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ABSTRACT
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Distribution Regression  
Difference-in-Differences
We provide a simple distribution regression estimator for treatment effects in the difference-

in-differences (DiD) design. Our procedure is particularly useful when the treatment 

effect differs across the distribution of the outcome variable. Our proposed estimator 

easily incorporates covariates and, importantly, can be extended to settings where the 

treatment potentially affects the joint distribution of multiple outcomes. Our key identifying 

restriction is that the counterfactual distribution of the treated in the untreated state has 

no interaction effect between treatment and time. This assumption results in a parallel 

trend assumption on a transformation of the distribution. We highlight the relationship 

between our procedure and assumptions with the changes-in-changes approach of Athey 

and Imbens (2006). We also reexamine two existing empirical examples which highlight the 

utility of our approach.
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1 Introduction

The remarkable popularity of the di↵erence-in-di↵erence (DiD) estimator, inspired by an

approach to evaluating the impact of policy interventions on economic outcomes intro-

duced by David Card (see, for example, Card 1990, Card and Krueger, 1994), is one of

the most striking features of empirical work on treatment and policy e↵ects. While the

methodological innovations in this literature (see Arkhangelsky and Imbens, 2023 for a

recent review) include the use of constructed control groups, the staggered timing of treat-

ments, and fuzzy rather than sharp designs, the vast majority of the associated empirical

work has estimated the mean e↵ect of the treatment on a single economic outcome. This

seems somewhat limited and a fuller evaluation of a policy treatment would be based on

an examination of the marginal and joint distributions of all outcomes it potentially in-

fluences. This paper provides a simple procedure for estimating distributional treatment

e↵ects in the presence of a single treatment when the outcomes of interest are potentially

multivariate.

An initial methodological innovation focusing on distributional e↵ects in DiD estima-

tion is the changes-in-changes procedure of Athey and Imbens (2006), which estimates

the counterfactual distribution of the treated group in the absence of treatment to com-

pare with its observed distribution in the presence of treatment. Torous et al. (2024)

extend the Athey and Imbens approach (2006) to the multiple outcome setting. Other

work has adapted DiD estimation to examine the treatment e↵ects at di↵erent quantiles

of the outcome via the use of quantile regression. This includes, for example, Callaway

and Li (2018, 2019). In contrast, Dube (2019), Goodman-Bacon (2021), and Goodman-

Bacon and Schmidt (2020) employ conventional DiD estimation to explore the impact of

the treatment at di↵erent points of the outcome distribution. Other distributional ap-

proaches include Kim and Wooldridge (2023) and Biewen, Fitzenberger, and Rümmele

(2022). The former proposes an inverse probability weighting based procedure, while the

latter employs a distribution regression (DR) approach. In this paper we also adopt a

DR approach to constructing counterfactuals. In contrast to Biewen, Fitzenberger, and

Rümmele (2022), who construct the counterfactual distributions via linear probability
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models, we employ non-linear link functions such as probit or logit models. This has a

number of advantages, which we discuss below. In addition, we provide the associated

identifying conditions required for this form of the implementation of DR-DiD.

While DiD has typically been employed to evaluate the treatment e↵ect on a specified

economic outcome, there are many instances in which the treatment may a↵ect multiple

outcomes. For example, a change in tax rates on earnings of married couples may a↵ect the

hours of work of both husbands and wives. An analysis of such a tax change should include

the impact on each of the outcomes. However, a richer analysis would not only examine

the impact on the respective marginal hours distribution of husbands and wives but also

the joint distribution of hours. Alternatively, while evaluations of minimum wage laws

typically evaluate their impact on employment, they may also a↵ect the wage distribution.

We illustrate how this joint e↵ect can be evaluated via the bivariate distribution regression

(BDR) approach of Fernandez-Val et al. (2024a). This requires that we first estimate

the joint distribution by BDR and then construct the appropriate counterfactual. The

treatment e↵ects are obtained via the appropriate comparisons. An alternative to this

approach is extending the changes-in-changes procedure to multiple outcomes as is done

in Torous et al. (2024).

The following section introduces the model and provides an analysis of the univariate

case without covariates. We also extend our analysis to include covariates and contrast

our approach with the Athey and Imbens (2006) changes-in-changes procedure. Section

3 extends our analysis to the multiple outcome case and Section 4 discusses estimation.

Section 5 provides two empirical illustrations of our methodology. We first revisit the

Malesky et al. (2014) investigation of the impact of recentralization in Vietnam. We

also employ the data studied in Callaway and Li (2019) and feed it with data from the

Bureau of Labor Statistics and the Census in order to explore the impact of changes

in the minimum wage on the joint distributions of average wages, poverty rates and

unemployment rates. Section 6 concludes.
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2 Econometric analysis of the univariate case

Consider the standard DiD design with 2 periods, T 2 {0, 1}, and 2 groups, G 2 {0, 1} in

which a binary treatment, D 2 {0, 1}, is administered only to the treatment group with

G = 1 in the second period T = 1. Let Y0 and Y1 denote the potential outcomes under

the non-treated and treated statuses. The observed outcome is Y = Y0(1 � D) + Y1D,

which corresponds to Y0 for both groups at T = 0, with Y0 for G = 0 at T = 1, and to

Y1 for G = 1 at T = 1. Note that this implicitly imposes a non-anticipation assumption

as we do not distinguish between the outcomes of the treated and non-treated state for

G = 1 in period T = 0.

We are interested in the distributions of the potential outcomes of the treated at

T = 1, that is FY1 |G,T (y | 1, 1) and FY0 |G,T (y | 1, 1). FY1 |G,T (y | 1, 1) is identified from the

observed outcome for G = 1 at T = 1,

FY1 |G,T (y | 1, 1) = FY |G,T (y | 1, 1);

whereas FY0 |G,T (y | 1, 1) is not identified without further assumptions.

The distribution of Y0 conditional on G and T can be written as:

FY0 |G,T (y | g, t) = ⇤(↵(y) + �(y)t+ �(y)g + �(y)gt), y 2 R, (1)

where ⇤ is an invertible CDF such as the logistic, normal or uniform, and y 7! (↵(y),

�(y), �(y), �(y)) is a vector of function-valued parameters.

The representation in (1) does not make any parametric assumption about the under-

lying distribution of Y0 |G, T since the dummy variable representation within the paren-

theses on the right-hand side is fully saturated. The parameters of the representation are

local as they vary with y. To understand why (1) does not impose any restriction, note
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that ↵(y), �(y), �(y) and �(y) can be defined as the solutions to:1

↵(y) = ⇤�1
�
FY0 |G,T (y | 0, 0)

�

�(y) = ⇤�1
�
FY0 |G,T (y | 0, 1)

�
� ⇤�1

�
FY0 |G,T (y | 0, 0)

�

�(y) = ⇤�1
�
FY0 |G,T (y | 1, 0)

�
� ⇤�1

�
FY0 |G,T (y | 0, 0)

�

�(y) = ⇤�1
�
FY0 |G,T (y | 1, 1)

�
� ⇤�1

�
FY0 |G,T (y | 1, 0)

�

�
⇥
⇤�1

�
FY0 |G,T (y | 0, 1)

�
� ⇤�1

�
FY0 |G,T (y | 0, 0)

�⇤
.

We make the following identifying assumptions with respect to the distribution function

in (1):

Assumption 1 [No-interaction].

�(y) = 0 for all y 2 R in (1).

Let Yd(G = g, T = t) denote the support of Yd |G = g, T = t, for d, g, t 2 0, 1. We

also assume:

Assumption 2 [Support].

Y0(G = 1;T = 1) ✓ Y0(G = 0;T = 1) [ Y0(G = 1;T = 0) [ Y0(G = 0;T = 0).

Assumption 1 implies that the distribution of the potential outcome Y0 should not

change di↵erently in the second period for the treatment group compared to the control

group. That is, we allow a di↵erence between the distributions of the potential outcome Y0

between the treatment and control group, but this di↵erence should be identical in both

periods. This is a parallel trend type assumption on a transformation of the distribution

and can be written as:

⇤�1
�
FY0 |G,T (y | 1, 1)

�
� ⇤�1

�
FY0 |G,T (y | 1, 0)

�
=

⇤�1
�
FY0 |G,T (y | 0, 1)

�
� ⇤�1

�
FY0 |G,T (y | 0, 0)

�
.

This assumption is sensitive to the link function and imposes restrictions on the distri-

bution FY0 |G,T for some link functions. For example, if ⇤ is the identity link used in the

1See also Wooldridge (2023) equations (2.6) and (2.7).
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linear probability model as in, for example, Almond et al. (2011), Dube (2019), Cengiz

et al. (2019), Goodman-Bacon and Smith (2020), Goodman-Bacon (2021) and Biewen et

al. (2022), one needs strong requirements in order to satisfy the parallel trends assump-

tion (Blundell et al., 2004 and Wooldridge, 2023) That is, we need restrictions on the

tails of the distribution of FY0 |G,T (y | 1, 0), FY0 |G,T (y | 0, 1) and FY0 |G,T (y | 0, 0) to guar-

antee that FY0 |G,T (y | 1, 1) is between 0 and 1. Thus, it requires that FY0 |G,T (y | 1, 0) 

1+FY0 |G,T (y | 0, 0)�FY0 |G,T (y | 0, 1), which might be restrictive at the top of the distribu-

tion, and FY0 |G,T (y | 1, 0)� FY0 |G,T (y | 0, 0)�FY0 |G,T (y | 0, 1), which might be restrictive at

the bottom of the distribution.2,3 Link functions such as the normal or logistic CDFs do

not require such restrictions since the transformation expands the range of the distribution

to the entire real line.

Assumption 1 cannot be empirically verified but when we have multiple observations in

the pre-treatment period, it is possible to examine whether the “parallel trends” assump-

tion holds pre-treatment. Assumption 2 is a restriction of the support of the counterfactual

outcome of Y0 for the treated group in the treated period.

These two assumptions identify FY0 |G,T (y | 1, 1) since:

FY0 |G,T (y | 1, 1) = ⇤(↵(y) + �(y) + �(y))

= ⇤
⇥
⇤�1

�
FY0 |G,T (y | 1, 0)

�
+ ⇤�1

�
FY0 |G,T (y | 0, 1)

�
� ⇤�1

�
FY0 |G,T (y | 0, 0)

�⇤

= ⇤
⇥
⇤�1

�
FY |G,T (y | 1, 0)

�
+ ⇤�1

�
FY |G,T (y | 0, 1)

�
� ⇤�1

�
FY |G,T (y | 0, 0)

�⇤
, (2)

under Assumption 1. The support restrictions in Assumption 2 ensure that the term

inside the squared brackets in (2) is determined. Note that as limx!1 ⇤(x) = 1 and

limx!�1 ⇤(x) = 0, our assumptions are su�cient but not necessary.

We present this identification result in the following lemma:

2These requirements could be used to develop a specification test for the identity link. Roth and

Sant’Anna (2023) proposed a test for the sharp hypothesis that y 7! FY0 |G,T (y | 1, 0)+FY0 |G,T (y | 0, 1)�

FY0 |G,T (y | 0, 0) be weakly increasing, which can be adapted to our setting. We do not pursue this route

as we do not encourage the use of the linear probability model.
3For example, an increase in 0.2 in probability over time might be realistic for the control group when

the initial probability was 0.5. However, if treatment group has a probability of, for example, 0.9, in the

first period then it is not possible for the common trends assumption to hold.
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Lemma 1 [Identification with Single Outcome]. y 7! FY0 |G,T (y | 1, 1) is identified on

y 2 R under Assumptions 1 and 2.

Proof of Lemma 1. The results follow from equation (2).

2.1 Inclusion of Covariates

Including covariates is appealing as the assumption that �(y) = 0 may be harder to defend

when there are di↵erences in the trend between covariates and/or the composition of the

treatment group changes over time in terms of observed characteristics; see also Melly

and Santangelo (2015). Covariates are easily incorporated into the identification result by

conditioning on them and adding an overlapping support assumption. Specifically, let X

be a vector of covariates such that the non-interaction assumption holds conditional on

X; see Assumption 3. The distribution of Y0 conditional on G, T and X can be written:

FY0 |G,T,X(y | g, t, x) = ⇤(↵(y, x) + �(y, x)t+ �(y, x)g + �(y, x)gt), y 2 R, (3)

where (y, x) 7! (↵(y, x), �(y, x), �(y, x), �(y, x)) is a vector of unspecified functions.

The identifying assumptions with covariates become:

Assumption 3 [No-interaction with Covariates].

�(y,X) = 0 almost surely for all y 2 R in (3).

Assumption 4 [Support conditions with Covariates].

Y0(G = 1;T = 1;X) ✓ Y0(G = 0;T = 1;X)[Y0(G = 1;T = 0;X)[Y0(G = 0;T = 0;X),

almost surely.

These two assumptions identify FY0 |G,T,X(y | 1, 1, x) since

FY0 |G,T,X(y | 1, 1, x) = ⇤(↵(y, x) + �(y, x) + �(y, x))

= ⇤
⇥
⇤�1

�
FY0 |G,T,X(y | 1, 0, x)

�
+ ⇤�1

�
FY0 |G,T,X(y | 0, 1, x)

�
� ⇤�1

�
FY0 |G,T,X(y | 0, 0, x)

�⇤

= ⇤
⇥
⇤�1

�
FY |G,T,X(y | 1, 0, x)

�
+ ⇤�1

�
FY |G,T,X(y | 0, 1, x)

�
� ⇤�1

�
FY |G,T,X(y | 0, 0, x)

�⇤
,

(4)
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under the Assumption 3. The support restrictions in Assumption 4 ensure that the

term between parentheses in (4) is determined. Note that as limx!1 ⇤(x) = 1 and

limx!�1 ⇤(x) = 0, our assumptions are su�cient but not necessary.

Let X11 denote the support of X conditional on G = 1 and T = 1. The following

Lemma states that FY0,Z0 |G,T,X is identified under the previous assumptions.

Lemma 2 [Identification with Covariates]. Under Assumptions 3 and 4, (y, x) 7! FY0 |G,T,X(y | 1, 1, x)

is identified on (y, x) 2 R⇥ X11.

Proof of Lemma 2. The result follows from equations (4).

We can then identify FY0 |G,T (y | 1, 1) as:

FY0 |G,T (y | 1, 1) =
Z

X11

FY0 |G,T,X(y | 1, 1, x)dFX |G,T (x | 1, 1). (5)

2.2 Comparison with Changes-In-Changes (Athey and Imbens,

2006)

As our proposals provide an alternative approach to the changes-in-changes (CiC) proce-

dure of Athey and Imbens (2006), it is useful to contrast their set up and assumptions

with ours. CiC assumes that the outcome of an individual without treatment satisfies the

relationship Y0 = h(U, T ) for the treatment and control groups, where U is an unobserved

and uniformly distributed random variable. It also assumes that h is strictly increasing in

the first term and that the distribution of U is independent of time given the treatment

outcome, i.e. U ?? T |G. Finally, the support of U for the treated population should be

a subset of those of the untreated population. The final assumption implies in terms of

the support of the outcomes that:

Y0(G = 1, T = 0) ✓ Y0(G = 0, T = 0),

Y0(G = 1, T = 1) ✓ Y0(G = 0, T = 1).

Their second support restriction is less restrictive than ours but we do not need their

first support restriction. The previous assumptions identify the quantile function of
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FY0 |G,T (y | 1, 1) as:

F�1
Y0 |G,T (u | 1, 1) =�

⇣
F�1
Y0 |G,T (u | 1, 0)

⌘
,

�(y) := F�1
Y0 |G,T

�
FY0 |G,T (y | 0, 0) | 0, 1

�
, u 2 [0, 1],

where it is assumed that Y0 is continuous with strictly increasing distribution function.

The transformation � gives the second period outcome for an individual with an unob-

served component u such that h(u, 0) = y, with y the location at which the distribution

function is evaluated (Athey and Imbens, 2006, page 441). Hence, their identification

results follow since � evaluated in the first period observations of the treatment group is

equally distributed as the distribution of the untreated outcome of the treatment group

in the second period. Their assumptions imply the transformation � that maps quantiles

of Y0 from period 0 to period 1 is the same for the treatment and control groups. This

condition imposes the following restrictions on the coe�cients of the representation of the

conditional distribution in (1):

↵(y) = ↵(�(y)) + �(�(y)), �(y) = �(�(y)) + �(�(y)).

To see this, note that:

FY0 |G,T (y | g, 0) = FY0 |G,T (h(h
�1(y, 0), 1) | g, 1). (6)

Evaluating (6) at g = 0 and applying F�1
Y0 |G,T (· | 0, 1) to both sides:

h(h�1(y, 0), 1) = F�1
Y0 |G,T

�
FY0 |G,T (y | 0, 0) | 0, 1

�
=: �(y).

Replacing �(y) back in (6) and using the representation (1):

⇤(↵(y) + �(y)g) = ⇤(↵(�(y)) + �(�(y)) + �(�(y))g + �(�(y))g).

The restrictions then follow from equalizing the coe�cients in both sides.4 They would

complicate estimation in our framework as they involve two di↵erent levels of Y and the

transformation � needs to be estimated.

4There is only a binding restriction because ↵(y) = ↵(�(y)) + �(�(y)) holds by definition of �(y).
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2.3 Comparison with Roth and Sant’Anna (2023)

Roth and Sant’Anna (2023) derive the condition:

FY0 |G,T (y | 1, 1)� FY0 |G,T (y | 1, 0) = FY0 |G,T (y | 0, 1)� FY0 |G,T (y | 0, 0), y 2 R,

for the parallel trends assumption in expectations:

E(Y0 |G = 1, T = 1)�E(Y0 |G = 1, T = 0) = E(Y0 |G = 0, T = 1)�E(Y0 |G = 0, T = 0),

to be invariant to strictly monotone transformations of Y0. This condition is di↵erent

from our no-interaction assumption. Indeed, our DR model with no-interaction does not

generally satisfy the parallel trends assumption in expectation as:

E(Y0 |G = g, T = 1)� E(Y0 |G = g, T = 0) =
Z 1

�1
[⇤(↵(y) + �(y)g)� ⇤(↵(y) + �(y) + �(y)g)]dy

depends on g unless ⇤ is the identity map, or �(y) = 0 (no trend) or �(y) = 0 (random

assignment) for y 2 R. Roth and Sant’Anna (2023) show that their condition holds if and

only if there are no trends, random assignment or a mixture of both. Our model, how-

ever, generally satisfies a di↵erent invariance property with respect to strictly monotonic

transformations that we specify in subsection 2.4.

2.4 Invariance to Strictly Monotonic Transformations

The DR model in (1) with no-interaction is invariant to strictly monotonic transformations

in the sense that we specify here. If Y0 follows the DR model and satisfies the no-

interaction assumption, then Ỹ0 = h(Y0) also follows the DR model and satisfies the

no-interaction assumption for any strictly monotonic transformation h. To see this result

note that if h is strictly increasing:

FỸ0 |G,T,X(ỹ | g, t, x) = ⇤(↵(h�1(ỹ))+�(h�1(ỹ))t+ �(h�1(ỹ))g) = ⇤(↵̃(ỹ)+ �̃(ỹ)t+ �̃(ỹ)g),

where ỹ 7! h�1(ỹ) is the inverse function of y 7! h(y), ↵̃ = ↵ � h�1, �̃ = � � h�1 and

�̃ = � �h�1. A similar argument applies when h is strictly decreasing. Unlike the parallel
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trends in expectation, the no-interaction or parallel trends in distribution is invariant to

strictly monotonic transformations.5

3 Multiple Outcomes

Some settings may feature multiple outcomes which are potentially a↵ected by the treat-

ment. In these situations we might be interested in not only how each of the outcomes

are a↵ected by the treatment, but also how the relationship between the outcomes is

a↵ected by the treatment. For this it is necessary to identify the joint distribution of

the potential outcomes with and without the treatment. We now consider a setting with

two outcomes Y and Z and we focus on comparing features of the joint distribution of

the potential outcomes with the treatment, Y1 and Z1, and the joint distribution of the

potential outcomes without the treatment, Y0 and Z0, for the treated group G = 1 in the

post-treatment period T = 1. For the sake of illustration we consider two measures of

dependence. Namely, Spearman’s and Kendall’s rank correlation.

Spearman’s rank correlation between Yd and Zd, d 2 {0, 1}, can be expressed:

⇢[Yd, Zd |G = 1, T = 1] = Corr[FYd |G,T (Yd | 1, 1), FZd |G,T (Zd | 1, 1) |G = 1, T = 1] =

12

Z 1

�1

Z 1

�1
[FYd |G,T (y | 1, 1)� 1/2][FZd |G,T (z | 1, 1)� 1/2]FYd,Zd |G,T (dy, dz | 1, 1);

and Kendall’s rank correlation between Yd and Zd, d 2 {0, 1}, can be expressed:

⌧ [Yd, Zd |G = 1, T = 1] = 4

Z 1

�1

Z 1

�1
[FYd,Zd |G,T (y, z | 1, 1)�1/4]FYd,Zd |G,T (dy, dz | 1, 1),

where we assume that Yd and Zd are continuous random variables to obtain the expressions

on the right hand side.

As in the univariate case, FY1,Z1 |G,T (y, z | 1, 1) is identified by the joint distribution

of the observed outcomes, FY,Z |G,T (y, z | 1, 1), whereas FY0,Z0 |G,T (y, z | 1, 1) is not identi-

fied from the data. To analyze identification, we use a variation of the local Gaussian

representation (LGR) of a bivariate distribution from Chernozhukov, Fernandéz-Val and

Luo (2018). Let � denote the Gaussian distribution function and �2(·, ·; ⇢) denote the

5The distributional approach of Kim and Wooldridge (2023) also satisfies this property.
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distribution of the bivariate standard normal with parameter ⇢. Moreover, ⇤ is, again,

a strictly increasing cumulative distribution function. As we show in Section 4, there is

a benefit of using the logistic link function in our univariate analysis. Accordingly, we

employ this in our empirical analysis for estimating both the univariate and bivariate

e↵ects.

Lemma 3 [LGR with non-Normal Marginals]. The joint distribution of two random vari-

ables Y and Z conditional on X can be represented by:

FY,Z |X(y, z | x)(y, z | x) ⌘ �2(�
�1(⇤(µY |X(y | x))),��1(⇤(µZ |X(y | x))); ⇢Y,Z |X(y, z | x)),

for all y, z, x, where µY |X(y | x) = ⇤�1(FY |X(y | x)), µZ |X(y | x) = ⇤�1(FZ |X(z | x)), and

⇢Y,Z |X(y, z | x)) is the unique solution in ⇢ to the equation:

FY,Z |X(y, z | x)(y, z | x) = �2(�
�1(FY |X(y | x)(y, z | x)),��1(FZ |X(z | x)(y, z | x)); ⇢).

Proof. The proof is identical to the proof of Lemma 2.1 of Chernozhukov, Fernandéz-Val

and Luo (2018) using:

��1(⇤(µY |X(y | x))) = ��1(FY |X(y | x))

and

��1(⇤(µZ |X(z | x))) = ��1(FZ |X(z | x)).

The di↵erence between Lemma 3 and the LGR of Chernozhukov, Fernandéz-Val and

Luo (2018) is that the marginals are represented by a general link rather than Gaussian

links, that is:

FY |X(y | x)(y | x) ⌘ ⇤(µY |X(y | x)), FZ |X(z | x) ⌘ ⇤(µZ |X(z | x)).

By the LGR, FY0,Z0 |G,T can be expressed as:

FY0,Z0 |G,T (y, z | g, t) ⌘

�2(�
�1(⇤(µY0 |G,T (y | g, t))),��1(⇤(µZ0 |G,T (y | g, t))); ⇢Y0,Z0 |G,T (y, z | g, t)), (7)
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where µY0 |G,T (y | g, t) = ↵Y (y) + �Y (y)t + �Y (y)g + �Y (y)gt, µZ0 |G,T (y | g, t) = ↵Z(z) +

�Z(z)t+�Z(z)g+ �Z(z)gt, and ⇢Y,Z |G,T (y, z | g, t) = ↵Y,Z(y, z)+�Y,Z(y, z)t+�Y,Z(y, z)g+

�Y,Z(y, z)gt. In the LGR, the marginals are represented by:

FY0 |G,T (y | g, t) = ⇤(↵Y (y) + �Y (y)t+ �Y (y)g + �Y (y)gt),

and

FZ0 |G,T (z | g, t) = ⇤(↵Z(z) + �Z(z)t+ �Z(z)g + �Z(z)gt).

We make the following identifying assumptions with respect to the distribution func-

tion in (7).

Assumption 5 [Bivariate No-interaction].

�Y (y) = �Z(z) = �Y,Z(y, z) = 0 for all (y, z) 2 R2
in (7).

Let YZd(G = g, T = t) denote the support of (Yd, Zd) |G = g, T = t, for d, g, t 2 0, 1.

We also assume:

Assumption 6 [Bivariate Support].

YZ0(G = 1;T = 1) ✓ YZ0(G = 0;T = 1) [ YZ0(G = 1;T = 0) [ YZ0(G = 0;T = 0).

Lemma 4 [Identification with Two Outcomes]. (y, z) 7! FY0,Z0 |G,T (y, z | 1, 1) is identified

on R2
under Assumptions 5 and 6.

Proof of Lemma 4. Under the assumptions of the Lemma, µY0 |G,T (y | g, t) = ↵Y (y) +

�Y (y)t + �Y (y)g, µZ0 |G,T (y | g, t) = ↵Z(z) + �Z(z)t + �Z(z)g, and ⇢Y,Z |G,T (y, z | g, t) =

↵Y,Z(y, z) + �Y,Z(y, z)t+ �Y,Z(y, z)g.

The parameters ↵Y (y), �Y (y), �Y (y), ↵Z(z), �Z(z), and �Z(z) are identified from the

marginals of Y and Z, by Lemma 1. The parameter ↵Y,Z(y, z) is identified as the solution

in ↵ to:

FY,Z |G,T (y, z | 0, 0) = �2(↵Y (y) + �Y (y)t+ �Y (y)g,↵Z(z) + �Z(z)t+ �Z(z)g;↵).

This solution exists and is unique because the RHS is strictly increasing in ↵. The

parameters �Y,Z(y, z) and �Y,Z(y, z) are identified similarly as the solutions in � and � of:

FY,Z |G,T (y, z | 0, 1) = �2(↵Y (y)+�Y (y)t+�Y (y)g,↵Z(z)+�Z(z)t+�Z(z)g;↵Y,Z(y, z)+�).
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and

FY,Z |G,T (y, z | 1, 0) = �2(↵Y (y)+�Y (y)t+�Y (y)g,↵Z(z)+�Z(z)t+�Z(z)g;↵Y,Z(y, z)+�).

Finally,

FY0,Z0 |G,T (y, z | 1, 1) = �2(↵Y (y) + �Y (y) + �Y (y),↵Z(z)�Z(z) + �Z(z);↵Y,Z(y, z)+

�Y,Z(y, z) + �Y,Z(y, z)).

Covariates can be incorporated in a similar fashion as the univariate case. In particular,

the LGR of FY0,Z0 |G,T,X becomes:

FY0,Z0 |G,T,X(y, z | g, t, x) ⌘

�2(�
�1(⇤(µY0 |G,T,X(y | g, t, x))),��1(⇤(µZ0 |G,T,X(y | g, t, x))); ⇢Y0,Z0 |G,T,X(y, z | g, t, x)),

(8)

where µY0 |G,T,X(y | g, t, x) = ↵Y (y, x)+�Y (y, x)t+�Y (y, x)g+�Y (y, x)gt, µZ0 |G,T,X(y | g, t, x) =

↵Z(z, x) + �Z(z, x)t+ �Z(z, x)g + �Z(z, x)gt, and ⇢Y,Z |G,T,X(y, z | g, t, x) = ↵Y,Z(y, z, x) +

�Y,Z(y, z, x)t+ �Y,Z(y, z, x)g + �Y,Z(y, z, x)gt.

The identifying assumptions with covariates become:

Assumption 7 [Bivariate No-interaction with Covariates].

�Y (y,X) = �Z(z,X) = �Y,Z(y, z,X) = 0 almost surely for all (y, z) 2 R2
in (8).

Assumption 8 [Bivariate Support with Covariates].

YZ0(G = 1;T = 1;X) ✓

YZ0(G = 0;T = 1;X) [ YZ0(G = 1;T = 0;X) [ YZ0(G = 0;T = 0;X),

almost surely.

Lemma 5 [Identification with Two Outcomes and Covariates]. Under Assumptions 7 and

8, (y, z) 7! FY0,Z0 |G,T,X(y, z | 1, 1, x) is identified on R2 ⇥ X11.

The marginalized distribution FY0,Z0 |G,T (y | 1, 1) is then identified by

FY0,Z0 |G,T (y, z | 1, 1) =
Z

X11

FY0,Z0 |G,T,X(y, z | 1, 1, x)dFX |G,T (x | 1, 1).
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4 Estimation

4.1 Univariate Case

Assume we have a sample {(Yi, Xi, Gi, Ti) : 1  i  N} of (Y,X,G, T ). For estimation,

we replace the functions (y, x) 7! (↵(y, x), �(y, x), �(y, x)) in (3) by semiparametric linear

indexes leading to the DR model for the conditional distribution:

FY0 |G,T,X(y | g, t, x) = ⇤(p↵(x)
0↵(y) + p�(x)

0�(y)t+ p�(x)
0�(y)g), y 2 R, (9)

where p↵(x), p�(x) and p�(x) are vectors including the covariates and their transforma-

tions, and y 7! (↵(y), �(y), �(y)) is a vector of function-valued parameters.

We implement the DR DiD estimator via the sequence of logit models at each point

of the distribution of the outcome variable (Foresi and Peracchi, 1995, Chernozhukov,

Fernandez-Val and Melly, 2013). We choose logit because it is the canonical link for binary

outcomes allowing for pooled estimation of the distributions of the potential outcomes

with and without the treatment (Wooldridge, 2023). Accordingly, we estimate the DR

model for the observed outcomes on all observations including those with Di = 1:

FY |G,T,X(y | g, t, x) = ⇤(p↵(x)
0↵(y) + p�(x)

0�(y)t+ p�(x)
0�(y)g + p✓(x)

0✓(y)gt), y 2 Y ,

(10)

where p↵(x), p�(x), p�(x) and p✓(x) are vectors including a constant as the first compo-

nent, and transformations of the covariates, and Y is a finite grid on R. Let Iyi := 1(Yi  y)

and Īyi = 1� Iyi .

Algorithm 1 [Univariate Estimator]. 1. Estimate the parameters of model (10) by

distribution regression, that is, for y 2 Y,

(↵̂(y), �̂(y), �̂(y), ✓̂(y)) 2 arg max
a,b,c,d

NX

i=1

`i(a, b, c, d),

`i(a, b, c, d) = Iyi log⇤(p↵(Xi)
0a+ p�(Xi)

0b Ti + p�(Xi)
0c Gi + p✓(Xi)

0d GiTi)

+ Īyi log⇤(�p↵(Xi)
0a� p�(Xi)

0b Ti � p�(Xi)
0c Gi � p✓(Xi)

0d GiTi).

2. Construct plug-in estimators of the distributions of the potential outcomes

F̂Y0 |G,T (y | 1, 1) =
1

N11

NX

i=1

GiTi ⇤(p↵(Xi)
0↵̂(y) + p�(Xi)

0�̂(y) + p�(Xi)
0�̂(y)),
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and

F̂Y1 |G,T (y | 1, 1) =
1

N11

NX

i=1

GiTi ⇤(p↵(Xi)
0↵̂(y) + p�(Xi)

0�̂(y) + p�(Xi)
0�̂(y) + p✓(Xi)

0✓̂(y)),

where N11 =
PN

i=1 GiTi.

3. If needed, rearrange the estimates y 7! F̂Yd |G,T (y | 1, 1) on y 2 Y, d 2 {0, 1}, to

make them increasing.

By the properties of the logistic link, the estimator of FY1 |G,T (y | 1, 1) is identical to

the empirical distribution of Y conditional on G = 1 and T = 1,

F̂Y1 |G,T (y | 1, 1) ⌘
1

N11

NX

i=1

GiTi 1(Yi  y).

Note that this estimator is therefore invariant to the specification of p✓(x). We set p✓(x) =

1 to speed up computation. Estimators of the functionals of the distributions of potential

outcomes such as quantile functions and e↵ects can be constructed using the plug-in

principle.

Our algorithm has an advantage over the alternative of estimating p↵, p�, p� using

only those observations for which Di = 0 via direct estimation of (10). The distributional

treatment e↵ect, i.e.

EX

⇥
FY1|G,T,X(y|1, 1, X)� FY0|G,T,X(y|1, 1, X)

⇤
,

equals the average derivative estimator of Di for the logit model used for distribution

regression. This estimate of the average derivative and its standard error are reported by

many software packages (Wooldridge, 2024).

4.2 Bivariate Case

Assume we have a sample {(Yi, Zi, Xi, Gi, Ti) : 1  i  N} of (Y, Z,X,G, T ). For

estimation, as in the univariate case, we replace the functions in µY0 |G,T,X , µZ0 |G,T,X and

⇢Y,Z |G,T,X by semiparametric generalized linear indexes leading to a bivariate distribution

regression (BDR) model:

µY0 |G,T,X(y | g, t, x) = p↵(x)
0↵Y (y) + p�(x)

0�Y (y)t+ p�(x)
0�Y (y)g, (11)
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µZ0 |G,T,X(y | g, t, x) = q↵(x)
0↵Z(z) + q�(x)

0�Z(z)t+ q�(x)
0�Z(z)g, (12)

and

⇢Y,Z |G,T,X(y, z | g, t, x) = h(r↵(x)
0↵Y,Z(y, z) + r�(x)

0�Y,Z(y, z)t+ r�(x)
0�Y,Z(y, z)g), (13)

where p↵(x), p�(x), p�(x), q↵(x), q�(x), q�(x), r↵(x), r�(x) and r�(x) are vectors including

the covariates and their transformations, and h(u) = arctanh(u) is the Fisher transfor-

mation that enforces ⇢Y,Z |G,T,X to lie in [�1, 1].

We estimate all the parameters of FY0,Z0 |G,T (y, z | 1, 1) using the bivariate distribution

regression estimator of Fernandez-Val et al. (2024a). We employ an imputation method

that combines the parameter estimates from the sample of the first period for both groups

and the sample of the second period for the untreated group, with the sample of the

covariates in the second period for the treated group. The distribution FY1,Z1 |G,T (y, z | 1, 1)

is estimated using the empirical distribution of Y and Z in the second period for the

treated group. Algorithm 2 describes the estimation procedure. Let Y and Z be finite

grids on R, Iyi := 1(Yi  y), Īyi = 1� Iyi , J
z
i := 1(Zi  z), J̄z

i = 1� Jz
i .

Algorithm 2 [Bivariate Estimator]. 1. Estimate the parameters of (11) and (12) us-

ing Algorithm 1 on y 2 Y and z 2 Z. Obtain

m̂Y
i (y) = ��1(⇤(p↵(Xi)

0↵̂Y (y) + p�(Xi)
0�̂Y (y) Ti + p�(Xi)

0�̂Y (y) Gi)),

and

m̂Z
i (z) = ��1(⇤(q↵(Xi)

0↵̂Z(z) + q�(Xi)
0�̂Z(z) Ti + q�(Xi)

0�̂Z(z) Gi)),

where ↵̂Y (y), �̂Y (y), �̂Y (y), ↵̂Z(z), �̂Z(z) and �̂Z(z) are the estimates of ↵Y (y),

�Y (y), �Y (y), ↵Z(z), �Z(z) and �Z(z) obtained from Algorithm 1.

2. Estimate the parameters of (13) by BDR, that is, for y 2 Y and z 2 Z,

(↵̂Y,Z(y, z), �̂Y,Z(y, z), �̂Y,Z(y, z)) 2 argmax
a,b,c

NX

i=1

(1�GiTi) `i(a, b, c),

`i(a, b, c) = Iyi J
z
i log�2(m̂

Y
i (y), m̂

Z
i (z);h(r↵(Xi)

0a+ r�(Xi)
0b Ti + r�(Xi)

0c Gi))

+ Iyi J̄
z
i log�2(m̂

Y
i (y),�m̂Z

i (z);�h(r↵(Xi)
0a+ r�(Xi)

0b Ti + r�(Xi)
0c Gi))

+ Īyi J
z
i log�2(�m̂Y

i (y), m̂
Z
i (z);�h(r↵(Xi)

0a+ r�(Xi)
0b Ti + r�(Xi)

0c Gi))

+ Īyi J̄
z
i log�2(�m̂Y

i (y),�m̂Z
i (z);h(r↵(Xi)

0a+ r�(Xi)
0b Ti + r�(Xi)

0c Gi)).
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3. Construct plug-in estimators of the distributions of the potential outcomes

F̂Y0 |G,T (y | 1, 1) =
1

N11

NX

i=1

GiTi �2(n̂
Y
i (y), n̂

Z
i (z); n̂

Y,Z
i (y, z)),

and

F̂Y1,Z1 |G,T (y, z | 1, 1) =
1

N11

NX

i=1

GiTi 1(Yi  y, Zi  z),

where

n̂Y
i (y) = ��1(⇤(p↵(Xi)

0↵̂Y (y) + p�(Xi)
0�̂Y (y) + p�(Xi)

0�̂Y (y))),

n̂Z
i (z) = ��1(⇤(q↵(Xi)

0↵̂Z(z) + q�(Xi)
0�̂Z(z) + q�(Xi)

0�̂Z(z))),

n̂Y,Z
i (y, z) = h(r↵(Xi)

0↵̂Y,Z(y, z) + r�(Xi)
0�̂Y,Z(y, z) + r�(Xi)

0�̂Y,Z(y, z))

and N11 =
PN

i=1 GiTi.

Estimators of the functionals of the joint distributions of potential outcomes such

as Spearman’s and Kendall’s rank correlation coe�cients can be constructed using the

plug-in principle.

4.3 Bootstrap Inference

The estimators described in Algorithms 1 and 2 can be applied to panel and repeated

cross-section data. Here we describe a weighted bootstrap algorithm to perform inference

on functions of the distributions of potential outcomes designed for panel data. We focus

on this case because it is relevant for the empirical applications in Section 5.

To describe the procedure, we need to introduce an indicator IDi, i = 1, . . . , N ,

for the units in the panel. For example, if the sample is sorted by unit and time period,

ID = (1, 1, 2, 2, . . . , n, n), where n = N/2. The following algorithm describes the weighted

bootstrap procedure to construct joint confidence bands for the distributions of the po-

tential outcomes with and without the treatment in the univariate case. Inference for

functionals of the distributions and for the bivariate case can be performed using similar

algorithms.

Algorithm 3 [Weighted Bootstrap Inference]. 1. Choose the number of bootstrap rep-

etitions B, e.g., B = 500 or B = 1, 000.
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2. Draw weights for each unit independent and identically from the standard expo-

nential distribution, independently for the data. Construct a vector of weights

! = (!1, . . . ,!N), where !i = !j if IDi = IDj, and normalize the components

of ! to add up to one.

3. Estimate the parameters of model (10) by weighted distribution regression, that is,

for y 2 Y,

(↵̃(y), �̃(y), �̃(y), ✓̃(y)) 2 arg max
a,b,c,d

NX

i=1

!i`i(a, b, c, d),

`i(a, b, c, d) = Iyi log⇤(p↵(Xi)
0a+ p�(Xi)

0b Ti + p�(Xi)
0c Gi + p✓(Xi)

0d GiTi)

+ Īyi log⇤(�p↵(Xi)
0a� p�(Xi)

0b Ti � p�(Xi)
0c Gi � p✓(Xi)

0d GiTi).

4. Construct plug-in weighted estimators of the distributions of the potential outcomes

F̂ b
Y0 |G,T (y | 1, 1) =

1

N11

NX

i=1

!i GiTi ⇤(p↵(Xi)
0↵̃(y) + p�(Xi)

0�̃(y) + p�(Xi)
0�̃(y)),

and

F̂ b
Y1 |G,T (y | 1, 1) =

1

N11

NX

i=1

!i GiTi ⇤(p↵(Xi)
0↵̃(y) + p�(Xi)

0�̃(y) + p�(Xi)
0�̃(y) + p✓(Xi)

0✓̃(y)),

where N11 =
PN

i=1 !iGiTi.

5. Repeat steps 1-3 B times to obtain

n
F̂ b
Y0 |G,T (y | 1, 1), F̂ b

Y1 |G,T (y | 1, 1) : y 2 Y , 1  b  B
o
.

6. Construct an estimator of the (1�↵)-critical value of the maximal t-statistic, t̄Y(1�

↵), as the (1� ↵)-quantile of {t̄bY : 1  b  B}, where

t̄bY = max
y2Y

"
|F̂ b

Y0 |G,T (y | 1, 1)� F̂Y0 |G,T (y | 1, 1)|
S0(y)

,
|F̂ b

Y1 |G,T (y | 1, 1)� F̂Y1 |G,T (y | 1, 1)|
S1(y)

#
,

and Sd(y) is the interquartile range of

n
F̂ b
Yd |G,T (y | 1, 1) : 1  b  B

o
divided by

1.34896, the interquartile range of the standard normal distribution, for d 2 {0, 1}.

7. Construct the (1� ↵)-confidence bands as

CB1�↵[FYd |G,T (· | 1, 1)] = F̂Yd |G,T (y | 1, 1)± t̄Y(1� ↵)Sd(y), d 2 {0, 1}.
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Remark 1 (Empirical Bootstrap). Empirical bootstrap can be implemented by drawing

the weights in step 1 from a multinomial distribution with values 1, . . . , n and equal prob-

abilities 1/n.

5 Empirical applications

We illustrate our proposed estimators via an examination of data from two existing em-

pirical investigations.6. The first is the Malesky et al. (2014) investigation of the impact

of recentralization in Vietnam. This paper is useful for our purposes as it considers a

single treatment and multiple outcomes. Moreover, Malesky et al. (2014) only report

mean e↵ects. We examine whether these mean e↵ects are informative of the heterogene-

ity across the outcomes’ distributions. We also investigate whether the treatment a↵ects

the bivariate distribution of di↵erent combinations of outcomes. In a second example

we explore the impact of increases in the mandatory minimum wage on average weekly

wages, and unemployment and poverty rates by examining an extension of the data in

Callaway and Li, (2019). We estimate the impact of the treatment on each of these

outcome distributions and also the bivariate distributions of some combinations of the

outcomes.

5.1 The impact of recentralization (Malesky, et al. 2014)

5.1.1 Description of the original empirical exercise

Malesky et al. (2014) investigate the impact of recentralization via a case study in Viet-

nam. Due to the dissatisfaction with decentralization measures taken in the early 1990s,

Vietnam changed their political system in 2007 by eliminating one political layer from the

decision making process. More explicitly, Vietnam has four layers of the political process:

the central government, the provinces (63 in total), the districts (696 in total), and the

communes (more than 11,000 in total).7 The change involved abolishing the political

process at the districts (which are governed by the so called Districts People Council or

6We thank Brant Callaway, Tong Li and Pedro Sant’Anna for providing us with the data
7The total population of Vietnam was 84.76 million in 2007.
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DPC). Prior to introducing this change, the Vietnam government experimented with ten

provinces (with 99 districts). Malesky et al. (2014) use this experiment for their empirical

analysis. Note that the experiment was not random, but was decided by the central gov-

ernment to be stratified based on regions and subregions as well as on rural versus urban

areas and by socioeconomic and public administration performance of the provinces. The

decision to start this experiment was made in 2008 and the abolition of the DPC in the

treatment districts started in 2009.

Malesky et al. (2014) employ the following specification;

Yit = ↵ + �Tt + �Gi + ✓GiTt +X 0
it⇡ + Uit.

where Yit is the outcome variable for period t of commune i. Tt is a dummy variable that

equals one in the treated period while Gi is a dummy variable that equals one if the com-

mune i belongs to a treated district. Finally, Xit is a set of control variables for commune

i and in period t. Malesky et al. (2014) use the log surface area of the commune, the

log of the commune population density, whether the commune belongs to a national level

city, and region dummies (8 regions in total). For reasons of data availability, Malesky et

al. (2014) only use rural communes and two years of observations: 2008 and 2010 (they

use 2006 for robustness checks). They use 30 di↵erent outcome variables to investigate

the impact of the abolition of the political layer. As most of their outcome variables are

indicator variables, we only employ the following eight of their original outcome variables:

(1) proportion of households supported crop, (2) proportion of households supported agri-

cultural extension, (3) proportion of households supported agriculture tax exemption, (4)

the number of visits of agricultural extension sta↵, (5) proportion of households sup-

ported healthcare fee, (6) proportion of households supported tuition fee, (7) proportion

of households supported credit, and (8) proportion of households supported business tax

exemption.

5.1.2 Our analysis for the univariate case

We use the following specification for FY0,i|Gi,Ti,Xit(·|g, t, x)

FY0,i|Gi,Ti,Xit(y|gt, tt, xit) = ⇤(↵(y) + �(y)tt + �(y)gi + xit⇡(y)),
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and use the same control variables as in Malesky et al. (2014). We estimate the counter-

factual distribution using:

bFY0,i|Gi,Ti,Xit(y|1, 1, xi,1) = ⇤(b↵(y) + b�(y) + b�(y) + xi1b⇡(y)),

where b↵(y), b�(y), b�(y), and b⇡(y) are estimated via distribution regression at y. We

estimate the unconditional distribution using

FY0,i|Gi,Ti(y|1, 1) =
Z

X (1,1)

FY0,i|Gi,Ti,Xit(y|1, 1, xi1)dFXit|G,T (x|1, 1).

Our estimator then becomes:

bFY0,i|Gi,Ti(y|1, 1) =
1

N11

X

i:Gi=1,Ti=1

bFY0,i,t|Gi,Ti,Xi1(y|1, 1, Xi,1),

where N11 is the total number of observations for which Gi = 1, Ti = 1. We estimate the

quantile treatment e↵ects by inverting the estimated distributions of FY0,i,t|Gi,Ti(y|1, 1) and

FY1,i,t|Gi,Ti(y|1, 1), where we estimate FY1,i,t|Gi,Ti(y|1, 1) by using the empirical distribution.

In particular we use

bF�1
Yj,i,t|Gi,Ti

(q|1, 1) = inf{y : bFYj,i,t|Gi,Ti(y|1, 1)  q} j = 0, 1.

Results of our empirical exercise are in Figure 1. The quantile treatment e↵ects are listed

in Table 1. We estimate the quantile treatment e↵ects by inverting the estimated dis-

tribution functions. As in Malesky et al. (2014), we correct the confidence intervals for

clustering at the province level. We use the Bayesian bootstrap and draw the same expo-

nential weight for all observations belonging to the same province (see also Chernozukov

et al., 2020). We construct the confidence bounds by following steps 1-4 of Algorithm 1 of

Chernozhukov et al. (2020) but we use directly the quantile treatment e↵ects rather than

the estimated distributions. This is allowed provided we assume the outcome variable

is continuously distributed. For some outcome variables, there is substantial bunching

at zero. For example, for the variable “Proportion of households supported crop” 49.93

percent of the observations equal zero. It also has this value for 54.04 percent for the

treatment group in the treatment period and 50.79 for the control group. This implies

that the quantile treatment e↵ect is by definition equal to zero up to the median and the
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Figure 1: Results of the empirical application.
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Figure 1: Results of the empirical application (continued).
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impact can only occur at the higher quantiles. Note, that we employ dots to distinguish

this from cases in which there is an estimated zero impact.

Nevertheless, even after ignoring these zeros, both Figure 1 and Table 1 reveal a great

deal of treatment heterogeneity and that the mean impacts reported in Malesky et al.

(2014) are primarily generated from impacts at the top of the distribution. This is most

clear from the outcome variable “The number of visits of agricultural extension sta↵”

which has only a substantial impact at Q3 and D9. A similar conclusion can be drawn

for the outcome variable “Proportion of households supported credit”.

Malesky et al. (2014) use data for the year 2006 to check the common trends assump-

tion. They examine the results of a DiD design for the periods 2006 and 2008 in which

2008 is the placebo treatment period. That is, one would not expect any treatment e↵ect

in the period before the introduction of the treatment. The results of this exercise are

in Figure 2 and Table 2. Similar to Malesky et al. (2014), we do find some substantial

di↵erences in Figure 2 between the distribution of Y0 and Y1. However, Table 2 indicates

these di↵erences are not statistically significant and that they are generally in the opposite

direction as found in the original results. For example, for the proportion of households

supported crop (the first figure in Figures 1 and 2), the distribution of FY1|G,T (·|1, 1) is in
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Table 1: Quantile treatment e↵ects with 90 percent confidence intervals based on Bayesian

weights. Confidence intervals corrected for clustering at the province level.
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Figure 2 generally to the left of the distribution of FY1|G,T (·|1, 1) while the relationship is

the opposite in Figure 1.

In a standard linear DiD design, checking the common trend assumption as presented

above is identical to checking the value of the interaction term in the period(s) before

the treatment. This is not true for the non-linear design. AICO: THIS IS NOT SO

CLEAR. However we perform an additional check by examining the estimated coe�cient

value of the interaction term. That is, we estimate the general representation presented

in (1) for all observations in the periods 2006 and 2008. Results of this exercise are

presented in Figure 3. Generally, we find that �(y) is not significantly di↵erent from zero

but there are some regions in the distribution of some of the outcome variables where

there is a significant di↵erence. For example, for the outcome variable the “Proportion of

households supported agricultural exemption”, we find a significant di↵erence in between

0.3 and 0.9 of the outcome values.

As a further robustness check, we interacted the covariates with the time and treatment

dummy variables. We interact regions with time but we cannot interact regions with

treatment as this will result in perfect multicollinearity due to the setup of the program.

These results are shown in Figure 4 and the quantile treatment e↵ects are reported in

Table 5.

5.1.3 Comparison with the changes-in-changes estimation

For the changes-in-changes estimation, we note as in Athey and Imbens (2006) that the

distribution of Y0|G = 1, T = 1 equals the distribution of '(Y0)|G = 1, T = 0, where �(y)

is defined as in Section 2.2, i.e. �(y) := F�1
Y0 |G,T

�
FY0 |G,T (y | 0, 0) | 0, 1

�
. We then obtain

an estimator of the distribution of Y0|G = 1, T = 1 by using the empirical distribution

function of the random variable:

Q bFY0|G,T (Y0|0,1)(Y0|G = 0, T = 0).

We estimate the distribution function of FY0|G=1,T=1 at point y for our changes-in-changes

estimator using the following steps:

1. For every observation of Y0 of the subsample of G = 1, T = 0 estimate the empirical
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Figure 2: Results of robustness check using the years 2006 and 2008.
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Table 2: Quantile treatment e↵ects – robustness check for 2006 and 2008 – parallel trends.
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Figure 3: Results of the robustness check to investigate whether �(y) of equation (1)

equals zero in the period before the treatment.
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Table 3: Quantile treatment e↵ects without using additional control variables in the

analysis.
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Table 4: Quantile treatment e↵ects without using additional control variables in the

analysis – robustness check for 2006 and 2008 – parallel trends.
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Table 5: Quantile treatment e↵ects using interaction terms between the covariates and

the time and treatment dummy variables.
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Figure 3: Results of the robustness check to investigate whether �(y) of equation (1)

equals zero in the period before the treatment.(continued).
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distribution function of the subsample for which G = 0, T = 0.

2. For every computed empirical distribution function of step 1 estimate the corre-

sponding quantile of the subsample for which G = 0, T = 1.

3. For all the obtained quantiles from step 2, compute the empirical distribution func-

tion in y.

The distribution of FY1|G=1,T=1 can be estimated using the empirical distribution function.

One obtains the quantile treatment e↵ect by inverting the distribution at the desired levels

of the distribution.

As we consider our estimator for the univariate outcome as a simpler alternative to

the CiC approach we contrast our results with those from that approach. We only do

so for the no covariates case as the CiC estimator is more di�cult to implement in the

presence of covariates. The results are reported in Table 3 and Figure 5. The results are

reassuring as they are very similar to those in Table 6 and Figure 6 for CiC. The results

are similar in terms of both magnitude and statistical significance.
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Figure 4: Results of the empirical application using interaction terms between the covari-

ates and the time and treatment dummy variable.
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Table 6: Quantile treatment using changes-in-changes.
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Figure 4: Results of the empirical application using interaction terms between the covari-

ates and the time and treatment dummy variable (continued).
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5.1.4 Results for bivariate outcomes

For the bivariate analysis we consider the outcome variables “Proportion of households

supported credit” and the “Proportion of households supported healthcare fee” as these

variables have relatively little bunching at integer values. The counterfactual and actual

distributions are shown in Figure 10.

The figure reveals that the joint distribution has changed due to the treatment and that

the distribution of the treated population has shifted to the upper-left corner. However,

it is di�cult to see whether this is not merely a result of the changes in the marginal

distributions. We also present results using Kendall’s tau given as:

⌧ =
nX

i=1

nX

j=i+1

sgn(xi � xj)sgn(yi � yj).

The Kendall’s tau for the joint distribution of the treated sample in the second period

when treated can directly be calculated from the observed data. For the counterfactual

distribution of the treated sample in the second period when not treated, we first sample

from the estimated distribution. That is, we sample a value of Y using our estimate of its

marginal distribution from above. We then sample Z from the conditional distribution
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Figure 5: Results without using additional control variables in the analysis.
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Figure 5: Results without using additional control variables in the analysis. (continued).
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of Z|Y which can be obtained using our estimates for the bivariate case. The estimated

Kendall’s tau from this procedure is 0.1253 with a 95-percent confidence interval from

0.0989 to 0.1518. This implies a positive correlation between the two outcomes in the

districts. For the observed distribution of the treated group we obtain a 0.2463 with a

95-percent confidence interval from 0.2224 to 0.2703. This implies that the treatment has

statistically significantly increased the correlation between the two outcomes.

5.2 The impact of increases in the mandatory minimum wage

The impact of increases in the mandatory minimum wage has been the focus of many em-

pirical investigations. Some consider their impact on (un)employment (Card and Krueger,

1994, Dube et al., 2010, Cengiz et al, 2019, Callaway and Li, 2019, Torous et al, 2024),

while others focus on how they a↵ect income levels (Dube, 2019) or the poverty rate

(MaCurdy, 2015). The vast majority of these studies consider the mean of these outcome

variables and only investigate the respective outcomes separately. Torous et al. (2024) is

an exception as it examines distributional e↵ects and the relationship between part-time

and full-time employment. We now consider the joint impact of changes in the mandatory

minimum wage on wages and both the unemployment and poverty rates.
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Figure 6: Results of changes-in-changes
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Figure 6: Results of changes-in-changes (continued).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Proportion of households supported credit

F
Y
0
|G

,T
(·
|1
,1

),
F
Y
1
|G

,T
(·
|1
,1

)

FY0|G,T (·|1, 1)
FY1|G,T (·|1, 1)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Proportion of households supported business tax exemption

F
Y
0
|G

,T
(·
|1
,1

),
F
Y
1
|G

,T
(·
|1
,1

)

FY0|G,T (·|1, 1)
FY1|G,T (·|1, 1)

We follow Callaway and Li (2019) and investigate a change in the mandatory state

minimum wage in the 11 U.S. states which had their mandatory minimum wage below the

federal minimum wage at the beginning of 2007. We employ these states as the treated

group. Before this change there were an additional 22 states in which the state minimum

wage was lower than the federal but we follow Callaway and Li (2019) and drop New

Hampshire and Pennsylvania. This leaves a control group of 20 states.

Similar to Callaway and Li (2019), we first estimate the impact of the change in the

state-level minimum wage on the county level unemployment rates. Callaway and Li

(2019) employ the Local Area Unemployment Statistics Database from the Bureau of

Labor Statistics (BLS) and control variables on population and income from the 2000

County Data Book. We use county data on the percentage of African Americans, the

percentage of high school graduates, the percentage of college graduates, the log of the

total population, the poverty rate and the log median income (for 1997).

The results using our method are shown in the first row of Table 7 and are quantita-

tively similar to those of Callaway and Li (2019). The impact on the unemployment rate

is negative for those counties that have lower levels of the unemployment rate but it is

positive for those counties that have higher unemployment rates. The degree of hetero-
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Table 7: Quantile treatment e↵ects of the increase in the mandatory minimum wage. The

unemployment rate and poverty rate are measured in percentages.

Mean 0.1 0.25 0.5 0.75 0.9

Unemployment rate 0.1242 -0.3182 -0.0886 0.1824 0.3398 0.3191

(-0.104,0.353) (-0.779,0.143) (-0.524,0.346) (-0.186,0.551) (-0.188,0.868) (-0.145,0.783)

(log) Average weekly 0.0015 -0.0153 -0.0124 -0.0157 -0.009 -0.001

wage (-0.015,0.018) (-0.044,0.013) (-0.034,0.009) (-0.042,0.011) (-0.048,0.03) (-0.04,0.038)

Poverty rate 0.1748 0.3 0.3 0.0374 0.0 0.0

(-0.051,0.4) (-0.301,0.901) (-0.204,0.804) (-0.489,0.564) (-0.504,0.504) (-0.612,0.612)

geneity in our results is smaller than Callaway and Li (2019). For example, they find an

impact of -0.44 at the first decile compared to our estimate of -0.32. This results in our

failure to reject the null hypothesis of no impact in any part of the distribution, whereas

their impact at the bottom decile is marginally statistically significant.

We also merge the Callaway and Li (2019) data with average weekly wage data taken

from the Quarterly Census of Employment and Wages (QCEW) sample from the BLS.

Note that we employ data for the first quarter of the year 2006 and 2007. We acknowledge

that the average weekly wage is not the ideal feature of the wage distribution to examine

for this question but other wage measures were not available. However, the monopsony

wages literature has frequently argued that the entire wage distribution may shift due to

a change in the mandatory minimum wage (e.g. Van den Berg, 2003). This would have

implications for the average wage. Using the same specification as for the unemployment

rate equation we examine the impact on average wages and the results are reported in the

second row of Table 7. The impact on the average weekly wage is small and statistically

insignificant.

We also examine poverty rates from the state and county estimates published by the

Census for 2006 and 2007. A shortcoming of these data is that poverty rates are reported

for the whole of 2007. As reported by Callaway and Li (2019), the federal minimum wage

increased at the end of July 2007 and this change may have an impact on the poverty

rates in our control states. Under this proviso we explore the impact of the change in

the minimum wage. We continue to use the same specification and the results are in the

third row of Table 7. The point estimates suggests that the impact on the poverty rate
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appears somewhat larger than that on average weekly wages. In addition, the impact is

larger for those counties that have low poverty rates. However, there is no evidence of a

statistically significant impact.

Our evidence suggests that the univariate distributions are not significantly a↵ected

by the change in the mandatory minimum wage. To investigate whether the joint dis-

tributions are a↵ected, Figures 7 to 9 report the 2-dimensional e↵ects noting that the

left-hand figures show the counterfactual distributions and the right-hand side show the

observed distributions. As it is di�cult to reach clear conclusions from these figures,

Table 8 reports the changes in the Kendall’s ⌧ and Spearman’s correlation index for the

di↵erent pairs of outcome variables noting that the latter is computed as:

⇢S = 1� 6
Pn

i=1 d
2
i

n(n2 � 1)

where di is the di↵erence in ranks between the two variables yi and zi. Note that we do

not report the Spearman’s correlation value for the previous empirical example due to the

degree of bunching at certain values in the data.

In the absence of treatment the estimates of Kendall’s ⌧ and Spearman’s correlation

index for the unemployment rate and the average weekly wage are -0.1095 and -0.1316

respectively. Following the increase in the mandatory minimum wage, this negative rela-

tionship becomes weaker, with the corresponding estimate values of -0.0350 and -0.052.

However, these changes are not statistically significantly di↵erent from zero at a 95 per-

cent significance level. In contrast, the unemployment rate and the poverty rate have a

positive correlation prior to the treatment with the respective estimates of the correlation

being 0.256 and 0.329. This correlation becomes somewhat stronger after the increase of

the mandatory minimum wage with estimates of 0.312 and 0.453. Once again the changes

are not statistically significant.

Finally, we examine the correlation between the average weekly wage and the poverty

rate. This relationship is also negative prior to treatment with the two estimates of the

correlation being -0.3070 and -.413. This correlation also becomes weaker after treatment,

increasing to -0.1762 and -.261, and in contrast to the earlier results these changes are

statistically significant, or marginally insignificant, at the 95 percent significance level.

While we leave a fuller explanation of this result to future work, this is an encouraging
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Figure 7: Results of 2-dimensional e↵ects of the unemployment rate and the (log) average

weekly wage
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result for those who support the increase in the minimum wage. One might have expected

that the increase in minimum wage would result in higher average wages which result

in higher unemployment and greater number of individuals in poverty. While the first

relationship between wages and unemployment is consistent with the first row of Table

8, the second relationship is not supported by the data. This result also highlights the

importance of our approach. An examination of the univariate distributions suggests there

is no response to treatment. However, the changes in these correlation values suggests that

the bivariate relationships are sensitive to the treatment. This provides greater insight

into the treatment e↵ects and the mechanisms underlying them.

6 Conclusion

We provide a relatively simple distribution regression based estimator to implement the

evaluation of treatment e↵ects in a di↵erence-in-di↵erence setting. As our approach pro-

vides counterfactual distributions we are able to explore the impact of the treatment at
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Figure 8: Results of 2-dimensional e↵ects of the unemployment rate and the poverty rate
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Figure 9: Results of 2-dimensional e↵ects of the (log) average weekly wage and the poverty

rate
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Table 8: Results of Kendall’s ⌧ for the treatment group when treated compared to not

treated (with 95 percent confidence intervals between parentheses).

T
reatm

ent
W

ith
ou

t
treatm

ent
D
i↵
eren

ce

K
en
d
all’s

⌧

U
n
em

p
loym

ent
rate

an
d
(log)

average
w
eekly

w
age

-0.0350
-0.1095

0.0745

(-0.0571,
-0.0129)

(-0.1791,
-0.0400)

(-0.0021,
0.1511)

U
n
em

p
loym

ent
rate

an
d
p
overty

rate
0.3119

0.2564
0.0555

(
0.2957,

0.3281)
(0.0184,

0.4944)
(-0.1810,

0.2919)

(log)
A
verage

w
eekly

w
age

an
d
p
overty

rate
-0.1762

-0.3070
0.1307

(-0.1950,
-0.1574)

(-0.4308,
-0.1832)

(0.0060,
0.2554)

S
p
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in
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U
n
em

p
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ent
rate

an
d
(log)

average
w
eekly

w
age

-0.0522
-0.1316

0.0793

(-0.0855,
-0.0190)

(-0.2134,
-0.0497)

(-0.0123,
0.1709)

U
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overty

rate
0.4525

0.3287
0.1238

(
0.4301,
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(-0.0004,

0.6577)
(-0.2032,
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(log)
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overty

rate
-0.2611

-0.4131
0.1520

(-0.2883,
-0.2340)

(-0.5822,
-0.2441)

(-0.0144,
0.3184)
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Figure 10: Results of 2-dimensional e↵ects
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di↵erent quantiles of the distribution of the outcome variable. For both the univariate

and multivariate cases we provide the identifying assumption and the associated estima-

tion algorithms. We provide two empirical example which revisits an existing studies and

which highlight the utility of various aspects of our approach.

Our analysis can easily be extended to the case of multiple time periods and more

than two outcomes. We can also extend our distributional regression framework to use

time and unit weights as in the synthetic di↵erence-in-di↵erence estimation method of

Arkhangelsky et al. (2021). We leave these extensions to future research (e.g. Fernández-

Val et al., 2024b).
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