. Related con-
tributions on knowledge spillovers include Breschi & Lissoni (2001), Dechezleprêtre, Martin, & Mohnen
(2017), and Crescenzi & Gagliardi (2018). Kaiser, Kongsted, & Rønde (2015) show that the mobility of
R&D personnel enhanced the patenting output of Danish firms during the period 1999–2004. Other papers
combine register data with patent data and study features of the work history of inventors (see, for example,
Kline, Petkova, Williams, & Zidar (2019), Depalo & Di Addario (2014), and Di Addario & Wu (2024)).

7Likewise, Poole (2013) finds a positive effect of the share of new workers previously employed by
foreign-owned firms on wages paid in domestic firms in Brazil.
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2021; Ganguli, Lin, & Reynolds, 2020; Huang, Moretti, & Xia, 2023).8 In particular, our
study is related to research investigating network effects in science. For example, Mohnen
(2022) shows that network position is crucial in determining scientific production by fa-
cilitating access to other scientists non-redundant knowledge through coauthorship links.9

Another related body of the literature analyzes peer effects in the workplace induced by
knowledge spillovers and finds mixed evidence. On the one hand, Waldinger (2010),
for example, finds that faculty quality is a very important determinant of PhD student
outcomes. On the other hand, Cornelissen, Dustmann, & Schönberg (2017) obtain only
small peer effects on wages in high-skilled occupations, and Waldinger (2012) shows that
even very high-quality scientists do not affect the productivity of their local peers. Other
papers within this body of literature, particularly on social pressure, report productiv-
ity spillovers (Mas & Moretti, 2009; Bandiera, Barankay, & Rasul, 2010). A final set
of related studies focuses on the mobility of immigrant scientists. For example, Moser,
Voena, & Waldinger (2014) analyze chemical inventions and compare the changes in US
patenting by US inventors in the research fields of German Jewish émigrés to changes in
US patenting by US inventors in the fields of other German chemists. They show that
US patenting activity has increased in the research fields of German-Jewish refugees who
emigrated after 1933.

3 Data and Descriptive Statistics

3.1 Data

Administrative Records and Patent Data

We build on the database provided by Depalo & Di Addario (2014), who linked patent
data from the EPO Worldwide Patent Statistical Database (PATSTAT, henceforth) and
the employer–employee-matched data from the Italian Social Security Institute (Istituto
Nazionale di Previdenza Sociale, INPS) to study inventors returns to patents. Specifically,
we add to their work by computing the network for each firm in the sample.

The INPS dataset has information on all private sector employees in the period 1987–
2008. In particular, it contains register-based information for any job lasting at least one
day, thus allowing for the reconstruction of the employment history of each worker in the
analyzed period. The available information at the individual level includes: age; gender;
municipality of residence and municipality of birth; work status (blue collar, white collar,

8A related body of work focuses on the effect of innovation on productivity and employment growth
(Hall, Lotti, & Mairesse, 2008; Marin & Lotti, 2016).

9More generally, several studies explore co-author relationships and social ties in research (Jaravel,
Petkova, & Bell, 2018; Colussi, 2018; Azoulay, Fons-Rosen, & Graff Zivin, 2019; Zacchia, 2020).
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manager, and other); type of contract (full-time versus part-time); and gross yearly earn-
ings. The information on firms includes average gross yearly earnings, yearly number
of employees, industry, location (at the municipality level), and date of firm opening and
closure.

PATSTAT contains the universe of patent applications and grants presented at the EPO
by any Italian "applicant" (i.e., the firm submitting a patent application and retaining
the relative property rights). The database provides a detailed description of each patent
submission, including its title, abstract, and technological field, the name and address
of all its inventors and applicants, the dates of application filing, publication, and grant
obtainment, and the citations received.

PATSTAT does not have a reliable firm identifier. Thus, INPS matched the two
datasets with an exact procedure ensuring that, in the year of submission, the inventors
appearing in each patent were indeed employed by an INPS firm corresponding to the
PATSTAT applicant.10 The resulting dataset includes the full work history of the inven-
tors11, namely, social security information for all firms in which inventors have worked
during their career, also covering firm-year observations before their first patent applica-
tion. More generally, our dataset includes the full work history of the employees working
in any of the patenting firms, even if they moved from/to a non-patenting firm. Thus, the
dataset includes both firms that exhibit one or more patent applications during the sample
period and firms that have none.

In this paper, we assign the status of "inventor" to an employee only after her/his first
patent application. More precisely, we define a worker as being an inventor in year m
if she/he has already submitted a patent application in year t  m. Note that we also
observe all the co-workers of these inventors for all the establishment-year observations.

Co-worker Network

We construct the firm’s network using co-worker links, detected from the employment
history of each worker. More precisely, the employee’s network comprises all her/his
former co-workers in the previous five years, while the firm’s network is the collection of
the co-worker networks of each incumbent employee.

The co-worker network is constructed for each establishment and year. In the sample,
we include only establishments with less than 500 employees to reduce the incidence of

10See Depalo & Di Addario (2014) for an in-depth description of the matching procedure. In summary,
the datasets were merged in several steps. First, the authors attributed VAT codes to PATSTAT applicants
based on their name and location, after verifying them with four alternative datasets (Cebi, Infocamere,
INPS, and Orbis). Then INPS linked PATSTAT applicants to all possible INPS establishments that had the
same VAT identifier and the same name and location (at the municipality level). Finally, INPS verified in its
records that there was a correspondence between INPS employees/firms and PATSTAT inventors/applicants.

11We have a total of 5, 888 inventors in our data
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imprecise connections, since the chances of having real contact among the workers are
low in very large establishments.

Establishment Closures and Displaced Inventors

Our empirical strategy uses establishment closures to identify the supply shock of knowl-
edgeable workers within a firm’s network. Considering the five-year interval necessary to
form the firm’s network, we are interested in the closures between 1992 and 2008.

To identify "true" establishment closures, namely, those that are not a result of a
merger, a change of tax identifier, or a spin-off, we analyze worker flows from closing
establishments and denote a closure as "true" whenever the maximum cluster of outflow
from the closing establishment to any other firm is below 50 percent of the workforce
of the closing establishment—estimates are qualitatively similar if we use a 30 percent
threshold.

Using the information on establishment closures, we can detect all the employees (in-
dependently of whether they are inventors) who are subject to displacement. We denote
workers as displaced at time t if they terminate their job in the same year that their es-
tablishment closes. In this paper, we are interested in the displacement of inventors, who
account for approximately 0.004 percent of all the workers displaced because of an estab-
lishment closure.

Macro-region of Study: "Third Italy"

This paper covers the large economic area of "Third Italy", which includes the following
administrative regions located in the Center-North-East of the country: Emilia-Romagna;
Friuli-Venezia Giulia; Marche; Toscana; Trentino-Alto Adige/Südtirol; and Veneto. The
combined population of these regions contains around 16.9 million people (28 percent
of the total population in Italy). In the 16-year analysis period, the labor market of this
macro-area was overall characterized by a good performance in terms of total employ-
ment, job creation in manufacturing, migration flows, and business creation (see, for ex-
ample, De Blasio & Di Addario (2005)), especially in Emilia-Romagna and Veneto.

Our territorial units are the LLMs, which are territorial groupings of municipalities
that partition the entire Italian territory and have been singled out by the National Institute
of Statistics based on working-day resident population commuting flows.12 LLMs can be
considered self-contained labor markets since their residing population largely overlaps
with the working population. In 1991, the almost 1, 900 municipalities (Comuni) in our
six administrative regions were grouped into about 235 LLMs. A sizable fraction of these

12Also France, with its zones d’emploi, and the UK, with its travel-to-work areas, partition their territories
into areas with similar characteristics.
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LLMs are thick with small- and medium-sized manufacturing firms within the so-called
industrial districts (IDs). These firms are spatially concentrated and generally locally
owned. The system is characterized by a very detailed inter-firm division of labor among
a large number of firms specialized into one or a few stages of a main manufacturing
production (main industry). Firms can be vertically, horizontally, and diagonally linked,
and can be specialized in a few phases of the productive process, in making contacts with
the final markets, in service activities, or in manufacturing activities complementary to
the main industry. The vicinity of firms creates labor market pools of specialized workers
with industry-specific skills.13 IDs are thus thick of networks.

A distinctive feature of "Third Italy" is the large presence—since the early 1970s—
of networks of flexible producers frequently organized in IDs, with the level of indus-
trial value added often greatly exceeding the national average, particularly in the areas
around Bologna, Padua, and Verona (see, for example, Tattara & Valentini (2010) and
Trigilia (2020)). Germany’s Baden-Wuerttemberg and the British Motor Valley (centered
in Oxfordshire and stretching into East Anglia and Surrey) are other examples of simi-
lar regional network-based industrial systems. Additional examples have been identified
in recent decades in Japan, Scandinavia, Spain, and the United States (Saxenian, 1994;
Henry & Pinch, 2000; Becattini et al., 2014).

Manufacturing firms in the dynamic districts of Third Italy specialize in industries
such as metal, mechanical, electrical, and biomedical engineering, automotive, construc-
tion materials and technologies, goldsmithing, ceramics, glass, agri-food, furniture, print-
ing and publishing, musical instruments, toys, and fashion-wear. Several of these clusters
feature some leader firms, especially in Veneto.14 While the object of this paper is not
specifically the study of IDs, the fact that they are diffused in Third Italy and largely or-
ganized in networks—exhibiting high labor mobility—makes them particularly suited for
the study of network effects.

3.2 Descriptive Statistics

Our main estimation sample consists of all the firms in which at least one inventor has
transited between 1992 and 2008, also covering firm-year observations before their first
patent application. Given our sample composition (described above), there is a high num-
ber of firms (90 percent of the 7, 666 firms of our sample) that never patented in our

13"Employers are apt to resort to any place where they are likely to find a good choice of workers with
the specialized skills that they require, while men seeking employment naturally go to places where many
employers need skills such as theirs and where therefore it is likely they will find a good market" (Marshall,
1890).

14An example is the eyewear district in the province of Belluno, where Luxottica, the world’s largest
manufacturer of eyeglasses, has production establishments.
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observational period. Our panel includes 84, 173 firm-year observations, and its main
characteristics are summarized in Table 1.

Our main outcome of interest is firms’ innovative activity: we take a patent application
as a signal of the presence of some innovative output. The first row of Table 1 shows that
the mean number of patent applications is 0.038 (the mean number of patent applications
restricting to firms that submitted at least one patent application during our sample period
is 0.318).

Connected inventor hires amount to 67 percent of the total inventor hires. This is
markedly larger than the share of connected worker hires reported in other studies not
focusing on inventors, in which, generally, such a share is about 10–15 percent of total
hires. This suggests that networks are bound to be a more important hiring channel for
inventors than they are for the average worker. The mean number of connected inventor
hires in our sample is 0.008 (Table 1, second row). This share is low because our dataset
also includes non-innovative firms, but it is nevertheless double that of non-connected
inventor hires (equal to 0.004, as shown in the third row of the table).

The fourth and fifth rows of Table 1 report that the average firm employs 47 workers,
with a mean co-worker network of 866 individuals. Finally, the last two rows indicate that
the mean number of connected and connected non-inventors who are displaced are 0.011
and 2.93, respectively.

Table 2 displays the summary statistics for the number of events, displacements, and
inventor hires by year. Connected and non-connected hires are indicated separately. In the
period 1992–2008, almost 450 inventors have been displaced. Since each investor could
have been connected to more than one company, the number of firms that may have po-
tentially benefited from the displacement of a connected inventor is higher. Overall, 633
firms have been "exposed to the event" of interest. In the same period, more than 680 con-
nected inventors and about 340 non-connected inventors have been hired (independently
of whether they had been displaced). The table shows that there is sizable variation over
time in the number of events, displacements, and inventor hires.

4 Econometric Framework and Results

The objective of our analysis is twofold. First, we aim to estimate the effect of changes
in the supply of connected knowledgeable workers on the patent activity of the firm. In
particular, we estimate event-study models where the event is the displacement of an in-
ventor connected to firm j’s current workers. This research design allows us to test for
the presence of firm-specific pre-trends in the outcomes and to recover the dynamics of
the effect of interest. Second, we aim to provide evidence supporting the main hypothe-
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sized channel of knowledge transfer through firm-to-firm labor mobility by estimating IV
specifications, where we use the displacement of a connected inventor as an instrument
for the hire of a connected inventor

For identification, our econometric analysis exploits establishment closures. The un-
derlying concept is that firm j’s ability to hire through the network is affected by the
displacement (from some other establishment q) of inventors connected to j’s current
workers. Specifically, co-worker connections generate a firm-specific shock to the supply
of knowledgeable labor by directing the displaced inventors towards the connected firms.
As a result, these firms experience an improvement in the chances to recruit connected
inventors.

4.1 Event-Study Approach

We use an "event-study" research design (Autor (2003) and Kline (2012)) to investigate
how displacement events affect both the hiring of a connected inventor and the patenting
activity of the destination firm. Specifically, the regression equation is:

Yjslt = �0+
X

⌧

�⌧D
⌧
jt+�nNjt+�dDisplacedslt+Trendst+Trendlt+�j+↵t+ujslt, (1)

where the dependent variable is: (a) the number of connected inventors hired by firm j of
industry s and LLM l at time t (from any industry or LLM); or (b) the number of firm j’s
patent applications. We include year dummies (↵t) and allow for permanent differences
across firms (�j) and industry-specific and LLM-specific trends (Trendst and Trendlt).
We also control for network size (Njt) and cluster standard errors at the LLM level.

The D⌧
jt are a sequence of "event-time" dummies equal to one when the displacement

of a connected inventor is ⌧ years away. Thus, the �⌧ coefficients characterize the time
path of the outcome relative to the date of the event. The event time indicator "�4" is set
to 1 for the fourth year preceding the event and for all the years before, and 0 otherwise.
The event time indicator "+5" is set to 1 for all the periods successively following the
fifth year after the event, and 0 otherwise. Since the sample of treated firms is unbalanced
in event time, these endpoint coefficients give different weights to firms experiencing the
treatment early or late in the sample period. Therefore, in discussing the treatment effects
we concentrate on the event-time coefficients falling in the five-year interval within ⌧ = 0

and ⌧ = 4, which are identified from a nearly balanced panel of firms. We normalize ��1

to zero such that all post-treatment coefficients can be considered as treatment effects. We
use both the interaction weighted estimator (Sun & Abraham, 2021) and the conventional
two-way-fixed effects (TWFE) estimator. Connected inventor displacements occurring
later may be different from those occurring earlier, generating cohort-specific treatment
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effects. We therefore implement in the main analysis the interaction weighted estimator
for an event study. Sun & Abraham (2021) prove that this estimator is consistent for the
average dynamic effect at a given relative time even under heterogeneous treatment ef-
fects.15 We use the last cohort as the control cohort (and the never treated as the control
cohort in a robustness check). We use the conventional two-way-fixed effects event study
design estimation in the sensitivity analysis. An identification concern potentially arises
if the shocks directed to the supply of knowledgeable labor also pick up market-level
shocks. We do not expect this to be a major issue in our context, since our sample com-
prises mostly the closures of small to medium-size firms, for which the market effects are
likely to be quite limited (the median closing establishment has around 100 employees).
Nevertheless, to allay concerns of market effects, we also control for the number of dis-
placed workers in the LLM and industry (Displacedslt). Estimates are almost identical
if we split this variable into displaced inventors and displaced non-inventors. In Section
4.3, we also perform a "placebo"-type analysis, exploiting the displacement of inventors
connected to other firms in the same LLM and industry.

4.1.1 Evidence: Recruitment of Connected Inventors

We now turn to investigating how the hiring of connected inventors is affected by displace-
ment events. As explained in Section 3.2, in the period 1992–2008 our data comprise 633
events, namely, more than 600 firms of our sample may have potentially affected by the
displacement of a connected inventor.

We start by discussing the estimates of the specification in which the dependent vari-
able of Equation (1) is the number of connected inventor hires at time t. The estimated
coefficients (displayed in Figure 1) show that the number of connected inventor hires has
a distinct peak at the time of a connected inventor displacement. The 0.046 increase in
the number of connected inventor hires is equivalent to a 0.45-standard-deviation increase
(the standard deviation of the number of connected hires in the sample is 0.103; see Table
1).

Next, we verify whether the result displayed in Figure 1 is obtained also when us-
ing the number of non-connected inventors hired by the firm at time t as the dependent
variable. The dynamics of the coefficients of interest are reported in Figure A1. The re-
sults indicate that non-connected inventor hires are not affected by the displacement of a
connected inventor.

Overall, these results are consistent with the hypothesis that firms take advantage of
the displacement of a connected inventor to recruit connected knowledgeable labor.

15We use the "eventstudyinteract" Stata routine available at https://economics.mit.edu/grad/lsun20/stata.
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4.1.2 Evidence: Innovation

The main goal of this paper is to measure the extent to which access to knowledgeable
workers has an impact on firms’ innovation. We now turn to estimate the version of
Equation (1) in which the number of patent applications is the dependent variable.

Figure 2 plots the baseline �⌧ coefficients. The figure has two important features.
First, there is no pretreatment trend in the coefficients, lending support to the validity of
our research design. This support is reinforced by the lack of pre-trends in the hiring of
connected inventors (Figure 1). The second important feature of Figure 2 is that there is
an upward shift in innovation after the displacement of a connected inventor.

Although the pattern in Figure 2 is clear, the individual �⌧ coefficients are not esti-
mated very precisely. It is helpful to offer more formal tests of the null hypothesis that
the displacement of a connected inventor has no impact on firms innovation. To increase
statistical power we test hypotheses on the average of the �⌧ coefficients over various time
intervals, as in Kline (2012). The results are shown in Table 3. The estimated average
increase in patent applications over the five years starting with the year of a connected in-
ventor’s displacement (i.e., the average of the coefficients on ⌧ = 0, ⌧ = 1, ⌧ = 2, ⌧ = 3,
and ⌧ = 4) is significant and amounts to 0.096 patent applications. A 0.096 increase in
the number of patent applications is equivalent to a 0.27-standard-deviation increase (the
standard deviation of the number of patent applications in the sample is 0.35; see Table 1).
As discussed above, we control for displacement in LLM and industry, and for industry-
specific and LLM-specific trends. However, the results reported in this section are very
similar if we do not include these control variables.

4.2 IV Estimation

In this section, we provide evidence supporting the main hypothesized channel of knowl-
edge transfer through firm-to-firm labor mobility by estimating IV specifications where
we use the displacement of a connected inventor as an instrument for the hire of a con-
nected inventor (in any LLM or industry). This approach assumes that the whole impact
of a connected inventor displacement occurs through the connected inventor hire. The
underlying concept is that knowledge may be partly embedded in inventors, and firms can
then gain access to this knowledge by hiring them. Research exploring the possibility of
knowledge transfer through firm-to-firm labor mobility includes Dasgupta (2012), who
studies a dynamic general equilibrium model with mobility of workers among countries,
in which the long-term dynamic learning process plays a crucial role. In the model, work-
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ers learn from their managers and knowledge diffusion takes place through labor flows.16

In Combes & Duranton (2006)’s theoretical analysis, firms selecting their production site
foresee that they can enhance their productivity by poaching workers from other compa-
nies.

The implementation of our IV strategy is as follows. Let Inventor Hireconn. denote a
dummy variable equal to one in each of the five years following a connected inventor hire,
and zero otherwise. The econometric equation is:

Yjslt = �hInventor Hireconn.jt+�nNjt+�dDisplacedslt+Trendst+Trendlt+�j+↵t+ujslt.

(2)
where the dependent variable is the number of patent applications by firm j. We in-

strument Inventor Hireconn. with Displ. Inventorconn., namely, a variable dummy equal to
1 in each of the five years following a connected inventor displacement, and 0 otherwise.

4.2.1 Evidence

In this section, we use the displacement of a connected inventor to instrument the hire of
a connected inventor. Table 4 displays the main 2SLS estimates: the first column controls
for network size, firm, and time-fixed effects; the second column includes displacement in
LLM and industry; and the third column adds industry-specific and LLM-specific trends.
The first-stage F-statistics range from 12 to 21. The coefficient of our variable of interest
is significant at the 1 percent level. The estimated average increase in the number of patent
applications submitted to the EPO over the five years starting with the year of a connected
inventor’s hire is 0.6. To put the magnitude of the estimated effect in perspective, we cal-
culate the fraction of overall variation in innovation explained by the hire of a connected
inventor. A change of 0.6 patent applications is equivalent to an increase of 1.71 standard
deviations (recall that the standard deviation of the number of patent applications in the
estimation sample is 0.35). When interpreting these estimates, it is important to keep in
mind that, as discussed above, hiring a connected inventor is a major change in terms of
workforce for the average firm in our data. We thus believe that this implied shift in the
number of patent applications after a connected inventor hire is large but not unrealistic.

In column (4) of Table 4, we restrict the dependent variable to the yearly number of
patent submissions that are not authored or co-authored by the newly hired connected
inventor. The estimates indicate a 0.325 increase in the patent submissions authored by
the other workers of the focal firm, excluding those with a newly hired connected inventor
in the team (the result is significant at the 5 percent statistical level). This result suggests

16Similar theoretical contributions include studies by Cooper (2001), Markusen (2001), Glass & Saggi
(2002), and Fosfuri, Motta, & Rønde (2001).
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that hiring an inventor may spur firms’ innovation not just through coauthorships, but also
through some mechanism of "fertilization".

4.3 Validity and Robustness

Citation-Weighted Patent Counts

The baseline analysis uses simple patent counts. We now explore the sensitivity of our
results when we use citation-weighted patent counts (Griliches, Hall, & Pakes, 1991;
Hall, Jaffe, & Trajtenberg, 2005; Dechezleprêtre et al., 2017). In constructing this de-
pendent variable, we employ the truncation correction weights devised by Hall, Jaffe, &
Trajtenberg (2001) to correct for systematic citation differences across different technol-
ogy classes and for the fact that earlier patents will have more years during which they
can receive citations. The estimates, shown in Figure A2 and Panel A of Table 5, are qual-
itatively similar to the baseline estimates. Specifically, the estimated average increase in
citation-weighted patent applications in the five years after a connected inventor’s dis-
placement is 0.17 standard deviations (the standard deviation of citation-weighted patent
applications in the sample is 0.8).

A Placebo Exercise

As discussed above, a potential identification concern arises if the shocks to the sup-
ply of knowledgeable labor derived from establishment closure also pick up market-level
shocks. To further explore this possibility, we perform a "placebo"-type analysis. Specifi-
cally, we investigate how innovation at firm j reacts to the displacement of inventors who
are connected to other firms in the same LLM and industry but not to the focal firm j.
Figure A3 and Panel B of Table 5 report the estimates. The estimated average change
over the five years starting with the year of the placebo event is non-significant. While we
cannot completely rule out the possibility of market effects, the placebo results suggest
that the effect identified in the previous section genuinely captures the improved access
to inventors through co-worker network connections.

Never Treated as the Control Cohort

For the main analysis, we use the last cohort as the control cohort. Figure A4 and Panel C
of Table 5 report the estimates using the never treated as the control cohort. The estimates
are qualitatively very similar to the baseline estimates.

Conventional TWFE event study design

For the main analysis, we use the interaction-weighted estimator. Figure A5 and the first
row of Panel D of Table 5 report the coefficients estimated using a conventional TWFE
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event study design. Specifically, this approach compares changes in patent applications of
firms that experience the displacement of a connected inventor both to firms that have yet
to experience such an event and to firms that will never do so during our sample period. In
Figure A6 and the second row of Panel D, we drop the never-treated firms, and therefore
identification originates from the differential timing of treatment onset among the treated
firms. Both sets of results are qualitatively similar to the baseline results.

Connected and Non-Connected Inventor Hires

Firms may hire non-connected inventors in addition to or in place of those who are con-
nected. Motivated by this observation, we enrich Equation 2 by adding non-connected
inventor hires among the explanatory variables. Such a specification is relevant for two
reasons. First, it tells us how the coefficient on connected inventor hiring changes once
we take into account the non-connected inventor hires. Second, it is useful to compare
the coefficients of connected and non-connected inventor hiring. Hence we estimate the
following equation:

Yjslt = �hcInv hireconn.jt+�hncInv hirenonconn.jt+�1Njt+�2Displacedslt+Tst+Tlt+�j+↵t+ujslt.

(3)
where Inventor Hirenonconn. is a dummy equal to one in each of the five years follow-
ing a non-connected inventor hire, and zero otherwise. As in the previous section, we
instrument Inventor Hireconn. with Displ. Inventorconn..

The estimates of this specification are shown in the first column of Table A1. The co-
efficient on Inventor Hireconn. is significant and very similar to the estimates reported
in columns (1)–(3) of Table 4, while the coefficient on Inventor Hirenonconn. is non-
significant. We reject the null hypothesis of equality of the two coefficients.

A potential concern is the possible endogeneity of non-connected inventors hires.
Therefore, we instrument Inventor Hirenonconn. with Displ. Inventornonconn., namely, a
dummy equal to one in each of the five years following a non-connected inventor dis-
placement and zero otherwise. We impose that such a displacement must originate from a
closure within the same industry of firm j; otherwise, the dummy would always be equal
to one (Table 2). The estimates, shown in the second column of Table A1, indicate that
the coefficient of Inventor Hireconn. is significant (with a magnitude similar to the base-
line specification), while the 2SLS coefficient of Inventor Hirenonconn. is not significant
(with a first-stage F-statistic of 14.18). We reject the null hypothesis of equality of the
two coefficients (Inventor Hireconn. and Inventor Hirenonconn.). The estimated increase in
the number of patent applications due to an additional connected inventor is 0.7. Overall,
our results suggest that connections are particularly important to spur innovation, possi-
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bly because hiring through connections helps firms to lower information asymmetries and
thus employ better-quality inventors.

It is instructive to compare the specification of the second column of Table A1 (two
endogenous variables in 2SLS) with the OLS version in which Inventor Hireconn. and
Inventor Hirenonconn. are not instrumented. The OLS estimates are shown in the third
column of Table A1, whereby both the coefficients on Inventor Hireconn. and Inventor
Hirenonconn. are positive and significant (a statistical test fails to reject that the coefficients
are equal).

Column 3 of Table A1 also reports the p-values for the test of equality between the
OLS and IV coefficients. The entries indicate that the Inventor Hireconn. coefficient in
the third specification (equal to 0.12) is statistically different from the corresponding IV
coefficient (0.70), while the Inventor Hirenonconn. coefficient is not statistically different.
A possible explanation for the difference between the IV and OLS coefficient of Inventor
Hireconn. is that the effect of connected inventors may be heterogeneous across firms. If
there are indeed heterogeneous effects of connected inventors on innovation, then consis-
tent OLS measures the average effect of connected inventor hiring on patenting across all
firms. On the other hand, 2SLS estimates the average effect for firms that are marginal in
the recruitment decision. Specifically, this describes firms that recruit connected inventors
if and only if there exists excess "directed" local supply, namely, if and only if they expe-
rience the event of the displacement of a connected inventor.17 If the effect of connected
inventors on patenting is larger for firms that are marginal in the recruitment decision, the
2SLS estimates will exceed those of consistent OLS.

5 Concluding Remarks

A prominent feature of the labor market in many developed countries is the tendency of
firms to hire through social connections. Nevertheless, we have very limited knowledge
of the extent to which available connections have an impact on firms’ innovation. The
central empirical goal of this paper is to measure the extent to which access to knowl-
edgeable workers fosters innovation. The displacement of inventors due to establishment
closures generates labor supply shocks to firms that employ their previous co-workers.
Our estimates indicate that firms exploit the opportunity offered by such displacements
to recruit connected inventors. Moreover, the improved capacity to employ connected
inventors increases firms’ patenting activity.

17See Imbens & Angrist (1994) for a discussion. For examples of applications, see Eisensee & Strömberg
(2007) and Serafinelli (2019).
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FIGURE 1. Connected inventor hires, relative to the year of a connected inventor dis-
placement. The figure plots point estimates of leading and lagging indicators for the
displacement of a connected inventor using the interaction-weighted estimator (Sun and
Abraham, 2021). The dependent variable is the number of connected inventor hires (from
any industry or LLM) for firm j of industry s and local labor market (LLM) l at time t.
Event time indicator "�4" is set to 1 for periods up to and including 4 periods prior to the
event and 0 otherwise. Event time indicator "+5" is set to 1 for all periods successively
following the fifth year after the event, and 0 otherwise. The control cohort is taken as the
last cohort. The period prior to the event is omitted. The bands around the point estimates
are 95 percent cluster-robust confidence intervals, with LLM used as the clustering level.
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FIGURE 2. Patent applications, relative to the year of a connected inventor displacement.
The figure plots point estimates of leading and lagging indicators for the displacement of
a connected inventor using the interaction-weighted estimator (Sun and Abraham, 2021).
The dependent variable is the number of patent applications. Event time indicator "�4"
is set to 1 for periods up to and including 4 periods prior to the event and 0 otherwise.
Event time indicator "+5" is set to 1 for all periods successively following the fifth year
after the event, and 0 otherwise. The period prior to the event is omitted. The control
cohort is taken as the last cohort. The bands around the point estimates are 95 percent
cluster-robust confidence intervals, with LLM used as the clustering level.
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TABLE 1. Summary statistics for the estimation sample (1992–2008).

Mean SD Min Max

No. of Patent Applications 0.038 0.354 0 20

Inventor Hires conn. 0.008 0.103 0 7

Inventor Hires nonconn. 0.004 0.137 0 31

Employees 47.413 70.404 6 499

Firm Network 865.692 1, 226.655 1 23, 233

Displaced Inventorsconn. 0.011 0.203 0 35

Displaced Non-Inventorsconn. 2.934 14.119 0 510

Note: The sample contains 84, 173 observations for 7, 666 firms. The table reports un-
weighted means. No. of Patent Applications is the average number of patent applications
submitted by the firms in the sample. Inventor Hiresconn. is the number of connected inven-
tor hires. Inventor Hires nonconn. is the number of non-connected inventor hires. Employees
is the average number of employees employed by the firms in the sample. Firm Network is
the number of former co-workers of current employees. Displaced Inventorsconn. is the num-
ber of connected inventors who are displaced in a given year. Displaced Non-Inventorsconn.

is the number of connected non-inventors who are displaced in a given year.
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TABLE 2. Numbers of Events, displacements, and hires by year

Year Events Displaced Displaced Connected Non-connected
inventors non-inventors inventor hires inventor hires

1992 30 5 3, 239 16 1
1993 28 17 4, 236 16 5
1994 5 7 2, 793 16 5
1995 1 9 3, 471 31 11
1996 21 51 5, 489 39 18
1997 23 24 22, 063 27 12
1998 64 29 5, 074 34 86
1999 19 10 8, 767 26 31
2000 16 12 3, 500 55 28
2001 77 43 6, 272 54 11
2002 37 21 4, 687 50 17
2003 62 17 5, 381 53 25
2004 96 62 4, 490 67 23
2005 90 35 6, 037 49 25
2006 23 36 8, 173 51 10
2007 23 36 6, 221 47 18
2008 18 33 5, 426 51 17
Total 633 447 105, 319 682 343
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TABLE 3. Connected inventor displacements and patent applications—event
study.

Dependant variable:
⌧ = 0 ⌧ 2 [1, 2] ⌧ 2 [3, 4] ⌧ 2 [0, 4]

No. Patent applications

0.015 0.115** 0.117*** 0.096**
(0.033) (0.047) (0.045) (0.040)

Note: Estimates refer to Equation (1) whereby the dependent variable is the number
of patent applications. The table corresponds to Figure 2. The sample size is 7, 232
(624 firms). The reduced sample size compared with Table 1 stems from the fact that
the analysis sample excludes the never-treated and is before the treated periods for the
last-treated cohort. Samples include only firms with more than five observations in the
period of interest. The model includes year and firm fixed effects, industry and LLM
trends, network size, and the number of displaced workers in the LLM ⇥ industry ⇥
year. Numbers in parentheses are standard errors clustered at the LLM level. ⌧ 2 [a, b]
refers to the average of the coefficients between period ⌧ = a and period ⌧ = b.
*p < 0.1, ** p < 0.05, and *** p < 0.01.
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TABLE 4. Connected inventor hires and patent applications—2SLS estimates

Dependent variable All patent applications W/o conn. hires

(1) (2) (3) (4)

Panel A: 2SLS estimates

Inventor Hireconn. 0.622*** 0.622*** 0.681*** 0.325**
(0.191) (0.190) (0.252) (0.165)

F-stat, 1st stage 21.16 21.17 12.06 12.06

No. obs. 80, 121 80, 121 80, 121 80, 121

Displacedslt - + + +

Industry and LLM Trends - - + +

Panel B: First stage estimates

Displ. Inventorconn. 0.060*** 0.060*** 0.049*** 0.049***
(0.013) (0.013) (0.014) (0.014)

Panel C: Reduced form estimates

Displ. Inventorconn. 0.037*** 0.037*** 0.033*** 0.016*
(0.009) (0.009) (0.009) (0.009)

Note: Estimates refer to Equation (2). In columns (1)–(3), the dependent variable is the number
of patent applications, while in column (4) it is the number of patent submissions excluding those
authored or co-authored by the newly hired connected inventor(s). The estimation sample includes
only firms with more than five observations in the period of interest. Numbers in parentheses are
standard errors clustered at the LLM level. Network size, firm, and time-fixed effects are always
included. Displacedslt denotes the number of displaced workers in the same LLM ⇥ industry ⇥
year. *p < 0.1, ** p < 0.05, and *** p < 0.01.
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TABLE 5. Citation-weighted patent counts, placebo, never treated as control cohort, and
conventional TWFE event study design

Panel A: Citation-weighted patent counts

Dependant variable:
⌧ = 0 ⌧ 2 [1, 2] ⌧ 2 [3, 4] ⌧ 2 [0, 4]

No. Citation-Weighted Patent Ap-
plications

�0.105 0.241*** 0.141** 0.132**
(0.079) (0.080) (0.060) (0.054)

Panel B: Placebo

Dependant variable:
⌧ = 0 ⌧ 2 [1, 2] ⌧ 2 [3, 4] ⌧ 2 [0, 4]

No. Patent Applications

0.009 �0.008 �0.024 �0.011

(0.011) (0.012) (0.017) (0.010)

Panel C: Never treated as control cohort

Dependant variable:
⌧ = 0 ⌧ 2 [1, 2] ⌧ 2 [3, 4] ⌧ 2 [0, 4]

No. Patent Applications

�0.017 0.067*** 0.037** 0.038***
(0.022) (0.015) (0.019) (0.014)

Panel D: Conventional TWFE event study design

Dependant variable:
⌧ = 0 ⌧ 2 [1, 2] ⌧ 2 [3, 4] ⌧ 2 [0, 4]

No. Patent Applications

Baseline Sample �0.013 0.066*** 0.046** 0.042***
(0.025) (0.021) (0.019) (0.014)

Treated Only �0.005 0.074*** 0.066** 0.055***
(0.023) (0.024) (0.026) (0.019)

Note: Estimates refer to Equation (1). In Panel A, the dependent variable is the number of citation-
weighted patent applications. In Panels B, C, and D, the dependent variable is the number of patent
applications. The sample size is 7, 232 (624 firms) in Panel A, 27, 175 (4, 139 firms) in Panel B,
81, 055 (7, 381 firms) in Panel C, 81, 059 (7, 385 firms) in Baseline Sample in Panel D, and lowered
to 7, 609 (628 firms) for the Treated only sub-sample. Estimation samples include only firms with
more than five observations. The model includes year and firm fixed effects, industry and LLM
trends, network size, and the number of displaced workers in the LLM ⇥ industry ⇥ year. Numbers
in parentheses are standard errors clustered at the LLM level. ⌧ 2 [a, b] refers to the average of the
coefficients between period ⌧ = a and period ⌧ = b. *p < 0.1, ** p < 0.05, and *** p < 0.01.

30



Appendix

FIGURE A1. Non-connected inventor hires, relative to the year of a connected inventor
displacement. The figure plots point estimates of the leading and lagging indicators for
the displacement of a connected inventor using the interaction-weighted estimator (Sun
and Abraham, 2021). The dependent variable is the number of non-connected inventor
hires (from any industry or LLM) for firm j of industry s and local labor market (LLM) l
at time t. Event time indicator "�4" is set to 1 for periods up to and including 4 periods
prior to the event and 0 otherwise. Event time indicator "+5" is set to 1 for all periods
successively following the fifth year after the event, and 0 otherwise. The period prior to
the event is omitted. The control cohort is taken as the last cohort. The bands around the
point estimates are 95 percent cluster-robust confidence intervals, with LLM used as the
clustering level.
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FIGURE A2. Citation-weighted patent applications, relative to the year of a connected
inventor displacement. The figure plots point estimates of the leading and lagging indica-
tors for the displacement of a connected inventor using the interaction-weighted estimator
(Sun and Abraham, 2021). The dependent variable is the number of citation-weighted
patent applications. Event time indicator "-4" is set to 1 for periods up to and including
4 periods prior to the event and 0 otherwise. Event time indicator "+5" is set to 1 for all
periods successively following the fifth year after the event, and 0 otherwise. The period
prior to the event is omitted. The control cohort is taken as the last cohort. The bands
around the point estimates are 95 percent cluster-robust confidence intervals, with LLM
used as the clustering level.
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FIGURE A3. Patent applications, relative to the year of a connected inventor
displacement—Placebo. The figure plots point estimates of the leading and lagging in-
dicators for the displacement of inventors who are connected to other firms in the same
LLM and industry but not to the focal firm j using the interaction-weighted estimator
(Sun and Abraham, 2021). The dependent variable is the number of patent applications.
Event time indicator "�4" is set to 1 for periods up to and including 4 periods prior to the
event and 0 otherwise. Event time indicator "+5" is set to 1 for all periods successively
following the fifth year after the event, and 0 otherwise. The period prior to the event is
omitted. The control cohort is taken as the last cohort. The bands around the point esti-
mates are 95 percent cluster-robust confidence intervals, with LLM used as the clustering
level.
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FIGURE A4. Patent applications, relative to the year of a connected inventor
displacement—never treated used as the control cohort. The figure plots point estimates
of the leading and lagging indicators for the displacement of a connected inventor using
the interaction-weighted estimator (Sun and Abraham, 2021). The dependent variable is
the number of patent applications. Event time indicator "�4" is set to 1 for periods up to
and including 4 periods prior to the event and 0 otherwise. Event time indicator "+5" is set
to 1 for all periods successively following the fifth year after the event, and 0 otherwise.
The period prior to the event is omitted. The control cohort is taken as the never treated.
The bands around the point estimates are 95 percent cluster-robust confidence intervals,
with LLM used as the clustering level
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FIGURE A5. Patent applications, relative to the year of a connected inventor
displacement—conventional TWFE. The figure plots point estimates of the leading and
lagging indicators for the displacement of a connected inventor using a conventional
TWFE event study design. The dependent variable is the number of patent applications.
Event time indicator "�4" is set to 1 for periods up to and including 4 periods prior to the
event and 0 otherwise. Event time indicator "+5" is set to 1 for all periods successively
following the fifth year after the event, and 0 otherwise. The period prior to the event is
omitted. The bands around the point estimates are 95 percent cluster-robust confidence
intervals, with LLM used as the clustering level is LLM
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FIGURE A6. Patent applications, relative to the year of a connected inventor
displacement—conventional TWFE and treated firms Only. The figure plots point es-
timates of the leading and lagging indicators for the displacement of a connected inventor
using a conventional TWFE event study design. The dependent variable is the number of
patent applications. Event time indicator "�4" is set to 1 for periods up to and includ-
ing 4 periods prior to the event and 0 otherwise. Event time indicator "+5" is set to 1
for all periods successively following the fifth year after the event, and 0 otherwise. The
period prior to the event is omitted. The bands around the point estimates are 95 percent
cluster-robust confidence intervals, with LLM used as the clustering level.
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TABLE A1. Connected/non-connected inventor hires and patent applications

IV OLS

(1) (2) (3)

Inventor Hireconn. 0.659⇤⇤ 0.700⇤⇤ 0.116⇤⇤

(0.256) (0.274) (0.051)

Coeff. on Inventor Hireconn. 0.034
equal to col 2 (p-value)

Inventor Hirenonconn. 0.029 -0.266 0.104⇤⇤⇤

(0.036) (0.223) (0.029)

Coeff. on Inventor Hirenonconn. 0.097
equal to col 2 (p-value)

Coeff. on Inventor Hireconn. 0.025 0.010 0.843
equal to Inventor Hirenonconn.

First Stage on Inventor Hireconn.

Displ. Inventorconn.
0.048⇤⇤⇤ 0.048⇤⇤⇤

(0.014) (0.014)

Displ. Inventornonconn.
0.048⇤⇤ 0.004⇤⇤⇤

(0.023) (0.001)
AP F-statistics 11.03 14.21

First Stage on Inventor Hirenonconn.

Displ. Inventorconn.
0.006

(0.006)

Displ. Inventornonconn.
0.008⇤⇤⇤

(0.002)
AP F-statistics 14.18

N 79, 961 79, 961 79, 965

Note: Estimates refer to Equation (3). The dependent variable is the number of patent applications. The
estimation sample includes only firms with more than five observations in the period of interest. Numbers in
parentheses are standard errors clustered at the LLM level. Network size, the number of displaced workers
in the same LLM ⇥ industry ⇥ year, firm, and time-fixed effects, and industry and LLM trends are always
included. *p < 0.1, ** p < 0.05, and *** p < 0.01.
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