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Decisions Subject to Implementability*

What is the purpose of pre-analysis plans, and how should they be designed? We model 

the interaction between an agent who analyzes data and a principal who makes a decision 

based on agent reports. The agent could be the manufacturer of a new drug, and the 

principal a regulator deciding whether the drug is approved. Or the agent could be a 

researcher submitting a research paper, and the principal an editor deciding whether it 

is published. The agent decides which statistics to report to the principal. The principal 

cannot verify whether the analyst reported selectively. Absent a pre-analysis message, if 

there are conflicts of interest, then many desirable decision rules cannot be implemented. 

Allowing the agent to send a message before seeing the data increases the set of decisions 

rules that can be implemented, and allows the principal to leverage agent expertise. The 

optimal mechanisms that we characterize require pre-analysis plans. Applying these results 

to hypothesis testing, we show that optimal rejection rules pre-register a valid test, and 

make worst-case assumptions about unreported statistics. Optimal tests can be found as a 

solution to a linear-programming problem.
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1 Introduction

When writing up their studies, empirical researchers might cherry-pick the findings

that they report. Cherry-picking distorts the inferences that we can draw from pub-

lished findings. As a potential solution, pre-analysis plans (PAPs) have become a

precondition for the publication of experimental research in economics, for both field

experiments and lab experiments.1 PAPs can enable valid inference by pre-specifying

a mapping from the data to testing decisions or estimates, cf. Christensen and Miguel

(2018); Miguel (2021). This can prevent the cherry-picking of results, and thus pro-

vide a remedy for the distortions introduced by unacknowledged multiple hypothesis

testing. The widespread adoption of PAPs has not gone uncontested, however,2 and

has been criticized for constraining our ability to learn from experiments.

In this article, we clarify the benefits and optimal design of pre-analysis plans

by modeling statistical inference as a mechanism-design problem (Myerson, 1986;

Kamenica, 2019). To motivate this approach, note that, in single-agent statistical

decision theory, rational decision-makers with preferences that are consistent over

time do not need the commitment device that is provided by a PAP. This holds

in particular when a single decision-maker aims to construct tests that control size,

or estimators that are unbiased. Single decision-makers have no reason to “cheat

themselves.” The situation is di↵erent, however, when there are multiple agents with

conflicting interests. When there are multiple agents, not all statistical decision rules

might be implementable. Furthermore, allowing for messages (PAPs) before the data

are seen can increase the set of implementable rules, and thus improve welfare.3

Our framework provides a theoretical justification of PAPs. In addition to our

theoretical results, which are based on this framework, we also derive guidance for

practitioners, including both decision-makers (e.g., readers, editors) and data analysts

(e.g., study authors). From the decision-makers’ perspective, we describe how tests,

estimators, or other decision rules can be implemented by requiring pre-analysis plans.

We then focus on hypothesis tests, and describe how to derive optimal pre-analysis

1Just as in the case of randomized experiments, the adoption of PAPs in economics follows their
prior adoption in clinical research; see for instance the guidelines of the FDA on PAPs, (Food and
Drug Administration, 1998).

2See for instance Co↵man and Niederle (2015), Olken (2015), and Duflo et al. (2020), who discuss
the costs and benefits of PAPs in experimental economics from a practitioners’ perspective.

3A separate argument for pre-analysis plans, which we do not pursue in this paper, might be
based on dynamic inconsistencies in agent preferences, for instance because of present-bias.
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plans from the analysts’ perspective. These pre-analysis plans maximize power while

controlling size and maintaining implementability. We furthermore provide software

(an interactive web app) to facilitate the design of optimal pre-analysis plans.

Examples In our model, we consider the interaction between a decision-maker and

an analyst. The analyst has private information and interests which di↵er from those

of the decision-maker. One example of such a conflict of interest is between a re-

searcher (analyst) who wants to reject a hypothesis, and a reader of their research

(decision-maker) who wants a valid statistical test of that same hypothesis; the rel-

evant decision here is whether to reject the null hypothesis. Another example is the

conflict of interest between a researcher (analyst) who wants to get published, and

a journal editor (decision-maker) who only wants to publish studies on e↵ects that

are large enough to be interesting; the relevant decision here is whether to publish a

study. A third example is the conflict of interest between a pharmaceutical company

(analyst) who wants to sell drugs, and a medical regulatory agency (decision-maker)

who wants to protect patient health; the relevant decision here is whether to approve

a drug.

Model and timeline The timeline of our model is as follows. Before observing the

data, the analyst can send a message to the decision-maker. This message might for

instance be in the form of a pre-analysis plan. Then the analyst observes the data.

The data are given in the form of a set of statistics, such as the outcomes of di↵erent

hypothesis tests, or estimates for di↵erent model specifications. The analyst chooses

a subset of these statistics to report to the decision-maker.

The decision-maker observes the pre-analysis message and the statistics which the

analyst reported, and makes a decision based on this information. We assume that

this decision is real-valued, and that the analyst always prefers a higher value for this

decision. We consider di↵erent objectives for the decision-maker, including statistical

testing subject to size control.

In our model, the analyst can hide information from the decision-maker, by not

reporting some statistics, but they cannot lie about the data that they report. The

potential value of a pre-analysis message in this model comes from the fact that it

allows the analyst to share private information (i.e., expertise) with the decision-

maker. Sharing such information truthfully would not be incentive-compatible if the
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message could only be sent after seeing the data. The analyst might have private

information regarding the availability of statistics, and regarding the state of the

world.

To make it possible for the analyst to hide information, they need to have plausible

deniability: The decision-maker does not know what statistics the analyst got to

see. Experiments might not have been run, or data might not have been collected,

for instance. The analyst might also have prior uncertainty over the availability of

statistics, but this is not necessary for our conclusions.

The mechanism-design approach which motivates our model takes the perspective

of a decision-maker who wants to implement a statistical decision rule. Not all rules

are implementable, however, when the analyst has divergent interests and private

information. This mechanism-design perspective allows us to stay close to standard

statistical theory, while taking into account the implementability constraints that are

a consequence of the social nature of research.

Implementable decision rules For this model, we first characterize the set of

implementable statistical decision rules. This set is independent of decision-maker

preferences. We show that implementable decision rules are such that reporting more

results can never make the analyst worse o↵, given the pre-analysis message, and

given the realization of the data. Formally, implementable decision rules need to be

monotonic in the reported set of statistics, in terms of set inclusion.

Implementable decision rules furthermore need to be compatible with truthful

revelation of analyst private information prior to observing any data (Myerson, 1986).

This condition is equivalent to the conditions satisfied by proper scoring rules (Savage,

1971; Gneiting and Raftery, 2007).

Pre-analysis messages allow the decision-maker to implement a larger set of deci-

sion rules than would be available without such messages. Implementable rules can

be implemented using di↵erent mechanisms, based on such pre-analysis messages.

One possible implementation allows the analyst to choose from a restricted set of de-

cision rules before seeing the data. Each of these rules needs to be monotonic in the

set of reported statistics. This implementation corresponds to the actual practice of

pre-analysis plans, where the analyst chooses a decision rule before the data becomes

available.

The set of implementable rules can be characterized as a convex polytope. If the
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decision-maker’s objective is convex, and in particular if it is linear, then the optimal

implementable rule is necessarily an extremal point of this polytope (Vanderbei et al.,

2020).

Optimal implementable hypothesis tests We next turn to the specific problem

of finding optimal implementable hypothesis tests. Such tests are required to satisfy

size control conditional on the state of the world and conditional on analyst private

information that is available before observing the data. We show that the optimal

implementable test, for the decision-maker, can be implemented by (i) requiring the

analyst to choose an arbitrary full-data test, which is a function of all statistics that

the analyst might observe, where this test controls size, and then (ii) implementing

this test, making worst-case assumptions about any unreported statistics.

The analyst’s problem of finding a full-data test that maximizes expected power

for this mechanism can be cast as a linear programming problem. If the analyst

knows the set of available statistics at the time of writing their pre-analysis plan,

this problem reduces to the classic problem of finding a test (based on the full set of

available statistics) with high expected power, subject to size control. The solution

to this problem takes the form of a likelihood ratio test. More generally, the set of

available statistics might not be known for sure at the time of writing the PAP. We

provide an interactive app that allows the analyst to solve the linear programming

problem for this case, based on their prior beliefs. The output of our app can serve

as a basis for their pre-analysis plan.

Roadmap The rest of this article is structured as follows. We conclude this intro-

duction with a review of some related literature. In Section 2, we present a motivating

example concerning statistical testing and p-hacking. In Section 3, we introduce the

general model. In Section 4, we characterize implementable decision rules. In Sec-

tion 5, we characterize optimal implementable hypothesis tests. In Section 6, we

illustrate our results by applying them to the setting of DellaVigna and Pope (2018),

using expert forecasts to construct a prior distribution. In Section 7, we summarize

and discuss some limitations of our model. Appendix A contains all proofs.
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1.1 Related literature

Our article speaks to the current debates around pre-registration – and other possible

reforms – in empirical economics and other social- and life-sciences; cf. Christensen

and Miguel (2018); Miguel (2021), which are motivated by the distortions to statistical

inference that might be induced by selective reporting, cf. Andrews and Kasy (2019);

Andrews et al. (2023). In doing so, our article applies some of the insights from

mechanism design and information design (Myerson, 1986; Kamenica, 2019; Sinander,

2023) to the settings of statistical decision theory and statistical testing, (Wald, 1950;

Savage, 1951; Lehmann and Romano, 2006).

More broadly, our article contributes to a literature that spans statistics, econo-

metrics and economic theory, and which models statistical inference in multi-agent

settings. We di↵er from other contributions to this literature, in that we focus on the

role of implementability as a constraint on statistical decision rules, which rational-

izes pre-analysis plans, and on the derivation of optimal decision rules subject to the

constraint of implementability.

Drawing on classic references (Tullock, 1959; Sterling, 1959; Leamer, 1974), Glaeser

(2006) considers the role of incentives in empirical research. A number of recent

contributions model estimation and testing within multiple-agent settings, including

Glazer and Rubinstein (2004); Mathis (2008); Chassang et al. (2012); Tetenov (2016);

Di Tillio et al. (2021, 2017); Spiess (2018); Henry and Ottaviani (2019); McCloskey

and Michaillat (2020); Libgober (2020); Yoder (2022); Williams (2021); Abrams et al.

(2021); Viviano et al. (2021). In this literature, Banerjee et al. (2020); Frankel and

Kasy (2022); Andrews and Shapiro (2021); Gao (2022) consider the communication

of scientific results to an audience with priors, information, or objectives that might

di↵er from the sender’s.

The literature on Bayesian persuasion (Kamenica and Gentzkow, 2011; Kamenica,

2019; Curello and Sinander, 2022), like the present article, considers a sender with

information unavailable to a receiver, where sender and receiver have divergent objec-

tives. One important way in which our model di↵ers from that of Bayesian persuasion

is that in our model the signal space of the analyst is restricted to the truthful but

selective reporting of data. This restriction implies that the concavification argument

central to Bayesian persuasion does not apply.
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2 A motivating example

Before we introduce our general model, consider the following hypothesis-testing prob-

lem, as a motivating example and special case. The full data consists of two normally

distributed statistics, X = (X1, X2), with Xi ⇠ N (✓, 1), independently across com-

ponents of the vector X. The Xi might for instance correspond to experimental

estimates of an average treatment e↵ect, for two di↵erent experimental sites. There

is a decision-maker and an analyst. The decision-maker wants to test the null hy-

pothesis H0 : ✓  0. The analyst, however, aims to simply maximize the probability

of rejection.

The analyst might not always observe both statisticsX1, X2. They instead observe

the subvector XJ for a random index set J . The possible values of the index set J are

;, {1}, {2}, and {1, 2}. The statistic Xi, for i 2 {1, 2}, is observed with probability

P (i 2 J). Observability is independent across statistics. P (i 2 J) is the decision-

maker’s a-priori probability that the analyst successfully implemented an experiment

at site i.

The decision-maker does not know which statistics are actually available, that

is, they do not know J . The analyst knows which statistics are available. This

allows the analyst to selectively report (“p-hack”), with plausible deniability, since

they might not have observed some unreported statistic. Upon learning the data XJ ,

the analyst chooses a subset I ✓ J , and reports (XI , I) to the decision-maker. The

decision-maker then rejects the null with probability a(XI , I) 2 [0, 1]. How should the

decision-maker choose the testing rule a that maps the reported data to a rejection

probability?

Five testing rules We compare five di↵erent testing rules, a1 through a5. For

each of these testing rules, Figure 1 shows the rejection probability as a function

of (X1, X2), assuming that P (1 2 J) = 0.9 and P (2 2 J) = 0.5. The rejection

probability in Figure 1 conditions on X, but averages over the distribution of J , and

takes into account the analyst’s endogenous response to a given testing rule. The left

panel of Figure 2 shows the corresponding power curves, i.e., the rejection probability

as a function of ✓, averaging over the distribution of both X and J .

Our benchmark is the optimal test using all the data. This test is not, in

general, feasible, since not all statistics are always available. We have that Z =
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Figure 1: Rejection probabilities for di↵erent testing rules

Figure 2: Power curves
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1p
2
(X1 +X2) ⇠ N (

p
2 · ✓, 1) is a su�cient statistic for ✓. Since this statistic satisfies

the monotone likelihood ratio property, the Neyman–Pearson Lemma implies that

the uniformly most powerful test of level ↵ is given by a1(X) = 1(Z > z), where

z = ��1(1� ↵); cf. Theorem 3.4.1 in Lehmann and Romano (2006).

Consider next the naive test which ignores potentially selective reporting by the

analyst. This test acts as if the reported statistics I are the full data available to the

analyst, and implements the corresponding uniformly most powerful test,

a2(XI , I) = 1

 
1p
|I|

X

i2I

Xi > z

!
.

The best response of the analyst to this naive testing rule involves selective reporting

(“p-hacking”), where I
⇤ 2 argmax I✓J a(XI , I). The problem with the naive test

is that it does not control size. Selective reporting by the analyst implies that the

probability of rejection under the null is not bounded by ↵.

We might correct for such selective reporting by making worst-case assumptions

about all unreported statistics. This results in the conservative test,

a3(XI , I) = 1

✓
1p
2
(X1 +X2) > z and I = {1, 2}

◆
.

If there are statistics that are not reported, then the null is not rejected. This conser-

vative test implies a probability of rejection givenX of P (J = {1, 2})·1
⇣

1p
2
(X1 +X2) > z

⌘
.

The conservative test controls size, but does not have good power properties.

As we show more generally in Section 4 and Section 5 below, the optimal test

without a pre-analysis plan can be implemented by selecting a full-data test of

level ↵. When not all data are reported, the decision-maker needs to assume the

worst about the unreported statistics, and then implements the corresponding full-

data test. The decision-maker can choose the full-data test to maximize (ex-ante)

expected power, averaging over their prior for ✓.

One possible full-data test ignores X2, which is less likely to be observed in our

numerical example, and rejects based on X1 alone. This results in the test

a4(XI , I) = 1 (X1 > z and 1 2 I) .

This test implies a probability of rejection given X of P (1 2 J) · 1 (X1 > z) . This

9



test is optimal for some parameter values, while in general, the optimal test depends

on the decision-maker’s prior.4 We lastly get to the optimal test with a PAP.

The optimal test with a PAP is of the same form as the optimal test without a

PAP, except that the analyst gets to choose the full data test, prior to seeing any

data. Recall that in our example in this section the analyst knows the statistics J

that are available before possibly reporting a PAP, but we assume that they have no

private information regarding ✓ or X. (We relax these assumptions in our general

setup below.) The optimal implementable solution can be implemented as follows:

The analyst communicates which statistics are available by sending the pre-analysis

message M = J , and the test is given by

a5(M,XI , I) = 1

 
1p
|M |

·
X

i2M

Xi > z and M ✓ I

!
.

That is, the analyst commits to reporting all statistics in J , and for that set of

statistics, the most powerful test is implemented.

Comparing size and power The left panel of Figure 2 plots the power curves for

the five testing rules, for n = dim(X) = 2, which is the case that we have considered

thus far. The right panel shows analogous plots for n = 10, where the probability

P (i 2 J) of observing each of the statistics Xi is evenly distributed over a grid from

.5 to .9. The latter case illustrates the di↵erences between testing rules more starkly.

A number of observations are worth emphasizing here. First, the naive test does

not control size. For n = 10, the probability of rejection for ✓ = 0 is close to .5,

instead of the nominal size of .05. This is due to selective reporting (“p-hacking”).

Second, the conservative test can be very conservative. Since it only rejects when

all statistics of X are reported, the probability of rejection under the alternative can

be arbitrarily small, and remains below the nominal size of .05 for our example with

n = 10. Third, the optimal test without a PAP does considerably better than either

of these rules. It controls size, and is in fact strictly conservative under the null. At

the same time, it has non-trivial power, which greatly exceeds that of the conservative

test. This test without a PAP remains itself far from optimal, however. The optimal

4For the given prior over J , this test is for instance optimal when expected power is calculated
using the degenerate prior P (✓ = .3) = 1. More generally, whether this rule is optimal depends on
the prior for both ✓ and J .
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test with a PAP, lastly, controls size exactly, under the null. Furthermore, its power

under the alternative considerably exceeds that of the optimal test without a PAP.

From our example to the general model Our motivating example is a special

case of the general model that we lay out in Section 3. The general model allows

for cases where the researcher also has private information about ✓, and where the

researcher only has partial information about availability J of the data. The general

model also covers decision problems other than testing, including estimation and

treatment choice.

3 Setup

We next describe our general setup, which will be discussed for the rest of this paper.

Our setup consists of a game between a decision-maker and an analyst. This game

is summarized in Assumption 1.5 The corresponding timeline is shown in Figure 3.

Throughout, X is a collection of statistics Xi, where i 2 {1, . . . , n}. I and J are

(random) index sets, I, J ⇢ {1, . . . , n}, and XI = (Xi)i2I denotes the subset of

statistics corresponding to the index set I.

Assumption 1 (Setup). The game between decision-maker and analyst unfolds as

follows:

1. The decision-maker selects a message space M and commits to a decision func-

tion a : (M,XI , I) 7! A 2 A.

2. The analyst observes the private signal ⇡ and sends a message M 2 M to the

decision-maker.

3. The analyst observes the realization (XJ , J) of available data and selects a subset

I ✓ J .

4. The decision-maker observes the message M , the subset I, and the data XI ,

and implements the decision A = a(M,XI , I).

The analyst and the decision-maker share a common prior P over the signal ⇡, the pa-

rameter ✓, the availability J , and the data X. This prior satisfies that the conditional

distribution of X given ✓, J, ⇡ only depends on ✓, i.e., X|✓, J, ⇡ d
= X|✓.

5Our notation does not distinguish explicitly between random variables and their realizations.
This should not cause any ambiguity. Where the distinction is important, we point this out explicitly.
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Figure 3: Timeline

Select M and
commit to a

Observe ⇡,
send M 2 M

Observe (XJ , J),
select I ✓ J

Observe M , I, XI ,
implement A=a(M, I,XI)

Decision-
maker

Analyst

Discussion This is a game of partial verifiability. The report XI is always truthful

given I, but the non-availability of the statistics corresponding to {1, . . . , k}\J cannot

be verified by the decision-maker. Selective reporting, where not all available statistics

are reported (I  J), corresponds to p-hacking, or specification searching. Mis-

reporting of XI , which corresponds to scientific fraud, is not allowed in our setting.

The private signal ⇡ corresponds to analyst expertise. The signal ⇡ might be

informative about ✓, corresponding to knowledge about which hypotheses are likely

to be correct, about the likely magnitude of e↵ect sizes, etc. The signal ⇡ might also

be informative about J , corresponding to knowledge about the viability of di↵erent

identification approaches, the availability of experimental sites, etc.

There is prior uncertainty of the decision-maker regarding the availability J of

statistics Xi. Without such uncertainty, the mechanism design problem would be

trivial, and the decision-maker could simply require the analyst to report everything,

by threatening to take action minA otherwise. Prior uncertainty allows for “plausible

deniability,” because the decision-maker does not know the full set of results from

which the reported results were selected.

In Assumption 1, we have left the message spaceM for the pre-analysis messageM

unrestricted. We will later encounter di↵erent, equivalent choices forM: The message

M might directly communicate the analyst signal ⇡, or their corresponding posterior,

in the spirit of the revelation principle in mechanism design. Alternatively, and more

realistically, the message M might choose a decision function a from a restricted

set, in the spirit of “aligned delegation” (Frankel, 2014). This latter formulation

corresponds more directly to the practice of pre-analysis plans.

Objectives We have not yet described the objectives of either the decision-maker or

the analyst; Assumption 1 remains silent on these. We allow for conflicting objectives,

which render the mechanism-design problem non-trivial. By contrast, we have already
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imposed common priors, so that there are no agency issues driven by divergent beliefs.

We leave the decision-maker’s objective unspecified at this point. This allows

us to first study implementability, as a general constraint on the set of decision-

functions available to the decision-maker. This constraint does not depend on the

decision-maker’s objective. We also do not impose that the decision-maker is an

expected utility maximizer. This allows us to study frequentist statistical decision

problems subject to the constraint of implementability, including hypothesis testing

and unbiased estimation, in addition to Bayesian decision problems.

By contrast, we do assume that the analyst is an expected utility maximizer. We

furthermore impose the following restriction on their utility function for most of our

discussion.

Assumption 2 (Monotonic analyst utility). The decision A is real-valued, A 2 A ⇢
R. The analyst is an expected utility maximizer with utility v(A), for a strictly mono-

tonically increasing function v.

The analyst always prefers a higher outcome A 2 A. In the context of testing,

the analyst always prefers to reject the null hypothesis. In the context of publication

decisions, the analyst always would like their paper to be published. In the context

of drug approval, the pharmaceutical company always would like their drug to be

approved.

4 Implementability

Conventional statistical decision theory considers decision functions that map the

available information into statistical decisions (Wald, 1950; Savage, 1951). In our

context, such decision functions ā(⇡, XJ , J) map the signal ⇡, the available data XJ ,

and the set J of available statistics into decisions A. We will call such functions ā

reduced-form decision functions.

In our setting, not all such decision functions are available to the decision-maker,

because of analyst private information and conflicting objectives. In this section, we

will characterize the set of implementable reduced form decision functions ā which

are consistent with analyst utility maximization. This leads to constrained versions

of conventional statistical decision problems, including hypothesis testing and point

13



estimation. We will show that implementation, in general, requires the use of pre-

analysis messages.

4.1 Which decision functions can be implemented?

The analyst’s optimal message M
⇤ and reported set I

⇤ maximize analyst expected

utility E[v(a(M,XI , I))], given the decision rule a. Here M
⇤ and I

⇤ are random

elements, where M
⇤ is measurable with respect to ⇡, and I

⇤ is measurable with

respect to ⇡, XJ , J . Analyst expected utility maximization and strict monotonicity

of v imply

I
⇤ 2 argmax

I✓J
a(M⇤

, XI , I), and

M
⇤ 2 argmax

M2M
E[v(a(M,XI⇤ , I

⇤))|⇡]. (1)

Consider now reduced-form decision functions ā(⇡, XJ , J) that map the informa-

tion available to the analyst to a decision-maker action. We say that a function ā is

implementable if it is consistent with analyst utility maximization.

Definition 1 (Implementable reduced-form decision rules). A reduced form decision

function ā(⇡, XJ , J) is implementable if there exists a decision function a with best

responses M
⇤
, I

⇤
such that

ā(⇡, XJ , J) = a(M⇤
, XI⇤ , I

⇤)

almost surely.

The following theorem provides a complete characterization of implementable

reduced-form decision rules in our setting. The proof of this theorem, and all subse-

quent proofs, can be found in Appendix A.6

6The function ã is introduced in the following theorem as a technical device to deal with points
(⇡, XJ , J) outside the prior support.
It is worth noting that the revelation principle (Myerson, 1986) does not directly apply to our setting,
since misreporting of analyst “types” is constrained by the verifiability of their reports (XI , I), and
by I ✓ J . See Kephart and Conitzer (2016) for a discussion of the revelation principle under partial
verifiability and, more generally, for settings where misreporting is potentially costly.
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Theorem 1 (Implementability). Under Assumptions 1 and 2, a reduced-form deci-

sion function ā(⇡, XJ , J) is implementable if and only if there is some ã such that

ā(⇡, XJ , J) = ã(⇡, XJ , J) almost surely, and both of the following two conditions hold:

1. Truthful message: For all ⇡, ⇡
0
,

E[v(ã(⇡0
, XJ , J))|⇡]  E[v(ã(⇡, XJ , J))|⇡]. (2)

2. Monotonicity: For all ⇡, X, J and I ✓ J ,

ã(⇡, XI , I)  ã(⇡, XJ , J). (3)

Theorem 1 characterizes which reduced-form decision functions ā(⇡, XJ , J) can

be implemented, but it does not tell us how to implement them. The following

Proposition 1 shows two di↵erent, canonical ways of implementing any such func-

tion. The first implementation uses truthful revelation of analyst signals. The second

implementation uses delegation, where the analyst is allowed to choose the decision

function from a pre-specified, restricted set B. This second implementation corre-

sponds closely to the actual practice of pre-analysis plans. In this implementation,

the analyst pre-specifies a mapping b from the reported data (XJ , J) to the decision

A = b(XJ , J). Proposition 1 shows that restricting attention to implementation by

such pre-analysis plans is without loss of generality.

Proposition 1 (Implementation). Under Assumptions 1 and 2, a reduced-form de-

cision rule ā can be implemented if and only if either of the following two conditions

holds:

1. Implementation by truthful revelation: ā can be implemented with a de-

cision rule a for which

a(⇡, XJ , J) = ā(⇡, XJ , J),

where the message space is the set of all possible signals ⇡.

2. Implementation by delegation (pre-analysis plan): ā can be imple-

mented with a decision rule a for which

a(b,XJ , J) = b(XJ , J),
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where b is restricted to lie in some set of functions B = {b : (XI , I) 7! A},
chosen by the decision-maker, that acts as the message space.

4.2 Alternative characterizations of implementability

Having characterized implementable decision functions in general, we next discuss

implementability for the special case of linear analyst utility v and convex action

space A. We then discuss the connection of truthful revelation to proper scoring. We

also consider variants of the model where decision-functions are constrained to be in

some class of suitably simple functions.

The set of implementable rules as a convex polytope In addition to Assump-

tions 1 and 2, assume for a moment that the action space A ✓ R is convex, and that

analyst utility is linear – without additional loss of generality, v(A) = A. The leading

examples involve binary decisions, where we interpret A as the probability of a posi-

tive decision. Binary decisions occur for statistical testing, as discussed in Section 5

below, as well as for publication decisions, drug approval, etc. Linearity is without

loss of generality for the case of binary decisions; in this case, it follows from expected

utility maximization. Suppose finally that ⇡ has finite support.

Under these additional assumptions, we get that every implementable decision

functions ā is almost surely identical to a function ã in the convex polytope charac-

terized by the following constraints:

ã(⇡, XJ , J) 2 A, (Support)

ã(⇡, XI , I)� ã(⇡, XJ , J)  0 8 ⇡, XJ , J, I ✓ J, (Monotonicity)
X

XJ ,J

(ã(⇡0
, XJ , J)�ã(⇡, XJ , J)) P⇡(XJ , J)  0 8 ⇡

0
, ⇡. (Truthful message)

In the last inequality, P⇡ is a shorthand for the analyst’s posterior distribution condi-

tional on ⇡. This characterization of the implementable set follows immediately from

Theorem 1.

If, furthermore, the decision-maker objective is linear in ā, as is the case for a

Bayesian decision-maker and binary actions, or if it is linear with an additional linear

constraint, as is the case for expected power maximization subject to size control, then

the problem of finding the optimal implementable reduced form decision function
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becomes a linear programming problem. E�cient algorithms exist for numerically

solving such problems, cf. Vanderbei et al. (2020). We will return to this point in

Section 5 below. We leverage such linear programming algorithms in our interactive

app for finding optimal PAPs.

Truthful revelation of beliefs and proper scoring Condition (2) in Theorem 1

ensures that the analyst reveals their relevant prior information truthfully. Condi-

tion (2) is equivalent to the definition of a proper scoring rule, as introduced by Savage

(1971). The theory of proper scoring rules has regained importance in the more recent

statistics and machine learning literature, cf. Gneiting and Raftery (2007).

Let us elaborate on this equivalence. Given a reduced form decision rule ā, define

S(⇡0
, ⇡) = E⇡[v(ā(⇡

0
, XJ , J))]. (4)

The expectation E⇡ is taken over the conditional distribution P⇡ of XJ , J given

⇡. Here we assume for simplicity that X has finite support, though the argu-

ment generalizes. Denote the Euclidean inner product for functions of XJ , J by

hf(·), g(·)i =
P

XJ ,J
f(XJ , J) · g(XJ , J), where the running indices XJ , J are under-

stood here as values, rather than random variables. P⇡, the distribution of (XJ , J)

given ⇡, is a vector in the space on which this inner product is defined. We obtain the

following characterization, which was first stated by Savage (1971) and is restated as

Theorem 2 in Gneiting and Raftery (2007).

Proposition 2 (Proper scoring rule). Condition (2), the truthful message condition,

holds for all ⇡, ⇡
0
if and only if there exists a convex function G of P⇡, with sub-

gradient G
0
, such that G(P⇡) = S(⇡, ⇡) on the support of ⇡, and such that S(⇡0

, ⇡) =

G(P⇡0) + hG0(P⇡0 , ·),P⇡ �P⇡0i.

Simple pre-analysis plans Item 2 of Proposition 1 shows that reduced form

decision rules can be implemented by delegation: The decision-maker o↵ers a set

B = {b : (XI , I) 7! A} of permissible pre-analysis plans (decision functions). The

analyst then chooses and communicates one of the decision functions b 2 B before

gaining access to the data.

In practice, some pre-analysis plans may be unrealistically complicated, and we

may wish to restrict attention to a smaller set B0 of simpler mappings. The decision-
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maker could be restricted to choosing B as a subset of this set of simple mappings,

B ✓ B0.

One example of such a restricted set B0 are the index rules implemented in our

app, which is described below. These index rules are of the form

b(XI , I) = 1

 
Ib ✓ I and

X

i2Ib

Xi � zb

!
,

where Ib is the set of statistics included in the index, and zb is a critical value.

4.3 Are pre-analysis messages needed?

Aligned objectives Why does implementability in our setting require a pre-analysis

message, if that is not the case in conventional statistical decision theory? Assume

for a moment that analyst and decision-maker share the same objective function. In

this case, is there any need for a pre-analysis message? The answer is no.

To see this, consider the following variant of our setup. Suppose everything is

as in Assumption 1 (Figure 3), except that the analyst gets to choose the message

M after they observe the data XJ , J . Put di↵erently, the analyst cannot provide

a verifiable time-stamp for their message M to the decision-maker. The following

observation states that in this modified setting, where there is no pre-analysis mes-

sage, the decision-maker can still implement the first-best reduced-form decision rule,

provided that preferences are aligned.

Proposition 3 (First-best decisions for aligned preferences). Under the modified

Assumption 1 where the message M can depend on the realization of (XJ , J), assume

that analyst and decision-maker are expected utility maximizers who share the same

utility function u(A, ✓). Then the decision-maker’s first-best reduced-form decision

rule ā(⇡, XJ , J) is implementable.

As Proposition 3 shows, pre-analysis messages only become potentially useful in

the presence of both private information and misaligned preferences.

Implementability without pre-analysis message We next characterize the set

of decision functions ā that are implementable without a pre-analysis message, when

objectives can be misaligned. In this case, the implementable functions are exactly
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the functions ā(⇡, XJ , J) that satisfy monotonicity, with respect to set inclusion for

the index set J , and that do not depend on ⇡. Analyst expertise can thus not be

used to improve decisions at all, in the absence of a pre-analysis message. The proof

of the following proposition parallels the proof of Theorem 1.

Proposition 4 (Implementability without pre-analysis message). Under Assump-

tions 1 and 2, with the additional constraint that there is no pre-analysis message, a

reduced-form decision function ā is implementable if and only if there is a function ã

with almost surely ā(⇡, XJ , J) = ã(XJ , J) and

ã(XI , I)  ã(XJ , J) (5)

for almost all X, J and all I ✓ J .

5 Frequentist hypothesis testing

We next specialize our general framework to the setting of frequentist hypothesis

testing. In this setting, the decision-maker decides whether to reject a null hypothesis.

We assume that the decision-maker wants to maximize expected power subject to size

control. The analyst, however, always prefers a rejection of the null hypothesis.

Building on our previous results, we characterize the set of implementable testing

rules that satisfy size control, in Section 5.2. We furthermore provide a simple mech-

anism that allows the decision-maker to implement the optimal testing rule. This

mechanism requires a pre-analysis plan, where the analyst may choose any full-data

test that satisfies size control, and the decision-maker makes worst-case assumptions

about any unreported data. This mechanism solves the decision-maker’s problem.

In Section 5.3 we then consider the analyst’s problem of finding an optimal re-

sponse to this mechanism, and show that they have to solve a linear programming

problem to find the optimal pre-analysis plan. We provide software to solve this prob-

lem of the analyst. We also characterize the set of possible solutions to the analyst’s

problem, by describing the set of extremal points of their feasible set.

Throughout, we focus on the problem of testing a single (joint) hypothesis, and

leave an extension to deciding which of multiple hypotheses to reject for future work.
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5.1 Decision-maker and analyst objectives

Assume that the decision A 2 [0, 1] represents the probability, given (M,XJ , J), of

rejecting the null hypothesis ✓ 2 ⇥0. Suppose that the analyst is an expected utility

maximizer, who (ex-post) only cares about the binary testing decision. Ex-ante,

the analyst thus wants to maximize expected power. It follows that their utility is

linear in A. We can then make the following normalizing assumption, without loss of

generality.

Assumption 3 (Power analyst utility). Analyst utility is

v(A) = A.

The decision-maker also wants to maximize expected power, but subject to the

constraint of size control under the null hypothesis.

Definition 2 (Size control). We say that a reduced-form decision rule ā which satis-

fies 0  ā  1 controls size at level ↵ 2 (0, 1) if

sup
⇡,✓2⇥0,J✓{1,...,n}

E[ā(⇡, XJ , J)|✓, ⇡, J ]  ↵. (6)

Recall that we imposed, in Assumption 1, that the conditional distribution of X

only depends on ✓, that is, X|✓, J, ⇡ d
= X|✓. Under this assumption, the conditional

expectation E[ā(⇡, XJ , J)|✓, ⇡, J ] is well-defined even outside the joint support of

⇡, ✓, J , as long as ✓ is within its marginal support.

5.2 Decision-maker solution: Pre-specified full-data tests

The implementability results of Section 4 allow us to characterize optimal pre-analysis

plans for hypothesis testing as follows.

Theorem 2 (Optimal pre-analysis plans with size control). Define T to be the class

of measurable full-data tests t : X ! [0, 1] satisfying size control, sup✓2⇥0
E[t(X)|✓] 

↵. Under Assumption 1, Assumption 2, and Assumption 3, the power-maximizing

decision rule subject to the constraints of implementability (Definition 1) and size

control (Definition 2) can be implemented by requiring the analyst to communicate,

20



as a pre-analysis message, a full-data test t 2 T , and then rejecting the null with

conditional probability

b(XI , I) = inf
X0; X0

I=XI

t(X 0).

This result builds on the general characterizations of Theorem 1 and Proposi-

tion 1. To get further intuition for Theorem 2 note, first, that it is su�cient to verify

size control for the full-data test t. The reason is that implementable reduced-form

decision rules must fulfill the monotonicity constraint (3). Subject to monotonicity

in I, size control of ā in the sense of Definition 2 is equivalent to size control for the

full-data test ā(⇡, X, {1, . . . , k}).
Note, second, that for optimal reduced-form testing rules the monotonicity con-

straint is in general binding, since both decision-maker and analyst aim to maximize

expected power, subject to the constraints. For optimal rules it is therefore without

loss of generality to assume ā(⇡, XJ , J) = infX0; X0
J=XJ

t(X 0), which can be imple-

mented by b as in the statement of the theorem.

5.3 Analyst solution: Linear programming

Theorem 2 solves the optimal testing problem from the decision-maker’s perspective:

Let the analyst pre-specify a valid full-data test, and then make worst-case assump-

tions about unreported data. We next turn to the analyst’s problem: What full-data

test should they specify? This problem can be cast as a linear programming problem.

The optimal value for any linear programming problem can be achieved on the set

of extremal points of the feasible set.7 This insight, which is of central importance

to mechanism design (Sinander, 2023), allows us to characterize the set of potential

solutions to the optimal testing problem subject to implementability.

Linear objective and linear feasible set For ease of exposition, we focus on

point null hypotheses ⇥0 = {✓0} in the following. Our results extend to compound

hypotheses. Denote K = {1, . . . , k} the index set of all potentially available statistics.

7The same holds more generally, for the maximum of a convex function on a convex set.

21



Let B be the set of measurable functions b(XJ , J) defined by the following constraints.

Z
b(X,K)dP✓0(X)  ↵, (Size control)

b(XJ , J) 2 [0, 1] 8 J,X, (Support)

b(XJ , J)  b(X,K) 8 J,X. (Monotonicity) (7)

This is the set of testing rules from which the analyst is e↵ectively allowed to choose,

after observing their private signal ⇡. This characterization applies to both discrete

and continuously distributed X. The set B is a convex polytope.

The (interim) analyst objective function is given by expected power, conditional

on their private signal ⇡,

E⇡[b(XJ , J)] =

Z
b(XJ , J)dP⇡(X, J). (Interim expected power)

We provide code, in the form of an interactive app, which allows the analyst to easily

solve the problem of maximizing expected power, subject to b 2 B.8

The case of known J The analyst’s problem simplifies to the standard problem

of finding a test of maximal expected power subject to size control, if we assume that

the analyst knows the value of J , at the time of specifying their PAP. Let J 0 be this

known non-random value of J . Under this assumption, the optimal implementable

test is a function of XJ 0 only, and can be written as a likelihood ratio test.

Proposition 5. Suppose that Assumption 1, Assumption 2, and Assumption 3 hold,

and consider the mechanism specified in Theorem 2. Suppose additionally that P⇡(J =

J
0) = 1 for some non-random value J

0
. Then there exists a solution b to the analyst’s

problem such that b(XK , K) = b(XJ 0 , J
0) for all values of X.

Any solution of the analyst’s problem that is of this form furthermore satisfies that

b(XK , K) =

8
<

:
1 when dP⇡(XJ 0 , J

0) >  · dP✓0(XJ 0 , J
0)

0 when dP⇡(XJ 0 , J
0) <  · dP✓0(XJ 0 , J

0)
.

for some critical value .

8This app is available at https://maxkasy.github.io/home/pap app.
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Proposition 5 implies that the null should be rejected based on the value of the

likelihood ratio test statistic dP⇡(XJ0 ,J 0)
dP✓0

(XJ0 ,J 0) (assuming this statistic is well defined). Note

that the likelihood in the numerator dP⇡(XJ 0 , J
0) is in fact the marginal likelihood

under the interim prior given ⇡, averaging over both the interim prior for ✓, J
0,

and over the sampling distribution of X given ✓. See Lehmann and Romano (2006)

(Section 3.8) for a discussion of statistical tests that maximize weighted average power.

Potentially optimal tests: Extremal points of B Let us now return to the

more general case, where the analyst does not necessarily know the value of J after

observing ⇡. Suppose we maintain Assumption 1, Assumption 2, and Assumption 3,

but impose no further assumptions on the (interim) prior P⇡ of the analyst. What

can we say about the set of potential solutions b to the analyst’s problem, in this case?

The following proposition provides a characterization, based on the set of extremal

points of the set B, intersected with the set of rules b for which monotonicity is

binding.

Proposition 6.

• Suppose that Assumption 1, Assumption 2, and Assumption 3 hold, and consider

the mechanism specified in Theorem 2. Then there exists a full-data test t

which is a best response of the analyst such that b(XJ , J) = infX0: X0
J=XJ

t(X 0)

is extremal in B.

• Suppose additionally that t takes on a finite number of values. Then a function

b of this form is extremal in B if and only if the following conditions hold:

1. t(X) 2 {0, q, 1} for all X, for some 0 < q < 1.

2. If there exists X such that t(X) = q, then P✓0(t(X) = q) > 0.

3. For any X 6= X
0
such that t(X) = t(X 0) = q, there exists a value J such

that XJ = X
0
J and b(XJ , J) = b(X 0

J , J) = q.

In other words, we can restrict our attention to testing rules that partition values

of the data X into at most three regions: one where the test always rejects; one where

the test never rejects; and one where it rejects with a single, intermediate probability.

Furthermore, if there is more than one value for which the test takes this intermediate
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rejection probability, then the monotonicity constraint in the construction of the tests

b is binding for at least some subset J .

The result in Proposition 6 characterizes the set of extremal points of B for which

monotonicity is binding. The optimal analyst response is necessarily in this set. Can

all of these points be rationalized as optimal for some analyst interim prior? The

following proposition provides a partial answer.

Proposition 7. Consider b 2 B with P✓0(b(X,K) /2 {0, 1}) = 0, and such that the

size constraint is binding. Then there exists a prior P⇡(XJ , J) such that b maximizes

the objective
R
b(XJ , J)dP⇡(XJ , J) in B.

This result shows that all testing rules that control size without an intermediate

probability of rejection can be rationalized.

6 Case study

We next discuss a numerical example, to illustrate our results on optimal pre-analysis

plans for hypothesis testing. Our example is calibrated to the data and the priors

reported in DellaVigna and Pope (2018), who experimentally evaluate 15 di↵erent

treatments to induce costly e↵ort, in addition to 3 control treatments. The outcome

Xi is the e↵ect of treatment i on the average number of button presses, in an Amazon

Mechanical Turk task. We consider the e↵ect relative to the control treatment where

participants are paid 1 cent per 100 button presses. DellaVigna and Pope (2018) also

report prior predicted treatment e↵ects, as elicited from 208 academic experts.

We use these expert predictions to calibrate our prior for ✓ = (✓i)1i15, where ✓i

is the true e↵ect of treatment i. We assume that ✓ ⇠ N(µ,⌃) is jointly normal, with

prior mean µ equal to the average of expert forecasts, and prior variance ⌃ equal to

the variance across forecasts. We furthermore assume that the estimated treatment

e↵ects have a sampling distribution of Xi ⇠ N (✓i, �2
i /n+�

2
0/n), where the sample size

is n = 100, and �
2
0/n is the variance of the mean outcome for the control treatment.9

The standard deviations �i are assumed to be known and correspond to the standard

errors reported in DellaVigna and Pope (2018).

9The variation across experts is di↵erent from the variance of the prior of any individual expert.
We furthermore deviate the original sample size of around 550 per arm in the paper. For both
these reasons, or numerical example should only be thought of as a calibration for the purpose of
illustrating our theory.
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We lastly assume, for the purpose of illustration, that the analyst only intends

to run experiments for two of the 15 experimental treatments, corresponding to arm

1 (4 cents per 100 presses), and arm 2 (a lottery with a chance of winning 1 dollar

per 100 presses with 1% probability). We assume, for now, that the analyst knows

ex-ante that J = {1, 2}. Consider the null (joint) null hypothesis that there are no

treatment e↵ects for any of the incentive schemes, ✓i = 0 for all i.

The optimal PAP What is the optimal PAP for this null? The answer is given

by Proposition 5. The optimal PAP, for known J , pre-specifies a test which rejects

whenever both components of J are reported, and log
⇣

dP⇡(XJ ,J)
dP✓0

(XJ ,J)

⌘
exceeds some

critical value. Under our assumptions,

log
⇣

dP⇡(XJ ,J)
dP✓0

(XJ ,J)

⌘
= const.+

�
X1�µ1
X2�µ2

�0
S
�1
�
X1�µ1
X2�µ2

�
�
�
X1
X2

�0
S
�1
0

�
X1
X2

�

where S0 is the sampling variance of XJ , and S is the prior variance of XJ , which

equals the sum of the prior variance of ✓J plus the sampling variance,

S0 =
1
n

⇣
�2
0+�2

1 �2
0

�2
0 �2

0+�2
2

⌘
, S =

⇣
⌃1,1 ⌃1,2

⌃2,1 ⌃2,2

⌘
+ S0.

We visualize this test in Figure 4a. The axes of the graph represent estimated treat-

ment e↵ects, normalized by their sampling standard error, Xi/
p
(�2

0 + �
2
i )/n, for

i = 1, 2. The blue ellipse (dashed line) represents the null distribution of XJ , with

95% of draws falling within the circle; and the purple ellipse (solid line) represents

the prior marginal distribution of XJ . The optimal rejection region at a 5% size

is shaded in yellow. The likelihood-ratio test of Proposition 5 yields an ellipsoidal

rejection region.

An optimal simple PAP In practice, fully optimal tests may be hard to describe

in a PAP. What is the optimal PAP subject to an additional simplicity constraint?

Let us restrict attention to tests that reject if the test statistic X
0
J · S�1

0 ·XJ exceeds

some critical value cJ and if all components in J are reported, where both J and the

critical value are pre-specified. This is the standard Wald (�2) test for the subset

J . Subject to this restriction, it is optimal for the analyst to pre-register their true

J = {1, 2}, and a critical value of 6 (for a test of size .05). We visualize this test

in Figure 4b. Restricting tests to be simple leads to a loss in average power, but
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Figure 4: Analyst knows J

(a) Optimal PAP (b) Optimal simple PAP

Figure 5: Analyst is uncertain about J

(a) Optimal PAP (b) Optimal simple PAP

26



Figure 6: Which treatment arms should be registered?

this loss is small in our numerical example. Average power of the optimal test is

approximately .52. The restriction to a Wald test reduces power to .50.

Analyst uncertainty about J Assume now that the analyst is uncertain about

which components J will be available. Maybe some experiments are not always fea-

sible, or data collected di↵er from those in the original plan. Assume that arm 1 is

available with ex-ante probability .5, and arm 2 with probability .7, independently

across arms. In this case, the rejection regions of the optimal PAP are more com-

plex, and are given by the solution to the linear programming problem discussed in

Section 5.3. Figure 5a plots the optimal test, which solves this linear program. If

one of the arms is not available in the end, then the decision-maker makes worst-case

assumptions about this arm, and implements the corresponding testing decision. Be-

cause the components i are not always available, overall expected power only equals

.32 in this example.

We can also, again, consider simple PAPs, which specify Wald tests for some pre-

selected set of components J 0. The optimal simple PAP ignores arm 1 and specifies

a two-sided t-test that rejects for
p
n|X2|p
�2
2+�2

0

> 1.96 (Figure 5b). That is, despite arm 1

being available some of the time, it is better to only consider arm 2 in this case. This
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result is driven by the di↵erent priors over the e↵ect of these treatments, as well as by

di↵erent availabilities, where arm 2 is more likely to lead to a rejection and is more

likely to be available. Restricting attention to such a simple test reduces expected

power from .32 (for the optimal test) to only .26.

Concluding our discussion of this numerical example, we plot in Figure 6 how

the optimal set of pre-registered components J
0, for a simple test, depends on the

probability that data for either treatment is available. Appendix B elaborates further.

7 Conclusion

We conclude by summarizing our main contributions, before discussing some limita-

tions of our model and avenues for future research. We have proposed a principal-

agent model of pre-specification in empirical research. In our model, a decision-maker

relies on the examination and reporting of data by an analyst. The analyst can se-

lectively report statistics that they observe, but they cannot lie about the observed

statistics. The decision-maker does not know which data are available to the analyst.

This allows for plausible deniability.

Our model provides a theoretical justification for pre-analysis plans (or, more

generally, pre-analysis messages), which cannot be rationalized in traditional single-

agent statistical decision theory. There is no need for sending messages prior to seeing

data in the single agent framework – in fact, there would not even be a recipient for

such a message in this framework.

The constraint of implementability in our model leads to a constrained version of

statistical decision theory. Constrained optimal decision functions generally require

a PAP. PAPs allow the decision-maker to draw on analyst expertise. Such analyst

expertise cannot be used under the alternative mechanism of unilateral specification

of decision functions by the decision-maker.

Our model also allows us to derive practical guidance for the design of optimal

PAPs. Optimal PAPs lead to constrained-optimal decision functions. We show that

the decision-maker’s optimal decision function can be implemented by allowing the

analyst to choose from a restricted set of decision-functions, and communicating their

choice in a PAP. For hypothesis testing, the analyst gets to choose any test that satis-

fies size control when all data are observed. If a statistic required by the pre-specified

test is not reported, then the decision-maker later makes worst-case assumptions
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about this statistic. The analyst problem, for this mechanism, reduces to a linear

programming problem. They have to maximize expected power subject to size con-

trol, and subject to the constraints implied by implementability. When the set of

available statistics is known to the analyst in advance, then the solution to the ana-

lyst problem takes the form of a likelihood ratio test. More generally, we provide an

app that allows the analyst to easily solve their optimization problem.

Our model is fairly general in describing the problem of selective reporting by an

analyst with conflicting objectives and private expertise. There are some important

considerations, however, which are not reflected in this model. First, we do not

model the potential cost to researchers of documenting complex estimation and testing

procedures in the PAP. This is a cost that has been emphasized by critics of the

widespread adoption of PAPs (Co↵man and Niederle, 2015; Olken, 2015; Duflo et al.,

2020). Relatedly, we do not model the cost of communicating complex findings. Such

costs likely play an important role in explaining why not all findings are published

(Frankel and Kasy, 2022; Andrews and Shapiro, 2021).

Second, there are a number of alternative mechanisms that might complement

PAPs as tools to limit the adverse e↵ects of conflicting interests and private infor-

mation. One such mechanism is adversarial review, where reviewers might request

additional statistics to be reported by researchers. Our model does not include a

review stage. Another such mechanism is researcher reputation, and more generally

the dynamics of repeated interactions. Our model is a one-shot game, which does not

allow for such dynamics. We hope that future research will elaborate on mechanisms

such as these, and the extent to which they might act as a substitute for PAPs.
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A Proofs

Implementability

Proof of Theorem 1.

We first show that existence of such an ã, which satisfies conditions (2) and (3), implies

implementability. We then show that implementability implies existence of such an ã.

Assume first that such an ã exists. Then, letting the message space be the space

of signals ⇡, and choosing a(⇡, XI , I) = ã(⇡, XI , I), yields incentive compatibility of

I
⇤ = J,M

⇤ = ⇡: For any alternative ⇡, XJ , J-measurable reporting policy Ĩ ✓ J and

message M̃ = ⇡
0, we have that

v(a(M⇤
, Ĩ , XĨ))  v(a(M⇤

, I
⇤
, XI⇤))

E[v(a(M̃, Ĩ, XĨ))|⇡]  E[v(a(⇡0
, J,XJ))|⇡]

 E[v(a(⇡, J,XJ))|⇡] = E[v(a(M⇤
, I

⇤
, XI⇤))|⇡]

The first inequality holds by monotonicity of ã. The first inequality in the second

line also holds by monotonicity of ã. The last inequality holds because of the truth-

ful message condition. For this choice of I⇤,M⇤, we have ā(⇡, XJ , J) = ã(⇡, XJ , J)

almost surely, as desired.

Assume now reversely that the reduced-form decision function ā is implementable

by a decision rule a, with ⇡, XJ , J-measurable analyst choices I
⇤ and ⇡-measurable

analyst message M
⇤ = M

⇤(⇡). Define

ã(⇡, XJ , J) = max
I✓J

a(M⇤(⇡), XI , I).

Note that ã is also well-defined for values of ⇡, XJ , J outside the joint support of

these variables. By definition of the reduced form policy, we immediately get

ā(⇡, XJ , J) = ã(⇡, XJ , J)

almost surely (i.e., on the joint support of ⇡, XJ , J).

To see that ã(⇡, XJ , J) satisfies monotonicity note that the maximum over I can
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only increase, when it is taken over a larger set of possible values for the set of

components I. To see that ã(⇡, XJ , J) also satisfies the truthful message condition,

note that

E[v(ã(⇡, XJ , J))|⇡] = E[max
I✓J

v(a(M⇤(⇡), XI , I))|⇡]

= max
M2M

E[max
I✓J

v(a(M,XI , I))|⇡]

� E[max
I✓J

v(a(M⇤(⇡0), XI , I))|⇡]

= E[v(ã(⇡0
, XJ , J))|⇡].

The first equality holds given the definition of ã. The second equality holds given the

definition incentive compatibility for M⇤(⇡). The following inequality holds since the

maximum over M is necessarily weakly larger than the value for any given message

M
⇤(⇡0). The last equality, finally, again holds given the definition of ã. The claim

follows.

Proof of Proposition 1.

The first part follows from the arguments in the proof of Theorem 1, where we set

a(⇡, XI , I) = ã(⇡, XI , I). Note, in particular, that if a rule is implementable using a

⇡-measurable message M
⇤(⇡), then it is also implementable with the signal ⇡ itself

as the message, via the decision rule a(⇡, XI , I) = a0(M⇤(⇡), XI , I).

For the second alternative, implementation using delegation, assume first that ā

is implementable by some decision rule a with message space M. Then it is imple-

mentable by o↵ering the analyst a choice from B = {(XI , I) 7! a(M,XI , I);M 2 M}.
Assume reversely that ā is implementable by the proposed delegation mechanism.

Then it is implementable by the decision rule a(b,XI , I) = b(I,XI) with message

space M = B.

Proof of Proposition 2.

The following is based on the proof of Theorem 1 (a generalization of Savage’s the-

orem) in Gneiting and Raftery (2007). A scoring rule is called proper if it satisfies

Condition (2), the truthful message condition.
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We first show that the characterization in the proposition is su�cient for the

scoring rule S to be proper. Convexity of G and the definition of S based on G im-

mediately imply that S is proper, i.e., that truthful revelation is incentive compatible,

since convexity implies

S(⇡, ⇡) = G(P⇡) � G(P0
⇡) + hG0(P⇡0 , ·),P⇡ �P⇡0i = S(⇡0

, ⇡),

for any subgradient G0.

Reversely, suppose that S(⇡0
, ⇡) is a proper scoring rule. Linearity in P⇡ holds by

definition, since S(⇡0
, ⇡) is defined, in (4), as an expectation over P⇡. S(⇡0

, ⇡) is thus,

in particular, a convex function of P⇡. G(P⇡) = S(⇡, ⇡) = sup⇡0 S(⇡0
, ⇡) is an upper

envelope of convex functions, and therefore convex itself. Furthermore, S(⇡0
, ·) is a

subgradient of G at ⇡0 by definition of proper scoring rules. The claim follows.

Proof of Proposition 3.

Denote by

ã(⇡, XJ , J) = argmax
A2A

E[u(a, ✓)|⇡, XJ , J ]

the first-best reduced-form decision rule of the decision-maker. Let M be the set of

all signals ⇡, and choose a such that a(⇡, I,XI) = ã(⇡, XI , I). In this case, M⇤ = ⇡

and I
⇤ = J are best responses that implement ã.

Proof of Proposition 4.

Suppose first that the monotonicity condition (5) holds. Then a(XI , I) = ã(XI , I)

yields incentive compatibility of I⇤ = J , since for any alternative ⇡, XJ , J-measurable

reporting policy Ĩ ✓ J we have that

v(a(Ĩ , XĨ))  v(a(I⇤, XI⇤)).

by monotonicity of a. For this choice of I⇤, ā(⇡, XJ , J) = ã(XJ , J) almost surely, as

desired.

Conversely, consider an arbitrary decision function ā that is implementable by a

decision rule a and ⇡, XJ , J-measurable analyst choice I⇤. Since I⇤ is a best-response
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of the analyst to this decision function a, it follows that the corresponding reduced

form decision function satisfies

ā(⇡, XJ , J) = a(XI⇤ , I
⇤) = max

I✓J
a(XI , I)

almost surely. The right-hand side does not depend on ⇡, and the maximum (weakly)

increases whenever the maximum is taken over a larger set of possible values for I.

The monotonicity condition (5) follows for ã(XJ , J) = maxI✓J a(XI , I), which is

defined for arbitrary J .

Hypothesis testing

Proof of Theorem 2:

The mechanism described in Theorem 2 corresponds to the second characterization

of implementability in Proposition 1. Define B̃ as the set of functions b of the form

b(XJ , J) = inf
X0; X0

J=XJ

t(X 0),

for some full-data tests t : X ! [0, 1] satisfying size control, sup✓2⇥0
E[t(X)|✓]  ↵.

This B̃ is the set of decision functions from which the analyst can e↵ectively choose

at the pre-analysis stage.

For any such b, monotonicity of b(XJ , J) is immediate. Monotonicity of b and size

control of t implies, together with X|✓, ⇡, J d
= X|✓ from Assumption 1, that

E[b(XJ , J)|✓, ⇡, J ]  E[t(X)|✓, ⇡, J ] = E[t(X)|✓]  ↵,

for all ✓ 2 ⇥0, so that b satisfies size control.

It remains to show that the b chosen by the analyst has maximal expected power

among all decision functions satisfying size control and monotonicity. Since the ana-

lyst aims to maximize expected power, it su�ces to show that for any b̃ which satisfies

size control and monotonicity, the set B̃ contains a decision function b with power at

least as high as that for b̃.

To see that this is the case, take any b̃ satisfying size control and monotonic-

ity. Define t(X) = b̃(X, {1, . . . , k}), and define b(XJ , J) = infX0; X0
J=XJ

t(X 0). Then
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b(XJ , J) � b̃(XJ , J) for all XJ , J , and b 2 B̃. In particular, expected power for b is

at least as high as for b̃. The claim follows.

Proof of Proposition 5:

Let b̃ be some solution of the analyst’s problem Define

b(XJ , J) =

8
<

:
b̃(XJ 0 , J

0) J
0 ✓ J

0 else.

Then 0  b(XJ , J)  b̃(XJ , J) for all X and J , and b satisfies all the constraints if

b̃ does. Furthermore, expected power for b is the same as expected power of b̃, since

the two functions are identical on the support of P⇡. Therefore b is a solution of the

analyst’s problem.

The second claim follows from an application of the Neyman–Pearson Lemma (cf.

Theorem 3.2.1 in Lehmann and Romano 2006) to the point null hypothesis P✓0 and

the point alternative P⇡.

To prove Proposition 6, note first that an element of B is extremal if and only if

there exists no function � = �(XJ , J), where � 6⌘ 0, such that both b+� and b��

lies in B.

Lemma 1. Suppose that b 2 B. Then b + � 2 B and b � � 2 B if and only if the

following conditions hold:

Z
�(X,K)dP✓0(X) = 0 (8)

|�(XJ , J)|  min(b(XJ , J), 1� b(XJ , J)) 8 J,X (9)

|�(XJ , J)��(X,K)|  b(X,K)� b(XJ , J) 8 J,X. (10)

Proof of Lemma 1:

Immediate. Each of the three conditions corresponds to one of the conditions defining

B (size control, support, and monotonicity).
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Proof of Proposition 6:

The first part of the proposition is immediate from our preceding discussion; we prove

the characterization of extremal points. We first show that the stated conditions are

su�cient for b to be extremal.

Suppose � satisfies the conditions of Lemma 1, and b satisfies the conditions of this

proposition. We need to show that � ⌘ 0.

1. By condition (9), �(X,K) = 0 for all X such that b(X,K) 2 {0, 1}.

2. If there exists no X such that b(X,K) = q, it follows that �(X,K) = 0 for all

X.

3. If there exists only one X such that b(X,K) = q, we denote �(X,K) = �.

If there exist two points X 6= X
0 such that b(X,K) = b(X 0

, K) = q, then by

assumption there is also some J such that b(X,K) = b(X 0
, K) = b(XJ , J) =

b(X 0
J , J) = q andXJ = X

0
J . Condition (10) then implies�(X,K) = �(XJ , J) =

�(X 0
, K). �(X,K) is therefore constant for allX such that b(X,K) = q. Write

�(X,K) = � for such values of X.

It follows that
R
�(X,K)dP✓0(X) = � · P✓0(b(X,K) = q).

4. Condition (8), in combination with P✓0(b(X,K) = q) > 0 if there exists any X

such that b(X,K) = q, then implies � = 0.

5. We have thus shown that �(X,K) = 0 for all X. Condition (10), in combi-

nation with our assumption that b(XJ , J) = infX0: X0
J=XJ

b(X 0
, K), then implies

�(XJ , J) = 0 for all X, J . The claim follows.

We now show the reverse claim, that any extremal point of B needs to satisfy

these conditions. If any of these conditions is violated, we can construct a � 6⌘ 0

which satisfies the conditions of Lemma 1.

1. Suppose first that there are two points X,X
0 such that 0 < q1 = b(X,K) <

b(X 0
, K) = q2 < 1, so that the first condition of the proposition is violated. Let

q0 < q1 < q2 < q3 be four adjacent points in the range of b(X,K).10 Denote

10This is the only point in the proof where we use that b(X,K) has finite range.
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p1 = P✓0(b(X,K) = q1) and p2 = P✓0(b(X,K) = q2), and set

✏ = min(q1 � q0, q2 � q1, q3 � q2),

⇢1 =

8
<

:
1 if p1 = p2 = 0

p2 else
, ⇢2 =

8
<

:
1 if p1 = p2 = 0

p1 else
.

Define

�(XJ , J) =

8
>>><

>>>:

✏ · ⇢1 if b(XJ , J) = q1

�✏ · ⇢2 if b(XJ , J) = q2

0 else.

This � satisfies the conditions of Lemma 1.

2. Suppose next that the first condition of the proposition holds, and there exists

X
0 such that 0 < b(X 0

, K) = q < 1, but P✓0(b(X,K) = q) = 0, so that the

second condition of the proposition is violated. Define

�(XJ , J) =

8
<

:
min(q, 1� q) if b(XJ , J) = q

0 else.

This � satisfies the conditions of Lemma 1.

3. Suppose lastly that the first two conditions of the proposition hold, but that

the third condition of this proposition is violated. In that case there must be

two points X
0 6= X

00 such that b(X 0
, K) = b(X 00

, K) = q, and we have that

b(X 0
J , J) = 0 for all J such that X 00

J = X
0
J .

Denote p1 = P✓0(X
0) and p2 = P✓0(X

00), and set

✏ = min(q, 1� q),

⇢1 =

8
<

:
1 if p1 = p2 = 0

p2 else
, ⇢2 =

8
<

:
1 if p1 = p2 = 0

p1 else
.

36



Define

�(XJ , J) =

8
>>>>>>>>><

>>>>>>>>>:

✏ · ⇢1 if J = K,X = X
0

�✏ · ⇢2 if J = K,X = X
00

0 if J = K,X 6= X
0
, X

00

�(X,K) if J 6= K, b(XJ , J) = b(X,K) = q

0 else.

The penultimate line is well-defined since there is at most one such X (among

X
0 and X

00) for any given XJ , J , such that b(XJ , J) = b(X,K) = q, given our

assumptions. This � once again satisfies the conditions of Lemma 1.

Proof of Proposition 7:

We construct a prior P⇡(XJ , J) such that P⇡(J = K) = 1, and such that b is optimal

within the set of functions b that satisfy size control and the support condition. It

then follows that b is also optimal within the smaller set B.
We can define P⇡ as follows:

dP⇡(XJ , J) =

8
>>><

>>>:

0 if J 6= K

dP✓0(X,K) · (2� ↵) if b(X,K) = 1, J = K

dP✓0(X,K) · (1� ↵) if b(X,K) = 0, J = K

By assumption size control is binding, P✓0(b(X,K) = 1) = ↵. This implies that

dP⇡(XJ , J) integrates to 1. Furthermore, a simple Lagrangian calculation shows

that b is optimal for the problem of maximizing
R
b(XK , J)dP⇡(XJ , J) subject to the

support condition b 2 [0, 1], and subject to the size constraint.
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B Case study continued: Simple PAPs

In Section 6, we reported first-best optimal PAPs, as well as optimal simple PAPs

that can be represented as Wald tests for pre-specified subsets I. In this section, we

consider the alternative restriction to PAPs where the set of components I that will

be submitted does not have to be pre-specified, but the analyst needs to pre-specify

di↵erent thresholds cI for Wald tests for di↵erent sets I. Optimal simple tests of

this form are reported in Figure 7. When the analyst knows that arms 1 and 2 are

available, the optimal such test is the same as the simple test from Figure 4b. If,

however, the analyst is uncertain about which arms will be available, then the optimal

subset-specific thresholds are non-trivial. The resulting test in Figure 7b rejects if

either the t-statistic for arm 1 exceeds 3.64, or the t-statistic for arm 2 exceeds 2.92,

or the Wald statistic for arms 1 and 2 exceeds 2.852.

This test approximates the optimal test from Figure 5a well, with only a small loss

of power from 32% to 31% due to the simplicity restriction. Reporting such data-

specific thresholds may represent a practical way of committing to e↵ective tests

without communicating overly complex rejection regions.

Figure 7: Optimal simple pre-specified rejection regions for arm-specific cuto↵s

(a) Known availability (b) Uncertain availability
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Mathis, Jérôme (2008). Full revelation of information in sender–receiver games of

persuasion. Journal of Economic Theory, 143(1):571–584.

McCloskey, Adam and Pascal Michaillat (2020). Incentive-Compatible Critical Val-

ues. Technical Report 2005.04141.

Miguel, Edward (2021). Evidence on research transparency in economics. Journal of

Economic Perspectives, 35(3):193–214.

Myerson, Roger B (1986). Multistage games with communication. Econometrica:

Journal of the Econometric Society, pages 323–358.

Olken, Benjamin A. (2015). Promises and perils of pre-analysis plans. Journal of

Economic Perspectives, 29(3):61–80.

Savage, L J (1951). The theory of statistical decision. Journal of the American

Statistical Association, 46(253):55–67.

Savage, Leonard J (1971). Elicitation of personal probabilities and expectations.

Journal of the American Statistical Association, 66(336):783–801.

Sinander, Ludvig (2023). Topics in mechanism design. Lecture notes.

Spiess, Jann (2018). Optimal estimation when researcher and social preferences are

misaligned. Working Paper.

Sterling, Theodore D (1959). Publication Decisions and Their Possible E↵ects on In-

ferences Drawn from Tests of Significance–Or Vice Versa. Journal of the American

Statistical Association, 54(285):30–34.

Tetenov, Aleksey (2016). An economic theory of statistical testing. Cemmap Working

Paper, (CWP50/16).

41



Tullock, Gordon (1959). Publication Decisions and Tests of Significance—A Com-

ment. Journal of the American Statistical Association, 54(287):593–593.

Vanderbei, Robert J et al. (2020). Linear programming. Springer.

Viviano, Davide, Kaspar Wuthrich, and Paul Niehaus (2021). (When) should you

adjust inferences for multiple hypothesis testing? Working Paper.

Wald, Abraham (1950). Statistical decision functions. Wiley New York.

Williams, Cole (2021). Preregistration and Incentives. Working Paper.

Yoder, Nathan (2022). Designing incentives for heterogeneous researchers. Journal

of Political Economy, 130(8):2018–2054.

42


	Introduction
	Related literature

	A motivating example
	Setup
	Implementability
	Which decision functions can be implemented?
	Alternative characterizations of implementability
	Are pre-analysis messages needed?

	Frequentist hypothesis testing
	Decision-maker and analyst objectives
	Decision-maker solution: Pre-specified full-data tests
	Analyst solution: Linear programming

	Case study
	Conclusion
	Proofs
	Case study continued: Simple PAPs

