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Any road followed precisely to its end leads precisely nowhere.

– Bene Gesserit, Dune (1965)

1 Introduction

Researchers have become more creative and ambitious in constructing data sets for empirical analysis. This

often includes combining data from multiple sources or from multiple time periods. But, to take liberties

with an old adage, with great ambition comes great responsibility. Specifically, the responsibility to ensure

that the assembled data are accurate. Accuracy often comes in to question when data are linked across

sources or over time and the unit of observation changes. In such cases, it is necessary to convert the data

to a common unit of observation to enable statistical analysis. Conversion to a common unit of observation

is accomplished with the use of a crosswalk (or concordance).

Crosswalks detail how the researcher maps one unit of observation into a different unit of observation. If

units are nested across the different data sources, then the mapping is straightforward. However, when they

are not nested, complications arise. In such cases, crosswalks specify how each original unit is apportioned

to units in the alternative data source.

To fix ideas, Table I highlights some commonly used crosswalks. It is by no means exhaustive. Geogra-

phy in the United States (and other countries) can be classified in many unique ways across data sources.

Moreover, even when using a common geographic unit, the borders of such units often change (in a non-

nested way) over time. For example, congressional districts and school districts do not need to follow zip

code or county borders, and the boundaries of both are frequently redrawn. Industry and occupation clas-

sifications are also revised every few years to keep up with changes in technology and production. This also

applies to sector classifications available in international trade and tariff data. Medical data use codes to

denote diseases, medical procedures, or drugs that evolve over time and are inconsistent across institutions.

Consider the example of obtaining attributes of US congressional districts from county-level data. If

counties are nested within districts, then the attributes of a district are the aggregation of the attributes

of the counties that fall within its borders.1 However, counties are often divided among multiple districts.

Texas has 254 counties, 30 of which are split into between two and nine districts for the 118th Congress

(Figure I). Viewed from the other side, none of Texas’ 38 congressional districts are comprised solely of

entire counties; each contains a portion of one to four counties. Currently, the boundaries of only 12 of 435

congressional districts completely follow county borders.
1Of course, the ‘correct’ aggregation scheme may not always be obvious.

1



The solution to date, often attributed to Hornbeck (2010), is to specify a crosswalk that apportions

counties to districts assuming that a county’s contribution is proportional to the land area or population

contained in the district.2 For instance, to derive a count of foreign-born in each district given data on the

foreign-born population in each county, a researcher might assume that 10% of the county’s foreign-born

reside in a given district if 10% of the land area of a county lies in the district. This assumes that the

foreign-born are uniformly distributed within a county, which is not realistic given the presence of ethnic

enclaves (e.g., Abramitzky and Boustan, 2017). The final estimate is a weighted sum of the foreign-born

populations in the counties that it overlaps.

Alternative crosswalks rely on different weighting schemes. For example, population-based weights may

be used to map income or education from counties to districts. However, even in this case, there are choices

to be made as population may be measured at the individual level or the household level or only including

certain demographic groups. In the case of industry-level data, value-added-, employment-, establishment-,

shipment-, or payroll-based weights may be used to map industries from one classification to another.

This brief description should make it clear that every crosswalk contains a degree of arbitrariness. For

example, Goldschmidt and Schmieder (2017, p. 1174) state: “We used crosswalks together with our best

judgment to consistently classify business service firms and outsourcing over time.” Bisbee and Zilinsky

(2023, p. 289) describe the “choices and challenges of aggregating the same measures to different geographic

units.” Thus, crosswalks necessarily introduce some measurement error into the data. Moreover, such

errors are often compounded as more than a single crosswalk is necessary to arrive at the final data set.

For instance, Carlino and Drautzburg (2020, p. 773) write:

“After imputing employment according to the prevailing classification scheme in each year,

we use cross-walks from the 1977 SIC classification to the 1987 SIC classification and from

future NAICS classifications to the 1997 six-digit NAICS classification, which we then, in turn,

transform to the 1987 four-digit SIC classification and aggregate up to the three-digit level.”

Nonetheless, the use of crosswalks is exploding in top economics journals and NBER working papers (Figure

II), but has yet to catch the attention of econometricians.3

With this backdrop in mind, the goal of this paper is to shine a light on the imperfections in the process
2Such issues have a long history in demography research. Wright (1936) considers the issue of disaggregating population

estimates to finer geographic levels. Spoer et al. (2023) construct county and census tract crosswalks using population shares
created from data at the census block level as census blocks do not span multiple tracts, counties, or districts.

3The count of articles is based on a manual search for the word “crosswalk” in December 2023. NBER working papers
found at https://www.nber.org/papers.
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that are often glossed over or relegated to supplemental appendices.4 The lack of attention paid to the

use of imperfect crosswalks likely stems from several factors. First, perhaps the common perception is

that the errors introduced are ‘small’ in some sense. Second, without crosswalks, our ability to ask and

hopefully answer interesting and important research questions is severely hampered. For instance, the US

Department of Housing and Urban Development (HUD) states on its website5:

“One of the many challenges that social science researchers and practitioners face is the difficulty

of relating United States Postal Service (USPS) ZIP codes to Census Bureau geographies. There

are valuable data available only at the ZIP code level that, when combined with demographic

data tabulated at various Census geography levels, could open up new avenues of exploration.”

Finally, researchers often devote extraordinary amounts of time producing crosswalks that then become

freely available (see Table I). Researchers contributing to this public good surely strive for accuracy.

In this paper, I delve into the first and second factors. I explore how ‘small’ the errors must be to

be inconsequential, whether errors in existing crosswalks are likely to meet this level of accuracy, and

alternatives to current research practice. Such alternatives are necessary not only to improve the validity of

research relying on crosswalks, but also research that forsakes the use of imperfect crosswalks. For example,

Agarwal et al. (2018) map the zip codes of mortgages to congressional districts, excluding mortgages in

zip codes that span multiple districts of the 111th Congress. This amounts to discarding 5,632 of 32,846

(17.1%) zip codes, introducing possible sample selection bias.

The remainder of the paper is organized as follows. Section 2 provides several motivating examples.

Section 3 provides a literature review. Sections 4 and 5 assess the consequences of using imperfect crosswalks

as well as potential solutions. Section 6 presents a simulation exercise. Section 7 provides an application

to the impact of social media on political polarization. Section 8 concludes.

2 Motivating Examples

Multiple Crosswalks. To explore the practical consequences of using an error-laden crosswalk, I begin

by examining a few cases where multiple crosswalks are available for the same data exercise. First, I

examine different crosswalks from counties in 1990 to districts in the 103rd US Congress. The crosswalks

come from Ferrara et al. (2022) and the Missouri Census Data Center (MCDC).6 Ferrara et al. (2022)
4Certainly some researchers give crosswalks the required attention. For example, Levinson (2015) carefully considers

robustness across crosswalks, but finds only ‘small’ changes. Section 2 discusses a few others as well.
5See https://www.huduser.gov/portal/datasets/usps_crosswalk.html.
6See https://mcdc.missouri.edu/applications/geocorr.html.
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provide six crosswalks based on different weighting schemes. One is based on land area and the remainder

are based on population with various adjustments for urban or rural status, uninhabitable land, etc. The

MCDC provides three different weighting schemes, based on land area, individual population, and number

of household units. The standard deviations of the pairwise differences across the six weighting schemes in

Ferrara et al. (2022) range from 0.043 to 0.212. The standard deviations of the pairwise differences across

the three MCDC weighting schemes range 0.014 to 0.103. These values are used to benchmark the errors

introduced in the Monte Carlo study in Section 6 and the empirical Monte Carlo study in Appendix B.

Next, I examine multiple industry crosswalks from the Standard Industrial Classification (SIC) to the

North American Industrial Classification System (NAICS) 1997 provided in a single data source by Schaller

and DeCelles (2022). Three different weighting schemes are available based on total establishments, em-

ployment, and payroll. Here, the standard deviations of the pairwise differences in the weights range 0.037

to 0.109.

Lastly, I examine the crosswalks used in Blau et al. (2013) to study trends in occupational segregation

by gender. The authors construct three crosswalks from 1990 Census occupation codes to 2000 Census

occupation codes by using (i) aggregate population counts, (ii) female population counts, and (iii) male

occupation counts. The study illustrates the importance of using gender-specific crosswalks when examining

occupational segregation as “trends in occupational segregation ... are masked” when using a gender-neutral

crosswalk (Blau et al., 2013, p. 471). The standard deviation of the differences between the female- (male-)

specific weights and the pooled crosswalk is roughly 0.04 (0.02). The standard deviation of the differences

between the female- and male-specific weights is about 0.05.

Validation Data. I next compare data obtained via crosswalk to validation (i.e., ground truth) data. To

do so, I rely on data from the American Community Survey (ACS) provided by the US Census Bureau.7

The ACS provides aggregate data for both counties and congressional districts. As the basic geographical

unit in the ACS is a census tract, and tracts do not cross either county or congressional district borders,

ACS data aggregated to both counties and congressional districts are subject only to sampling error, but

otherwise represent the truth. Moreover, since both aggregations are derived from the same underlying

data across census tracts, the sampling error similarly affects both aggregations. Thus, we can consider the

data at the congressional district level to be correct.

With this in mind, I start with county-level counts of the number of households living in poverty and

the number of households participating in the Supplemental Nutrition Assistance Program (SNAP) for
7Data obtained from https://data.census.gov/.
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2020 obtained from the 5-year ACS. I then map this into counts for congressional districts using the three

MCDC weighting schemes from 2020. Finally, I compare the crosswalked counts to the counts reported by

the US Census Bureau for congressional districts directly.

Figure A.I in Appendix A displays kernel densities of the four versions (three crosswalked counts and the

true counts). It is evident that the crosswalked versions have a smaller variance; they do not fit the tails of

the true distribution. Figure A.II plots the measurement errors (crosswalked counts minus the true counts)

against the true counts. The errors are negatively correlated with the truth, and display a larger variance

under the land area weighting scheme. Overall, the correlations between the three crosswalked counts of

households in poverty (participating in SNAP) and the true counts range from 0.34 to 0.86 (0.45 to 0.86).

The correlations between the errors from three crosswalked counts of households in poverty (participating

in SNAP) and the true counts range from -0.31 to -0.59 (-0.37 to -0.61). The errors do have sample means

very close to zero; ranging from -0.19 to 0.08 (-0.17 to 0.05) for poverty (SNAP).8

To see the bias that these weighting errors can introduce into a linear regression estimated via Ordinary

Least Squares (OLS), I conduct a simple illustration. As detailed in Appendix A, I generate a district-level

outcome as a function of the true number of households in poverty. I then regress the outcome on each of

the three crosswalked counts. Next, I simulate ten correctly measured covariates that are correlated with

the true count and generate a new outcome that depends on the true count and these ten covariates. The

true coefficient on all covariates is one. In the simple regression where the crosswalked count is the only

covariate, the bias is modest except when using the land area weighting scheme (Table A.I). In the multiple

regression, however, the bias is extremely large and the estimated coefficient on each crosswalked count is

less than 0.1. The bias is exacerbated in the multiple regression since what matters are the partial variances

and covariances.

Empirical Monte Carlo. As a final exercise, I perform an empirical Monte Carlo study based on Che

et al. (2022). The analysis and results are relegated to Appendix B, but illustrate the impact that choosing

a different crosswalk can have on a study’s findings, as well as the impact of perturbations of crosswalks

within the range of the differences documented here.

In sum, errors introduced due to reliance on an imperfect crosswalk cannot be universally dismissed as

‘small’ in practice.
8The average number of households in poverty (participating in SNAP) across congressional districts is roughly 35,000

(32,000).
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3 Literature

To my knowledge, there is no literature on the econometric implications of using an inexact crosswalk, which

is shocking given the dramatic rise in their use (Figure II). Nonetheless, reliance on erroneous crosswalks

has similarities to other data issues. First, there are parallels to the choice of weight matrix in spatial

econometric models (Kelejian, 2008; Herrera et al., 2019, among others). Second, it is similar to the

problem of spatial misalignment (e.g., Pouliot, 2023) and mixed data sampling (MIDAS) (e.g., Yang et al.,

2023). With spatial misalignment, the dependent and independent variables do not align geographically

(such as the location of farms and weather stations). In MIDAS models variables are measured at different

temporal frequencies, with high frequency variables often being aggregated to a lower frequency. Third, the

problem relates to the literature on multiple proxies (e.g., Lubotsky and Wittenberg, 2006). A special case

of this is when matching data sets using strings and multiple matches are possible (Poirier and Ziebarth,

2019). This is part of a general problem known as probabilistic record linkage (e.g., Ridder and Moffitt,

2007). Finally, there are similarities with the problem of choosing weights in synthetic control studies (e.g.,

Abadie and L’Hour, 2021). A formal analysis of crosswalk errors is much needed.

4 Model

4.1 Setup

To assess the impact of using an incorrect crosswalk, let the data-generating process (DGP) be given by

the following simple regression model

yi = ↵+ �x⇤i + "i, i = 1, ..., N (1)

where yi is the outcome, x⇤i is the covariate, and "i is a mean zero error term for observation i. We are

interested in estimating �. This model can be derived from a multiple regression where the other covariates

– including fixed effects – have been partialled out; the Frisch-Waugh-Lovell theorem still applies despite

the particulars of the issue being analyzed (see Appendix C). However, as illustrated in Section 2, it is

important to not lose sight of the fact that partialling out covariates can make the bias from even small

weighting errors quite consequential.

In contrast to the standard regression setup, the covariate, x⇤i , is unobserved. Instead, the same covariate
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is observed for a different unit of observation.9 Let z⇤j , j = 1, ...,M , denote the value of the same covariate

captured by x⇤ except for observation units indexed by j. For example, i may index congressional districts

and j may index counties, or i may index NAICS industries and j may index SIC industries. The covariates

are related by

x⇤i :=
X

j
!⇤
ijz

⇤
j , (2)

where !⇤
ij is the true weights that map the data from z⇤ for unit j to x⇤ for observation i. The collection

of weights is known as a crosswalk.

Even if !⇤
ij is known, assessing the asymptotic properties of the OLS estimates of Equation (1) is

nonstandard as x⇤ and z⇤ cannot both be independent and identically distributed (iid). From Equation (2)

it follows that if z⇤ is iid, then x⇤ will be heteroskedastic and cross-sectionally dependent if some units j

span multiple units i. Alternatively, due to cross-sectional dependence (and other reasons), it is not realistic

to assume x⇤ is iid. Following Poirier and Ziebarth (2019) I proceed under the assumption that x⇤ and z⇤

are iid. Appendix D considers this assumption in more detail.

I make the following assumption.

Assumption 1 (Data-Generating Process).

(i) The population model is yi = ↵+ �x⇤i + "i for all i.

(ii) x⇤i := xi(!⇤) =
P

j !
⇤
ijz

⇤
j , where !⇤ = (!⇤

11, ...,!
⇤
1M ,!⇤

21, ...,!
⇤
2M , ...,!⇤

1M , ...,!⇤
NM ) is the true weight-

ing scheme.

(iii) {x⇤i } ,
n
z⇤j

o
are iid across i = 1, ..., N and j = 1, ...,M , respectively, each with finite first and second

moments.

(iv) X⇤ := [◆ x⇤i ] is an N ⇥ 2 matrix of full rank where ◆ is an N ⇥ 1 vector of ones and x(!⇤) is an N ⇥ 1

vector with representative element xi(!⇤).

(v) plim 1
N [X⇤0X⇤] = Q, where Q is a positive definite matrix.

(vi) plim 1
N [X⇤0"] = 0.

4.2 Weights

I assume x⇤ is a convex combination of z⇤.
9The case where the true dependent variable, y⇤, is an unknown function of z⇤ is left for future research.
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Assumption 2 (Weights). The weights, !⇤, satisfy

(i) !⇤
ij 2 [0, 1] 8i, j

(ii)
P

i !
⇤
ij = 1 8j.

Consider the example of mapping counties (j) to congressional districts (i). Assumption 2 requires that

the allocation of parts of county j to districts must be mutually exclusive and exhaustive. If a county

is entirely contained within one district, !⇤
ij equals one for that district, zero otherwise. If a county is

divided amongst more than one district, !⇤
ij 2 (0, 1) for districts containing at least some of county j, zero

otherwise. This is illustrated in Figure III for the case of three counties and three districts.

4.3 Unknown Weighting Scheme

In practice, the true weighting scheme, !⇤, is typically unknown. A crosswalk weighting scheme, denoted

by !, is used. The relationship between the crosswalk and true weights is given by

!ij := !⇤
ij + �ij , (3)

where �ij is the measurement error in the weights. The observed covariate is

xi(!) :=
X

j
!ijz

⇤
j . (4)

I make the following assumption.

Assumption 3 (Crosswalk). The crosswalk weights, !, satisfy

(i) !ij 2 [0, 1] 8i, j

(ii)
P

i !ij = 1 8j

(iii) !ij = !⇤
ij if !⇤

ij 2 {0, 1}.

Assumptions 3(i) and 3(ii) restrict attention to crosswalks where x is also a convex combination of z⇤.

Assumption 3(iii) is not guaranteed to hold, but is often reasonable. It implies that if unit j is entirely

contained in observation i or entirely absent from observation i, then this is known. This leads to the

following remark.

Remark 1. Under Assumptions 2 and 3, the weighting errors, �ij, have the following properties
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(D1) �ij 2 [�!⇤
ij , 1� !⇤

ij ] 8i, j

(D2)
P

i �ij = 0 8j.

D1 follows from the fact that the crosswalk and true weights lie in the unit interval. The bounded nature of

!⇤ and ! ensure that � is not normally distributed and that the weighting errors are negatively correlated

with the true weights (Black et al., 2000). D2 follows from Equation (3) and the fact that
P

i !
⇤
ij and

P
i !ij sum to one for all j. Moreover, not only is � mean zero for each j, but D2 also implies that the

weighting errors exhibit negative spatial correlation across j. If a crosswalk allocates too much of z⇤j to unit

i, then the crosswalk must necessarily allocate too little to some other unit(s) i0, i 6= i0.

Figure III provides a hypothetical illustration of the weighting errors. Within each county the crosswalk

and true weights must sum to one, the weighting errors must sum to zero, and the weighting errors are

negatively correlated across districts within a given county (negative spatial correlation). Nothing precludes

the weighting errors from being independent across counties, even within the same district. In the figure,

the weights for county j0 are assumed to be correct since it is nested in a single district.

Using Equations (2), (3), and (4), the weighting errors map into errors in the desired covariate, xi(!⇤).

This yields

xi(!) = xi(!
⇤) +

X
j
�ijz

⇤
j (5)

= xi(!
⇤) + µi,

which resembles the typical errors-in-variables setup. However, the measurement error, µ, is nonclassical.

I add the following assumption.

Assumption 4 (Crosswalk Errors).

(i) E [�] = 0.

(ii) plim 1
N (�0�) = 1

N diag
�P

i �
2
i1, ...,

P
i �

2
iM

�
, where � is an N⇥M matrix with representative element

�ij.

(iii) plim 1
N (�z⇤) = 0, where z⇤ is an M ⇥ 1 vector with representative element z⇤j .

Assumption 4(i) formalizes D2 and assumes that the weighting errors are mean zero not only in the sample

for each unit j, but also in the population. This is not a strong assumption given the bounded nature of

9



the weights as shown in Remark 1.10 Assumption 4(ii) states that �ij and �i0j0 are independent for all i, i0

when j 6= j0. The weighting errors cannot be independent when j = j0 given D2. Assumption 4(iii) implies

that the weighting errors are independent of the covariate, z⇤. This is not as restrictive as it may seem.

For example, say z⇤ measures median income and the weighting scheme, ! is based on population shares.

Even if income is correlated population, this does not imply that income is correlated with the weighting

errors, �.11 A crucial implication of this assumption is that plim 1
N (µ0") = 0 even if Cov(z⇤, ") 6= 0.12

This leads to the following remark.

Remark 2. Under Assumptions 1 – 4, the following properties hold.

(M1) E(µi) = 0

(M2) Var(µi) =
⇥
Var(z⇤) + E(z⇤)2

⇤P
j Var(�ij) 

⇥
Var(z⇤) + E(z⇤)2

⇤P
j

⇣
!⇤
ij � !⇤2

ij

⌘
8i

(M3) Cov[xi(!⇤), µi] = Cov
⇣P

j !
⇤
ijz

⇤
j ,
P

j �ijz
⇤
j

⌘
< 0 8i

(M4) Cov(µi, µi0)  0 8i 6= i0.

M1 states that the measurement error is mean zero. M2 states that the measurement error is likely

heteroskedastic since the upper bound of the variance of � is a function of the true weights using the

Bhatia–Davis inequality (Bhatia and Davis, 2000). M3 states that the measurement error is negatively

correlated with the true covariate, x(!⇤), since the weighting errors are negatively correlated with the true

weights. M4 states that the measurement errors exhibit negative spatial correlation as the covariance will

be strictly less than zero when i and i0 share a common unit j.

4.4 Measurement Error in z⇤

If z⇤ is mismeasured, then there is a second source of measurement error. It is critical to allow for measure-

ment error in z⇤ in the main analysis given the discussion in Sections 1 and 2 and Appendix B. It appears

more common than not that z⇤ is derived using a prior crosswalk or imputation or is an imperfect proxy

(as in the application in Section 7 where a sample of Twitter users in a locale is used as a proxy for social

media usage). Let the observed covariate be given by

zj := z⇤j +  j , (6)
10To be clear, since the true weights and the proposed weights must sum to one for each unit j, the weighting errors cannot

be one-sided as they must sum to zero. The validation exercise in Section 2 confirms this in practice.
11Nonetheless, this assumption may not hold in all applications. Relaxing this assumption is left to future work.
12Cov(z⇤, �) = 0 implies that Cov(µ, ") = 0 even if Cov(z⇤, ") 6= 0 since µ is a function of the products between � and z⇤.
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where  j denotes the measurement error. Combining Equation (6) with (2), (3), and (4) yields

xi(!) =
X

j

�
!⇤
ij + �ij

� �
z⇤j +  j

�
(7)

= xi(!
⇤) +

X
j

⇥
!⇤
ij j + �ij

�
z⇤j +  j

�⇤

= xi(!
⇤) + µ̌i.

To derive the properties of µ̌, add the following assumption.

Assumption 5 (Covariate Errors).

(i) E( |z⇤) = 0 where  and z⇤ are each M ⇥ 1 vectors.

(ii) E ( 0 ) = 1
N diag(�2 1

, ...,�2 M
).

(iii) plim 1
N (� ) = 0.

(iv) plim 1
N (W ⇤ ) = 0, where W ⇤ is a N ⇥M matrix of the true weights.

Under Assumption 5  is classical measurement error in z⇤ and also uncorrelated with the weighting errors,

�, and the true weights, !⇤.

This leads to the following remark.

Remark 3. Under Assumptions 1 – 5 the following properties hold.

(T1) E(µ̌i) = 0

(T2) Var(µ̌i) = Var(µi)+
P

j

⇣
!⇤2
ij �

2
 j

+ �2 j
Var(�ij)

⌘
 Var(µi)+

P
j

h
!⇤2
ij �

2
 j

+ �2 j

⇣
!⇤
ij � !⇤2

ij

⌘i
8i

(T3) Cov[xi(!⇤), µ̌i] = Cov
⇣P

j !
⇤
ijz

⇤
j ,
P

j �ijz
⇤
j

⌘
< 0 8i

(T4) Cov(µ̌i, µ̌i0)  Cov(µi, µi0)  0 8i 6= i0.

T4 follows from M4 and that Cov
⇣P

j !
⇤
ij j ,

P
j !

⇤
i0j j

⌘
< 0. Compared to the case of no measurement

error in z⇤ considered in Remark 2, classical measurement error in z⇤ amplifies the variance of the composite

error and the negative spatial correlation in the regression error.
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4.5 Properties of OLS

To assess the impact of crosswalk errors, I restate the full DGP for clarity.

yi = ↵+ �xi(!
⇤) + "i

xi(!
⇤) =

X
j
!⇤
ijz

⇤
j

!ij = !⇤
ij + �ij

zj = z⇤j +  j

xi(!) = xi(!
⇤) +

X
j

⇥
�ijz

⇤
j + (!⇤

ij + �ij) j
⇤
= xi(!

⇤) + µ̌i.

The estimating equation is

yi = ↵+ �xi(!) + (��µ̌i + "i) (8)

This leads to the following result.

Proposition 1. Let Assumptions 1-5 hold and let b�ols denote the OLS estimate of � in Equation (8). Then

plim b�ols =
Cov [x(!), y]

Var [x(!)]

= �

8
>>>>><

>>>>>:

Var [x(!⇤)] +

<0z }| {
Cov

⇣X
j
!⇤
j z

⇤
j ,
X

j
�jz

⇤
j

⌘

Var [x(!⇤)] + Var (µ̌) + 2 Cov
⇣X

j
!⇤
j z

⇤
j ,
X

j
�jz

⇤
j

⌘

| {z }
<0

9
>>>>>=

>>>>>;

:= �⇧

If z⇤ is observed, then  equals zero and Var (µ̌) is replaced with Var (µ) above.

Proof: See Appendix E.

Figure IV characterizes the bias for different combinations of the variances of the true covariate, x(!⇤),

and the composite measurement error, µ̌. Importantly, there are regions where OLS suffers from attenuation

bias (⇧ 2 (0, 1)), expansion bias (⇧ > 1), and even sign reversal (⇧ < 0). Outcomes other than attenuation

bias occur when there is a large difference between the variances x(!⇤) and µ̌ such that Cov [x(!⇤), µ̌] <

min{Var[x(!⇤)], Var(µ̌)}. When Var [x(!⇤)] (Var(µ̌)) is smaller, then sign reversal (expansion bias) occurs.

The usual attenuation bias arises when the variance of the measurement error and the variance of the true

covariate are both larger than their covariance. While there is no great intuition behind this result, to
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state it less formally: (i) expansion bias arises when the variance of the measurement error is ‘small’, yet

still ‘strongly’ covaries with the true covariate, and (ii) sign reversal arises when the variance of the true

covariate is ‘small’, yet still ‘strongly’ covaries with the measurement error.

Note, the analysis here is similar to Black et al. (2000) except with a particular structure on the

nonclassical measurement error in the regression covariate. It is also similar to the analysis of OLS in the

presence of mixed data sampling (e.g., Yang et al., 2023).

5 Pathways Forward

5.1 Single Candidate Weighting Scheme

Prior to discussing potential solutions for researchers given access to a single error-laden crosswalk, I briefly

mention two possibilities that are not satisfactory solutions. First, one might aggregate the data to a level

where a crosswalk is no longer needed. For example, if the changes over time in an industrial classification

only affects, say, classifications at the 4-digit level but not the 3-digit level, then estimating a regression

model at the 3-digit level precludes the need to use a crosswalk. Positing this as a solution is unsatisfactory

for three reasons. First, researchers typically do not do this. Thus, guidance for researchers using crosswalks

is needed. Second, it is inefficient to aggregate if one does not have to; there are fewer industries at the

3-digit level than the 4-digit level. The solutions discussed below offer alternatives to researchers. Finally,

aggregation is not always possible. Consider again the case of counties and congressional districts. Here,

aggregation to avoid the use of crosswalks entails changing the geographic unit of observation to regions that

are comprised only of entire counties and congressional districts. A close look at Figure I indicates that this

entails aggregating to the entire state. While researchers could abandon county- and district-level analyses

in favor of state-level analyses, these face their own complications. For example, in the application in Section

7, the outcome of interest is the political ideology of US Congressional representatives. Aggregating this to

the state-level would introduce a new weighting issue.

Second, in the presence of a single covariate suffering from classical measurement error, OLS estimates

from the forward and reverse regressions can be used to bound the true coefficient asymptotically (Black

et al., 2000). This is the so-called Frisch bounds. Because the measurement error due to reliance on an

error-laden crosswalk is nonclassical, this is no longer necessarily the case (see Appendix E). In Figure IV,

the OLS estimate of � from the reverse regression suffers from expansion bias in the orange region and

attenuation bias in the magenta region. Thus, while there are regions where Frisch bounds do contain the
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truth asymptotically, this is not guaranteed.

I now assess possible solutions.

Decomposition. If some of the true weights, !⇤
ij , equal one and these are measured correctly in the

crosswalk (Assumption 3(iii)), the covariates x(!⇤) and x(!) can each be decomposed into two components.

Defining Ji =
n
j : !⇤

ij > 0
o

and J 1
i =

n
j : !⇤

ij = 1
o

, it follows

xi(!
⇤) =

X
j
!⇤
ijz

⇤
j =

X
j2Ji\J 1

i

!⇤
ijz

⇤
j +

X
j2J 1

1

z⇤j (9)

:= exi(!⇤) + x̆⇤i

xi(!) =
X

j
!ijzj =

X
j2Ji\J 1

i

!ijzj +
X

j2J 1
i

zj (10)

:= exi(!) + x̆i

where exi(!⇤) and exi(!) are the parts of each covariate derived from units j that are only partially included

in unit i and x̆⇤i and x̆i are the parts derived from units j that are entirely included in unit i.

From Equation (7), it follows that

exi(!) = exi(!⇤) +
X

j2Ji\J 1
i

⇥
!⇤
ij j + �ij

�
z⇤j +  j

�⇤
= exi(!⇤) + eµi (11)

x̆i = x̆⇤i +
X

j2J 1
 j = x̆⇤i + µ̆i, (12)

where µ̌i = eµi + µ̆i. Importantly, x̆i is error-free unless zj 6= z⇤j for some j 2 J 1
i . Substituting Equations

(9) - (12) into (1), the estimating equation is

yi = ↵+ e�exi(!) + �x̆i +
⇣
�e�eµi � �µ̆i + "i

⌘
, (13)

where e� = �. However, one should not impose the restriction that e� = � during estimation as this reduces

the model to Equation (8) and the result in Proposition 1. This leads to the following result.

Proposition 2. In addition to Assumptions 1-5, assume J 1
i is non-empty for some i. Let b�ols denote the
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OLS estimate of � in the bivariate regression model in Equation (13). Then

plim b�ols =
Var(ex)Cov(x̆, y)� Cov(x̆, ex)Cov(y, ex)

Var(x̆)Var(ex)� [Cov(x̆, ex)]2

=
�

D

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

D � Var(µ̆)Var(ex)| {z }
6=0

+ Cov

✓X
j2J 1

z⇤j ,
X

j2J\J 1
!⇤
j z

⇤
j

◆

| {z }
?

⇥

8
>><

>>:
Var (µ̌) + Cov

✓X
j2J\J 1

!⇤
j z

⇤
j ,
X

j2J\J 1
�jz

⇤
j

◆

| {z }
<0

9
>>=

>>;

9
>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

where D := Var(x̆)Var(ex)� [Cov(x̆, ex)]2. If z⇤ is observed, then  = 0 for all j, Var(µ̆) = 0, and Var (µ̌) is

altered.

Proof: See Appendix E.

Proposition 2 shows that b�ols is consistent if z⇤ is observed and Cov(z⇤j , z
⇤
j0) = 0 for all j 6= j0. Consistent

estimation is possible because � is identified from variation in the part of x(!) that is measured without

weighting error.

As mentioned, one should not impose the restriction e� = � during estimation. However, this suggests

a specification test for the presence of crosswalk weighting errors. If z⇤ is observed, then be� and b� are both

consistent estimates of � under the null that !ij = !⇤
ij for all ij. Thus, testing the null hypothesis Ho : e� = �

using a two-sided alternative constitutes a conservative specification test in that it may reject even when

the crosswalk is correct if z⇤ is unobserved.

A final comment is warranted. I am assuming a homogeneous effect of x(!⇤), �. If this is not the case,

then estimation of Equation (13) may suffer from the type of contamination bias discussed in Goldsmith-

Pinkham et al. (forthcoming). A parametric solution of the type proposed by the authors may be applicable

here as well. For brevity, I leave this for future exploration.

Instrumental Variables. A common solution to measurement error is Instrumental Variables (IV). I

obtain the following result.

Proposition 3. Let Assumptions 1-5 hold and let b�iv denote the IV estimate of � in Equation (8). Then
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for a generic instrumental variable q

plim b�iv =
Cov [q, y]

Cov [q, x(!)]

=
�Cov [q, x(!⇤)] + Cov (q, ")

Cov [q, x(!⇤)] + Cov
⇣
q,
P

j !
⇤
j j

⌘
+ Cov

⇣
q,
P

j �jz
⇤
j

⌘
+ Cov

⇣
q,
P

j �j j

⌘ .

Proof: See Appendix E.

This leads to the following remark.

Remark 4. Under the conditions in Proposition 3, q must satisfy the following conditions

(IV1) Cov
⇣
q,
P

j !
⇤
j z

⇤
j

⌘
6= 0

(IV2) Cov
⇣
q,
P

j !
⇤
j j

⌘
= 0

(IV3) Cov
⇣
q,
P

j �jz
⇤
j

⌘
= 0

(IV4) Cov
⇣
q,
P

j �j j

⌘
= 0

(IV5) Cov (q, ") = 0.

for b�iv to be consistent.

With access to a single crosswalk, possible instruments include

(Q1) qi := ci, where c is a N ⇥ 1 vector and plim 1
N [c0x(!⇤)] 6= 0

(Q2) qi :=
P

j !ijbj , where b is a M ⇥ 1 vector and plim 1
M (b0z⇤) 6= 0

(Q3) qi :=
P

j2J 1 zj = x̆i

(Q4) qi :=
P

j2J 1
i
bj

Instrument Q1 is derived from an excluded covariate, c, that is at the same unit of observation as x(!⇤).

Instrument Q2 is derived from an excluded covariate, b, that is available at the same unit of observation

as z. The same crosswalk is used to map b into a usable instrument. Instruments Q3 and Q4 are the parts

of x(!⇤) and b, respectively, that are measured without weighting errors. The instrument is only available

if J 1
i is non-empty for some i.

Add the following assumption.

Assumption 6 (Instruments).

(i) Cov
⇣
q,
P

j !
⇤
j z

⇤
j

⌘
> 0.
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(ii) Cov (b, z⇤) > 0.

(iii) Cov (b, ) = 0.

Assumptions 6(i) and 6(ii) are without loss in generality. Assumption 6(iii) requires b to be independent of

the measurement error in z⇤. This leads to the following result.

Corollary 1. Let Assumptions 1-6 hold. Instruments Q1 – Q3 are unlikely to satisfy the requirements in

(IV1) – (IV5). Instrument Q3 is a valid instrument if z⇤ is observed. Instrument Q4 is a valid instrument.

Proof: See Appendix E.

For Q1 it is unlikely Cov
⇣
c,
P

j �jz
⇤
j

⌘
= 0 if IV1 holds – since Cov

⇣P
j !

⇤
j z

⇤
j ,
P

j �jz
⇤
j

⌘
< 0 – leading to

violation of IV3. For Q2 Cov
⇣
q,
P

j �jz
⇤
j

⌘
will generally be positive, violating IV3. Q3 and Q4 are valid

since the weights are known, however Q3 also requires z⇤ to be observed.

5.2 Multiple Candidate Weighting Schemes

I also consider potential options when researchers possess a set G containing G candidate crosswalks. Denote

the weighting scheme under crosswalk g 2 G by !g and the weighting errors by �g.

Model Selection. Access to multiple crosswalks permits a second specification test. Following the logic

in Kelejian (2008), the non-nested J-test of Davidson and MacKinnon (1981) can be used to select the

‘true’ weighting scheme among the set G. The proposed test is given in Algorithm 1. Ideally, the test

identifies a single weighting scheme, say g⇤, among the candidates by failing to reject the null when g = g⇤

and rejecting the null when g 6= g⇤. If the candidate weighting schemes are highly correlated, then such a

clean result is unlikely due to the resulting high multicollinearity between xi(!g) and xi(!g0).
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Algorithm 1 Non-Nested J-test
1: Choose a candidate weighting scheme g 2 G.

2: Estimate

yi = ↵g0 + �g0xi(!g0) + "i,g0 , 8g0 2 G \ g

3: Estimate the augmented model

yi = ↵g + �gxi(!g) +
X

g02G\g
⇣g0

h
b↵g0 + b�g0xi(!g0)

i
+ "i,g

4: Test Ho : ⇣ = 0 against Ha : ⇣ 6= 0, where ⇣ = (⇣1, ..., ⇣g�1, ⇣g+1, ..., ⇣G), using a standard Wald test.

5: Repeat Steps 1-4 allowing each of the G alternatives to serve as the null model.

Model Averaging. With multiple crosswalks available, several model averaging approaches are possible.

These include

(MA1) Average weights: !̄ij() =
P

g g!ij,g, where g 2 [0, 1] 8g and
P

g g = 1.

(MA2) Average covariates: x̄i() =
P

g gxi(!g), where g 2 [0, 1] 8g and
P

g g = 1.

(MA3) Average coefficients: �̄() =
P

g g�(!g), where

�(!g) := Cov [x(!g), y] /Var [x(!g)], g 2 [0, 1] 8g, and
P

g g = 1.

MA1 entails using a weighted average of the crosswalk weights, with weights given by g, to map units

j into units i, and then estimating a single regression model. The average crosswalk weights, !̄ij(), will

satisfy the properties in Remark 1. MA2 entails using a weighted average of the covariates after using

each crosswalk to map units j into units i and then estimating a single regression model. In this setup,

linearity in Equation (2) implies that MA1 and MA2 are equivalent. MA3 entails using each crosswalk

to estimate a separate regression model and then taking a weighted average of the coefficient estimates.

MA3 differs from MA1 and MA2 due to the nonlinearity of �(!g).

Implementation requires the -weights to be chosen. For simplicity I use equal weights (g = 1/G). For

MA2 I also follow Lubotsky and Wittenberg (2006) who shows that the sum of the coefficients on multiple

proxies is identical to the optimal weighted average. Regardless, the averaging estimators are inconsistent

but may reduce the bias as in Black et al. (2000).13

13Poirier and Ziebarth (2019) consider the estimator MA2 in a different context with multiple proxies and show that OLS
is consistent. The proof relies on three assumptions that do not hold here: (i) The first two moments of xi(!g) and xi(!

0
g)

are identical 8 g 6= g0, (ii) Cov
⇥
xi(!g), xi(!

0
g)
⇤
= 0 8 g 6= g0, and (iii) the true covariate is among the proxies being averaged.

Requirements (ii) and (iii) are particularly problematic here.
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Decomposition. If some of the true weights, !⇤
ij , equal one and and these are measured correctly in all

crosswalks (Assumption 3(iii)), then the decomposition approach in Section 5.1 can be amended. Specifi-

cally, I augment (13) and estimate

yi = ↵+
X

g
e�gexi(!g) + �x̆i + �i + "i, (14)

where �i is the composite error term. b�ols will be consistent under the same conditions in Proposition 2.

Moreover, testing the null hypothesis Ho :
P

g
e� = � provides a specification test.14

Instrumental Variables. With multiple candidate weighting schemes, researchers might consider addi-

tional instrumental variables

(Q5) qi =
P

j !g0,ijzj

(Q6) qi =
P

j !g0,ijbj

where !g0 is an alternative weighting scheme to the one used to construct the covariate, x(!g). I add the

following assumption.

Assumption 6 (cont.) (Instruments).

(iv) �g,ij and �g0,ij are independent conditional on !⇤
ij for all g, g0 2 G.

Assumption 6(iv) requires the weighting errors to be uncorrelated across crosswalks conditional on !⇤ and

is identical to Assumption A1 in Black et al. (2000). This leads to the following result.

Corollary 1 (cont.). Instruments Q5 and Q6 are unlikely to satisfy the requirements in (IV1) – (IV5).

In fact, no potential instrument is likely to satisfy the requirements if !⇤
ij < 1 for all ij.

Proof: See Appendix E.

For Q5 and Q6, Cov
⇣
q,
P

j �jz
⇤
j

⌘
6= 0 violating IV3. The fact that any instrument must covary with the

true covariate which depends on products of the true weights and z⇤, but be independent of the product of

the weighting errors and z⇤ despite the weighting errors being negatively correlated with the true weights,

implies that finding a valid instrument is exceptionally difficult. This result has been been pointed out

previously (e.g., Loewenstein and Spletzer, 1996; Black et al., 2000). However, Q3 and Q4 are plausibly

valid since they do not depend on mismeasured weights.
14Note, the test involves

P
g
e�g since one can derive (14) by substituting x̄i() into (8) and using the decomposition in (9)

and (10), implying that e�g = g�g and
P

g
e�g = �.
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6 Simulations

6.1 Setup

To assess the performance of the various estimators and specification tests, as well as provide guidance on

whether crosswalk errors are likely to be ‘small’, I consider the following DGP.

yi = �xi (!
⇤) + "i

xi (!
⇤) =

X
j
!⇤
ijz

⇤
j

xi (!1) =
X

j
!1,ijzj

q1i = N (xi (!
⇤) , 1)

q2i (!1) =
X

j
!1,ijb

⇤
j

q3i =
X

j2J 1
i

zj

q4i =
X

j2J 1
i

b⇤j

q5i (!2) =
X

j
!2,ijzj

q6i (!2) =
X

j
!2,ijbj

!⇤
ij =

exp
⇣
c⇤ij

⌘

P
i0 exp

⇣
c⇤i0j

⌘

!1,ij =
exp

⇣
c⇤ij + �1,ij

⌘

P
i0 exp

⇣
c⇤i0j + �1,i0j

⌘

!2,ij =
exp

⇣
c⇤ij + �2,ij

⌘

P
i0 exp

⇣
c⇤i0j + �2,i0j

⌘

c⇤ij ⇠ N(0, 1), 8j 2 Ji

�1,ij , �2,ij ⇠ N
�
0,�2

�

z⇤j , b
⇤
j ⇠ N2

0

B@0,

2

64
102 0.75

�
102

�

102

3

75

1

CA

zj = N
�
z⇤j ,�

2
 

�

" ⇠ N(0, 0.25)

where i = 1, ..., N , j = 1, ...,M , and the true value of � is one. Ji denotes the set of units j that are

included in i. If j /2 Ji, then !1,ij = !2,ij = !⇤
ij = 0. If j 2 Ji, then !1,ij , !2,ij , !⇤

ij > 0. If j 2 J 1
i ⇢ Ji,

then j is entirely contained in i and !1,ij = !2,ij = !⇤
ij = 1.

The true covariate is xi (!⇤). The observed covariate, xi (!1), is derived from first crosswalk, !1, and

the observed underlying covariate, z. As !1 and !2 are generated identically (but based on different random

draws), there is no gain to considering xi (!2) as the observed covariate. Instead, !2 is used in the generation

of the instrumental variables. The instruments, qk, k = 1, ..., 6, correspond to Q1–Q6 in Section 5. Note,

all instruments are designed to have very strong first-stages; there is no weak instrument issue. This permits

assessment of the performance of these instruments under ideal circumstances.

The sample size, N , is 100, while M is 398. The size of M is determined by the definition of Ji. Here,

Ji includes four to six units (i.e., #Ji 2 {4, 5, 6} for all i). Specifically, some units j span three units i,

implying !⇤
ij 2 (0, 1) for three values of i for each j. In addition, each unit i contains three units j that do
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not span other units (i.e., #J 1
i = 3 for all i). This is illustrated in Figure V. In this case, #Ji = 4 for i = 1

and N , #Ji = 5 for i = 2 and N � 1, and #Ji = 6 for the remainder. This setup resembles situations such

as mapping counties to congressional districts or one industrial classification to another.

The parameters that vary are �2 and �2 . The parameter � varies from 1 to 3 in increments of 0.25

and determines the extent of the weighting errors. When � goes to zero, the researcher-provided weights,

!1 and !2, converge to the true weights, !⇤. The parameter � corresponds to dispersion of the classical

measurement error in zj . Values are chosen to fix the reliability ratio at values between 0.7 and one in

increments of 0.1.

The attributes of the simulated data are shown in Table F.II for the case where z⇤ is observed. Impor-

tantly, the standard deviation of the weighting errors ranges from 0.018 to 0.033. This is at the low end of

the differences across weighting schemes discussed in Section 2 and thus capture plausible deviations. The

reliability ratio of x(!) varies from 0.93 to 0.98. Appendix Table F.II also reports the median first-stage

F -statistics in the IV regressions; the median first-stage F -statistic ranges from 83 to more than 2500.

In each simulated data set, I perform the following

1. OLS estimation of the true model in Equation (1) (OLS : x(!⇤))

2. OLS estimation of Equation (8) (OLS : x(!))

3. OLS estimation of Equation (14) (OLS : decomp)

4. IV estimation of Equation (8) using a single instrument from Q1 - Q6 (IV : instrument)

5. OLS estimation of Equation (8) except including the covariate obtained from each weighting

scheme and then summing the coefficients to obtain the optimal model averaging estimate

(OLS : MA2)

6. Average the OLS estimates from Equation (8) and the same model except replacing the covari-

ate with one derived from the alternative weighting scheme using equal weights as in MA3

(OLS : MA3)

I compute the bias, absolute bias, and root mean squared error (RMSE) for the estimates of �, as well

as the coverage rate and width of the Frisch bounds, and perform the two specification tests described in

Sections 5.1 and 5.2.
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6.2 Results

Select results are shown graphically in Figure VI; additional results are provided in Appendix F. Panels (A)

and (B) plot the bias on identical scales with and without measurement error in z⇤, respectively. Panels

(C) and (D) are identical but plot the RMSE. For comparison, each panel provides the results obtained

using the correct crosswalk, x(!⇤) (solid black line).

There are several striking findings. First, the J-test performs exceptionally well. The proportion of

samples where the test fails to reject the null that !⇤ is the correct weighting at the p < 0.05 level, but

rejects the nulls that !1 or !2 is the correct weighting scheme at the p < 0.05 level, ranges from 0.946

to 0.951. Thus, the test is correctly sized. This also holds if z⇤ is measured with error; the probabilities

range from 0.948 to 0.958 when the reliability ratio of z is 0.7. For the alternative specification test, the

proportion of samples where Ho :
P

g
e�g = � is rejected at the p < 0.05 level using a two-sided alternative,

which corresponds to the power of the test as the crosswalk is incorrect, varies from 0.542 to 0.989 depending

on the severity of the weighting errors. However, the power declines as the measurement error in z⇤ worsens.

Second, the Frisch bounds include the true value in at most 75% of the simulations. The coverage rate

of the Frisch bounds worsens as z⇤ is measured with error. Thus, the bounds are of limited practical use

with even small errors in the crosswalk weights.

Third, the consequences of ignoring even small crosswalk errors are severe. When z⇤ is correctly ob-

served, the bias of OLS : x(!) (solid red line) ranges from roughly -0.03 to -0.1 as � varies from 1 to 3

(Figure VI). A bias of -0.1 is meaningful in that the true value of � is 1 and � = 3 is at the low end of

variation across weighting schemes discussed in Section 2. Moreover, measurement error in z compounds

the bias. The bias increases to nearly -0.4 when the reliability ratio is 0.7. OLS : x(!) also fairs poorly in

terms of RMSE (Figure VI). The ratio of the RMSEs of OLS : x(!) to OLS : x(!⇤) varies from about 13

(when � = 1) to 37 (when � = 3) when z⇤ is observed. The ratios increase to roughly 114 (when � = 1)

and 131 (when � = 3) when the reliability ratio of z is 0.7. This makes it clear that crosswalk errors should

not be dismissed as ‘small’, particularly when multiple crosswalks are used.

Fourth, three estimators are essentially unbiased when z⇤ is observed: OLS : decomp, IV : Q3, and IV : Q4

(Figure VI). Each of these estimators identifies � solely from variation in x(!⇤) arising from units j where

the weights are known to be one. However, the RMSE of these estimators is large relative to the case where

the true crosswalk weights are known due to discarding some of the variation in x(!⇤) (Figure VI). The

efficiency loss depends on the frequency of weights that are equal to one. The ratio of the RMSEs of each

to OLS : x(!⇤) is lowest for OLS : decomp, ranging from six (when � = 1) to ten (when � = 3). The ratios
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for IV : Q3 (IV : Q4) vary from 11 to 14 (15 to 19). When z⇤ is mismeasured, IV : Q4 continues to have a

bias close to zero whereas OLS : decomp and IV : Q3 do not since these are functions of z. The ratio of the

RMSEs of OLS : Q4 to OLS : x(!⇤) now varies from 39 (when � = 1) to 45 (when � = 3). Thus, the loss in

efficiency is substantial.

Fifth, IV : Q1, IV : Q5, and IV : Q6 have very small biases if z⇤ is observed. When z⇤ is not observed, the

bias of IV : Q5 increases dramatically; the others are largely unaffected as the instruments are not functions

of z. In terms of RMSE, IV : Q1 performs the best (Figure VI). In fact, across all estimators considered, it

has the lowest RMSE when z⇤ is not correctly observed. Thus, there is merit in using a (strong) instrument

that does not need to be crosswalked.15

Finally, the remaining estimators do not offer much upside. OLS : MA3 performs identically to OLS : x(!).

OLS : MA2 offers some improvement over OLS : x(!) in terms of both bias and RMSE, analogous to the result

in Black et al. (2000). Thus, averaging the covariate across multiple crosswalks is a simple improvement

that researchers can make over current practice. IV : Q2 performs nearly identically to OLS : x(!) when

z⇤ is observed since both use the same mismeasured crosswalk weights. However, when z⇤ is unobserved,

the performance of OLS : x(!) worsens, but the bias of IV : Q2 is unchanged since the instrument does not

depend on z. The RMSE does worsen due to the lower first-stage F -statistic, but much less than OLS : x(!).

7 Application

Political polarization – a term that encompasses both affective (ill-will towards the political opposition)

and ideological (divergence in political positions) polarization – is rising. Autor et al. (2020, p. 3140)

states that “the ideological divide in American politics is at an historic high,” while Callander and Carbajal

(2022, p. 826) write that “political polarization is an important and enduring puzzle.” Here, I assess the

impact of social media on political polarization while addressing potential issues with mapping counties into

congressional districts. Specifically, I build on Fujiwara et al. (2024) and Müller and Schwarz (2023) who

use county-level data to assess the effect of Twitter (now X) on county-level electoral outcomes and hate

crimes, respectively. Instead, I map county-level data on Twitter usage to congressional districts to explore

its impact on the political ideology of US Congressional representatives. Thus, I am explicitly focusing on

the ideological polarization of elected officials (Graham and Svolik, 2020; Kubin and von Sikorski, 2021).

The relationship between social media and political polarization is unsettled.16 Kubin and von Sikorski
15Note, IV : Q1 has the largest first-stage F -statistics (Table F.II)
16See Allcott et al. (2020) review the impact of social media on welfare.
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(2021, p. 194) provide an extensive review, concluding that “the true effect of social media exposure on

political polarization remains unclear.” However, the fear is that social media creates echo chambers leading

to greater polarization. Conover et al. (2021, p. 89) writes: “The concern is that when politically active

individuals can avoid people and information they would not have chosen in advance, their opinions are

likely to become increasingly extreme as a result of being exposed to more homogeneous viewpoints and

fewer credible opposing opinions.” Similarly, Levy (2021, p. 832) states: “As social media becomes a major

news source, there are growing concerns that individuals are exposed to more pro-attitudinal news, defined

as news matching their ideology, and as a result, polarization increases.” Social media also provides direct

contact between voters and politicians and Callander and Carbajal (2022, p. 861) shows theoretically that

interactions beteen voters and politicians are a “necessary ingredient” for polarization.

To examine the connection between social media and political polarization, I estimate the following

specification

yit = ↵+ � lnXi +Wit� + "it, (15)

where yit is the ideology of the (elected) representative in district i during Congress t, Xi is a time invariant

measure of Twitter usage, Wit is a vector of controls, and "it is a mean zero error term. The sample includes

the 110th (2007-8) through 116th (2019-20) Congresses, and excludes Alaska, Hawaii, and Washington, D.C.

To measure ideology I use the DW-Nominate (Dynamic Weighted NOMINAl Three-step Estimation)

scores available from UCLA Social Science Division’s Voteview.17 The scores vary from -1 to 1, with higher

values indicating greater conservatism. Each politician receives two scores per two-year Congressional

session, referred to as the first and second dimensions. Dimension 1 (2) represents economic (social) ideology.

From this, I use three measures of ideology derived from each dimension: (i) raw score, (ii) absolute value

of the score, and (iii) squared score. Using the raw score, the model assesses whether Twitter usage leads

to representatives that are more liberal or conservative on average. Using the other measures, the model

assesses whether Twitter usage leads representatives to hold more extreme views, regardless of whether

those extreme views are liberal or conservative. As the scores are derived from roll call votes, the second

and third outcomes are measures of issue polarization.

The controls in W come from Fulton and Dhima (2021) and include district-level measures of the

share voting Democrat in the last presidential election, land area, median income, female population share,

school-age population share, minority population share, share with at least a four-year college degree, unem-

ployment rate, share in blue collar occupations, whether the district was redistricted since the last election,
17See https://www.voteview.com.
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relative expenditures of the Democrat and Republican candidates, relative experience of the Democrat and

Republican candidates, and whether the Democrat and Republican candidates are female. District fixed

effects are excluded since districts change over time.

The variable of interest is Twitter usage within the district. While ideally one would have ground truth

data originating at the congressional district level, such data does not exist to my knowledge. Instead, it

must be constructed from data available at the county-level, corresponding to z in Section 4. The county-

level variable is constructed in Fujiwara et al. (2024) and Müller and Schwarz (2023) after assigning 475

million geo-coded tweets to users and then counties. The original data were collected by Kinder-Kurlanda

et al. (2017). The result is a measure of the number of individuals using Twitter in each county in 2015

based on 3.7 million users (or roughly 7% of Twitter users). Basing users on this limited sample implies that

it is measured with some error; actual Twitter usage, z⇤, is unobserved. The fact that it is time invariant is

an additional source of error. Fujiwara et al. (2024) and Müller and Schwarz (2023) propose an instrument

for Twitter usage based on the location of followers of the 2007 South by Southwest (SXSW) Festival. As

articulated in these studies, SXSW is a plausibly exogenous shock to Twitter usage that affected some

locations more than others. Specifically, the instrument is the county-level number of new followers of the

SXSW account in March 2007, controlling for the number of followers of the SXSW account prior to March

2007. This corresponds to b in Section 5.

I map the Twitter variables to congressional districts using four crosswalks assigning weights based on

land area, housing units in 2010, population in 2010, and population in 2000. Using each weighting scheme,

three models are estimated. The estimates should be seen as the naïve results a researcher would obtain

by selecting one crosswalk to use during data construction. The results are shown in Table II. The columns

labelled “Actual” are estimated by OLS with ln(X) as the covariate of interest. The columns labelled “RF”

are the reduced forms estimated by OLS with log new SXSW followers in March 2007 as the covariate of

interest. Finally, the columns labelled “IV” are estimated by IV using new SXSW followers in March 2007

to instrument for ln(X).

Table III present the results from alternatives to the naïve approach. Columns (1) and (2) include

the actual and RF covariates, respectively, from each of the four crosswalks in a single model and report

the sum of the coefficients.18 This is equivalent to the optimal OLS : MA2 estimator. Columns (3) to (5)

report the coefficient on the equally weighted average covariate, which corresponds to the equally weighted

version of OLS : MA2. Finally, Columns (6) to (8) report the coefficients on the relevant covariate aggregated
18The IV results are missing because there are not instruments for all four covariates.
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over counties that lie entirely within a single congressional district. This corresponds to the estimator

OLS : decomp in Section 5.2. The “IV” specification uses log new SXSW followers in March 2007 aggregated

over counties that lie entirely within a single congressional district to instrument for ln(X) aggregated over

all counties using the 2010 population crosswalk. This corresponds to the estimator IV : Q4. Based on the

simulation results, OLS : decomp and IV : Q4 are the preferred estimators.

A few important results stand out. First, while not shown, I perform the non-nested J-test. The test

is performed multiple times where each weighting scheme has a turn as the true weighting scheme under

the null. With one of the weighting schemes as the null, twelve tests are performed corresponding to the

“Actual” and “RF” models in Table II. When the weighting scheme under the null is land area, I reject

the null at the p < 0.05 level in 10 of 12 cases. When the weighting scheme under the null uses the

number of housing units, I reject the null in only two cases. When the weighting scheme under the null

uses the population in 2000 (2010), I reject the null in six (four) cases. Thus, the population crosswalks are

preferable to land area, with population measured in housing units having the strongest empirical support.

Second, the results in Table II indicate a positive, statistically significant effect on conservatism along

Dimension 1 (Panel A), but not Dimension 2 (Panel B), across all crosswalks. However, the “Actual” and

“IV” estimates in Panel A are about 40% smaller when using the land area crosswalk; the “IV” estimates

using the population crosswalks yield elasticities at the sample mean of about 0.015. In contrast, the

results in Table III suggest little effect of social media on the raw ideology score, particularly when using

the decomposition approach. To the extent there is evidence of a positive effect on conservatism, it is

stronger along Dimension 2 (Panel B). Thus, the naïve results are not robust once measurement error in

the crosswalk is addressed.

Third, the results in Table II indicate a positive, statistically significant effect on both measures of

polarization along Dimension 1 (Panel A) across all crosswalks and specifications except Column (1). Only

the “IV” estimates produce a positive, statistically significant effect on polarization along Dimension 2

(Panel B). Again, the point estimates are considerably smaller when using the land crosswalk; the “IV”

estimates using the population crosswalks yield elasticities at the sample mean below 0.02. In contrast, the

results in Table III provide less robust evidence that social media increases polarization along Dimension

1 (Panel A), but stronger evidence that it increases polarization along Dimension 2 (Panel B). Specifically,

the decomposition approach points to a small, positive effect on polarization along Dimension 2.19 . Again,

the conclusions are altered once measurement error in the crosswalk is addressed.
19The “IV” results are quite imprecise. This arises because there is relatively little variation in the instrument once it is

restricted to counties entirely contained in a single congressional district.
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In sum, using the decomposition estimators found to perform well in the simulations in Section 6, I

find that social media has a small amplifying effect on polarization among Congressional representatives

related to social issues. However, results obtained when ignoring the possibility of measurement error in

the crosswalks point to effects that are not only larger in magnitude, but also apply to polarization related

to economic issues.

8 Conclusion

The use of crosswalks to map data from one unit of observation to another is rapidly proliferating. The main

contribution of this paper is to show the empirical relevance of the bias that results from using imperfect

crosswalks; ‘small’ weighting errors matter. Moreover, traditional approaches to measurement error such

as Frisch bounds, model averaging, and instrumental variables are unlikely to resolve the issue.

The second contribution of the paper is to provide two specification tests to help researchers evaluate

the accuracy of crosswalks, as well as an econometric solution in cases where some units are correctly

known to map into a single unit. This situation is very common, as some counties lie exclusively within

congressional or school districts and some industries or occupations map to a single category under an

alternative classification system. The specification tests and econometric solution perform very well in

simulations.

The final contribution of the paper is to explore the impact of social media on political polarization

in the US. Data on Twitter usage is only available at the county-level, whereas the political ideology of

Congressional representatives is defined at the district level. The analysis points to a small amplifying effect

of social media on polarization related to social, but not economic, issues. In addition, ignoring weighting

errors in commonly used crosswalks is consequential; naïve results point to effects that are not only larger

in magnitude, but also apply to polarization related to economic issues.

As the use of crosswalks is likely to only increase moving forward, there are many extensions that must

be addressed in the future. Some of these have been mentioned here, such as allowing for heterogeneous

coefficients, correlation between z⇤ and the weighting errors, and measurement error due to the use of a

crosswalk to obtain the outcome, y. Additional topics include allowing for endogenous weights, !⇤, allowing

for multiple covariates to be crosswalked where each has its own ‘true’ weighting scheme, and whether the

weights can be estimated. In the interim, researchers need to be much more cognizant of the issues that

arise when using crosswalks.
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Table III: Twitter Usage & Ideology of Congressional Representatives: Model Averaging & Decomposition
Approaches

MA Optimal MA Equal Decomposition

Actual RF Actual RF IV Actual RF IV
(1) (2) (3) (4) (5) (6) (7) (8)

A. Ideology Score - Dimension 1
Ideology Score 0.0458 0.0097 0.0399 0.0097 0.0450 -0.0003 -0.0002 -0.0184

(0.0160) (0.0075) (0.0142) (0.0072) (0.0328) (0.0002) (0.0027) (0.1514)
abs(Ideol Score) 0.0168 0.0319 0.0105 0.0281 0.1297 0.0000 0.0046 0.2357

(0.0100) (0.0045) (0.0090) (0.0043) (0.0208) (0.0001) (0.0020) (0.1438)
(Ideol Score)2 0.0175 0.0274 0.0097 0.0236 0.1091 -0.0000 0.0030 0.1507

(0.0086) (0.0039) (0.0078) (0.0037) (0.0178) (0.0001) (0.0018) (0.1157)

B. Ideology Score - Dimension 2
Ideology Score -0.0050 0.0215 -0.0075 0.0234 0.1080 0.0008 -0.0019 -0.0974

(0.0187) (0.0086) (0.0164) (0.0084) (0.0395) (0.0002) (0.0058) (0.3059)
abs(Ideol Score) 0.0199 0.0521 0.0191 0.0502 0.2322 0.0005 0.0140 0.7651

(0.0132) (0.0063) (0.0114) (0.0059) (0.0298) (0.0002) (0.0047) (0.4292)
(Ideol Score)2 0.0042 0.0268 0.0055 0.0260 0.1200 0.0003 0.0072 0.3960

(0.0088) (0.0047) (0.0075) (0.0043) (0.0206) (0.0001) (0.0035) (0.2788)

Notes: MA = moving average. MA Optimal reports the sum of the coefficients on the relevant covariates derived from each crosswalk.
MA Equal reports the coefficient on a single covariate that is the average of ln(Twitter usage) across the crosswalks. RF = reduced
form. IV = instrumental variable, where ln(Twitter usage) is instrumented using the number of users who started following SXSW
in March 2007 aggregated over counties that lie entirely within a single congressional district. OLS and RF report the coefficients
on ln(Twitter usage) and the number of users who started following SXSW in March 2007 where each is aggregated over counties
that lie entirely within a single congressional district. Actual and RF under the Decomposition approach report the coefficient on
ln(Twitter usage) aggregated over counties that lie entirely within a single congressional district. Ideology scores range from roughly
-1 to 1, with higher values associated with more conservative positions. Robust standard errors in parentheses.
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Figure I: Texas Congressional Districts in 2023-2024

Source: https://redistricting.capitol.texas.gov/Current-districts.
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Figure II: Publications in Select Economics Journals Using Crosswalks
Notes: Journals included (from 2000-2023 unless otherwise noted): AEJ: Applied (2009-2023), AEJ: Policy (2009-2023),

American Economic Review, Econometrica, Journal of Applied Econometrics, Journal of Development Economics, Journal of

Econometrics, Journal of International Economics, Journal of Labor Economics, Journal of Political Economy, Quantitative

Economics, Quarterly Journal of Economics, Review of Economic Studies, and Review of Economics & Statistics.
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District i District i0 District i00

County j

!⇤
ij = 0.6 !⇤

i0j = 0.4

!ij = 0.8 !i0j = 0.2

County j0

!⇤
i00j0 = 1

!i00j0 = 1

County j00

!⇤
ij00 = 0.4 !⇤

i0j00 = 0.5 !⇤
i00j00 = 0.1

!ij00 = 0.5 !i0j00 = 0.3 !i00j00 = 0.2

Figure III: Example of Mapping Counties to Congressional Districts.
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Var(µ̌)

Var [x(!⇤)]

2C

C

C 2C

⇧ > 1

⇧ > 1

⇧ 2 (0,1)

⇧ 2 (0,1)

⇧ < 0

⇧ < 0

Figure IV: Magnitude and Direction of OLS Bias
Notes: ⇧ is the proportional bias of OLS under weighting errors and measurement errors as defined in Proposition 1. C =

�Cov
⇣P

j !
⇤
j z

⇤
j ,
P

j �jz
⇤
j

⌘
. When z⇤ is observed, Var [x(!⇤)]+Var(µ̌) < 2C is not feasible given that for two random variables,

say P1 and P2, 2|Cov(P1, P2)|  Var(P1)+Var(P2). When z⇤ is unobserved, Var [x(!⇤)]+Var(µ̌) < 2C is feasible under certain

nonclassical errors. From Proposition E.1, the orange (magenta) region is where the reverse regression estimate suffers from

expansion (attenuation) bias.
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i = 1 i = 2 i = 3 i = 4 · · ·

j = 1

j = 2

j = 3

j = 4

j = 5

j = 6

j = 7

j = 8

j = 9

j = 10

j = 11

j = 12

···

Figure V: Experimental Design
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(A) Bias (RR = 1) (B) Bias (RR = 0.7)

(C) RMSE (RR = 1) (D) RMSE (RR = 0.7)

Figure VI: Simulation Results

Notes: RR = reliability ratio and refers to the (classical) measurement error in z⇤. See text for more details.
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A ACS Comparisons
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(A) Poverty

(B) SNAP

Figure A.I: Distribution of the Number of Households in Poverty and in SNAP Across Congressional
Districts
Notes: Kernel density plots of the number of households in poverty and in SNAP across congressional districts.
The crosswalked densities are obtained from county-level counts mapped into congressional districts using
different weighting schemes. The true densities are directly obtained from the Census Bureau and based on
aggregating census tracts which do not cross district borders. See text for more details.
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(A) Poverty

(B) SNAP

Figure A.II: Crosswalk-Induced Errors Compared to the Truth Across Congressional Districts
Notes: Errors in the number of households in poverty and in SNAP across congressional districts due to the
use of different crosswalk weighting schemes. The crosswalked counts (and, hence, errors) are obtained from
county-level counts mapped into congressional districts using different weighting schemes. The true counts are
directly obtained from the Census Bureau and based on aggregating census tracts which do not cross district
borders. See text for more details.
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The following simulation is conducted in Stata:

clear

set seed 248620

replace hh_pov=hh_pov/1000

replace xwhh_pov_h=xwhh_pov_h/1000

replace xwhh_pov_p=xwhh_pov_p/1000

replace xwhh_pov_l=xwhh_pov_l/1000

forval i=1/10 {

g x‘i’ = rnormal(hh_pov,5)

}

g y0 = hh_pov + rnormal(0,1)

g y1 = hh_pov + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + rnormal(0,1)

reg y0 hh_pov

reg y1 hh_pov x1-x10

reg y0 xwhh_pov_h

reg y1 xwhh_pov_h x1-x10

reg y0 xwhh_pov_p

reg y1 xwhh_pov_p x1-x10

reg y0 xwhh_pov_l

reg y1 xwhh_pov_l x1-x10
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Table A.I: OLS Estimation of the Simulated Effect of the Number of Households in Poverty

Simple Regression Multiple Regression
Truth Housing Pop Land Truth Housing Pop Land
(1) (2) (3) (4) (5) (6) (7) (8)

Number of Households 0.999*** 1.035*** 1.061*** 0.216*** 1.010*** 0.064*** 0.071*** 0.009*
in Poverty (0.004) (0.030) (0.030) (0.029) (0.032) (0.017) (0.017) (0.005)

x1 1.001*** 1.107*** 1.107*** 1.109***
(0.009) (0.016) (0.016) (0.016)

x2 0.989*** 1.093*** 1.093*** 1.099***
(0.009) (0.016) (0.016) (0.016)

x3 0.996*** 1.089*** 1.089*** 1.099***
(0.009) (0.016) (0.016) (0.016)

x4 0.981*** 1.071*** 1.069*** 1.072***
(0.009) (0.016) (0.016) (0.016)

x5 1.008*** 1.077*** 1.079*** 1.088***
(0.010) (0.017) (0.017) (0.017)

x6 0.999*** 1.094*** 1.094*** 1.089***
(0.010) (0.017) (0.017) (0.017)

x7 0.996*** 1.097*** 1.099*** 1.101***
(0.010) (0.016) (0.016) (0.017)

x8 1.008*** 1.101*** 1.100*** 1.107***
(0.010) (0.017) (0.016) (0.017)

x9 1.003*** 1.104*** 1.103*** 1.105***
(0.009) (0.016) (0.016) (0.016)

x10 1.003*** 1.100*** 1.096*** 1.103***
(0.010) (0.017) (0.017) (0.017)

Constant -0.037 -1.299 -2.224** 27.451*** 0.141 0.015 -0.073 0.537*
(0.149) (1.089) (1.094) (1.166) (0.151) (0.324) (0.329) (0.288)

Observations 435 435 435 435 435 435 435 435

Column headers indicate true count or crosswalk weighting scheme used to derive the count. The true coefficient on all covariates is one;
the true constant is zero. Standard errors in parentheses. * p <.10, ** p< .05, *** p<.01.
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B Empirical Monte Carlo

As further motivation for the importance of thinking carefully about the role of crosswalks in statistical

analyses, I revisit Che et al. (2022, hereafter CLPST). CLPST examine the impact of normalizing trade

relations with China on US elections. To do so, they undertake the following steps:

Step 1. Compute the decrease in tariffs due to normalized relations in industry h, where industries are

classified according to the Harmonized System

Step 2. Convert the decrease in tariffs in industry h to industry j, where j indexes four-digit SIC

industries, using an industry crosswalk

Step 3. Convert the decrease in tariffs in industry j to county c using industry j employment shares

in each county

Step 4. Convert all variables from county c to congressional district d using a geographic crosswalk

CLPST regress election outcomes using county-year level panel data after Step 3 and using district-year

level panel data after Step 4. The (time invariant) geographic crosswalk used in Step 4 is based on 1990

population shares; the panel spans 1992 to 2008 or 2016. Thus, population shares in 1990 are used to

allocate vote shares to districts roughly two decades later.

To be perfectly clear, the authors prefer the county-level analysis performed after Step 3 precisely to

avoid the need to map counties to districts and deal with changes in districts over time. CLPST (p. 10)

state:

“One could construct district-level voting data that span a redistricting period using population-

weighted averages of data for counties or county-district pairs. These weighted averages, how-

ever, may not accurately reflect votes in the redrawn districts if vote shares differ across portions

of counties or county-district pairs that are split between multiple subsequent districts.”

Later, the authors (p. 11) reiterate this concern, writing that “the accuracy of these district-level vote

shares will depend on the extent to which county-level averages represent the portions of counties that map

to different districts over time.”

While the authors are careful to caveat the results, comparing the county- and district-level analyses is

instructive. The authors note that the results are consistent in sign and statistical significance. Interestingly,

however, the magnitude of the effect is much larger in the district-level analysis. In the county-level analysis,

6



experiencing a decline in local tariff exposure at the 75th percentile instead of the 25th under normalized

relations led to a 2.2 percentage point (s.e. = 0.8) increase in the Democratic vote share in US House of

Representative elections. In the district-level analysis, the corresponding effect is 7.0 percentage points (s.e.

= 2.6). The threefold increase in the point estimate makes it clear that a superficial appeal to classical

measurement error and attenuation bias is not useful.

To further investigate the sensitivity of the results to the use of crosswalks, I use CLPST to perform a

type of empirical Monte Carlo. Using their replication files1, I do the following. Focusing solely on Step 4, I

convert data from counties to districts using pseudo weights obtained by scaling the 1990 population shares

used in CLPST by a random draw from a Gamma distribution with scale and shape parameters
�
1/�2,�2

 

for different values of � ranging from zero to one. These draws are non-negative, have a mean of one, and

a variance of �2. I then normalize the pseudo weights such that they are between zero and one and sum to

one.2 I then re-estimate the district-level model from CLPST, retaining the estimates and p-values of the

coefficient of interest.

The thought exercise here is the following. Suppose the geographic crosswalk used in CLPST is correct.

If a researcher uses a crosswalk that deviates from this correct crosswalk, where � controls the size of the

deviations, how much will the estimates change? Note, however, that this is an extremely conservative

exercise. First, I only create these pseudo weights for counties that span multiple districts; for counties

entirely contained in a single district I continue to use the CLPST weights. Second, I only use the pseudo

weights for the political variables; the demographic controls are fixed at the values in CLPST. Finally, I do

not deviate from Steps 1-3 in CLPST, thus treating their industrial crosswalks as the truth. The focus here

is solely on sensitivity to changes in the geographic crosswalk used in Step 4 for the covariate of interest.

For each draw of pseudo weights, I re-do the crosswalk from counties to districts and re-estimate the

district-level model. I do this 1,000 times for each value of �. Panel (A) in Figure B.III plots the median

estimate of b� on the tariff exposure variable and the median p-value. Note, when � is zero, the result is

that reported in CLPST. This exercise shows that the magnitude of the estimate declines by roughly 12%

as � goes to one, although the estimates remain highly statistically significant.

1See https://www.dropbox.com/home/pntr_demovote/jie/replication/replication_clpsz_jie.
2When � is 0.1 (1), the median correlation between the original and pseudo weights is 0.999 (0.918) and the standard

deviation of the differences in the weights is 0.013 (0.129). This is within the range of differences across crosswalks discussed
in Section 2.
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(A) Population Weights (B) Land Area Weights

Figure B.III: Sensitivity of Point Estimate to Alternative Weighting Schemes

Notes: Data from Che et al. (2022). � is the standard deviation of random draws from a Gamma distribution
with mean one used to create pseudo weights. Results are medians computed over 1,000 simulations. See text
for more details.

As a second exercise, I create weights based on land area instead of population using the crosswalk from

the MCDC.3 I then perturb the land-based weights with similar draws from a Gamma distribution. The

results are shown in Panel (B) in Figure B.III. The estimate of � using the true land weights (i.e., � equal

to zero) is roughly half the size as when using CLPST’s population weights and the p-value exceeds 0.05.

As � increases, the median estimate declines by about 10% and the median p-value increases further.

To re-iterate, the point of this exercise is not to dispute the results in CLPST. The goal is simply to

illustrate the sensitivity of the results to an alternative weighting scheme based on land shares rather than

population shares, as well as plausible perturbations to the weights.

3See https://mcdc.missouri.edu/applications/geocorr.html.
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C Application of the FWL Theorem

The model setup given in Equation (1) is a simple regression with x⇤ as the only covariate. It is alleged that

the Frisch-Waugh-Lovell (FWL) theorem, which states that the estimates from a simple linear regression

model after partialling out additional covariates are equal to the estimates obtained from a multivariate

regression including all covariates (e.g., Davidson and MacKinnon, 2004). The fact that x is observed

instead of x⇤ does not change this result under one additional, minor assumption.

Assume the correct data-generating process is given by the following multivariate regression

yi = ↵+ �x⇤i +Wi✓ + "i, i = 1, ..., N (C.1)

where Wi is a 1⇥K vector of covariates and ✓ is a conformable vector of coefficients. The FWL theorem

states that if x⇤ is observed, then the OLS estimates of {↵,�, ✓} in Equation (C.1) can be identically

obtained from the OLS estimates of

eyi = ↵+ �ex⇤i + "i, (C.2)

where eyi and ex⇤i are the residuals from the linear projection of yi and x⇤i on Wi, respectively.

When x is observed instead of x⇤, where x is defined as in Equation (5), the multivariate model regression

becomes

yi = ↵+ �xi +Wi✓ + ("i � �µi) . (C.3)

The residuals from the linear projection of y on W , ey, are unchanged. The linear projections of x⇤ and x

on W produce the identical coefficients, (W 0W )�1W 0x⇤, assuming W 0µ = 0. The assumption that W is

orthogonal to the measurement error, µ, is minor in the sense that it does not require W to be orthogonal

to x⇤, z⇤, or the weighting errors, �. It only requires W to be orthogonal to the product �z⇤, where � and

z⇤ are assumed to be orthogonal in Assumption 4. Thus, the residuals from the linear projection of xi on

Wi are

eex = x�W
�
W 0W

��1
W 0x

= (x⇤ + µ)�W
�
W 0W

��1
W 0 (x⇤ + µ)

= x⇤ �W
�
W 0W

��1
W 0x⇤ + µ

= ex⇤ + µ (C.4)
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if W 0µ = 0. As such, Equation (C.3) is identical to the model in Equation (1).

This can be verified in simulation in Stata:

clear

set obs 10000

g xs=rnormal(0,2)

g mu=rnormal()

g x=xs+mu

g w=rnormal(mu,1)

g y=1+xs+w+rnormal()

reg y xs w

reg y x w

qui reg y w

predict yt, res

qui reg xs w

predict xt, res

qui reg x w

predict xtt, res

reg yt xt, nocons

reg yt xtt, nocons

The estimate from reg yt xtt, nocons is identical to that on x in reg y x w. The residuals from the

two regressions are also identical. While note shown, it also be verified by partialling out x1, ..., x10 in the

simulation in Appendix A.
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D IID Assumption

Even if !⇤
ij is known for all ij, analysis of the Ordinary Least Squares (OLS) estimates of Equation (1) is

nonstandard as x⇤ and z⇤ cannot both be independent and identically distributed (iid). From Equation (2)

it follows that if z⇤ is iid, then x⇤ will be heteroskedastic and cross-sectionally dependent if some units j

span multiple units i. Alternatively, due to cross-sectional dependence (and other reasons), it is not realistic

to assume x⇤ is iid. To simplify matters, I assume that x⇤ and z⇤ are themselves a function of an underlying

iid random variable, W , which is unobserved. The unit of observation for W , say ` = 1, ...,L, is a unique

combination ij, ` = (i, j). The population DGP is then defined over units `. For example, let ` index areas

of overlap between county i and congressional district j. Units ` are non-overlapping. This is analogous to

the empirical strategy used in Autor et al. (2020).

With this, z⇤j and x⇤i are equivalent to

z⇤j =
X

`2Lj
W` (D.5)

x⇤i =
X

j
!⇤
ijz

⇤
j =

X
`2Li

!⇤
`W`, (D.6)

where Lj :=
n
` : !⇤

` = !⇤
ij > 0

o
and Li is defined analogously.4 Lj (Li) is the set of ` = (i, j) such that

!⇤
ij > 0 for a given unit j (i). By construction, the intersection of Lj and Lj0 (Li and Li0) is empty for all

j 6= j0 (i 6= i0).5

Assumption 1 can be replaced with the following.

Assumption 10.

(i) The population model is yi = ↵+ �x⇤i + "i for all i.

(ii) x⇤i := xi(!⇤) =
P

j !
⇤
` z

⇤
j =

P
`2Lj

!⇤
ijw`, where !⇤ =

(!⇤
11, ...,!

⇤
1M ,!⇤

21, ...,!
⇤
2M , ...,!⇤

1M , ...,!⇤
NM ) is the true weighting scheme.

(iii) {W`} is independently and identically distributed (i.i.d.) across ` = 1, ...,L with finite first and second

moments.

(iv) X⇤ := [◆ x⇤i ] is an N ⇥ 2 matrix of full rank where ◆ is an N ⇥ 1 column vector of ones and x(!⇤) is

an N ⇥ 1 column vector with representative element xi(!⇤).
4Because each w` maps to a unique ij combination, the values and units of W can be defined such that Equation (D.5)

holds. In other words, I do not need to express z⇤ as a weighted sum of W .
5The intersection between Lj and Li will not be empty for all i, j.
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(v) plim 1
L [X⇤0X⇤] = Q, where Q is a positive definite matrix.

(vi) plim 1
L [X⇤0"] = 0.

(vii) plim 1
L#Lj = q1, where q1 < 1.

(viii) plim 1
L
P

`2Li
!⇤
` = q2, where q2 < 1.

Assumption 10(ii)-(iii) imply that E
h
z⇤j

i
= #Lj ⇥W and Var

⇣
z⇤j

⌘
= #Lj ⇥ �2W where W and �2W are

the mean and variance of W , respectively. In addition, z⇤j is iid if j ✓ i implying that a single W` maps to

z⇤j . It is also iid conditional on Mj := #Lj . For x⇤, E [x⇤i ] = W
P

`2Li
!⇤
` and Var (x⇤i ) = �2W

P
`2Li

(!⇤
` )

2.

Assumption 10(vii)-(viii) exploit the fact that the exact nature of the non-iid-ness is known and such that

it is reasonable to assume that x⇤i and z⇤j are iid as L ! 1. Moreover, the asymptotic bias of an estimator

of Equation (1) will be unaffected by the fact that x⇤i and x⇤i0 contain the same z⇤j for some i 6= i0 since the

number of independent observations still increases with L.6

6A proof in a similar context is given in Poirier and Ziebarth (2019).
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E Proofs

Proof of Proposition 1. Note, this result is identical to Proposition 1 in Black et al. (2000) except for
a particular structure on the covariance between the true covariate and the measurement error.

plim b�ols =
Cov [x(!), y]
Var [x(!)]

(E.7)

=
Cov [x(!),↵+ �x(!⇤) + "]

Var [x(!)]
(E.8)

= �
Cov [x(!), x(!⇤)]

Var [x(!)]
(E.9)

= �
Cov [x(!⇤) + µ̌, x(!⇤)]

Var [x(!⇤) + µ̌]
(E.10)

= �
Var [x(!⇤)] + Cov [x(!⇤), µ̌]

Var [x(!⇤) + µ̌]
(E.11)

= �
Var [x(!⇤)] + Cov

nP
j !

⇤
j z

⇤
j ,
P

j

⇥
!⇤
j j + �j(z

⇤
j +  j)

⇤o

Var [x(!⇤)] + Var (µ̌) + 2Cov [x(!⇤), µ̌]
(E.12)

= �
Var [x(!⇤)] +

=0z }| {
Cov

⇣X
j
!⇤
j z

⇤
j ,
X

j
!⇤
j j

⌘
+

<0z }| {
Cov

⇣X
j
!⇤
j z

⇤
j ,
X

j
�jz

⇤
j

⌘
+

=0z }| {
Cov

⇣X
j
!⇤
j z

⇤
j ,
X

j
�j j

⌘

Var [x(!⇤)] + Var (µ̌) + 2 Cov
⇣X

j
!⇤
j z

⇤
j ,
X

j
�jz

⇤
j

⌘

| {z }
<0

(E.13)

= �

8
>>>>><

>>>>>:

Var [x(!⇤)] +

<0z }| {
Cov

⇣X
j
!⇤
j z

⇤
j ,
X

j
�jz

⇤
j

⌘

Var [x(!⇤)] + Var (µ̌) + 2 Cov
⇣X

j
!⇤
j z

⇤
j ,
X

j
�jz

⇤
j

⌘

| {z }
<0

9
>>>>>=

>>>>>;

(E.14)

which leads to the usual attenuation bias if Cov [x(!⇤), µ̌] < min {Var [x(!⇤)] , Var (µ̌)}.
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Frisch Bounds. Consider the reverse regression counterpart to Equation (8) given by

xi(!) = �↵
�
+

1

�
yi +

✓
µ̌i �

"i
�

◆
(E.15)

This leads to the following result.

Proposition E.1. Let Assumptions 1-5 hold and let b�ols denote the OLS estimate of the coefficient on yi

in Equation (E.15). Then

plim b��1
ols =

Var (y)

Cov [x(!), y]
=

�Var [x(!⇤)]

Var [x(!⇤)] + Cov
⇣X

j
!⇤
j z

⇤
j ,
X

j
�jz

⇤
j

⌘

| {z }
<0

+

Var (")

�

8
>><

>>:
Var [x(!⇤)] + Cov

⇣X
j
!⇤
j z

⇤
j ,
X

j
�jz

⇤
j

⌘

| {z }
<0

9
>>=

>>;

.

The plim is unchanged if z⇤ is observed.

Proof. Note, this result is identical to Proposition 2 in Black et al. (2000) except for a particular structure
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on the covariance between the true covariate and the measurement error.

plim b��1
ols =

Var (y)

Cov [x(!), y]
(E.16)

=
Var (y)

Cov [x(!),↵+ �x(!⇤) + "]
(E.17)

=
Var (y)

�Cov [x(!), x(!⇤)]
(E.18)

=
�2Var [x(!⇤)] + Var (")

�Cov [x(!⇤) + µ̌, x(!⇤)]
(E.19)

=
�2Var [x(!⇤)] + Var (")

�

8
>><

>>:
Var [x(!⇤)] + Cov

⇣X
j
!⇤
j z

⇤
j ,
X

j
�jz

⇤
j

⌘

| {z }
<0

9
>>=

>>;

(E.20)

=
�Var [x(!⇤)]

Var [x(!⇤)] + Cov
⇣X

j
!⇤
j z

⇤
j ,
X

j
�jz

⇤
j

⌘

| {z }
<0

+ (E.21)

Var (")

�

8
>><

>>:
Var [x(!⇤)] + Cov

⇣X
j
!⇤
j z

⇤
j ,
X

j
�jz

⇤
j

⌘

| {z }
<0

9
>>=

>>;

which is biased away from zero if the forward regression is biased toward zero.
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Proof of Proposition 2.

plim b�ols =
Var(ex)Cov(x̆, y)� Cov(x̆, ex)Cov(ex, y)

Var(x̆)Var(ex)� [Cov(x̆, ex)]2
(E.22)

=
1
D

{Var(ex)Cov [x̆,↵+ �x(!⇤) + "]� Cov(x̆, ex)Cov [ex,↵+ �x(!⇤) + "]} (E.23)

=
1
D

{Var(ex)Cov {x̆,↵+ � [ex(!⇤) + x̆⇤] + "}� Cov(x̆, ex)Cov {ex,↵+ � [ex(!⇤) + x̆⇤] + "}} (E.24)

=
1
D

{Var(ex)Cov {x̆,� [ex(!⇤) + x̆⇤]}� Cov(x̆, ex)Cov {ex,� [ex(!⇤) + x̆⇤]}} (E.25)

=
�
D

{Var(ex) {Cov [x̆, ex(!⇤)] + Cov(x̆, x̆⇤)}� Cov(x̆, ex) {Cov [ex, ex(!⇤)] + Cov(ex, x̆⇤)}} (E.26)

=
�
D

�
Var(ex) {Cov [x̆, ex(!⇤)] + Var(x̆)� Cov(x̆, µ̆)}� [Cov(x̆, ex)]2 � Cov(x̆, ex) {Cov [ex, ex(!⇤)]� Cov(ex, µ̆)}

 
(E.27)

=
�
D

{D + Var(ex) {Cov [x̆, ex(!⇤)]� Cov(x̆, µ̆)}� Cov(x̆, ex) {Cov [ex, ex(!⇤)]� Cov(ex, µ̆)}} (E.28)

=
�
D

8
><

>:

D + Var [ex(!⇤) + eµ] {Cov [x̆⇤ + µ̆, ex(!⇤)]� Cov(x̆⇤ + µ̆, µ̆)}

� Cov [x̆⇤ + µ̆, ex(!⇤) + eµ] {Cov [ex(!⇤) + eµ, ex(!⇤)]� Cov [ex(!⇤) + eµ, µ̆]}

9
>=

>;
(E.29)

=
�
D

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

D + {Var [ex(!⇤)] + Var (eµ) + 2Cov [ex(!⇤), eµ]}⇥
8
<

:Cov [x̆⇤, ex(!⇤)] + Cov [ex(!⇤), µ̆]| {z }
=0

� Cov(x̆⇤, µ̆)| {z }
=0

�Var(µ̆)

9
=

;

�

8
<

:Cov [x̆⇤, ex(!⇤)] + Cov(x̆⇤, eµ)| {z }
=0

+ Cov [ex(!⇤), µ̆]| {z }
=0

+ Cov(µ̆, eµ)| {z }
=0

9
=

;⇥

8
<

:Var [ex(!⇤)] + Cov [ex(!⇤), eµ]� Cov [ex(!⇤), µ̆]| {z }
=0

� Cov(µ̆, eµ)| {z }
=0

9
=

;

9
>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>;

(E.30)

=
�
D

8
><

>:

D + {Cov [x̆⇤, ex(!⇤)]� Var(µ̆)} {Var [ex(!⇤)] + Var (eµ) + 2Cov [ex(!⇤), eµ]}

� Cov [x̆⇤, ex(!⇤)] {Var [ex(!⇤)] + Cov [ex(!⇤), eµ]}

9
>=

>;
(E.31)

=
�
D

{D � Var(µ̆)Var(ex) + Cov [x̆⇤, ex(!⇤)] {Var (eµ) + Cov [ex(!⇤), eµ]}} (E.32)

=
�
D

8
>>>>>>>>><

>>>>>>>>>:

D � Var(µ̆)Var(ex) + Cov

✓X
j2J 1

z⇤j ,
X

j2J\J 1
!⇤
j z

⇤
j

◆

| {z }
?

⇥

8
>><

>>:
Var (eµ) + Cov

✓X
j2J\J 1

!⇤
j z

⇤
j ,
X

j2J\J 1
�jz

⇤
j

◆

| {z }
<0

9
>>=

>>;

9
>>>>>>>>>=

>>>>>>>>>;

(E.33)

where

D := Var(x̆)Var(ex)� [Cov(x̆, ex)]2 (E.34)

eµ := ex(!)� ex(!⇤) =
X

j2J\J 1

⇥
!⇤
j j + �j(z

⇤
j +  j)

⇤
(E.35)

µ̆ := x̆� x̆⇤ =
X

j2J 1
 j . (E.36)
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If z⇤ is spatially independent such that

Cov

✓X
j2J 1

z⇤j ,
X

j2J\J 1
!⇤
j z

⇤
j

◆
= 0, (E.37)

then b�ols is consistent when z⇤ is observed and suffers from attenuation bias if z suffers from classical

measurement error. If z⇤ exhibits positive (negative) spatial dependence, then a sufficient condition for

attenuation bias is that |Cov [ex(!⇤), eµ] | > (<)Var (eµ).

Proof of Proposition 3.

plim b�iv =
Cov [q, y]

Cov [q, x(!)]
(E.38)

=
Cov [q,↵+ �x(!⇤) + "]

Cov [q, x(!)]
(E.39)

=
�Cov [q, x(!⇤)] + Cov (q, ")

Cov [q, x(!)]
(E.40)

=
�Cov [q, x(!⇤)] + Cov (q, ")

Cov [q, x(!⇤)] + Cov (q, µ̌)
(E.41)

=
�Cov [q, x(!⇤)] + Cov (q, ")

Cov [q, x(!⇤)] + Cov
h
q,
P

j

h
!⇤
j j + �j(z⇤j +  j)

ii (E.42)

=
�Cov [q, x(!⇤)] + Cov (q, ")

Cov [q, x(!⇤)] + Cov
⇣
q,
P

j !
⇤
j j

⌘
+ Cov

⇣
q,
P

j �jz
⇤
j

⌘
+ Cov

⇣
q,
P

j �j j

⌘ (E.43)
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Proof of Corollary 1. Computation of Cov
⇣
q,
P

j �jz
⇤
j

⌘
for Q2.

Cov
⇣
q,
X

j
�jz

⇤
j

⌘
= Cov

⇣X
j
!jbj ,

X
j
�jz

⇤
j

⌘
(E.44)

= Cov
hX

j

�
!⇤
j + �j

�
bj ,

X
j
�jz

⇤
j

i
(E.45)

= Cov
⇣X

j
!⇤
j bj ,

X
j
�jz

⇤
j

⌘

| {z }
<0

+ (E.46)

Cov
⇣X

j
�jbj ,

X
j
�jz

⇤
j

⌘

| {z }
>0

> 0 (E.47)

as the second term will dominate. ) plim b�iv 6= �.

Proof of Corollary 1. Analysis of Q3.

Cov
⇣
q,
X

j
!⇤
j j

⌘
= Cov

⇣X
j2J 1

zj ,
X

j
!⇤
j j

⌘
(E.48)

= Cov
⇣X

j2J 1
(z⇤j +  j),

X
j
!⇤
j j

⌘
(E.49)

= Cov
⇣X

j2J 1
z⇤j ,

X
j
!⇤
j j

⌘

| {z }
=0

+ (E.50)

Cov
⇣X

j2J 1
 j ,

X
j
!⇤
j j

⌘

| {z }
6=0

= 0.

Cov
⇣
q,
X

j
�jz

⇤
j

⌘
= Cov

⇣X
j2J 1

zj ,
X

j
�jz

⇤
j

⌘
(E.51)

= Cov
⇣X

j2J 1
(z⇤j +  j),

X
j
�jz

⇤
j

⌘
(E.52)

= Cov
⇣X

j2J 1
z⇤j ,

X
j
�jz

⇤
j

⌘

| {z }
=0

+ (E.53)

Cov
⇣X

j2J 1
 j ,

X
j
�jz

⇤
j

⌘

| {z }
=0

= 0.

Cov
⇣
q,
X

j
�j j

⌘
= Cov

⇣X
j2J 1

zj ,
X

j
�j j

⌘
(E.54)

= Cov
⇣X

j2J 1
(z⇤j +  j),

X
j
�j j

⌘
(E.55)

= Cov
⇣X

j2J 1
z⇤j ,

X
j
�j j

⌘

| {z }
=0

+ (E.56)

Cov
⇣X

j2J 1
 j ,

X
j
�j j

⌘

| {z }
=0

= 0.
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) plim b�iv = � only if z⇤ is observed.

Proof of Corollary 1. Computation of Cov
⇣
q,
P

j �jz
⇤
j

⌘
for Q4.

Cov
⇣
q,
X

j
!⇤
j j

⌘
= Cov

⇣X
j2J 1

bj ,
X

j
!⇤
j j

⌘

| {z }
=0

= 0. (E.57)

Cov
⇣
q,
X

j
�jz

⇤
j

⌘
= Cov

⇣X
j2J 1

bj ,
X

j
�jz

⇤
j

⌘

| {z }
=0

= 0. (E.58)

Cov
⇣
q,
X

j
�j j

⌘
= Cov

⇣X
j2J 1

bj ,
X

j
�j j

⌘

| {z }
=0

= 0. (E.59)

) plim b�iv = �.

Proof of Corollary 1. Computation of Cov
⇣
q,
P

j �jz
⇤
j

⌘
for Q5.

Cov
⇣
q,
X

j
�jz

⇤
j

⌘
= Cov

⇣X
j
!g0,jzj ,

X
j
�g,jz

⇤
j

⌘
(E.60)

= Cov
⇣X

j
(!⇤

j + �g0,j)(z
⇤
j +  j),

X
j
�g,jz

⇤
j

⌘
(E.61)

= Cov

0

B@

X
j
(!⇤

j z
⇤
j + �g0,jz

⇤
j + !⇤

j j + �g0,j j),

X
j
�g,jz

⇤
j

1

CA (E.62)

= Cov
⇣X

j
!⇤
j z

⇤
j ,
X

j
�g,jz

⇤
j

⌘

| {z }
<0

+ (E.63)
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Proof of Corollary 1. Computation of Cov
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F Simulation Results
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(A) RR = 1 (B) RR = 0.9

(C) RR = 0.8 (D) RR = 0.7

Figure F.IV: Simulation Results: Bias

Notes: RR = reliability ratio and refers to the (classical) measurement error in z⇤. See text for more
details.

23



(A) RR = 1 (B) RR = 0.9

(C) RR = 0.8 (D) RR = 0.7

Figure F.V: Simulation Results: Absolute Bias

Notes: RR = reliability ratio and refers to the (classical) measurement error in z⇤. See text for more
details.
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(A) RR = 1 (B) RR = 0.9

(C) RR = 0.8 (D) RR = 0.7

Figure F.VI: Simulation Results: Root Mean Squared Error

Notes: RR = reliability ratio and refers to the (classical) measurement error in z⇤. See text for more
details.
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