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effects. The method, which expands on the strategy proposed by Machado and Santos Silva 

(2019), allows for the inclusion of multiple fixed effects and provides various alternatives 

for estimating standard errors. We provide Monte Carlo simulations to show the finite 

sample properties of the proposed method in the presence of two sets of fixed effects. 
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1 Introduction

Quantile regression (QR), introduced by Koenker and Bassett (1978), is an estimation

strategy used for modeling the relationships between explanatory variables X and the

conditional quantiles of the dependent variable Qy(⌧ |x). Using QR one can obtain richer

characterizations of the relationships between dependent and independent variables, by

exploring how the variables relate along the entire conditional distribution.

A relatively recent development in the literature has focused on extending quantile

regressions analysis to include individual fixed e↵ects in the framework of panel data.

However, as described in Neyman and Scott (1948), and Lancaster (2000), when individual

fixed e↵ects are included in quantile regression analysis an incidental parameter problem

is generated. While many strategies have been proposed for estimating this type of model

(see Galvao and Kengo (2017) for a brief review), neither has become standard because

of their restrictive assumptions in regard to the inclusion of individual and multiple fixed

e↵ects, the computational complexity, and implementation.

More recently, Machado and Santos Silva (2019) (MSS hereafter) proposed a methodol-

ogy based on a conditional location-scale model, similar to the one described in He (1997)

and Zhao (2000), for the estimation of quantile regressions models for panel data via a

method of moments. This method allows individual fixed e↵ects to have heterogeneous

e↵ects on the entire conditional distribution of the outcome, rather than constraining

their e↵ect to be a location shift only, as in Canay (2011), Koenker (2004), and Lamarche

(2010).

In principle, under the assumption that data-generating process behind the data is

based on a multiplicative heteroskedastic process that is linear in parameters (Machado

and Santos Silva, 2019, He (1997), Zhao (2000), Cameron and Trivedi (2005)), the e↵ect

of a variable X on the qth quantile can be derived as the combination of a location e↵ect,

and scale e↵ect moderated by the quantile of an underlying i.i.d. error. For statistical

inference, MSS derives the asymptotic distribution of the estimator, suggesting the use of

bootstrap standard errors, as well.

This methodology is not meant to substitute for the use of standard quantile regression

analysis. That said, given the assumptions required for the identification of the model,

it provides a simple and fast alternative for the estimation of quantile regression models

with individual fixed e↵ects.
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In this framework, our paper expands on Machado and Santos Silva (2019) in two

ways. First, making use of the properties of generalized method of moments (GMM)

estimators, we derive various alternatives for the estimation of standard errors based on

the empirical influence functions of the estimators. Even if the model is correctly specified,

robust standard errors perform better than GLS standard errors due small violations of the

model assumptions due to sampling variability. Furthermore, clustered standard errors

may help to further account for typically unobserved correlations across observations.

Second, we reconsider the application of Frisch-Waugh-Lovell (FWL) theorem (Frisch

and Waugh, 1933, and Lovell (1963)) to extend the MSS estimator and allow for the

inclusion of multiple fixed e↵ects. This extension may be useful for empirical analysis, as

it is common to control for multiple fixed e↵ects such as individual and time fixed e↵ects.

The rest of the paper is structured as follows: section 2 presents the basic setup of

the location-scale model described in He (1997) and Zhao (2000), tying the relationship

between the standard quantile regression model and the location-scale model. It also

revisits the methodology of MSS, proposing alternative estimators for the standard errors

based on the properties of GMM estimators and the empirical influence functions. It also

shows that the FWL theorem can be used to control for multiple fixed e↵ects. Section 3

presents the results of a small simulation study and section 4 illustrates the application of

the proposed methods using macroeconomic data to study the determinants of government

surpluses. Section 5 uses data from the Ecuadorian labor survey and records of crime

reports to investigate the quantile e↵ects of murders on labor income and, finally, section

6 concludes.

2 Methodology

2.1 Quantile Regression: Location-Scale model

Quantile regressions are used to identify relationships between the explanatory variables

X and the conditional quantiles of the dependent variable Qy(⌧ |X). This relationship is

commonly assumed to follow a linear functional form:

Qy(⌧ |X) = X�(⌧) (1)

This allows for a linear e↵ect of X on Y , but that could vary across values of ⌧ .

3



An alternative formulation of quantile regressions is the location-scale model. This

approach assumes that the conditional quantile of Y given X and ⌧ can be expressed as

a combination of two models: the location model, which describes the central tendency

of the conditional distribution; and the scale model, which describes deviations from the

central tendency:

Qy(⌧ |X) = X� +X�(⌧) (2)

Here, the location parameters � are typically identified using a linear regression model

(as in Machado and Santos Silva (2019)) or a median regression (as in He (1997) and

Zhao (2000)) and the scale parameters �(⌧) can be estimated using standard approaches.

Both the standard quantile regression (Equation 1) and the location-scale specification

(Equation 2) can be estimated as the solution to a weighted minimization problem:

�̂(⌧) = argmin
�

0

@
X

i2yi�x0
i�

⌧(yi � x0
i�)�

X

i2yi<x0
i�

(1� ⌧)(yi � x0
i�)

1

A (3)

One characteristic of this estimator is that the �(⌧) coe�cients are identified locally

and thus the estimated quantile coe�cients will exhibit considerable variation when ana-

lyzed across ⌧ . It is also implicit that if one requires an analysis of the entire distribution,

it would be necessary to estimate the model for each quantile.1

One insightful extension to the location-scale parameterizations suggested by He (1997),

Zhao (2000), Cameron and Trivedi (2005), and Machado and Santos Silva (2019) is to

assume that the data-generating process (DGP) can be written as a linear model with a

multiplicative heteroskedastic process that is linear in parameters.2

yi = x0
i� + ⌫i

⌫i = "i ⇥ x0
i�

(4)

1
There are other estimators that provide smoother estimates for the quantile regression coe�cients

using a kernel local weighted approach (Kaplan and Sun, 2017), as well as identifying the full set of

quantile coe�cients while simultaneously assuming some parametric functional forms (Frumento and

Bottai, 2016).
2
Machado and Santos Silva (2019) also discuss a model where heteroskedasticity can be an arbitrary

nonlinear function �(x0
i�), but develop the estimator for the linear case, i.e., when �() is the identity

function.
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Under the assumption that " is an i.i.d. unobserved random variable that is indepen-

dent of X, the conditional quantile of Y given X and ⌧ can be written as

Qy(⌧ |X) = X� +Q"(⌧)⇥X� (5)

In this setup, the traditional quantile coe�cients are identified as the location model

coe�cients plus the scale model coe�cients moderated by the ⌧th unconditional quantile

of the standardized error ". For simplicity we will use q⌧ to denote Q"(⌧) in the rest of

the paper.

�(⌧) = � + q⌧ ⇥ � (6)

While this specification imposes a strong assumption on the DGP, it has two advan-

tages over the standard quantile regression model. First, because the location-scale model

can be identified globally, with only a single parameter (q⌧ ) requiring local estimation, this

estimation approach will be more e�cient than the standard quantile regression model

(Zhao, 2000). Second, under the assumption that X� is strictly positive, the model will

produce quantile coe�cients that do not cross (He, 1997).

Following MSS, the quantile regression model defined by Equation 5 can be estimated

using a generalized method of moments approach. And while it is possible to identify all

coe�cients (�, �, q⌧ ) simultaneously, we describe and use the implementation approach

advocated by MSS, which identifies each set of coe�cients separately.

First, the location model can be estimated using a standard linear regression model,

where the dependent variable is the outcome Y and the independent variables are the

explanatory variables X (including a constant) with an error u, which is by definition

heteroskedastic. In this case, the location-model coe�cients are identified under the

following condition:

yi = x0
i� + ⌫i

E
⇥
xi⌫i

⇤
= 0

(7)

Second, after the location model is estimated, the scale coe�cients can be identified by

modeling heteroskedasticity as a linear function of characteristics X. For this we use the

absolute value of the errors from the location model u as dependent variable, which allows
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us to estimate the conditional standard deviation (rather than conditional variance) of

the errors. In this case, the coe�cients are identified under the following condition:

|⌫i| = x0
i� + !i

E
⇥
xi(|⌫i|� x0

i�)
⇤
= 0

(8)

It should be noticed that the estimation of the standard errors (next section) requires

that the Scale component prediction x0
i� is strictly positive, because it represents the

conditional standard deviation of the error ⌫i. Because this component is identified using

a linear model, some values for x0
i� may be negative, which will a↵ect the estimation of

the standard errors, as shown in the simulation study.

Third, given the location and scale coe�cients, the ⌧th quantile of the error " can be

estimated using the following condition:

E [1 (x0
i(� + �q⌧ ) � yi)� ⌧ ] = 0

E


1

✓
q⌧ � yi � x0

i�

x0
i�

◆
� ⌧

�
= 0

(9)

where one identifies the quantile of the error " using standardized errors yi�x0
i�

x0
i�

or by

finding the values that identify the overall quantile coe�cients �(⌧) = �+�q⌧ . Afterwards,

the conditional quantile coe�cients are simply defined as the combination of the location

and scale coe�cients.

2.2 Standard Errors: GLS, Robust, Clustered

As discussed in the previous section, the estimation of quantile regression coe�cients

using the location-scale model with heteroskedastic linear errors can be estimated using

a the following set of moments, which fits within the GMM framework:

E[xi⌫i] = E[h1,i] = 0

E[xi(|⌫i|� xi�)] = E[h2,i] = 0

E


1

✓
q⌧ � yi � x0

i�

x0
i�

◆
� ⌧

�
= E[h3,i] = 0

(10)

Under the conditions described in Newey and McFadden (1994) (see section 7), Cameron
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and Trivedi (2005) (see chapter 6.3.9), or as shown in Machado and Santos Silva (2019),

the location, scale, and residual quantile coe�cients are asymptotically normal.3

Call ✓ = [�0 �0 q⌧ ]0 the set of coe�cients that are identified by the moment conditions

in Equation 10, a just identified model, and the function hi is a vector function that stacks

all the moments described in Equation 10 at the individual level. Then ✓̂ follows a normal

distribution with mean ✓ and variance-covariance matrix V (✓) that is estimated as

V̂ (✓̂) =
1

N
Ḡ(✓̂)�1

 
1

N

NX

i=1

hih
0
i

���
✓=✓̂

!
Ḡ(✓̂)�1

which is equivalent to the Eicker-White heteroskedasticity-consistent estimator for

least-squares estimators.

Here, the inner product is the moment covariance matrix and Ḡ(✓) is the Jacobian

matrix of the moment equations evaluated at ✓̂.

Ḡ(✓) = � 1

N

X

i=1

@hi

@✓0

���
✓=✓̂

In this framework, the quantile regression coe�cients, a combination of the location-

scale-quantile estimates, will follow a normal distribution with mean �(⌧) = � + �q⌧ and

variance-covariance matrix equal to

V̂ (�(⌧)) = ⌅V̂ (✓̂)⌅0

where ⌅ is a k ⇥ (2k + 1) matrix defined as

⌅ = [I(k), q̂⌧ ⇥ I(k), �̂] (11)

with I(k) being an identity matrix of dimension k (number of explanatory variables

in X including the constant).

While it is possible to estimate the variance-covariance matrix using simultaneous

model estimation for a just identified model, it is more e�cient to estimate each set of

3
Zhao (2000) also shows that the quantile coe�cients for the location-scale model follow a normal

distribution, but uses the assumption that the location model is derived using a least absolute deviation

approach (median regression).
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coe�cients separately. Afterward, the variance-covariance matrix can be estimated using

the empirical influence functions of the estimators (see Jann (2020) for an overview of the

application and Hampel et al. (2005) for an in-depth review).

Specifically, given an arbitrary vector of empirical influence functions �i(✓), the variance-

covariance matrix can be estimated as

V̂ (✓) =
1

N2

NX

i=1

�i(✓)�i(✓)
0 (12)

where the influence functions are defined as:

�i(✓) = Ḡ(✓)�1hi(✓)

For the specific case of quantile regressions via moments, the influence functions for

the location, scale, and quantile coe�cients are4

�i(✓) =

2

64
�i(�)

�i(�)

�i(q⌧ )

3

75

�i(�) = N(X 0X)�1xi(x
0
i�)⇥ "i

�i(�) = N(X 0X)�1xi(x
0
i�)⇥ ("̃i � 1

�

�i(q⌧ ) =
⌧ � 1

�
q⌧ � "i

�

f"(q⌧ )
� x0

i� ⇥ "i
x̄0
i�

� q⌧
x0
i� ⇥ ("̃i � 1

�

x̄0
i�

(13)

The di↵erent types of standard errors estimation thus depend on the assumptions

imposed for the estimation of V (✓).

2.2.1 Robust Standard Errors

The first and most natural standard error estimator is given by equation Equation 12.

This is equivalent to the Eicker-White heteroskedasticity-consistent estimator for least-

squares estimators. Considering the location-scale model, the variance-covariance matrix

for the quantile coe�cients can be estimated as

4
The derivation of the influence functions can be found in the appendix.

8



V̂robust

0

B@
�̂

�̂

q̂⌧

1

CA =
1

N2

0

B@

P
�i(�)�i(�)0

P
�i(�)�i(�)0

P
�i(�)�i(q⌧ )0P

�i(�)�i(�)0
P
�i(�)�i(�)0

P
�i(�)�i(q⌧ )0P

�i(q⌧ )�i(�)0
P
�i(q⌧ )�i(�)0

P
�i(q⌧ )�i(q⌧ )0

1

CA

2.2.2 Clustered Standard Errors

Because one of the typical applications of quantile regressions is the analysis of panel

data, allowing for clustered standard errors at the individual level is important. If the

unobserved error " is correlated within clusters, generalized least squares (GLS) standard

errors could be severely biased. The standard recommendation has been to report block-

bootstrap standard errors, clustered at the individual level.

Because we have access to the influence functions, it is straightforward to estimate

one-way clustered standard errors.

Let NG be the total number of clusters g, where g = 1 . . . NG. The clustered variance

covariance matrix is given by5

V̂clustered

0

B@
�̂

�̂

q̂⌧

1

CA =
1

N2

⇣PNG

g=1 S�i(✓)S�i(✓)
0
⌘

where S�i(✓) is the sum of the influence functions over all observations within a given

cluster g.

S�i(✓) =
X

i2g

�i(✓)

2.2.3 GLS Standard Errors

The standard errors proposed by MSS can be understood as an application of GLS, which

will be valid as long as the model for heteroskedasticity is correctly specified.6 To estimate

5
It should be noted that one could just as well apply the insights of Cameron et al. (2011), allowing

for multiway clustering.
6
As discussed in most econometric textbooks, for example Cameron and Trivedi (2005), one approach

to correct for heteroskedasticity, when the heteroskedasticity functional form is known or can be estimated,

is to use weighted least squares. While feasible this approach would defeat the purpose of identifying
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the GLS standard errors, we make use of the following property:

Consider the influence functions and robust variance-covariance matrix for the location

coe�cients:

V̂ (�̂) =
1

N

NX

i

�i(�)�i(�)
0

=
1

N
(X 0X)�1

NX

i

xix
0
i(x

0
i� ⇥ "i)

2(X 0X)�1

Under the assumption that the model for heteroskedasticity is correctly specified, we

can apply the law of iterated expectations and rewrite the variance-covariance matrix as

V̂ (�̂) =
1

N

NX

i

�i(�)�i(�)
0

= E("2i )
1

N
(X 0X)�1

NX

i

xix
0
i(x

0
i�)

2(X 0X)�1

= �2
"

1

N
(X 0X)�1⌦̂��(X

0X)�1

This standard error estimator is an application of GLS that accounts for the het-

eroskedasticity the model uses to identify the quantile coe�cients. We can apply the

same principle to find the GLS standard errors for the system of location-scale and quan-

tile coe�cients. To do this, we define the following modified influence functions:

�̃1,i = �̃2,i = N(X 0X)�1xi(x
0
i�)

�̃3,i = x0
i�

 i,1 = "i

 i,2 = "̃i � 1

 i,3 =
1

x0
i�

⌧ � 1
�
q⌧ � "i

�

f"(q⌧ )
� "i

x̄0
i�

� q⌧
("̃i � 1

�

x̄0
i�

Then, the GLS standard errors for the location-scale and quantile coe�cients can be

estimated as

quantile e↵ects exploiting the heteroskedasticity of the model.
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V̂gls

0

B@
�̂

�̂

q̂⌧

1

CA =
1

N2

0

B@
�̂11⌦̂11 �̂12⌦̂12 �̂13⌦̂13

�̂12⌦̂12 �̂22⌦̂22 �̂23⌦̂23

�̂13⌦̂13 �̂23⌦̂23 �̂33⌦̂33

1

CA

where

⌦̂jk =
1

N

NX

i=1

�̃i,j(✓)�̃i,k(✓)
0

�̂jk =
1

N

NX

i=1

 i,j i,k

This estimator of standard errors is equivalent to the one derived by MSS using Theo-

rem 3. Empirically, the simulation study shows that this estimator may be very sensitive

to predictions of the scale model. In the simulation study, we show that when the sample

small, and the likelihood of predicting zero or negative values for the scale model is high,

the GLS standard errors may be unreasonably large.

2.3 Multiple Fixed E↵ects: Expanding on Machado and Santos

Silva (2019)

Using the setup described in the previous section, MSS proposes an extension to the model

proposed by He (1997) that enables the estimation of quantile regression models with panel

data, allowing for the inclusion of individual fixed e↵ects. However, the methodology can

also be generalized to allow for the inclusion of multiple fixed e↵ects. This type of analysis

can be useful when considering data such as employer-employee linked data (Abowd et al.,

2006) or teacher-student linked data (Harris and Sass, 2011). Or, in the most common

case, allowing to control for both individual and time fixed e↵ects.

We return to the original model and now assume there are sets of unobserved hetero-

geneity that are constant across observations, if they belong to common groups. Without

loss of generality, we can assume that the data-generating process is as follows:

yi = x0
i� + �g1 + �g2 + ⌫i

⌫i = "i ⇥ (x0
i� + ⇣g1 + ⇣g2)
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where we assume xi vary across groups g1 and g2 (and thus are not collinear) and that

�0s and ⇣ 0s are the location and scale e↵ects associated with the groups fixed e↵ects.7

If the dimension of groups gk is low, this model could be estimated using a dummy

inclusion approach following Section 2.1, and the standard errors obtained as discussed in

Section 2.2. However, if the dimensionality of gk is high, the dummy inclusion approach

may not be computationally feasible. A more feasible approach is to apply the FWL

theorem and partial out the impact of the group fixed e↵ects on the control variables xi,

and the outcome of interest yi, and using a similar approach for the identification of �(x).

In the case of unbalanced setups with multiple groups, the estimation involves iterative

processes for which various approaches have been suggested and implemented (see for

example, Correia (2016), Gaure (2013), Rios-Avila (2015), among others).

When applying the partialing-out approach, some modifications to the approach de-

scribed in Section 2.1 are needed.

First, for all dependent and independent variables in the model (w = y, x), we partial

out the group fixed e↵ects and obtain the centered-residualized variables:

wi = �wg1 + �wg2 + uw
i

wrc
i = E(wi) + ûw

i

Afterward, we estimate the location model using the centered-residualized variables:8

yrci = xrc0

i � + ⌫i

Because |⌫̂i| is the dependent variable for the scale model, we apply the partialing out

and recentering to this expression (|⌫̂i|rc), and use that to estimate the following model:

|⌫̂i|rc = xrc0

i � + !i

Finally, the standardized residuals "i can be obtained as follows:

7
We could just as well consider multiple sets of fixed e↵ects.

8
Using centered-residualized variables allows us to include a constant in the model specification, which

simplifies the derivation of the influence functions. However, as with other fixed e↵ects models, the

constant is not identified and thus should not be interpreted.
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"̂i =
⌫i

|⌫̂i|� !̂i

where |⌫̂i|� !̂i is the prediction for the conditional standard deviation �(xi) = x0
i� +

⇣g1 + ⇣g2

The ⌧th quantile of the error " can be estimated as usual and the variance-covariance

matrices obtained in the same way as before (see Section 2.2) by using xrc
i instead of xi

when estimating the influence functions for all estimated coe�cients.

3 Simulation Evidence

To show the performance of the extended strategy, we implement a small simulation study.

We consider a simple model with a single explanatory variable x. In contrast with MSS,

we consider a two-way fixed e↵ect structure. For this exercise, we consider the following

data-generating process:

yi = ↵1i + ↵2i + xi + (2 + xi + ↵1i + ↵2i)"i

where ↵1i ⇠ �2(1), ↵2i ⇠ �2(1), and xi = 0.5 ⇤ (�i + 0.5(↵1i + ↵2i)), with �i ⇠ �2(1).

We only consider the case when the error term "i is assumed to follow a centered �2

distribution.9 We assume that there are 50 mutually exclusive groups for each set of fixed

e↵ects. Observations are assigned to each subgroup randomly using a uniform distribution

between 1 and 50.

To assess the alternative Standard error estimators, we consider a second data-generating

process where the error term is correlated within clusters. For this, we assume observa-

tions are assigned ramdomly to 100 mutually exclusive groups, which are independent

from the fixed e↵ect groups. In this setup the data-generating process is:

yi = ↵1i + ↵2i + xi + (2 + xi + ↵1i + ↵2i) ⇤ i
i = inv � �2

5(ri)/5� 1

ri = �((
p
.25 ⇤ si +

p
.75 ⇤ sg))

9
Specifically we assume " =

ri
5 � 1, where ri follows a chi-squared distribution such that ri ⇠ �2

(5).

Simulations under the assumption of normal errors are available upon request.
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where si ⇠ N(0, 1) and sg ⇠ N(0, 1), are errors that vary across individuals i or

across clusters g. �() is the cumulative distribution function of a normal distribution,

and inv � �2
5() is the inverse function for a Chi-2 distribution with 5 degrees of freedom.

With this setup, we generate an error structure with a strong intra-cluster correlation,

but without a↵ecting the model specification assumption.10

We consider sample sizes of 500, 1000, 2000, and 4000 observations, which implies

an average of 10, 20, 40, and 80 observations per group. The model is estimated using

the location-scale model with heteroskedastic linear errors and we report the coe�cients

for the 25th and 75th quantiles. We run this excercise 5000 times. Table 1 reports the

bias, simulated standard error, and mean squared error, using the first data generation

structure only. We also report the results obtained using an adaptation bias-corrected

estimator based on the split-panel jackknife estimator proposed by Dhaene and Jochmans

(2015).11 These results are labeled JKC.

Similar to the findings in MSS, we find that while the estimator presents a substantial

bias when the sample is small (N = 500), this bias shrinks as the sample size increases.

As MSS describes, the bias seems to be proportional to the sample size, or more precisely

to the average number of observations per sub-group. Interestingly, the bias-corrected

estimator presents an almost 0 bias for the 25th percentile, even when the samples are

small. In contrast, when considering the 75th percentile, the simple estimator shows

smaller bias than the Jacknife estimator.[ˆ88: This is also consistent with simulations

with a single fixed e↵ect] In either case, despite the bias reduction obtained using the

JKC estimator, the standard errors are larger than without correction. For the 25th

quantile, the reduction in bias is large enough to produce a smaller Mean Squared Error

(MSE) than the simple estimator. This is similar to the results of MSS.

To evaluate the performance of the di↵erent standard errors, we present bias, 95%

coverage of the biased corrected estimates, as well as the simulated standard errors, aver-

age and median of the standard errors obtained using the GLS, robust SE, and clustered

standard SE. Table 2 considers the d.g.p. without intra-cluster correlation, while Table 3

considers the d.g.p. that induces intra-cluster correlations. All simulations consider 5000

repetitions.

10
We do not consider the case of misspecification of the scale model because that change would not

only have an impact on the standard errors, but also a↵ect the bias of the estimated coe�cients
11
For the implementation, we first estimate the model using the full sample, then randomly assign each

observation into one of two groups, and finally reestimate the quantile coe�cients for each group. The

bias-corrected estimator is then obtained as �̂(⌧)jkc = 2 ⇤ �̂(⌧)full � 0.5 ⇤
�
�̂(⌧)s1 + �̂(⌧)s2

�
.
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Table 1: Bias, Simulated Standard error, and Mean Squared Error

(a)

N = 500 N = 1000
Mean Bias SE MSE Mean Bias SE MSE

q25
mmqreg 0.169 0.267 0.099 0.092 0.172 0.038
jkc 0.048 0.318 0.104 0.014 0.189 0.036
q75
mmqreg -0.050 0.446 0.202 -0.010 0.310 0.096
jkc 0.048 0.546 0.301 0.018 0.339 0.115

N = 2000 N = 4000
Mean Bias SE MSE Mean Bias SE MSE

q25
mmqreg 0.050 0.119 0.017 0.026 0.084 0.008
jkc 0.006 0.126 0.016 0.003 0.087 0.008
q75
mmqreg 0.001 0.215 0.046 0.003 0.151 0.023
jkc 0.006 0.222 0.049 0.002 0.154 0.024
Note: mmqreg - The proposed estimator. JKC-Jacknife Bias Corrected

Estimator. SE- Simulated Standard Error. MSE - Mean Squared Error.

Mean bias is the di↵erence between the estimated coe�cient and the an-

alytical true value.
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Table 2: 95% Coverage Ratio, and Standard Error Estimation: No Intra-cluster Correla-
tion

(a)

Q25 Q75
N =500 =1000 =2000 =4000 =500 =1000 =2000 =4000
Bias 0.173 0.096 0.050 0.026 -0.040 -0.008 0.003 0.003
Sim SE 0.268 0.171 0.118 0.084 0.443 0.314 0.219 0.153
Mean GLS SE 1.9e7 0.830 0.401 0.084 7.3e7 1.876 4.259 0.156
Median GLS SE 0.495 0.215 0.123 0.083 1.037 0.429 0.225 0.152
CR95% 0.988 0.980 0.958 0.948 0.991 0.977 0.967 0.952
Mean Rbst SE 0.224 0.159 0.112 0.080 0.353 0.269 0.199 0.144
CR95% 0.892 0.928 0.939 0.932 0.875 0.904 0.927 0.936

The bias magnitude in Table 2 and Table 3 is comparable to those observed in Ta-

ble 1, with simulated standard errors that show to be slighly larger when we allow for

intra-cluster correlations, just as expected. When assuming there is no need to clustered

standard errors (Table 2), the coverage associated to GLS standard errors is above 95%

when the samples are small, but it approximates to 95% as the sample size increases. On

the other and, the coverage rates associated to Robust Standard errors are closer to 90%,

albeit increasing slighly for larger samples.

One of the main reason that the GLS-Standard errors achieve higher than expected

rates of coverage may be related to the fact that the Standard error estimator is very

sensitive to near zero predictions from the scale model. As shown in Table 2, average

and median GLS-SE are considerably larger than the simulated standard errors when

the sample are small. While robust standard errors are less sensitive to this problem,

producing more stable results, they tend to underestimate the magnitude of the true

standard errors in small samples. This translates into the lower coverage rates.

When we consider the presence of Intra-Cluster correlation, Table 3, we still observe

similar problems with the GLS-SE, albeit with high coverage rates. While Robust and

Clustered Standard errors are in average smaller than the Simulated Standard errors,

coverage rates are above 90%. Clustered standard errors perform the best only when the

sample size is large, with Robust standard error producing low Standard errors estimates.

Overall, the simulation study shows that using GLS-SE estimator may be appropriate

when the sample is relatively large. When there is suspected presence of intra-cluster cor-

relation, the use of clustered standard errors is recommended in larger samples. However,

when the sample is small, the use of robust standard errors may be appropriate if GLS
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Table 3: 95% Coverage Ratio, and Standard Error Estimation: With Intra-cluster Corre-
lation

(a)

Q25 Q75
N =500 =1000 =2000 =4000 =500 =1000 =2000 =4000
Bias 0.180 0.091 0.053 0.027 -0.022 -0.008 0.003 0.003
Sim SE 0.299 0.200 0.141 0.100 0.503 0.352 0.253 0.182
Mean GLS SE 1.5e7 1.053 0.190 0.093 6.0e7 1.332 0.309 0.167
Median GLS SE 0.476 0.215 0.133 0.092 0.913 0.384 0.236 0.165
CR95% 0.984 0.963 0.939 0.928 0.986 0.963 0.940 0.925
Mean Rbst SE 0.253 0.179 0.126 0.089 0.402 0.303 0.222 0.160
CR95% 0.896 0.916 0.917 0.915 0.880 0.905 0.917 0.906
Mean CLS SE 0.252 0.180 0.130 0.096 0.397 0.304 0.228 0.172
CR95 0.892 0.915 0.923 0.935 0.875 0.902 0.919 0.928

standard errors when there is the risk of near-zero predictions from the scale model.

4 Application: Determinants of government surpluses

In this section we replicate one of the exercises from MSS, allowing for time and individual

fixed e↵ects as well as for di↵erent standard errors estimations. We use data from Persson

and Tabellini (2005), to estimate the relationship between surplus of government as share

of GDP, and a measure of quality of democracy (POLITY); log of real income per capita

(LYP); trade volume as share of GDP (TRADE); share of population between 15 and 65

years of age (P1564); the share of the population 65 years and older (P65); one-year lag

of the dependent variable (LSP); oil prices in US dollars, di↵erntiating between importer

and exporter countries (OILIM and OILEX); and the output gap (YGAP). In addition

to country fixed e↵ects (as illustrated in MSS), we show results allowing for time fixed

e↵ects. Table 4 and Table 5 provide the results for the model with and without time

fixed e↵ects, respectively. The tables showcase the location and scale coe�cients, as well

as the quantile coe�cients for the 25th, 50th and 75th quantiles. We also report GLS

standard errors, robust standard errors (brackets) and clustered standard errors at the

country level.
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Table 4: Determinants of Government Surpluses: Individual Fixed E↵ects

polityt lyp trade p1564 p65 lspl oil im oil ex ygap

Location

coe↵ 0.116 -0.715 0.030 0.121 0.028 0.691 -0.047 -0.006 0.010

se gls 0.046 0.540 0.008 0.033 0.070 0.035 0.008 0.022 0.028

se r 0.047 0.597 0.008 0.031 0.070 0.037 0.007 0.017 0.021

se cl 0.046 0.465 0.007 0.032 0.071 0.035 0.010 0.020 0.023

Scale

coe↵ -0.097 -0.616 0.003 0.036 0.087 -0.085 0.013 0.016 -0.004

se gls 0.032 0.371 0.005 0.023 0.048 0.024 0.006 0.015 0.019

se r 0.031 0.398 0.005 0.020 0.049 0.025 0.005 0.010 0.015

se cl 0.048 0.800 0.008 0.031 0.067 0.029 0.004 0.010 0.012

Q25

coe↵ 0.191 -0.239 0.028 0.093 -0.039 0.756 -0.057 -0.018 0.013

se gls 0.059 0.684 0.010 0.042 0.088 0.045 0.010 0.027 0.035

se r 0.056 0.656 0.008 0.036 0.086 0.040 0.010 0.020 0.025

se cl 0.073 0.687 0.006 0.041 0.098 0.023 0.010 0.021 0.029

Q50

coe↵ 0.108 -0.765 0.030 0.124 0.035 0.684 -0.046 -0.005 0.009

se gls 0.046 0.535 0.007 0.033 0.069 0.035 0.008 0.022 0.027

se r 0.046 0.593 0.008 0.031 0.069 0.036 0.007 0.017 0.021

se cl 0.043 0.484 0.008 0.032 0.070 0.036 0.010 0.020 0.023

Q75

coe↵ 0.031 -1.258 0.033 0.153 0.104 0.616 -0.036 0.008 0.006

se gls 0.048 0.551 0.008 0.034 0.071 0.036 0.008 0.022 0.028

se r 0.049 0.696 0.009 0.034 0.075 0.043 0.007 0.018 0.023

se cl 0.039 0.919 0.012 0.041 0.079 0.055 0.010 0.022 0.020

As expected, Table 4 shows that the point estimates are identical to those reported in

Machado and Santos Silva (2019) (Table 6), including analytical standard errors (GLS).

With our estimator, however, we are also able to produce both robust and clustered

standard errors for location and scale coe�cients. Except for a few cases, the robust

and clustered standard errors are larger than the GLS standard errors, which may be an

indication of misspecification of the model. The GLS standard errors we report di↵er
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from those in MSS, because they use panel standard errors, which are equivalent to our

clustered standard errors, instead of the analytical standard errors we derive.

Considering the estimated e↵ects across quantiles, we observe few di↵erences in the

reported GLS standard errors compared to the analytical standard errors reported in

MSS. Our clustered standard errors, however, are closer to the bootstrap-based standard

errors the authors report.12

In Table 5, we report the results including both individual and year fixed e↵ects.

Because oil prices only vary across years, the variable is excluded from the model spec-

ification. Accounting for time fixed e↵ects does not change the general conclusions that

can be drawn, based on the results from Table 4. The two largest di↵erences are that the

log of income per capita has a positive e↵ect on government surpluses, but only for the

25th quantile, because at this point the largest impact on the Scale component is felt.

Similarly, we observe that the income gap has an impact on government surplus that is

always negative and increasing across quantiles. In both instances, the e↵ects are not

statistically significant.

May be worth noting that the GLS SE are almost twice as large as the robust and

clustered standard errors. This is consistent with the results from the simulation study.

Examining the predictions of the scale model, we find that there are 9 observations with a

negative predicted scale, and 9 observations that could be considered outliers. This may

be the reason for the large GLS standard errors.

Table 5: The Determinants of Government Surpluses: Individual and Time Fixed E↵ects

polity lyp trade prop1564 prop65 lspl ygap

Location

coe↵ 0.126 -0.418 0.028 0.108 0.042 0.693 -0.014

se gls 0.087 1.157 0.015 0.072 0.136 0.066 0.053

se r 0.047 0.703 0.008 0.038 0.068 0.038 0.022

se cl 0.048 0.506 0.008 0.044 0.077 0.037 0.022

Scale

coe↵ -0.095 -1.255 0.005 0.033 0.040 -0.081 0.008

se gls 0.081 1.073 0.014 0.067 0.126 0.061 0.049

12
The di↵erences in the GLS standard errors may be due that in our derivation the influence function

of the standardized ⌧th quantile (see #eq-ifs) does not have the same leading term as the one reported

in MSS (see Theorem 3, and the definition of W ).
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polity lyp trade prop1564 prop65 lspl ygap

se r 0.031 0.452 0.005 0.025 0.045 0.025 0.017

se cl 0.041 0.848 0.006 0.030 0.048 0.033 0.013

Q25

coe↵ 0.201 0.576 0.025 0.082 0.010 0.757 -0.020

se gls 0.154 2.070 0.024 0.118 0.219 0.121 0.085

se r 0.058 0.751 0.008 0.049 0.080 0.040 0.026

se cl 0.073 0.761 0.006 0.052 0.087 0.023 0.027

Q50

coe↵ 0.119 -0.512 0.029 0.111 0.045 0.687 -0.013

se gls 0.091 1.230 0.014 0.070 0.130 0.072 0.051

se r 0.046 0.695 0.008 0.037 0.068 0.038 0.022

se cl 0.045 0.529 0.008 0.044 0.077 0.039 0.021

Q75

coe↵ 0.041 -1.555 0.033 0.138 0.078 0.619 -0.007

se gls 0.067 0.898 0.011 0.053 0.098 0.052 0.038

se r 0.048 0.827 0.009 0.037 0.075 0.046 0.026

se cl 0.038 0.980 0.012 0.050 0.086 0.063 0.020

5 Application: Labor incomes and crime in Ecuador

In this section we investigate the e↵ects of criminal activities on labor incomes using a

quantile regression approach in order to discover whether crime has di↵erent impacts on

the distribution of interest. We use data from the ENEMDU labor survey from Ecuador

and combine it with administrative records of crime reports by Ecuadorian Cantons.

The combined data set covers the period 2019-2022. For the sake of brevity, we will

only present here the results of quantile regressions of the log of total labor income on the

log of annual reported murders (LMURDERS) and other covariates displayed in Table 6.

However, our findings are robust to alternative specifications of the model where the

dependent variable is either the log of per-capita household income or the log of total

labor income from main occupation, both of which are displayed in Appendix B .

The findings in Table 6 support the idea that the e↵ect of murders diminishes as we

move forward in the distribution from low to high incomes: in the lowest decile, an 1%
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Table 6: The E↵ect of Crime on Labor Income: Canton, Activity Sector and Time Fixed
E↵ects

(a)

VARIABLES q10 q25 q50 q75 q90

lmurders -0.0308* -0.0219* -0.0140* -0.00728 -0.00151
(0.0158) (0.0115) (0.00814) (0.00634) (0.00629)

age 0.0624*** 0.0577*** 0.0535*** 0.0499*** 0.0469***
(0.00210) (0.00179) (0.00162) (0.00159) (0.00164)

age2 -0.000802*** -0.000704*** -0.000616*** -0.000542*** -0.000479***
(2.38e-05) (2.08e-05) (1.89e-05) (1.81e-05) (1.83e-05)

male 0.526*** 0.435*** 0.353*** 0.284*** 0.225***
(0.0489) (0.0367) (0.0266) (0.0198) (0.0165)

informal -0.841*** -0.723*** -0.617*** -0.528*** -0.451***
(0.0402) (0.0283) (0.0192) (0.0139) (0.0136)

urban -0.104*** -0.102*** -0.101*** -0.0997*** -0.0987***
(0.0143) (0.0120) (0.0112) (0.0118) (0.0130)

married 0.0849*** 0.0937*** 0.102*** 0.108*** 0.114***
(0.0127) (0.00965) (0.00717) (0.00552) (0.00481)

educ 0.0262*** 0.0345*** 0.0418*** 0.0480*** 0.0534***
(0.00214) (0.00233) (0.00281) (0.00340) (0.00400)

tenure 0.0101*** 0.00847*** 0.00698*** 0.00571*** 0.00462***
(0.000942) (0.000805) (0.000707) (0.000638) (0.000594)

Constant 3.715*** 4.130*** 4.500*** 4.813*** 5.082***
(0.0582) (0.0460) (0.0426) (0.0462) (0.0518)

Observations 445,521 445,521 445,521 445,521 445,521
Canton FE Yes Yes Yes Yes Yes
Activity Sector FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes

Clustered (at the Canton level) standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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increase in reported murders is associated with a 3.08% reduction in total labor income;

instead, for the top 10% labor income earners, murders are seen to have a little e↵ect

on the dependent variable and, in addition, the coe�cient is not significant at conven-

tional levels. Quantile regression estimates are thus really useful to discover relationships

between dependent and explanatory variables that are not seen in standard (mean) re-

gression analysis. For this application, we have found a monotonic decreasing e↵ect of

the log of reported crimes on total labor income.

While the capability of estimating distinct coe�cients of explanatory variables for each

quantile is a feature present since Koenker and Bassett (1978), our method of moments

approach allows us to include multiple not one but multiple sets of fixed e↵ects so that one

can account for unosberved heterogeneity at di↵erent levels. Regarding this application,

we have included in the estimation fixed e↵ects for Canton, Activity Sector of the income

earner and Year as is shown in Table 6. Given that LMURDERS is measured at the

Canton level, it may be important to control for unobserved factors a↵ecting both crime

and income earnings in the Cantons of Ecuador.

Finally our approach also allows to obtain clustered standard errors for estimated

coe�cients so that statistical inference can be performed properly. Table 6 presents

clustered standard errors at the Canton level, the rationale being the same as described

above for the inclusion of Canton fixed e↵ects in the specification. Had we not taken into

account the correlated nature of our standard errors, we would have computed misleading

(and smaller) estimates. For example, robust standard errors in this specification are, on

average, 2.5 times smaller than clustered standard errors. It is important, however, to

remark that the e↵ects of murders on labor income at the lower half of the distribution

are still statistically di↵erent from zero when clustering at the Canton level.

6 Conclusions

In this paper, we have extended the methodology proposed by Machado and Santos Silva

(2019) in order to estimate quantile regression models with multiple sets of fixed e↵ects

as well as with alternative standard errrors. This methodology will allow researchers to

implement more-comprehensive analyses of data sets characterized by complex hierarchies

and unobserved heterogeneity. This extension is particularly valuable in contexts where

group specific e↵ects vary across the conditional distribution of the outcome of interest.
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Using a small simulation study, we show that our extended approach is as e↵ective in

identifying the parameters of interest as that of Machado and Santos Silva (2019), even in

contexts with two sets of fixed e↵ects. Notably, the bias-corrected estimator based on the

split-panel jackknife estimator exhibits promising results, mitigating biases when samples

are small but increasing standard errors.

Furthermore, we have assessed the impact of intracluster correlation on the perfor-

mance of standard error estimations. Our findings emphasize the importance of using

appropriate standard error estimators to ensure accurate inference. In particular, we find

that GLS standard errors are biased when when the scale model predictions are close to

zero or negative, and that Robust and clustered standard errors are more stable in those

scenarios. Clustered Standard errors perform the best in the presence of intra-cluster

correlation, but the advantage is only evident when the sample size is large.

Finally, we have illustrated the application of our extended methodology using data

from Persson and Tabellini (2005). Our results are consistent with those reported in

Machado and Santos Silva (2019), and we are able to provide robust and clustered stan-

dard errors for the location and scale coe�cients. We find that the GLS standard errors

are almost twice as large as the robust and clustered standard errors, which is consistent

with the results from our simulation study. Nevertheless, there is no drastic change in the

original conclusions.
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A Derivation of the influence functions

A.1 Model Identification

The estimation of quantile regression via moments assumes that the DGP is linear in

parameters, with an heteroskedastic error term that is also a linear function of parameters:

yi = x0
i� + ⌫i

⌫i = "i ⇥ x0
i�

where " is an unobserved i.i.d. random variable that is independent of x and such that

x� is larger than 0 for any x.
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In this case, the ⌧th conditional quantile model can be written as

Qy(⌧ |X) = x0(� +Q"(⌧)⇥ �)

This model is identified under the following conditions:

E[(yi � x0
i�)xi] = E[h1,i] = 0

E[(|yi � x0
i�|� x0

i�)xi] = E[h2,i] = 0

E [1 (Q"(⌧)x
0
i� + x0

i� � yi)� ⌧ ] = E[h3,i] = 0

For simplicity, the rest of the appendix uses q⌧ to represent Q"(⌧).

A.2 Estimation of the Variance-Covariance Matrix

In this model, to estimate the variance-covariance matrix the set of coe�cients ✓0 =

[�0 �0 q⌧ ], we need to obtain the influence functions of all coe�cients, which are defined

as

�i = Ḡ(✓)�1

2

64
h1,i

h2,i

h3,i

3

75

where the Jacobian matrix Ḡ(✓) is defined as

Ḡ(✓) =

2

64
Ḡ11 Ḡ12 Ḡ13

Ḡ21 Ḡ22 Ḡ23

Ḡ31 Ḡ32 Ḡ13

3

75

with

Ḡj,k = � 1

N

NX

i=1

@hj,i

@✓0k
8j, k 2 1, 2, 3

First Moment Condition: Location Model
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h1,i = xi(yi � x0
i�)

Ḡ1,1 = � 1

N

NX

i=1

@h1,i

@�0

= � 1

N

NX

i=1

(�xix
0
i)

= N�1X 0X

Ḡ1,2 = Ḡ1,3 = 0

Second Moment Condition: Scale model

h2,i = xi(|yi � x0
i�|� x0

i�)

Ḡ2,1 = � 1

N

X @h2,i

@�0

=
1

N

X
xix

0
i

yi � x0
i�

|yi � x0
i�|

yi � x0
i�

|yi � x0
i�|

= sign(yi � x0
i�)

Under the assumption "i ⇥ x�, or in this case yi � x0
i�, is uncorrelated with x, we can

simplify the expression as

Ḡ2,1 = N�1
⇣
N�1

X
sign(yi � x0

i�)
⌘X

xix
0
i

= N�1E[sign(yi � x0
i�)]X

0X

Ḡ2,2 = � 1

N

X @h2,i

@�0

=
1

N

X
xix

0
i

= N�1X 0X

Ḡ2,3 = 0
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Third Moment Condition: Quantile of Standardized Residual

h3,i = 1 (q⌧x
0
i� + x0

i� � yi � 0)� ⌧ or

h3,i = 1

✓
q⌧ � yi � x0

i�

x0
i�

◆
� ⌧ = 1

�
q⌧ � "

�
� ⌧

Because the indicator function 1() is not di↵erentiable, we borrow from the nonpara-

metric literature to approximate this function with a kernel function. Call k() a well

behaved kernel function that is symetric around 0, and K() its integral, with range be-

tween 0 and 1. With an arbirarily small bandwidth h, we can use the function K() to

approximate the indicator function:

lim
h!0

K
⇣z
h

⌘
⇡ 1(z � 0)

Thus the function h3,i can be approximated as

h3,i ⇡ K

✓
1

h

⇣
q⌧x

0
i� + x0

i� � yi
⌘◆

� ⌧

Now, we can obtain the Jacobian matrix Ḡ3,1 as:

Ḡ3,1 = � 1

N

X @h3,i

@�0

= �N�1
X 1

h
k

✓
1

h

⇣
q⌧x

0
i� + x0

i� � yi
⌘◆

x0
i

= �N�1
X 1

h
k

✓
1

h

�
q⌧x

0
i� � ⌫i

�◆
x0
i

= �N�1
X 1

h
k

✓
1

h
(q⌧ � "i)x

0
i�

◆
x0
i

If we condition on X, use the law of iterated expectations, and assume that "i is

homoskedastic, we can obtain:
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Ḡ3,1 = �N�1
X 1

h
k

✓
1

h
(q⌧ � "i)x

0
i�

◆
x0
i

= �N�1
X 1

h
k

✓
q⌧ � "i

h

◆
x0
i

x0
i�

= �N�1f"(q⌧ )
X x0

i

x0
i�

Finally, this simplifies to:

Ḡ3,1 ' �f"(q⌧ )
x̄0
i

x̄0
i�

where we use the fact that asymptotically, the expression 1
N

P ai
bi
can be approximated

using Taylor expansions by ā
b̄
. 13 Thus, we can rewrite the last term as

The Jacobian for the second matrix Ḡ3,2 can be derived similarly:

Ḡ3,2 = � 1

N

X @h3,i

@�0

= �N�1
X 1

h
k

✓
1

h
(q⌧ � "i)x

0
i�

◆
q⌧x

0
i

= �N�1
X 1

h
k

✓
q⌧ � "i

h

◆
q⌧

x0
i

x0
i�

' �f(q⌧ )q⌧
x̄0

x̄0�

and the Jacobian for the third matrix Ḡ3,3 is

Ḡ3,3 = � 1

N

X @h3,i

@q⌧

= �N�1
X 1

h
k

✓
1

h
(q⌧ � "i)x

0
i�

◆
x0
i�

= �N�1
X 1

h
k

✓
q⌧ � "i

h

◆
x0
i�

x0
i�

' �f(q⌧ )

A.3 Influence Functions

Location Coe�cients
13
This approximation will be useful when we consider the estimation of the influence functions.
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�i(�) = Ḡ�1
1,1h1,i = N(X 0X)�1(xi(yi � x0

i�)) = N(X 0X)�1(xi⌫i)

which can also be written as a function of the standardized residuals:

�i(�) = Ḡ�1
1,1h1,i = N(X 0X)�1(xi(yi � x0

i�)) = N(X 0X)�1(xi(x
0
i� ⇥ "))

Scale Coe�cients

�i(�) = Ḡ�1
2,2

⇣
h2,i � Ḡ2,1�i(�)

⌘

= N(X 0X)�1
⇣
xi(|⌫i|� x0

i�)�N�1E[sign(⌫i)]X
0X
⇥
N(X 0X)�1(xi⌫i)

⇤⌘

= N(X 0X)�1
⇣
xi(|⌫i|� x0

i�)� E[sign(⌫i)](xi⌫i)
⌘

= N(X 0X)�1xi

⇣
|⌫i|� E[sign(⌫i)]⌫i � x0

i�
⌘

However,

|⌫i| = ⌫i ⇥ 1(⌫i � 0)� ⌫i ⇥ 1(⌫i < 0)

|⌫i| = ⌫i ⇥ 1(⌫i � 0)� ⌫i ⇥ [1� 1(⌫i � 0)]

|⌫i| = 2⌫i ⇥ 1(⌫i � 0)� ⌫i

and

E[sign(⌫i)] = E[1(⌫i � 0)]� E[1(⌫i < 0)]

E[sign(⌫i)] = E[1(⌫i � 0)]� E[(1� 1(⌫i � 0))]

E[sign(⌫i)] = 2E[1(⌫i � 0)]� 1

Thus,
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�i(�) = N(X 0X)�1xi

⇣
2⌫i ⇥ 1(⌫i � 0)� ⌫i � (2E[1(⌫i � 0)]� 1)⌫i � x0

i�
⌘

= N(X 0X)�1xi

⇣
2⌫i ⇥ 1(⌫i � 0)� 2E[1(⌫i � 0)]⌫i � x0

i�
⌘

= N(X 0X)�1xi

⇣
2⌫i ⇥

⇥
1(⌫i � 0)� E[1(⌫i � 0)]

⇤
� x0

i�
⌘

= N(X 0X)�1xi

⇣
⌫̃i � x0

i�
⌘

This last expression is the equivalent simplification used in Machado and Santos Silva

(2019) and Im (2000). If the scale function is strictly positive, it also follows that 1(⌫i �
0) = 1("i � 0). Thus, it can be simplified as

�i(�) = N(X 0X)�1xi(x
0
i�)⇥ ("̃i � 1

�

Quantile of Standardized Residual

�i(q⌧ ) = Ḡ�1
3,3

⇣
h3,i � Ḡ3,1�i(�)� Ḡ3,2�i(�)

⌘

= � 1

f"(q⌧ )
⇥
 ⇣

1(q⌧ � ")� ⌧
⌘

+ f"(q⌧ )
x̄0
i

x̄0
i�
N(X 0X)�1xi(x

0
i� ⇥ ")

+ f"(q⌧ )q⌧
x̄0
i

x̄0
i�
N(X 0X)�1xi

�
⌫̃i � x0

i�
�
!

=
⌧ � 1

�
q⌧ � "

�

f"(q⌧ )
� x0

i� ⇥ "i
x̄0
i�

� q⌧
⌫̃i � x0

i�

x̄0
i�

B Complimentary analysis of Section 5

In this appendix, we present the quantile regressions of both (log) per-capita household

income and the (log) of labor income from main occupation on the (log) of annual reported

murders. While in the first specification the coe�cients of interest are not significant at

conventional levels because of clustered standard errors (see table 7), the same pattern of

decreasing association between murders and measurements of well-being as we move to

the right of the distribution is revealed using our proposed method.
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Table 7: The E↵ect of Crime on Per Capita Household Income: Canton and Time Fixed
E↵ects

(a)

VARIABLES q10 q25 q50 q75 q90

lmurders -0.0261 -0.0224 -0.0187 -0.0153 -0.0123
(0.0188) (0.0151) (0.0118) (0.00941) (0.00832)

age 0.00513*** 0.00528*** 0.00543*** 0.00558*** 0.00570***
(0.00115) (0.00104) (0.00104) (0.00114) (0.00129)

age2 5.12e-06 1.41e-05 2.31e-05** 3.14e-05** 3.87e-05**
(1.17e-05) (1.01e-05) (1.07e-05) (1.29e-05) (1.55e-05)

male -0.0137** -0.00997** -0.00627 -0.00282 0.000206
(0.00586) (0.00484) (0.00404) (0.00363) (0.00362)

informal -0.428*** -0.377*** -0.326*** -0.279*** -0.237***
(0.0293) (0.0235) (0.0183) (0.0141) (0.0111)

urban 0.136*** 0.128*** 0.119*** 0.112*** 0.105***
(0.0331) (0.0300) (0.0275) (0.0259) (0.0253)

Constant 5.046*** 5.377*** 5.707*** 6.014*** 6.282***
(0.0787) (0.0676) (0.0606) (0.0580) (0.0588)

Observations 566,127 566,127 566,127 566,127 566,127
Canton FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes

Clustered (at the Canton level) standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Coe�cients for marital status, education attainment and household size not shown.

However, in table 8 we get significant (at the 1% level) associations between reported

murders and a slightly di↵erent measurement of labor income that only takes into account

the main occupation of the individual. Compared to total labor income, the coe�cients

displayed in table 8 are smaller in magnitude: for the lowest decile of the distribution, we

find a 1 percentage point di↵erence in the coe�cient of interest between the two alternative

specifications, where the largest e↵ect corresponds to total labor income. Nevertheless,

and once again, the decreasing pattern of reported murders across quantiles is documented

for this specification. What is even more interesting, compared to our estimations in table

6, is that crime is no longer statistically meaningful from the median of the distribution

onwards.

32



Table 8: The E↵ect of Crime on Labor Income in Main Occupation: Canton, Activity
Sector and Time FE

(a)

VARIABLES q10 q25 q50 q75 q90

lmurders -0.0209*** -0.0140** -0.00748 -0.00157 0.00381
(0.00765) (0.00555) (0.00484) (0.00566) (0.00721)

age 0.0610*** 0.0533*** 0.0461*** 0.0395*** 0.0335***
(0.00282) (0.00211) (0.00155) (0.00118) (0.00100)

age2 -0.000697*** -0.000587*** -0.000485*** -0.000391*** -0.000306***
(3.06e-05) (2.33e-05) (1.81e-05) (1.52e-05) (1.48e-05)

male 0.158*** 0.149*** 0.141*** 0.133*** 0.126***
(0.0180) (0.0145) (0.0118) (0.0103) (0.00983)

informal -0.515*** -0.460*** -0.410*** -0.363*** -0.321***
(0.0182) (0.0148) (0.0126) (0.0117) (0.0122)

urban -0.0908*** -0.0980*** -0.105*** -0.111*** -0.116***
(0.0120) (0.0106) (0.00997) (0.0102) (0.0109)

married 0.0986*** 0.0927*** 0.0871*** 0.0820*** 0.0774***
(0.00687) (0.00541) (0.00436) (0.00381) (0.00375)

educ 0.0424*** 0.0462*** 0.0498*** 0.0530*** 0.0560***
(0.00123) (0.00207) (0.00311) (0.00417) (0.00518)

tenure 0.00658*** 0.00585*** 0.00517*** 0.00455*** 0.00398***
(0.000832) (0.000813) (0.000810) (0.000815) (0.000827)

Constant 3.882*** 4.279*** 4.649*** 4.987*** 5.294***
(0.0640) (0.0452) (0.0469) (0.0571) (0.0680)

Observations 249,993 249,993 249,993 249,993 249,993
Canton FE Yes Yes Yes Yes Yes
Activity Sector FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes

Clustered (at the Canton level) standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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C Implementation

The method described here can be implemented using any of the following packages:

• mmqreg in Stata: net install mmqreg, from(https://friosavila.github.io/stpackages)

• mmqreg in R: Available on GitHub (https://github.com/friosavila/mmqreg)
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