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This study employs six Machine Learning methods—Logit, Lasso-Logit, Ridge-Logit, Random 

Forest, Extreme Gradient Boosting, and an Ensemble—alongside registry data on abortions 

in Spain from 2011-2019 to predict multiple abortions and assess monetary savings 

through targeted interventions. We find that Random Forest and an Ensemble method 

are most effective in the highest risk decile, capturing about 55% of cases, whereas linear 

models and Extreme Gradient Boosting excel in mid to lower deciles. We also show that 

targeting the top 20% most at-risk could yield cost savings of 5.44 to 8.2 million EUR, 

which could be reallocated to prevent unintended pregnancies arising from contraceptive 

failure, abusive relationships, and sexual assault, among other factors.

JEL Classification: I12, I18, C53, J13, C55

Keywords: Lasso, Logit, multiple abortions, random forest, Ridge, Extreme 
Gradient Boosting, Ensemble, reproductive healthcare

Corresponding author:
Climent Quintana-Domeque
University of Exeter
Rennes Drive
Exeter, EX4 4PU
United Kingdom

E-mail: C.Quintana-Domeque@exeter.ac.uk

* We thank Giuseppe Cavaliere, Samuel Engle, Aureo de Paula, Dario Sansone and participants at the University of 

Exeter internal seminar and the Third Catalan Economic Society Conference for comments and suggestions. The code 

used to generate all the figures and tables in this study will be made available in a public repository upon publication. 

All errors and omissions are solely our responsibility.



1 Introduction

This study employs a range of statistical and machine learning techniques, including Logit,

Lasso-Logit, Ridge-Logit, Random Forest, Extreme Gradient Boosting, and an Ensemble

method, to predict multiple induced abortions, or repeat abortions, which occur when a

woman has more than one induced abortion during her lifetime. These methods enable

us to uncover complex relationships between variables, enhance predictive accuracy, and

provide robust insights into the predictability of multiple abortions.

Using administrative data on reported induced abortions in Spain from 2011 to 2019,

we address two key questions: First, can we predict multiple abortions? Second, how much

monetary savings could be redirected towards enhancing women’s reproductive healthcare

and support services, such as information dissemination, counselling, and other essential

services, to avoid elective abortions that arise from undesirable situations?

The phenomenon of multiple abortions is prevalent not only in Spain but also globally.

In Spain, the abortion rate in 2021 was 10.7 per 1,000 women aged 15-44, with 34.65%

being multiple abortions (IVE, 2021). This pattern is mirrored, and even stronger, in other

countries: in England and Wales, the 2021 abortion rate was 18.6 per 1,000 women, with

43% being multiple abortions (Abortion Statistics, England and Wales, 2021); while in the

United States, the rate was 11.6 per 1,000 women, with 42.7% being multiple abortions

(Abortion Surveillance, United States, 2021).

Understanding the patterns and circumstances leading to multiple abortions is vital

for developing e�ective reproductive healthcare that integrates contraception and support

services, thereby reducing the need for repeat procedures and enhancing women’s repro-

ductive autonomy. Our main analysis focuses on induced, elective multiple abortions by

women aged 18 or above, excluding multiple abortions induced for medical reasons.

The novelty of our study lies in the innovative application of machine learning to

predict multiple abortions among women in Spain, leveraging Bayesian adjustment to

derive policy relevant insights from a unique dataset. Specifically, while existing data

enables the estimation of the probability of a woman having had a previous abortion given

an abortion today, our research seeks to predict the probability of a woman having a future

abortion given her history and abortion today. This distinction is critical for understanding

the dynamics of abortion recurrence and informing public health interventions.
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We use data from 2011-2015 as a training set (453,364 abortions, 35.0% multiple

abortions), 2016 and 2017 for hyperparameter tuning (159,775 abortions, 35.7% multiple

abortions), and 2018 and 2019 as an out-of-sample test set (168,261 abortions, 34.3%

multiple abortions). A decile-based prediction analysis, ranking women by their predicted

probability of having a multiple abortion, reveals that the Random Forest and Ensemble

methods outperform in the highest risk decile, capturing about 55% of cases, while

linear models excel in the mid-range deciles. Notably, the performance of the Extreme

Gradient Boosting method is more aligned with linear models than with the Random

Forest, particularly in lower-risk deciles.

We also find that implementing targeted policies towards the top 20% most at-risk could

yield cost savings ranging from e5.44 to e8.2 million using an Ensemble method. The

primary aim of preventing multiple abortions should be to avoid unintended pregnancies

arising from undesirable situations, such as contraceptive failure, abusive relationships, or

sexual assault, while abstracting from situations dependent on health or medical conditions.

Abortion is a complex and often divisive issue, extensively debated in recent years.

Women may experience varied abortion-related care pathways, influenced by factors such

as medical needs, contraceptive failure, or experiences of violence like abuse or rape (Coast

et al., 2018). Abortion serves as a crucial safeguard for women’s health, well-being, and

autonomy (Levine and Staiger, 2002), distinctly di�erent from contraceptive methods

which aim to prevent pregnancy before it occurs.

Our paper enriches the existing literature on abortion and its accessibility by focusing

on multiple abortions. Abortion access profoundly impacts maternal health (Clarke and

Mühlrad, 2021) and significantly influences women’s education, workforce participation,

income, and family dynamics (Bailey and Lindo, 2017; Knowles Myers, 2017; Lindo

et al., 2020; Ore�ce, 2007; Pop-Eleches, 2010). Furthermore, the rising costs of abortion,

particularly in contexts requiring out-of-state travel like in the US, disproportionately

a�ect women of lower socioeconomic status (Lindo et al., 2020). These increasing expenses

risk deepening the existing disparities in women’s health, well-being, and autonomy.

The application of machine learning to the study of multiple abortions introduces a new

dimension to an area that has seen significant growth. This growth is especially notable

in identifying risk factors and predicting outcomes related to unintended pregnancies,

pregnancy complications, and miscarriages (Liu et al., 2021; Kranker et al., 2020).
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While our focus is on predicting induced, elective abortions in adult women who have

previously undergone abortions to better understand and potentially prevent pregnancies

driven by non-health-related factors, we consider extensions of our analysis to include

non-elective abortions and women aged 15-17.

Our findings are intended to inform targeted reproductive healthcare policies and

interventions that reduce multiple abortions arising from undesirable situations, such as

contraceptive failure, abusive relationships, or sexual assault, while promoting women’s

health and autonomy. In this regard, the estimated resources saved due to a reduction in

multiple abortions could support initiatives such as the development of mobile applications

for pregnancy prevention (Mangone et al., 2016; Stifani et al., 2023) aimed at high-risk

groups, providing preventive support tailored to their needs.

2 Data

2.1 Available information

Access to the registry data of all induced abortions in Spain was granted by the Spanish

Ministry of Health in June 2021.1 For each year from 2011 to 2019, we have the individual

data from the notification questionnaire2, which contains information on both the pregnant

woman and the induced abortion. In the data, it is not possible to identify the a�ected

individual, as the notification form does not include the name, family name, or address.

Hence, an institutional review board approval was not required.

In Spain, each voluntary induced abortion must be notified by the responsible physician

to the health authority of the region (autonomous community) where the induced abortion

took place – the doctor will enter the data online.3 Information on the pregnant women

includes: date of birth, living arrangement (alone, in a couple, etc.), place of residence

(province), educational attainment, employment status, number of children alive, number

of previous abortions, and type of contraceptive method (if used). Information on induced

abortion includes: the source of information on pregnancy termination (public health center,

private health center, citizen information helplines, friends or family, media, internet),

weeks of gestation at the time of the induced abortion, date of the abortion, reasons
1
Data can be obtained by writing an application to the Ministerio de Sanidad, Servicios Sociales e

Igualdad (Paseo del Prado 18-20, 28014 Madrid, Spain). More information is available on their website.
2
Last accessed: November 24, 2023.

3
This online app is available since January 1, 2011.
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(requested by the woman, medical reason), publicly vs. privately funded, and type of

abortion (surgical, medical).

2.2 Abortions and multiple abortions during 2011-2019

Out of the 910,743 induced abortions recorded during the period 2011-2019, 819,739 are

elective (requested by the woman and excluding those performed for medical reasons).

Among the women who undergo an abortion in a given year, 63.19% have had no previous

abortions, 24.41% have had one previous abortion, 8.03% have had two, 2.62% have had

three, and 1.77% have had four or more.

As indicated in Figure 1, we exclude from our analysis: abortions with more than 24

weeks of gestation (n=1,187), abortions from women residing in the provinces of Ceuta and

Melilla (n=1,082), those with three previous abortions or more (n=39,883), and non-elective

abortions (n=87,191). Hence, the final sample comprises 781,400 observations.

Figure 1: Flow chart on sample selection

Our outcome variable is coded as 1 if the unit of observation represents a multiple

abortion (i.e., the woman had a previous abortion), and 0 if it is the first abortion for

the woman in a given year. We focus on predicting the likelihood of a woman having a

subsequent abortion, rather than the total number of abortions she will have.

2.3 Splitting the Data: Training, Tuning, and Testing

One of the primary objectives of the machine learning approach is to mitigate the overfitting

problem, which occurs when a model with excellent in-sample performance results in poor

predictive power for out-of-sample data (Mullainathan and Spiess, 2017). As indicated in
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Figure 1, we divide our final sample into three distinct sets: training, tuning, and testing.

The training set consists of 453,364 observations from the years 2011-2015 and is utilized

to estimate the relevant model. The validation set, encompassing 159,775 observations

from 2016 and 2017, is used to tune the model’s hyper-parameters, such as the penalization

term in Lasso-Logit. The third set, comprising 168,261 observations from the years 2018

and 2019, serves as out-of-sample test data.

While it is common for practitioners to divide their data into two sets (training

and testing), using the training set for both model estimation and hyper-parameter

tuning through cross-validation is typically reserved for instances where the dataset is

not su�ciently large. This is not the case here. Furthermore, using only two sets can be

problematic, as tuning hyper-parameters on the same data used for training the model can

lead to biased results (Russell and Norvig, 2015; Ng, 2016; Sansone, 2019).

2.4 Predictors and descriptive statistics

The predictors consist of the variables described and summarized in Table 1, as well as the

woman’s place of residence among 50 Spanish provinces. We believe that splitting the data

based on time periods is a policy-relevant approach, as policymakers rely on past data to

make predictions for the future. The spatial dimension is accounted for by including the

Spanish province of residence indicator(s).

Table 1 shows that the conditional prevalence of multiple abortions across predictors

is similar over time, that is, across the training, tuning and testing datasets. The mean

(or fraction) of multiple abortions within each age category shows no significant variation

across the three data groups. The Table reveals some interesting patterns among women

undergoing an abortion in a given year during the period 2011-2019: for instance, women

aged 25-29 and 30-34 exhibit a higher likelihood of multiple abortions compared to other

age groups. Similar trends are observed for other predictors. Women with primary

education, living as a couple, having dependent children, using hormonal contraceptives,

receiving information from private health centres, and foreign-born women are more likely

to experience multiple abortions than their counterparts in other categories.
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Training (2011-15) Tuning (2016-17) Testing (2018-19)
Mean Freq. Mean Freq. Mean Freq.

Age
15–19 0.15 53,180 0.15 16,960 0.14 17,838
20–24 0.32 100,450 0.31 35,035 0.30 37,722
25–29 0.40 102,205 0.40 35,114 0.38 37,522
30–34 0.42 95,974 0.43 32,725 0.41 33,882
35–39 0.39 70,704 0.40 27,337 0.40 27,905
40–44 0.37 26,652 0.37 10,997 0.38 11,788

Missing 0.20 4,199 0.20 1,607 0.22 1,604

Education
Primary 0.41 98,218 0.42 28,360 0.39 27,369

Secondary 0.36 288,247 0.37 106,096 0.36 111,566
University 0.24 58,387 0.24 23,065 0.23 27,197

Missing 0.34 8,512 0.34 2,254 0.33 2,129

Employment status
Unemployed 0.33 218,035 0.34 67,236 0.33 65,002

Employed 0.37 230,229 0.37 90,432 0.36 100,294
Missing 0.36 5,100 0.37 2,107 0.34 2,965

Living arrangement status
Alone 0.36 105,634 0.36 39,747 0.35 38,535

As a couple 0.40 214,441 0.40 73,942 0.39 77,370
With family/parents 0.26 111,826 0.27 38,236 0.27 43,620

With others 0.33 12,293 0.32 4,241 0.27 5,664
Missing 0.32 9,170 0.35 3,609 0.35 3,072

Dependent children
No 0.25 161,747 0.26 57,908 0.24 70,898
Yes 0.44 188,143 0.45 65,472 0.44 76,434

Missing 0.35 103,474 0.35 36,395 0.34 20,929

Type of contraceptive
Natural 0.39 18,085 0.40 5,452 0.36 6,330
Barrier 0.29 120,476 0.31 40,536 0.30 45,296

Mechanical 0.35 4,071 0.38 1,412 0.36 2,061
Hormonal 0.41 63,572 0.43 22,334 0.42 26,727

Irreversible 0.36 4,223 0.35 594 0.32 637
No contraceptive 0.35 96,337 0.35 35,011 0.34 29,091

Missing 0.37 146,600 0.36 54,436 0.35 58,119

Source of information
Public health centre 0.34 286,593 0.36 104,026 0.35 114,876
Private health centre 0.44 48,001 0.44 15,526 0.41 15,224

Over the phone 0.38 2,653 0.41 907 0.38 1,411
Family or friends 0.36 44,035 0.38 12,232 0.37 11,602

Media 0.40 2,815 0.35 375 0.33 283
Internet 0.26 42,414 0.27 20,402 0.26 20,904
Missing 0.42 26,853 0.35 6,307 0.33 3,961

Foreign born
No 0.30 281,086 0.32 102,593 0.31 105,541
Yes 0.43 171,335 0.43 56,584 0.40 61,734

Missing 0.27 943 0.27 598 0.25 986

Publicly funded
No 0.34 142,898 0.32 41,119 0.30 38,845
Yes 0.36 310,466 0.37 118,656 0.36 129,416

Total 0.35 453,364 0.36 159,775 0.34 168,261

Table 1: Summary Statistics. The table reports the mean of the multiple abortion indicator
(=1 if multiple abortion; =0 if first abortion) and the count of total abortions in each
category for the three data sets.
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3 Methods

3.1 Predictive methods

Our prediction problem is a binary classification task aimed at obtaining robust predictions

for out-of-sample data. To achieve this, we employ six predictive methods based on five

models:

• Logit, Lasso-Logit (Least Absolute Shrinkage and Selection Operator, Tibshirani

(1996)), and Ridge-Logit, which produce a linear decision boundary in the predictor

space, classifying each observation into one of two categories (1 or 0). These models

may not be optimal if the true decision boundary is non-linear. Among them, Lasso-

Logit is notable for its ability to select the most crucial variables while excluding

irrelevant ones. Additional details are provided in the online appendix, section A1.1.

• Random Forest (Breiman, 2001) and Extreme Gradient Boosting (Chen and

Guestrin, 2016), which are non-parametric methods that do not assume any functional

form. These decision tree-based methods excel at capturing non-linearities and

interactions among predictors (Berk et al., 2008; Hastie et al., 2009), resulting in

a non-linear decision boundary. Random Forest, in particular, is constructed by

averaging a specified number of classification trees, each grown from a bootstrapped

sample and a di�erent random sub-sample of inputs. Each tree predicts whether

observations are multiple abortions or not, with classification based on a majority

vote across the trees. The main distinction between Random Forest and Boosting is

that while trees in Random Forest are grown in parallel from bootstrapped samples,

trees in Boosting are grown sequentially, starting with a simple decision tree and

gradually learning the prediction function from the data. Additional details are

provided in the online appendix, sections A1.2 and A1.3.

• Ensemble Method (Dietterich, 2000; Athey and Imbens, 2019), which combines

predictions from the aforementioned five methods. We explore two approaches

for combining predicted probabilities: a simple average and a logistic regression.

Additional details are provided in the online appendix, section A1.4.
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3.2 Bayes Correction

Among women who have an abortion in a given year, our data allow us to identify the

probability of having had a previous abortion. However, we are interested in predicting the

probability of a woman having an abortion today, given that she had a previous abortion.

To infer the latter from the former, we perform a Bayesian adjustment. Formally, we write

P (Ai,t = 1 | Ai,t≠s = 1, Xi,t) = P (Ai,t≠s = 1 | Ai,t = 1, Xi,t)
P (Ai,t = 1 | Xi,t)

P (Ai,t≠s = 1 | Xi,t)

where Ai,t = 1 indicates the woman i had an abortion in year t, and Ai,t≠s = 1 indicates

she had an abortion in year t ≠ s, with Xi,t representing a vector of predictors.4 While

the conditional probability P (Ai,t≠s = 1 | Ai,t = 1, Xi,t) can be directly estimated with our

data and has been the object of previous research (see Nicodemo et al. (2022)), we require

assumptions to estimate P (Ai,t≠s = 1 | Xi,t) and P (Ai,t = 1 | Xi,t) in order to recover the

conditional probability of interest P (Ai,t = 1 | Ai,t≠s = 1, Xi,t).

The challenge with our dataset is its limitation to only include cases of women who

underwent an abortion within the year, omitting those with zero abortions at time t.

Consequently, our dataset at time t is left-truncated at zero, lacking both the dependent

variable and the predictors for women without abortions. Figure 2 illustrates that the

proportion of abortion counts is consistent across the years. During 2011-2019, 63.95-

66.25% of observations are first abortions, 25.31-27.06% are second abortions, and the

remaining 8.24-9.19% are third abortions. The observed persistence in our data suggests

that the stationarity condition is a reasonable assumption, which is a requirement for

being able to consistently estimate P (Ai,t≠s = 1 | Xi,t) and P (Ai,t = 1 | Xi,t) through a

zero-truncated Poisson regression.

Given that zero-truncated Poisson models are not recommended for small samples, we

restrict our analysis to women with a maximum of 3 induced abortions, representing more

than 95% of the total number of reported abortions during the period 2011-2019. While our

dataset may include multiple entries for the same woman, the high proportion of first-time

abortion cases (63.95-66.25%) implies limited duplication. Although this duplication could

potentially introduce some bias in coe�cient estimation, its impact is likely to be minimal.

This is because our analysis primarily focuses on the predicted probabilities, which are less
4
Age, education, employment status, living arrangement status, dependent children, type of contraceptive,

source of information, foreign born, publicly funded, and province of residence.
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sensitive to such biases than the coe�cients.
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Figure 2: Percentage of first-time (1) and multiple abortions (2 and 3) by year.

4 Predicting multiple abortions

We implement the prediction of multiple abortions using RStudio version 2023.09.1 and R

version 4.3.2 for Windows.5 Implementation details are reported in the online appendix A1.

All methods employ nine categorical variables listed in Table 1 and dummy variables for

provinces. Given the high number of missing values in two of our variables, namely type of

contraceptive and dependent children, which have 33.17% and 20.58% missing observations

respectively,6 we are treating the missing values in each variable as a distinct category for

implementation purposes.

The predicted probability of each method is weighted by the Bayes adjustment. We

use a zero-truncated Poisson regression model to calculate the components of the Bayes

adjustment, P (Ai,t = 1|Xi,t) and P (Ai,t≠s = 1|Xi,t). Details are provided in the online
5
Last accessed: 6 December 2023. RStudio and R.

6
The remaining variables each have less than 5% missing observations. See Table A2 in the online

appendix A2.
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appendix A1.5.

In evaluating the performance of classification models, scholars frequently employ a

range of metrics, such as Area Under the Curve (Area Under the ROC (Receiver Operating

Characteristic) Curve) and sensitivity (proportion of multiple abortions that are correctly

classified) or accuracy (proportion of total abortions that are correctly classified) at di�erent

thresholds. However, these measures may not always be conducive to the design or execution

of an intervention. For instance, if policymakers have resources to enact an intervention

for 10,000 women, equivalent to approximately 10% of total annual elective abortions, it is

crucial to utilise our model to identify the 10% of women who are most likely to undergo

multiple abortions. To achieve this, we conduct a decile analysis on our out-of-sample data,

which involves segregating the data into ten distinct bins and ordering them according

to predicted probability. Subsequently, we ascertain the proportion of multiple abortions

within each bin across the various machine learning models.
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Figure 3: Decile analysis on out-of-sample data. The data has 168,261 observations with
34% multiple abortions. The horizontal blue line denotes the prediction based on the
unconditional mean (0.34).

Figure 3 displays the proportion of multiple abortions identified by each machine

learning method across distinct deciles, ranking women by their predicted probability of
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having a multiple abortion. Out-of-sample data for 2018 and 2019 show that 34% of the

cases are multiple abortions, serving as a benchmark for evaluating the predictive methods.

In the highest decile, the Random Forest and Ensemble methods capture approximately

55% of multiple abortions, whereas the linear decision boundary models (Logit, Lasso-

Logit, and Ridge-Logit) predict around 45%. Performance across all models is similar

in the second highest risk decile, clustered around 45%. In the subsequent five deciles,

linear models predict more e�ectively, while Random Forest excels in the two least risky

deciles. Above the unconditioned mean (solid horizontal line), an Ensemble model acts

as an e�ective compromise between Random Forest and the linear models. Notably, the

performance of the Extreme Gradient Boosting method aligns more closely with the linear

models than with the Random Forest method.7

The ROC analysis in Figure A5 in the online appendix A3 reveals overall performance

among the six classification methods. Interestingly, an Ensemble method appears to perform

at least as well as, if not better than, the rest from an overall (cumulative) standpoint. The

Random Forest model shows varied e�ectiveness at di�erent cut-o�s (better performance at

higher cut-o�s), as indicated by its Area Under the Curve confidence interval and alignment

with previous findings. As seen in the deciles plot, an Ensemble method’s performance

does not decline as much as the Random Forest’s in the middle deciles; it is able to perform

better cumulatively than all the other methods.

5 Robustness checks

In the online appendix A4, we conduct several robustness checks. First, for completeness,

we present the analysis after the inclusion of non-elective induced abortions. This analysis

shows that the Random Forest and Ensemble models are most e�ective in extreme risk

deciles, with results similar to the initial analysis (see Figure A6).

Second, it is crucial to acknowledge that the performance of these machine learning

methods is influenced by the quality of our data. In our main analysis, we address the

missing data by creating an additional category for each variable. This approach was

chosen over deleting all observations with missing data, as the latter would result in the

loss of over half of our observations. After excluding missing data, method performance
7
The Random Forest model was configured with two randomly selected predictors at each split, with

error rates calculated on the tuning sample. See Table A1.
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varied across deciles (see Figure A7); the removal of two variables with the most missing

observations (‘type of contraceptive’ and ‘dependent children’) resulted in a performance

decline (see Figure A8).

Finally, in the last robustness check, we show that Random Forest models with and

without dummy variables yielded remarkably similar results (see Figure A9).

6 Potential Monetary Savings Through Targeted Interventions

How much money could be saved by preventing multiple abortions, so that these savings

could be reallocated to avoid unintended pregnancies arising from situations such as

contraceptive failure, abusive relationships, and sexual assault? A first-order approximation

to provide an answer to this question needs two pieces of information: an estimated price

of an abortion and an estimated number of reduced multiple abortions.

The cost of an abortion in Spain ranges from e325 to e490.8 Our test data from 2018

to 2019 include 57,643 cases of multiple abortions. Using these figures, we can calculate the

minimum and maximum monetary costs associated with multiple abortions as predicted

by di�erent ML methods. The total cost of multiple abortions in 2018-2019 is estimated to

be between e18,733,975 and e28,245,070. Dividing this number by two gives an estimate

of the annual costs.

Table 2 presents the potential monetary savings achievable through various intervention

strategies. When targeting the top two deciles, an Ensemble method is the most e�ective,

predicting cost savings between e5.44 million and e8.2 million. Expanding the intervention

to include more deciles could increase these savings, but it would also lead to more false

positives in our intervention sample.

Note that in our sample of 781,400 abortions, 71.48% are publicly funded. Within the

subset of 273,484 multiple abortions, 73.35% are publicly funded. In the specific case of

our test sample, which includes 57,643 multiple abortions, 79.78% are publicly funded. To

focus solely on public costs, one can approximate the figure by multiplying the estimates

in Table 2 by a factor of 0.8.

While the optimal way to design interventions would be to target women in decreasing

order of their predicted risk scores, based on our machine learning methods, the execution

of such interventions can be constrained by political and implementation frictions. In such
8
https://www.clinicasabortos.com/precio-del-aborto (Last accessed: November 24, 2023).
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Number of top risky deciles
Top 2 Top 4 Top 6 Top 8 All

Logit [5.13,7.74] [9.74,14.68] [13.63,20.55] [16.81,25.34] [18.73,28.25]
Lasso-Logit [5.03,7.58] [9.63,14.52] [13.64,20.56] [16.81,25.34] [18.73,28.25]
Ridge-Logit [4.77,7.19] [9.29,14.01] [13.33,20.09] [16.52,24.91] [18.73,28.25]
Random Forest [5.37,8.1] [9.51,14.34] [13.18,19.87] [16.39,24.72] [18.73,28.25]
Boosting [4.66,7.03] [9.19,13.86] [13.35,20.14] [16.63,25.08] [18.73,28.25]
Ensemble [5.44,8.2] [9.79,14.76] [13.63,20.55] [16.85,25.41] [18.73,28.25]

Table 2: How much money can be saved by predicting multiple abortions per year (in
million e)? The cost savings are based on our out-of-sample data predicted number of
abortions (years 2018 and 2019) and the price of an abortion (minimum: e325, maximum:
e490).

scenarios, it may be useful to know the top predictors of the risk scoring methods to design

simpler interventions, instead of targeting women in a non-linear, yet optimal, manner.

In the online appendix A5, we discuss the top predictor variables using LASSO-Logit

and Random Forest models. Both methods identify four common predictors: a woman’s age,

province of residence, source of information about pregnancy termination, and education

level. These factors not only highlight the unequal distribution of multiple abortions among

the population of women but also suggest that constrained, tailored interventions to women

with these characteristics can hopefully provide support to reduce the risk of pregnancies

arising from undesirable situations such as contraceptive failure, abusive relationships,

sexual assault, and other factors, and e�ectively reduce multiple abortions.

7 Conclusion

Our study utilises Machine Learning methods combined with registry data on abortions in

Spain from the Ministry of Health, Social Services, and Equality for the period 2011-2019.

Our objectives are to predict multiple abortions using various models (Logit, Lasso-Logit,

Ridge-Logit, Random Forest, Extreme Gradient Boosting, and Ensemble), identify key

predictors, and estimate potential monetary savings through targeted interventions.

We find that the Random Forest and Ensemble models capture 55% of multiple abortions

in the top decile, while the remaining models predict around 45%. Although all models

perform similarly in the second decile, linear models outperform Random Forest in the

middle six deciles, with Random Forest excelling in the two lowest-risk deciles. an Ensemble

model, acting as a compromise between linear methods and the Random Forest, suggests

potential monetary savings of between e5.44 to e8.2 million. The Logit model projects
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savings of e5.13 to e7.74 million, targeting the top 20% most at-risk women.

We hope that the findings of this study can be utilised by national and regional health

authorities, enabling policymakers to use preferred algorithms for screening and e�ectively

supporting women at risk of multiple abortions due to unintended pregnancies. This

strategy echoes recent developments and suggestions in the field of mobile phone apps and

public health information (Mangone et al., 2016; Stifani et al., 2023).
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Online Appendix

A1 Implementation details

We use six methods to predict multiple abortions: Logit, Lasso-Logit, Ridge-Logit, Random

Forest, Extreme Gradient Boosting, and an Ensemble method. There was no tuning involved

in the Logit method, and since it is a widely used method, we do not discuss it further

here.

A1.1 Lasso-Logit and Ridge-Logit

While the model parameters, denoted as —, in Logit regression are estimated by minimising

the negative log-likelihood function (L), the Lasso-Logit and Ridge-Logit regression work

by adding a penalty term to the negative log-likelihood function. The expressions to be

minimised in the two cases are:

L + ⁄
ÿ

|—| : for Lasso-Logit Regression

L + ⁄
ÿ

—2 : for Ridge-Logit Regression

where ⁄ is a non-negative parameter selected by either minimising the cross-validation

error or out-of-sample error on some validation set. We create a grid of 100 equally spaced

numbers between 10≠5 (0.00001) and 100.5 (3.16) to choose an optimal ⁄. For each ⁄ in the

grid, model coe�cients are estimated for both the Lasso-Logit and Ridge-Logit regression

using the training sample (2011-15). Figures A1 and A2 show how the value of model

coe�cients change with the value of the tuning parameter ⁄. All predictor coe�cients tend

towards zero as we move to higher values of ⁄ (right-side of the figure), whereas for the

smaller values of ⁄ we move closer to the Logit regression coe�cients. For ⁄ = 0, both

Lasso-Logit and Ridge-Logit models are exactly the same as the Logit regression model.

Subsequently, we calculate the misclassification error rate for the 100 models on the

tuning sample (2016 and 2017). The ⁄ corresponding to the minimum error rate in this

tuning sample is chosen as the optimal tuning parameter. The optimal ⁄ for the Lasso-Logit

model is 0.00021 and for the Ridge-Logit model is 0.00316. They are denoted by vertical

dashed lines in Figures A1 and A2. As the optimal ⁄ is closer to zero for both models, it is

not surprising that the performance of both models is similar to the Logit model.
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Figure A1: Tuning parameter for the Lasso-Logit model. Log(⁄) vs. model coe�cients.
The dashed vertical line shows the optimal value of the tuning parameter. The top line
shows number of non-zero coe�cients.

Finally, we make predictions for the out-of-sample test data (2018 and 2019) using the

model with the optimal ⁄ and report the findings in Figure 3.

A1.2 Random Forest

Random Forests are built by combining predictions from several decision trees constructed

using bootstrapped training samples. Each time a split is considered in a decision tree, a

random sample of m predictors is considered from the full set of p predictors. The split

is allowed to use one of the m chosen predictors. The Random Forest method tends to

perform better than individual trees by generating multiple de-correlated trees (through

bootstrap and random sampling), which reduces variance—one of the components of

the test error rate. As the Random Forest method is built by combining decision trees,

there are at least two benefits to it. First, a decision tree will incorporate interactions

between predictors, which are driven by the data and not chosen by the practitioner. It is

common in social sciences to include interaction terms to account for synergies between

two variables, but the choice of variables is often based on the practitioner’s intuition,

which can sometimes be ad-hoc. Second, it can be argued that humans are more likely to
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Figure A2: Tuning parameter for the Ridge-Logit model. Log(⁄) vs. model coe�cients.
The dashed vertical line shows the optimal value of the tuning parameter. The top line
shows number of non-zero coe�cients.

make decisions by following certain rules (decision trees) rather than assigning weights to

each possible predictor (regression methods). It is not surprising that Random Forest (and

other tree-based methods such as Boosting) performs well in social science settings.

Our data has p = 10 total predictor variables (all categorical) as reported in Table

1. We use the R command randomForest, which recognises categorical (factor) variables

and constructs trees accordingly by dividing categories at each split. We use the training

sample to build the Random Forest model considering m = 2, 3, 5, 7, 10 predictors at each

split of the decision tree. As increasing the number of trees does not lead to overfitting, it

is not considered a tuning parameter and is often set to a high enough number (Probst and

Boulesteix (2017) and Hastie et al. (2009)). The number of trees we use in our analysis is

500. The optimal number of predictors at each split, m = 2, is found by calculating the

error rate on the tuning sample as reported in Table A1. Finally, we use the Random Forest

model with two randomly selected predictors at each split to calculate the out-of-sample

error rate.

18



m Tuning error rate
2 0.3328
3 0.3347
5 0.3444
7 0.3489
10 0.3504

Table A1: Random Forest: Error rate on the tuning data

A1.3 Extreme Gradient Boosting

Extreme Gradient Boosting is an e�cient implementation of the gradient boosting method

proposed by Chen and Guestrin (2016). We use the xgboost package in R for our implemen-

tation. Traditionally, there are three tuning parameters in a boosting method: learning

rate ”, number of iterations, and depth of each tree. We set the number of iterations to

100. As the boosting tree is grown sequentially, it is not necessary to tune with respect to

both the number of iterations and the learning rate. We tune the boosting model using the

learning rate. We create a grid of 50 points between 0.1 and 0.7 and train boosting models

for each possible ”. We choose the depth of the tree to be 6. We found no significant e�ect

on the predictive performance by changing the depth of the tree. Figure A3 shows the

tuning error rate for di�erent learning rates. The ’U’ shape of the error rate curve clearly

illustrates a trade-o� between bias and variance as we increase the flexibility of our method.

Subsequently, we choose our model (” = 0.43) whose error rate is minimum on the tuning

dataset. The chosen model is used to predict multiple abortions on the test data.

We also explored whether regularization of the boosting tree could improve the perfor-

mance (using the parameter “ in the xgboost function), however, we found no significant

di�erence in our results.

A1.4 Ensemble

An Ensemble method (Dietterich, 2000; Athey and Imbens, 2019) is derived by merging

predictions from various models. We explore two di�erent approaches. First, a simple

average of the predicted probabilities of the five models: Logit, Lasso-Logit, Ridge-Logit,

Random Forest, and Extreme Gradient Boosting. The outcome of this approach has been

discussed in the main section of the paper. Second, we use logistic regression to combine

the five methods. We employ a logistic regression on the tuning data with the binary

multiple abortions indicator as the dependent variable and the predicted probabilities from
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Figure A3: Tuning for the Extreme Gradient Boosting model: Learning Rate ” vs. Tuning
Error Rate. The red dot denotes the optimal model with ” = 0.43.

the five methods as the predictor variables. Next, using the estimated coe�cients of this

logistic regression, we predict probabilities on the test data. Figure A4 shows the deciles

plot with the Logistic Ensemble model. Comparing with the simple average Ensemble in

Figure 3, we can clearly see that the Logistic Ensemble model places a higher weight on

the linear methods, hence the performance is not as good as the simple average in the

most risky deciles.

A1.5 Zero-truncated Poisson Regression

In our baseline specification, we analyse data on women having their first, second, or third

abortion. We estimate the Zero-truncated Poisson regression on the training and tuning

data (2011-17) and use it to predict the probability of a woman having her first, second, or

third abortion on the test data (2018-19). We employ the same 10 categorical predictors

for this regression as used in the machine learning methods.

Subsequently, P (Ai,t≠s = 1|Xi,t) is calculated for the test data by adding the probabili-

ties of a woman having her second or third abortion in year t. Similarly, P (Ai,t = 1|Xi,t)

is calculated for the test data by summing the probabilities of a woman having her first,

second, or third abortion in year t. These two probabilities comprise the Bayes adjustment,
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Figure A4: Deciles plot comparing Logit Ensemble with other methods.

which is then applied to the predicted probabilities of all the machine learning algorithms.

A2 Missing observations by variable

Variable % Missing observations
Type of contraceptive 33.17%
Dependent children 20.58%

Source of information 4.75%
Living status 2.03%

Education 1.65%
Employed 1.30%

Age 0.95%
Foreign born 0.32%

Province 0%
Publicly funded 0%

Table A2: Percentage of Missing Observations
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Figure A5: ROC curves for the four methods on the test data.

A popular way to compare various classification methods is through the ROC graph, as

shown in Figure A5. Practically, the graphs for all six methods look very similar. The area

under the ROC curve (AUC) indicates the average performance of a classifier across all

cut-o�s. The 95% confidence interval of the AUC measure for all six methods lies between

0.61 and 0.64. However, upon closer examination, we do see that an Ensemble method is

at least weakly preferred across all cut-o�s.
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A4 Robustness Checks

A4.1 Including Non-elective Abortions

The primary analysis presented in the preceding sections deliberately excluded non-elective

induced abortions, as we posited that predicting multiple abortions, which were deemed

medically necessary, may not hold significant policy relevance. In this section, we extend

our analysis to include the non-elective abortions, accounting for 87,191 cases from 2011

to 2019. The predictive performance for all six employed methods is exhibited in Figure

A6. Notably, the results parallel our initial analysis in a qualitative sense. That is to

say, in the highest and lowest risk deciles, the Random Forest and Ensemble methods

outperform Logit, Lasso-Logit, and Ridge-Logit, whereas in the intermediate deciles, the

models featuring a linear decision boundary yield superior results.
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Figure A6: Out-of-sample performance of various models predicting the probability of a
multiple abortion in a data set with all abortions (elective and non-elective). The test set
has 185,685 observations.

A4.2 Dropping observations with missing predictors

As part of our robustness checks, we excluded all observations with any missing data. We

lost approximately 56% of the observations from a total of 781,400, leaving us with 346,063

observations. We then repeated our analysis, as depicted in Figure A7. The performance

in certain deciles shows modest improvement, while in others, it exhibits a decline when
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Figure A7: Decile analysis on out-of-sample data with no missing data. The horizontal
blue line denotes the prediction based on the unconditional mean.

compared to the results demonstrated in Figure 3. In a separate examination of robustness,

we removed the two variables—type of contraceptive and dependent children—from our

model and conducted our analysis once again with the remaining eight variables. Figure

A8 illustrates a decline in the performance of the methods, thereby underlining the pivotal

role these two variables play in accurately predicting multiple abortions.

A4.3 Comparing Random Forest without and with dummy variables

In our preceding analysis, we employed a Random Forest model, where each variable

is represented by a value determined by its numerical or non-numerical categorization.

This configuration only utilized 10 categorical variables, with some categories representing

missing values. As an additional robustness check, we also tested a variation of the Random

Forest algorithm that used 82 binary dummy variables. Here too, some of the dummy

variables represented missing values. In Figure A9 we compare the outcomes of these two

di�erent approaches. Remarkably, the results generated by both approaches are highly

similar, rendering them almost indistinguishable. This suggests that our findings are

robust, irrespective of whether we use a more condensed or expanded set of variables in

our Random Forest model.
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Figure A8: Decile analysis on out-of-sample data without two variables with lots of missing
information: type of contraceptive and dependent children. The horizontal blue line denotes
the prediction based on the unconditional mean.
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Figure A9: Decile analysis Random Forest without and with dummies.

A5 Top predictors of multiple abortions

Figure A10 displays the top-10 predictors of multiple abortions identified by the Random

Forest model, with detailed tabular data presented in Table A3. Predictors are categorized

into four groups based on their importance, measured by the average decrease in the Gini
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index across all trees. The most influential predictor is the province of residence, followed

by the source of information about abortion. The third tier includes education level,

foreign-born status, dependent children, age, public funding, and living status. The least

influential predictors are the woman’s employment status and the type of contraceptive

used.
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Figure A10: Importance of predictors using the Random Forest model. The most important
variable is normalised to 1.

Figure A11 displays the top-10 predictors of multiple abortions according to the Lasso-

Logit model, and Table A4 shows these findings in tabular format. These top predictors are

selected from a total of 79 binary indicator variables, derived from 10 categorical predictor

variables, as processed using the glmnet library in R.9 All variables are standardized prior

to analysis, and the importance of each is assessed by examining the absolute value of their

coe�cients. The Lasso-Logit model identifies age group dummy variables (except 15-19) as

highly significant, positively influencing the likelihood of multiple abortions. Women with

a university education are less likely to experience multiple abortions. Other significant

predictors include the source of information from private health centers displaying a positive

relationship, a dummy variable indicating a negative relationship with the province of La

Rioja, and a missing indicator for the source of information showing a positive relationship.
9
For the Lasso-Logit, Ridge-Logit, Logit and Extreme Gradient Boosting models, the 10 categorical

predictor variables are converted into 79 binary indicators using the glmnet library in R. However, the

Random Forest method directly utilizes categorical variables in tree construction with the randomForest
library in R.
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In summary, our analysis reveals that both the Lasso-Logit and Random Forest methods

identify four common predictors of multiple abortions: a woman’s age, province of residence,

source of information about pregnancy termination, and education level. These factors

not only highlight the unequal distribution of multiple abortions among the population

of women but also suggest that targeted interventions should focus on these specific

characteristics to e�ectively reduce multiple abortions.
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Province: La Rioja

Source of information: Private health centre

Province: Missing
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Figure A11: Importance of predictors using the Lasso-Logit model. The most important
variable is normalised to 1.

Rank Variable Relative importance
1 Province 1.00
2 Source of information 0.78
3 Education 0.78
4 Foreign born 0.65
5 Dependent children 0.63
6 Age 0.60
7 Publicly funded 0.57
8 Living status 0.53
9 Employed 0.46
10 Type of contraceptive 0.46

Table A3: Variable importance for Random Forest method
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Rank Variable Std. Lasso-Logit Coe�. Relative importance
1 Age: 30-34 1.16 1.00
2 Age: 25-29 1.14 0.98
3 Age: 35-39 1.07 0.92
4 Age: 40-44 0.96 0.83
5 Age: 20-24 0.86 0.74
6 Education: University -0.73 0.63
7 Province: Missing -0.60 0.52
8 Source of information: Private health center 0.56 0.48
9 Province: La Rioja -0.55 0.47
10 Source of information: Missing 0.54 0.47

Table A4: Variable importance for Lasso-Logit method
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