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ABSTRACT

IZA DP No. 17019 MAY 2024

Cognition, Economic Decision-Making, 
and Physiological Response to Indoor 
Carbon Dioxide: Does It Really Matter?

This study provides novel evidence on the isolated effect of carbon dioxide on cognition, 

economic decision-making, and the physiological response in healthy office workers. The 

experiment took place in an air-tight respiration chamber fully controlling the environmental 

conditions. In a single-blind, within-subject study design, 20 healthy participants were 

exposed to carbon dioxide concentrations of 3,000 ppm and 900 ppm in randomized order, 

with each exposure lasting for 8 hours. We do not find evidence on a statistically significant 

effect on either cognitive or physiological outcome variables. Thus, the evidence shows 

that the human body appears to be able to deal with exposure to indoor carbon dioxide 

concentration of 3,000 ppm without suffering significant cognitive decline, changes in 

decision-making or showing any physiological response.

JEL Classification: D87, J24, Q54

Keywords: carbon dioxide, indoor air quality, cognition, economic 
decision-making, physiological response

Corresponding author:
Stefan Flagner
Maastricht University
P.O. Box 616
6200 MD Maastricht
The Netherlands

E-mail: s.flagner@maastrichtuniversity.nl



1 Introduction

The real estate sector is regarded as a major factor in global energy usage and CO2 emissions,

significantly contributing to climate change. Given that half of the energy consumption in build-

ings is attributed to heating, cooling, and ventilation (1), there is an increased policy awareness

to improve the energy efficiency of buildings (2). Modern buildings often have automated ven-

tilation systems that adapt the ventilation rate to maintain an adequate indoor air quality. A

recent article written by 43 experts in the field of indoor air quality emphasizes the importance

for human health, productivity and learning to provide good air quality (3). However, increasing

the ventilation rate leads to higher energy costs from fans operating at higher speed and higher

energy demand for heating and air conditioning to maintain a stable indoor temperature during

cold or hot weather (4; 5; 6). Building owners thus face a profound trade-off between providing

healthy indoor air quality and improving the energy efficiency of buildings.

While energy consumption is tangible and its impact can be quantified, both financially

and in terms of environmental impact, indoor air quality is more complex to measure, and the

implications of variation in indoor air quality are harder to assess. The existing literature provides

some evidence that poor indoor air quality, caused by limited supply of fresh, outside air into the

room, leads to reduced cognitive performance, declining productivity, and adverse health effects

for office workers (7; 8). However, air quality is a function of different components, which are

correlated with each other. The negative effects of poor indoor air quality on cognition and health

could be associated with volatile organic compounds and bioeffluents, which are by-products

of human metabolism and are exhaled together with CO2 (7; 9). Therefore, another stream of

literature aims to estimate the isolated effect of CO2 on health and cognitive parameters, showing

mixed results. These studies are quite heterogeneous in terms of participant population, exposure

time, outcome measurement, and size of groups measured at the same time. Most importantly,

existing studies insufficiently control for other environmental factors which could also affect the

outcomes of interest. They either do not use an air-tight climate chamber (10; 11; 12) or do not

control for concentrations of volatile organic compounds during testing (9; 10; 12; 13; 14; 15; 16;

17). This makes it challenging to draw unambiguous conclusions about the effect of indoor air

quality, as measured by CO2, on human cognition and physiology.

This study examines the isolated effect of CO2 on a broad set of outcomes in a tightly

controlled environment. Using an interdisciplinary approach, we investigated the effect of an

8-hour exposure to CO2 levels of 3,000 ppm, as compared to CO2 levels of 900 ppm, on the
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cognitive performance, economic decision-making, and physiological response of healthy office

workers, keeping potentially confounding factors constant. The experiment was conducted in an

air-tight respiration chamber, which is commonly used in metabolic research (18).

We hypothesize that an elevated ambient CO2 level leads to lower cognitive performance.

Cognition is measured using a neuropsychological test battery to test the domains of atten-

tion, psychomotor control, executive function, and memory. We also investigated the impact

on individuals’ risk and time preferences by applying multiple price lists, a tool common in

the economics literature, to analyse the effect of CO2 on economic decision-making (19; 20). It

is assumed that elevated CO2 levels lead to changes in risk-taking and time preferences. Risk

and time preferences have been found to predict economic decision-making in a wide variety

of settings and are often found to correlate with cognition (21). Moreover, we consider the

physiological response to elevated CO2 levels. Any effect on cognitive performance or economic

decision-making is assumed to be mediated by a physiological stress reaction, such as a higher

heart rate, higher blood pressure, higher physical activity level, or elevated oxygen consump-

tion. It is further hypothesized that the respiration rate will decrease as a response to the higher

indoor CO2 concentration and this is associated with a higher blood CO2 concentration, as has

been documented in earlier work (22; 23). This would indicate that elevated levels of CO2 lead

to a respiratory acidosis caused by a change in the breathing pattern. Given the large number

of hypotheses tested in the empirical analysis, we draw inferences based on p-values corrected

for multiple hypothesis testing.

2 Methods

2.1 Experimental setup

This study is based on a cohort of 20 healthy individuals and was conducted in the period from

November 2021 to July 2022. Participants were exposed to CO2 levels of 3,000 ppm (High-CO2)

and 900 ppm (Low-CO2) during an 8-hour stay in a respiration chamber of the Metabolic Re-

search Laboratories at Maastricht University (18). Only one participant at a time was measured

in the chamber, because behaviour and perception can be influenced if occupants are measured

in groups (24). We applied a cross-over design where participants were exposed to both CO2

conditions, with a break of four to six weeks between the two test days. The order of both test

conditions was randomized with 10 participants starting in the High-CO2 and 10 participants

starting in the Low-CO2 condition. Participants were blinded to the condition. The ventilation
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rate was set at a high level to ensure low levels of volatile organic compounds and fine particle

matter accumulation in the chamber. Additionally, a particle and volatile organic compounds

filter was installed (Molekule Air Mini+, Molekule Florida, USA). The remaining fine particular

matter (PM2.5) and volatile organic compounds were measured on a 5-minute basis (Foobot

SAT, Airboxlab SA, Luxembourg). In the High-CO2 condition, after participants entered the

chamber, CO2 was induced via a gas bottle until it reached a stable level of 3,000 ppm, which

took on average 11 minutes. After the 3,000 ppm concentration was achieved, the infusion of ad-

ditional CO2 was lowered to a level sufficient to maintain the steady state concentration of 3,000

ppm for the remainder of the test day. Indoor temperature, relative humidity, light conditions

and noise levels were kept constant in both conditions.

2.2 Recruitment of participants

Inclusion criteria were 1) to have an office job that includes mentally demanding tasks, 2) to be

between 25 and 50 years old, 3) to be generally healthy, with no intake of any medication (except

for contraceptives), and 4) to not smoke. Individuals with one of the following characteristics

were excluded: 1) unemployed at the moment of testing, 2) having a disorder or disease, including

Parkinson, Attention Deficit Hyperactivity Disorder, Alzheimer, diabetes, cardiovascular disor-

der, respiratory impairments, or hypertension, 3) doing sports on a professional basis or more

than five times a week for more than two hours, 4) work in shift work, 5) being colour-blind, or

6) pregnant. Participants received a lump-sum compensation of e170. The final sample included

eleven female and nine male participants who were on average 31 years old, ranging from 25

years old to 46 years old. The average Body Mass Index (BMI) was 23 with the lowest BMI at

20 and the highest BMI at 27. The average body height was 174 cm (minimum of 156 cm and

maximum of 191 cm) and the average body weight was 69 kg (minimum of 51 kg and maximum

of 92 kg). From a socio-economic perspective, participants are quite similar. All participants

have a university degree, and the majority of participants had a monthly gross income between

e1,000 and e5,000 (N = 17), with two participants earning between e5,000 and e7,500 and

one participant earning more than e10,000 in gross monthly salary.

2.3 Outcome variables

Cognitive tests: The Cambridge Neuropsychological Test Automated Battery (CANTAB)

was used to assess the cognitive functioning of participants. Participants conducted the test

on a tablet computer with a touch screen. The CANTAB tests have been validated against

3



other neuropsychological test batteries (25). Four domains were measured, including attention,

psychomotor control, memory, and executive function. For attention and psychomotor control,

the Reaction Time Task and Motor Screening Task were used. The Reaction Time Task measures

movement and mental response speed in milliseconds when a stimulus is presented. The Motor

Screening Task assesses movement latency in milliseconds when a stimulus is presented. The

Delayed Matching to Sample and Paired Associate Learning tests were used to measure memory.

Delayed Matching to Sample measures visual matching ability and short-term visual recognition

memory as a percentage of correct choices. Paired Associate Learning assesses visual memory

and learning as the number of correct responses. To measure executive function, the Multitasking

Test, One Touch Stocking of Cambridge, Stop Signal Task, and Spatial Working Memory were

used. The Multitasking Test measures the ability to manage conflicting information as the time

(in milliseconds) that a participant needs to give the correct response when two contradicting

stimuli are presented. One Touch Stocking of Cambridge assesses spatial planning and working

memory as the number of problems solved on the first attempt. Stop Signal Task measures

impulse control as the time (in milliseconds) it takes for participants to inhibit a reaction when

the test initially asks for a reaction. Last, Spatial Working Memory measures strategy and

working memory errors as the number of incorrect revisions from finding a specific figure among

several covered fields. A detailed description of the CANTAB tests can be found on the CANTAB

website (26). To ensure a balanced loading of the different cognitive domains, the same order

of testing was applied during the test days: Start with the Reaction Time Task, then Paired

Associate Learning, Stop Signal Task, and Spatial Working Memory , followed by a 10-minute

break. After the break, the testing continued with Motor Screening Task, One Touch Stocking

of Cambridge, Delayed Matching to Sample, and Multitasking Test. The eight tests, including,

the 10-minute break, took approximately 60 minutes. The CANTAB test was conducted twice

during a test day, first after 30 minutes of exposure and then at the end of the day, after 330

minutes of exposure.

Economic decision-making: In addition to general cognition, we tested how varying CO2

levels affect economic risk and time preferences, specifically risk aversion (hereafter called risk

preferences) and the level of impatience when delaying a financial payment (hereafter called

time preferences). To elicit risk and time preferences, we employed multiple price lists (MPLs),

as introduced by Holt and Laury (20) for risk preferences, and by Coller and Williams (19) for

time preferences. We used a total of six multiple price lists, each containing a total of ten choices

between two options labeled neutrally as A and B. These choices were over either lotteries for
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risk preferences or inter-temporal prospects for time preferences defined over monetary payoffs.

Supplementary Tables S1 and S2 summarize all multiple price lists used in this experiment. To

elicit risk preferences, participants repeatedly chose between lotteries with differing levels of risk

in MPL1.1, MPL1.2, MPL2.1 and MPL2.2. To elicit time preferences, participants repeatedly

chose between varying monetary payoffs at different points in time in MPL3.1 to MPL3.2. The

order of displayed choices within each multiple price lists was randomized, while the sequence

between the six multiple price lists stayed fixed. To incentivise participants to reveal their true

preferences, they were informed beforehand that at the end of each test day, one of the 60 pre-

sented choices would be randomly drawn, and they would receive the corresponding payments

in cash at the end of the test day. If the randomly selected decision contained a choice between

lotteries (risk preferences), a coin was flipped to determine the outcome of the chosen lottery.

If the randomly selected decision contained an inter-temporal choice (time preferences), partic-

ipants would receive money at the end of the test day, or rather one month later, depending on

their choice.

Physiological outcomes: To examine the physiological responses and thus the poten-

tial mechanism of how indoor CO2 levels can impair cognition, several outcome parameters

were measured on a minute-by-minute basis throughout the 8 hours of each test day. Blood

CO2 concentration was measured continuously with a transcutaneous monitor (SenTec, Ther-

wil, Switzerland), which was also used in a previous study (22). For this reason, a non-invasive

sensor was attached to the forehead. The software V-STATS was used to derive the data (version

5.01, SenTec AG, Switzerland). Due to measurement errors that occurred irregularly and for a

short time, the blood CO2 concentration data was cleaned in two steps. First, the monitor also

measured the saturation level of oxygen, which given the respiration chamber’s condition (sea

level atmospheric pressure and no exercising) should stay above 95 percent (27). Thus, minute

values of the partial pressure of CO2 were removed if the saturation level of oxygen during the

particular minute was below 95 percent, assuming a measurement error during this time. Second,

all remaining values for blood CO2 concentration below 30 mmHg and above 50 mmHg were

removed as outliers, because partial pressure values of blood CO2 are always between this range

(28). This approach resulted in removing 10.4% of the minute values for blood CO2. Addition-

ally, heart rate and respiration rate were measured using the Polar H10 belt, which was attached

around the thorax (H10, polar, USA, RR interval accuracy 99.6 % (29)). The mobile application

Polar SDK developer kit for Android phones was used to extract the raw ECG data and the

Kubios software (Biosignal Analysis and Medical Image Group, Department of Physics, Univer-
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sity of Kuopio, Kuopio, Finland, (30)) was used to calculate the heart rate and respiration rate.

Physical activity levels were measured using the three-axis activity monitor ActiGraph with a

sampling frequency of 30 Hz (ActiGraph GT3X). The ActiGraph was placed on the right side

of the hip. The Vector Magnitude counts per minute were derived from the raw data. Oxygen

consumption was measured continuously in the respiration chamber using indirect calorimetry

equipment (Omnical, Maastricht Instruments, Maastricht, NL), which measures changes in con-

centrations of oxygen over time to calculate the oxygen consumption of participants (18). Last,

blood pressure was automatically measured every 15 minutes starting at each full hour using

the Mobil-O-Graph device (I.E.M. GmbH, Stolberg, Germany).

2.4 Experimental protocol

The detailed test protocol is shown in Figure 1. Participants were exposed continuously to

the testing conditions for 8 hours, from 09:00 h until 17:00 h. They were allowed to eat their

own breakfast while in the room. Additionally, participants were either provided with lunch

or brought their own lunch. The breakfast and lunch they ate during the first test day was

documented to ensured that participants ate the same breakfast and lunch during the second

test day. Food intake time was not standardized. Participants were provided with decaffeinated

coffee if they requested coffee (participants were not informed that coffee was caffeine-free).

Between the cognition tests, participants were free to work-related tasks, however, they were

not allowed to watch TV or sleep. They were instructed to behave like during a normal day at

work. To reduce any interference from a learning effect, participants also practiced the cognition

test once during the screening session before the first test day.

2.5 Statistical analysis

Cognitive and physiological responses: We start the analysis by estimating the following

basic linear fixed effect regression model described in Equation 1 to evaluate the effect of elevated

CO2 level on the cognitive and physiological responses of participants:

Yitd = η + δHighCO2id + λt + θi + γd + ϵitd (1)

Where Yitd is the outcome variable measured for participant i at the time of the day t at

test day d. HighCO2id is a binary variable taking the value of one if participant i is exposed

to the High-CO2 condition (3,000 ppm) at test day d and zero otherwise. λt represents a set
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Figure 1: Experimental Protocol

of binary variables capturing the exact time of the day at which certain outcome variables are

measured. The cognitive tests (CANTAB) were measured twice a day, i.e., in the morning and

the afternoon, while the physiological parameters were continuously measured during the test

day. We aggregated the physiological parameters to hourly averages. Therefore, we defined two

different sets of dummy variables included in λt: For the cognitive outcome variables, we included

one binary variable Morningt taking the value of one if the test was taken in the morning session

and zero otherwise. For the physiological parameters, we included eight binary variables Hourt

each representing one hour of the test day. In addition, we included individual fixed effect θi to

restrict the analysis to within-participant comparisons, and test day fixed effect γd to capture

potential learning effects when measuring the cognitive performance on the second test day for

participant i. Last, Equation 1 includes the constant η and error term ϵitd.

With this model, the parameter of interest δ measures the impact of the participant’s expo-

sure to 3,000 ppm CO2 concentration at test day d on the outcome variable Yitd, in comparison

to the same participant being exposed to 900 ppm CO2 concentration during the other test

day. Given the random assignment of participants to both conditions and test days, δ allows

for a causal interpretation. Finally, given the low number of clusters in our study (N = 20)

potentially violating the large-sample assumptions of analytical standard errors, we base our

inference of standard errors on wild bootstrap clusters, as recommended in previous literature
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(31). We applied 1,000 bootstrap replications clustered at the participant level to estimate the

variance-covariance matrix. Given the relatively large number of hypotheses tested (8 tests for

CANTAB and 7 tests for the physiological outcomes), we additionally provide adjusted p-values

based on the method by Hommel to take the multiplicity of tests into account (32). We provide

both the bootstrapped standard errors as well as the p-values based on multiple hypothesis

testing with the estimated coefficients.

In a second step, we enhanced the baseline model 1 to allow the treatment effect δt to vary

over the day. We estimated the following regression model where we added an interaction term

to Equation 1 interacting the treatment parameter HighCO2id with the time of the day dummy

variables λt.

Yitd = α+ δ1HighCO2id + δ2(HighCO2id × λt) + λt + γd + θi + ϵitd (2)

In Equation 2, δ1 represents the difference in outcome variables between High- and Low-

CO2 conditions at reference time t0 (Afternoon testing for CANTAB, and first test day hour for

physiological parameters), and δ2 represents the same difference, but measured at other times

of the day in relation to t0. Therefore, the analysis allows conclusions on whether the effect of

CO2 exposures on outcome variables is time-variant, e.g. testing a dose-response gradient and

how it affects the outcome variables.

Economic decision-making: To analyse the impact of increased CO2 on economic risk

and time preferences, we used a maximum likelihood model (21; 33; 34) to estimate preference

parameters of a discounted expected utility model, similar to (33). Utility over monetary gains

is modeled assuming constant relative risk aversion (CRRA):

u(x) =
x1−α

1− α
(3)

where x denotes monetary gains, and α is the parameter of relative risk aversion, describing

the curvature of the utility function; α = 0 implies risk neutrality, α > 0 risk aversion, and

α < 0 implies risk-seeking behavior. For α > 0, the larger α, the larger risk aversion. Secondly,

inter-temporal choices as a measure of time preferences are modelled using a simple expected

discounted utility model:

U(xt, ..., xt) = Et[u(xt) +

T−t∑
k=1

1

(1 + ρ)k
u(xt+k)] (4)
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Here, ρ is the discount factor. The larger ρ the more the future is discounted and thus the

lower the willingness to wait for the future payment. Individuals become more impatient.

Participants repeatedly choose between two options, labeled A and B. We denote the ex-

pected discounted utility of options A and B as UA and UB, respectively. Our model allows

for two types of decision errors to be as flexible as possible regarding the parametric assump-

tions. Specifically, decision noise is accounted for by a tremble error (κ) and a Fechner error (µ)

(21; 35). The tremble error measures decision errors due to choice randomization, i.e. individ-

uals may randomly choose between A and B with some probability κ. The Fechner error term

accounts for errors in evaluating the expected utility of lotteries: options A and B are assessed

based on their expected utility plus a random element ϵ, such that an individual chooses option

B if UB + ϵB > UA + ϵA. Overall, the probability of choosing option B writes as follows:

P (B) = (1− κ)F (
UB − UA

µ
) +

κ

2
(5)

Were the F, the cumulative distribution function of (ϵA − ϵB) follows a standard logistic

distribution. For κ → 0 , the tremble error has no effect on choice, and for κ → 1, choice

approaches uniform randomization. For µ → 0, the decision becomes deterministic (conditional

on not choosing at random owing to the tremble error), and for µ → ∞, choice approaches

uniform randomization. We estimate the preference parameters (α, ρ) and error parameters

(κ, µ) of the model with maximum likelihood, using binary choice data from the multiple price

lists. Parameters are estimated jointly for all participants as linear functions of the treatment

dummy HighCO2 and the interaction of HighCO2 with a Morning dummy. Given that multiple

price lists are asked two times per test day, once after 120 minutes of exposure and once after

420 minutes of exposure, we added a Morning fixed effect, equals one if the multiple price

lists were answered after 120 minutes of exposure time. Additional binary controls such as sex

and whether it is the first test day were also added. The estimated coefficient of the treatment

dummy thus indicates how much the estimated parameters differ across treatments.

3 Results

The results are presented in two parts. In the first part, we provide evidence on the validity

of our experimental setting by showing that the CO2 concentration differs across the two test

days, while other parameters are kept constant. In addition to objective measures of indoor

environmental quality, we also considered participants’ subjective perceptions of the indoor
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environment between the two test days. We then proceed to the main part of the results, where

we present the findings regarding the impact of increased CO2 concentration on participant’s

cognitive performance, economic decision-making, and physiological responses.

3.1 Treatment validation

Table 1 shows a comparison of environmental conditions between both testing conditions. In

panel A, we show objective measures on the environmental conditions inside the respiration

chamber for the two different CO2 levels. The last column shows the resulting p-values, based

on a simple t-test of equal means with the null hypothesis of no difference between 900 ppm

CO2 (Low-CO2) and 3,000 ppm CO2 (High-CO2). We observe that the targeted average CO2

concentration was achieved for both conditions, with an average CO2 concentration of 918 ppm

for the Low-CO2 condition (122 ppm standard deviation) and 3011 ppm for the High-CO2

condition (139 ppm standard deviation). In the Low-CO2 condition, the ventilation rate was

slightly higher (543 l/min) as compared to the High-CO2 condition (525 l/min). However, the

average concentrations of volatile organic compounds did not differ significantly between the

Low- and High-CO2 conditions. Additionally, temperature, relative humidity and fine particular

matter PM2.5 concentration were not significantly different between the two conditions.

Table 1: Comparison of environmental conditions

Low-CO2 High-CO2

Mean SD Mean SD P-value

Panel A: Environmental quality
CO2 (ppm) 918 122 3011 139 0.000
Ventilation rate (l/min) 543 28 525 12 0.000
Volatile organic compounds (ppb) 519 365 574 317 0.156
Temperature (◦C) 21 0.15 21 0.16 0.144
Relative humidity (%) 32 6 32 6 0.525
Fine particles PM2.5 (in counts/L) 0.000 0.000 0.001 0.045 0.317

Panel B: Perception of environment
Air quality 2.7 1.4 2.4 1.2 0.457
Temperature 3.0 1.4 3.6 1.5 0.213
Light 2.8 1.4 2.8 1.3 0.867
Noise 4.6 1.2 4.3 1.5 0.522

Note: The table shows the mean and standard deviation (SD) of objectively measured and per-
ceived indoor environmental quality during the test day with low (900 ppm) and high (3,000
ppm) CO2 levels. Panel A contains environmental conditions continuously measured inside the
respiration chamber. Panel B shows measures reflecting participants’ perceived indoor conditions
collected via a questionnaire for which participants reported their satisfaction with the air quality,
temperature, lighting and noise based on a scale ranging from ”1 - Extremely Satisfied” to ”7 -
Extremely Dissatisfied”. Column 1 and 3 show the average value, and column 2 and 4 the standard
deviation. The last column shows the resulting p-value from a simple t-test of equal means (H0

= no difference between High- and Low-CO2 condition).
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In addition to the comparison of the objective measures of indoor environmental conditions,

we also collected information on participants’ subjective perception of indoor environmental

quality, based on a survey that participants had to complete shortly before they left the res-

piration chamber (at the end of each test day). We used an adapted version of the Center for

the Built Environment (CBE) survey (36), asking participants how satisfied they were with the

temperature, air quality, lighting conditions, and noise level. The satisfaction level with each

item was reported based on a 7-point Likert scale ranging from ”1 - Extremely satisfied” to ”7

- Extremely dissatisfied”. Panel B in Table 1 shows the mean comparisons for these variables.

There were no statistically significant differences (p > 0.05), which indicates that participants

did not perceive indoor environmental quality differently in the Low or High-CO2 condition.

This confirms the participants were successfully blinded to the testing conditions. The evidence

shows no difference in objective or subjective measures of indoor environmental quality, except

for the concentration of CO2. This confirms the validity of the experimental setting, thereby

allowing us to relate the outcome measures causally to CO2 exposure.

3.2 Cognitive responses

Our main findings focus on the impact of exposure to 3,000 ppm CO2 on cognitive performance

and economic decision-making, starting with the effect on general cognitive abilities, as assessed

by the Cambridge Neuropsychological Automated Test Battery (CANTAB). We provide the

estimated treatment effects based on the fixed effects regression Model 1 in Table 2. The treat-

ment coefficient HighCO2 is defined as a dummy variable which is either 1 if the corresponding

cognition test was done under the 3,000 ppm CO2 exposure, or zero if it was conducted in the

900 ppm CO2 condition. The regression results allow for direct inferences regarding the average

difference in outcome variables between both testing conditions. In addition, the results of the

interacted regression Model 2 in Table 2 assess the heterogeneity over the course of the day,

describing a possible dose-response relationship of the effect of CO2 on cognitive performance.

Focusing on the first model specification (without interaction terms), we do not find any

statistically significant effect of elevated CO2 concentrations on the cognitive domains of psy-

chomotor control and attention, executive function, and the Paired Associate Learning task

among the memory tasks. We document a statistically significant effect (at the 5%-level) for the

Delayed Matching to Sample task, suggesting that exposure to 3,000 ppm improves participants’

share of correct choices by 3.55%-points. However, based on the corrected p-values for multiple

hypotheses testing, the effect becomes insignificant (p = 0.2).
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Table 2: Elevated indoor CO2 and CANTAB test scores

Panel A: Attention & psychomotor control Panel B: Memory

Reaction Time Task Motor Screening Task Delayed Matching to Sample Paired Associate Learning

High CO2 3.587 2.025 0.493 4.445 3.550* 4.050 0.500 1.550**
(4.622) (6.064) (12.651) (16.93) (1.518) (2.432) (0.288) (0.552)
[0.871] [0.798] [0.968] [0.798] [0.200] [0.501] [0.483] [0.056]

High CO2 x Morning 3.125 -7.905 -1.000 -2.100*
(8.910) (7.905) (3.405) (0.915)
[0.960] [0.960] [0.960] [0.184]

Observations 80 80 80 80 80 80 80 80
R2 0.897 0.897 0.625 0.625 0.483 0.484 0.705 0.737
Adj. R2 0.858 0.855 0.480 0.471 0.284 0.272 0.591 0.628
First test day FE Y Y Y Y Y Y Y Y
Morning FE Y Y Y Y Y Y Y Y
Participant FE Y Y Y Y Y Y Y Y

Panel C: Executive function

Multitasking Test One-Touch Stocking of Cambridge Stop Signaling Task Spatial Working Memory

High CO2 -11.037 -9.650 0.450 0.350 6.239 6.437 -0.400 -1,000
(8.516) (13.517) (0.233) (0.239) (4.140) (4.073) (0.677) (0.845)
[0.715] [0.798] [0.311] [0.593] [0.570] [0.488] [0.968] [0.798]

High CO2 x Morning -2.775 0.200 -0.396 1.200
(14.408) (0.358) (8.019) (1.035)
[0.960] [0.960] [0.960] [0.960]

Observations 80 80 80 80 80 80 80 80
R2 0.842 0.842 0.712 0.713 0.564 0.564 0.820 0.823
Adj. R2 0.781 0.778 0.601 0.596 0.396 0.385 0.750 0.751
First test day FE Y Y Y Y Y Y Y Y
Morning FE Y Y Y Y Y Y Y Y
Participant FE Y Y Y Y Y Y Y Y

Note: The table shows the results of the parametric regression analysis as presented in section 2.5 with regards to the cognitive performance of participants in the Cambridge
Neuropsychological Test Automated Battery (CANTAB) tests. For each outcome variable, we show two columns, with the first column containing the estimated treatment parameter
δ based on Equation 1, and column 2 showing δ1 and δ2 based on Equation 2. Bootstrapped standard errors based on wild bootstrap clusters with 1,000 replications are shown in
(parentheses). Significance levels before multiple hypothesis testing are indicated as ∗ ∗ ∗p < 0.001; ∗ ∗ p < 0.01; ∗p < 0.05. In addition, p-values resulting from multiple hypotheses
testing, based on the method by Hommel (32) are in [brackets]. Fixed effects (FE) on whether participants conduct the tests on their first test day independent of the CO2 condition,
if they conduct the test in the morning after 30 minutes of exposure, and participant fixed effect has been added. Outcome variables: The CANTAB tests are measured as follow:
Reaction Time Tasks as median movement time (in ms), Motor Screening Task as mean latency time (in ms), Delayed Matching to Sample as percentage of correct choices (in %),
Paired Associate Learning as number of correct choices on first attempt, Multitasking test as median of multitasking cost (in ms), One-Touch Stocking of Cambridge as problems
solved on first choice, Stop Signal Task as stop signal reaction time (in ms), and Spatial Working Memory as number of incorrect revisions. See section 2.3 for a detailed description
of the outcome variables.

For the second model specification, including the interaction term with the time of the day

(Morning dummy), we find a similar effect pattern. Only the Paired Associate Learning task

measuring memory is affected at the 1% significance level in the High-CO2 condition, indicating

that participants made, on average, one and a half more correct choices when they were asked

to correctly memorize the presented figure. There is also a significant time effect at a 5% level,

which offsets the positive effect of being exposed to a 3,000 ppm CO2 concentration. The results

suggest that participants who were exposed for 30 minutes to the higher CO2 concentration made

on average 2 times fewer correct choices, compared to when they were exposed for 330 minutes

to 3,000 ppm CO2. However, these coefficients are also statistically insignificant once corrected

for multiple hypothesis testing (p = 0.056 and p = 0.184, respectively). Overall, we document

that statistically significant effects disappear once we correct for multiple hypotheses testing.

The results in Table 2 do not provide robust evidence that exposure to a CO2 concentration of

3,000 ppm (compared to 900 ppm) affects cognitive performance, at least as measured by the

CANTAB tests.
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3.3 Economic decision-making

We estimated the effects of CO2 on risk and time preferences, using structural maximum like-

lihood estimations, similar to previous studies (21; 33; 34). The estimated results for economic

decision-making are shown in Table 3. Both the parameter of relative risk aversion α and the

monthly discount rate ρ are jointly estimated as linear functions of the treatment dummy while

controlling for sex, time of day, and test day. Larger levels of α and ρ indicate higher levels

of risk aversion and time discounting, respectively. The results show that neither risk nor time

preferences are significantly affected by the higher CO2 concentrations. To control for decision

noise, we included a Fechner error and tremble error in the structural estimations. The tremble

error captures random decision-making among individuals answering the multiple price lists,

and the Fechner error captures errors in evaluating the expected utility of lotteries. Both errors

are not significantly affected by the levels of CO2 exposure. Summing up, we conclude that we

cannot detect any effect of exposure to CO2 levels of 3,000 ppm on individuals’ risk and time

preferences and decision errors.

Table 3: Elevated indoor CO2 and economic decision-making

Risk aversion α Discounting ρ Fechner error µ Tremble error κ

High CO2 0.000 0.005 0.116 -0.090
(0.050) (0.015) (0.12) (0.063)
[0.998] [0.998] [0.984] [0.616]

High CO2 x Morning 0.022 0.009 -0.093 -0.030
(0.061) (0.010) (0.144) (0.093)
[0.752] [0.752] [0.752] [0.752]

Observations 4800 4800 4800 4800
Log likelihood -1910 -1910 -1910 -1910
First test day FE Y Y Y Y
Morning FE Y Y Y Y
Sex FE Y Y Y Y

Note: Standard errors clustered at the subject level are in (parentheses). Significance levels before multiple hypothesis
testing are indicated as ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05. In addition, p-values resulting from multiple hypotheses
testing based on the method by Hommel (32) are in [brackets]. The maximum likelihood estimation includes controls
for the time of the day when the multiple price lists were conducted including a morning fixed effect (FE), because
participants answered the multiple price lists twice within a test day, once after 120 minutes and once after 420 minutes
of being exposed to the corresponding CO2 condition. Additionally, the estimation controls with fixed effects (FE) for
the sex of the participant and whether it was the first test day for the participant.

3.4 Physiological responses

As a next step, we evaluated the physiological responses to exposure to CO2 concentration

of 3,000 ppm versus 900 ppm . We present boxplots in Figure 2, providing the unconditional

distribution of the physiological parameters in each testing condition, and the results of the

regression analysis in Table 4. Similar to the regression analysis conducted for the CANTAB
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tests, we first examine the effect of elevated CO2 concentration on the hourly average level of

the corresponding physiological parameter, controlling for the hour of the test day, adding fixed

effects for each participant, and a dummy measuring the first test day of the participant. Then,

we conducted a second analysis based on Equation 2 in which we interacted the CO2 dummy

coefficient with the dummy variables of each hour that participants were in the testing condition,

to examine a dose-response relationship.

Table 4: Elevated indoor CO2 and physiological response

Blood CO2 Heart rate Respiration rate Systole blood pressure Diastole blood pressure Physical activity Oxygen consumption

High CO2 -0.628 -0.379 0.637 1.151 -0.007 0.002 1.071 1.382 1.482 0.498 12.379 3.284 6.087 9.935
(0.586) (0.719) (2.226) (2.548) (0.011) (0.012) (1.552) (2.519) (1.017) (1.306) (7.925) (9.805) (7.167) (8.700)
[0.647] [0.817] [0.677] [0.817] [0.677] [0.817] [0.677] [0.817] [0.530] [0.817] [0.424] [0.817] [0.677] [0.817]

High CO2 x Hour 2 -0.189 -0.486 -0.013 -2.653 0.299 21.363* 3.404
(0.288) (1.117) (0.008) (3.143) (1.672) (9.151) (6.272)
[0.864] [0.864] [0.752] [0.864] [0.864] [0.287] [0.864]

High CO2 x Hour 3 -0.442 -1.898 -0.007 3.486 -0.187 8.884 -0.6814
(0.374) (1.958) (0.010) (2.953) (1.621) (11.058) (9.395)
[0.824] [0.824] [0.824] [0.733] [0.895] [0.895] [0.895]

High CO2 x Hour 4 -0.466 -1.062 -0.003 -1.947 0.473 -4.414 -5.584
(0.395) (2.248) (0.009) (2.903) (1.841) (9.473) (7.622)
[0.839] [0.839] [0.839] [0.839] [0.839] [0.839] [0.839]

High CO2 x Hour 5 -0.365 0.523 -0.008 -0.255 1.130 18.072 -5.404
(0.436) (2.019) (0.006) (3.239) (1.671) (15.324) (8.468)
[0.925] [0.925] [0.856] [0.925] [0.925] [0.925] [0.925]

High CO2 x Hour 6 -0.469 0.611 -0.008 -1.511 2.317 21.034 -3.222
(0.371) (2.423) (0.006) (2.766) (2.616) (11.179) (8.947)
[0.750] [0.750] [0.619] [0.750] [0.750] [0.426] [0.750]

High CO2 x Hour 7 -0.105 -1.464 -0.017 4.632 3.759 17.817 -10.479
(0.423) (2.263) (0.009) (3.294) (2.086) (14.248) (11.642)
[0.845] [0.845] [0.262] [0.621] [0.419] [0.713] [0.844]

High CO2 x Hour 8 0.052 -0.331 -0.016 -4.491 -0.012 -9.999 -2.684
(0.592) (2.260) (0.009) (3.740) (3.282) (14.788) (10.398)
[0.997] [0.997] [0.425] [0.997] [0.997] [0.997] [0.997]

Observations 311 311 288 288 288 288 295 295 295 295 312 312 288 288
R2 0.745 0.746 0.816 0.817 0.759 0.762 0.657 0.670 0.603 0.609 0.456 0.471 0.844 0.845
Adj. R2 0.720 0.714 0.796 0.792 0.732 0.729 0.620 0.626 0.561 0.556 0.402 0.404 0.828 0.825
First test day FE Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Hour into test day FE Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Participant FE Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Note: The table shows the results of the parametric regression analysis as presented in section 2.5 with regards to the physiological response. For each outcome variable, we show two columns, with the first column containing
the estimated treatment parameter δ based on Equation 1, and column 2 showing δ1 and δ2 based on Equation 2. Bootstrapped standard errors based on wild bootstrap clusters with 1,000 replications are shown in
(parentheses). Significance levels before multiple hypohtesis testing are indicated as ∗ ∗ ∗p < 0.001; ∗ ∗ p < 0.01; ∗p < 0.05. In addition, p-values resulting from multiple hypotheses testing based on the method by Hommel
(32) are in [brackets]. The dependent variable for each physiological parameter is aggregated on an hourly average. Fixed effects (FE) on whether participants were in their first test day independent of the CO2 condition,
the hour into exposure, and participant fixed effect has been added. See section 2.3 for a detailed description of the outcome variables.

The boxplots in Figure 2 indicate quite similar distributions between the two testing con-

ditions. This is confirmed by the regression analysis in Table 4. We do not find any significant

difference in participants’ physiological responses to Low- versus High-CO2 conditions for most

of the outcomes, in both model specifications. Solely for physical activity level, the regression

reveals a statistically significant increase in physical activity after two hours of exposure to 3,000

ppm CO2 concentration (p < 0.05). However, conducting multiple hypothesis testing, this effect

becomes insignificant (p = 0.287).

3.5 Physiological response during cognition tests

Additionally, we examined the physiological response during the time the individual CANTAB

Cognition tests were conducted. We used a similar regression model as described in Equation 1

and Equation 2, including an interaction effect of CO2 and the Morning dummy, equaling 1 if

the CANTAB test was answered in the morning, 30 minutes into exposure, and zero if it was
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Figure 2: Physiological response between CO2 conditions

(a) Blood CO2 concentration (in mmHg) (b) Heart rate (in bpm)

(c) Respiration rate (in Hz) (d) Systolic blood pressure (in mmHg)

(e) Diastolic blood pressure (in mmHg) (f) Physical activity (in counts per min)

(g) Oxygen consumption (in L/min)

Note: In the boxplot diagrams, the thick line in the middle is the median and the point is the average value of each
corresponding outcome. The upper and lower edges of the box are the upper and lower quartiles. Values that are
more than 1.5 times the interquartile range away from the box are considered to be outliers and shown as crosses
(x). The whiskers that extend from the box show the minimum and maximum of the remaining, non-outlier values.
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answered after 330 minutes of exposure. The dependent variables in these regressions were the

average blood CO2 concentration, average heart rate and average respiration rate during the

time of the individual CANTAB tests. These physiological parameters were chosen because the

human body is able to rapidly change its heart rate and respiration rate, which also impacts

the blood CO2 concentration. The individual CANTAB tests took between 1 minute for the

Motor Screening Task and 12 minutes for the One-Touch Stockings of Cambridge Task to be

conducted. Thus, changes in these outcomes within the short time the individual CANTAB tests

taken can be expected. In addition to a fixed effect for the first test day of the participant and

a fixed effect for the participant, a fixed effect for the specific CANTAB test was also included.

This approach controls for variation between testing time, participant, and individual CANTAB

tests.

Table 5 shows the results of this analysis. We observe that, similar to the previous analysis,

elevated CO2 levels do not trigger any physiological response, even if cognitive load is imposed

through the cognition tests. However, for the model including the interaction effect, an elevated

CO2 concentration of 3,000 ppm during the morning session of the CANTAB test (after 30

minutes of exposure) is significantly associated with a higher respiration rate (p < 0.05), as

compared to the afternoon session (after 330 minutes of exposure). This significance remains

after conducting multiple hypothesis testing (p = 0.038 for the adjusted p-value). However, the

magnitude of the effect is quite small: The coefficient indicates an increase in the respiration rate

of 0.017 Hz, which is approximately one additional breath per minute, which can be considered

a very small effect.
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Table 5: Physiological response during cognition tests

Blood CO2 Heart rate Respiration rate

(1) (2) (3) (4) (5) (6)

High CO2 −0.468 −0.596 0.056 −0.398 −0.010 −0.019
(0.533) (0.515) (2.225) (2.662) (0.012) (0.011)
[0.980] [0.860] [0.980] [0.980] [0.980] [0.652]

High CO2 x Morning 0.256 0.909 0.017∗
(0.414) (2.337) (0.007)
[0.697] [0.697] [0.038]

Observations 619 619 571 571 571 571
R2 0.744 0.766 0.758 0.809 0.579 0.632
Adj. R2 0.731 0.752 0.745 0.797 0.556 0.609
First test day FE Y Y Y Y Y Y
Morning FE Y Y Y Y Y Y
Participant FE Y Y Y Y Y Y
CANTAB test FE Y Y Y Y Y Y

Note: The table shows the results of the regression analysis with the dependent variable as the
average level of blood CO2 concentration, heart rate, and respiration rate during the time each indi-
vidual CANTAB cognition test has been conducted. Similar to the regression for the CANTAB test
as shown in Table 2 and described in Model 2, next to the treatment dummy High-CO2 for being 1 if
participants were exposed to 3,000 ppm CO2 concentration, an interaction effect as been added. This
effect interact the treatment dummy High-CO2 with the Morning dummy which is equals 1 if the
CANTAB test has been conducted after 30 minutes of exposure, compared to zero if the CANTAB
test has been conducted 330 minutes into exposure condition. Fixed effects (FE) on whether partici-
pants conduct the tests on their first test day independent of the CO2 condition, if they conduct the
test in the morning after 30 minutes of exposure, participant fixed effect, and individual CANTAB
test fixed effect has been added. Bootstrapped standard errors based on wild bootstrap clusters with
1,000 replications are shown in (parentheses). Significance levels before multiple hypothesis testing
are indicated as ∗ ∗ ∗p < 0.001; ∗ ∗ p < 0.01; ∗p < 0.05. In addition, p-values resulting from multiple
hypotheses testing based on the method by Hommel (32) are in [brackets].

4 Discussion

Magnitude and significance: Overall, the results show that there is no effect of CO2 con-

centrations of 3,000 ppm (compared to 900 ppm) on cognitive performance and physiological

outcomes. Although this study uses a similar sample size as compared to previous studies (see

Supplementary Table S4 for an overview of previous studies), the question remains whether the

estimated effects are indeed zero or whether the sample size of 20 participants is simply too

small to estimate the effects precisely enough to reject the null hypothesis. We approach this

question from two angles: First, we calculated relative effects where we express the effects in

terms of changes in standard deviations of the underlying distribution of the outcome variable.

This approach provides insights on the magnitude of the effects, i.e., whether the estimated ef-

fects are meaningful, independently of statistical significance. For instance, if the relative effects

are very small, i.e., the High-CO2 condition hardly changes the outcome variable, statistical

significance is less relevant because the magnitude of the effects would be negligible. Second, we

ran a power analysis to calculate the required sample size to examine how many subjects we
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actually would need in order to be able to estimate statistically significant effects in case the

CO2 concentration truly affects the outcome variable. The results of both analyses are provided

in the Supplementary Table S3.

For the clear majority of outcome variables, the relative effect of elevated CO2 levels is weak

to very weak, with a change of 0.2 or less standard deviation in the outcome variable. This

suggests that the magnitude of most of the parameters is negligible, even if they would have

statistical significance. Only two parameters seem to be meaningful with a relative effect size

of 0.41 and 0.79 of a standard deviation for the CANTAB’s Delayed Matching to Sample task

and tremble error for time preferences, respectively. However, conducting a power calculation

based on the calculated effect sizes shows that a suggested sample size of 22 participants for

the CANTAB test and 13 participants for the economic decision-making test is very close to

and below our actual sample of 20 participants, respectively. This indicates that our inference

tests are reliable and do allow conclusions on the statistical significance of this meaningful effect.

Given that we find only a few significant effects based on the bootstrapped (analytical) standard

errors and no statistical significance based on the multiple hypotheses tests, we conclude that

the effects are indeed statistically insignificant and hence zero.

Link to previous literature: This study is the first, to our best knowledge, that exposed

office workers uninterrupted for a full day (8 hours) to elevated CO2 concentrations in a validated

respiration chamber. The absence of significant results in our analysis shows that CO2 does not

affect basic cognitive domains in terms of attention, psychomotor control, executive function,

and memory, measured with the Cambridge Neuropsychological Test Automated Battery, a

commonly used and validated cognition test (25). Supplementary Table S4 gives an overview of

the related studies with their setup and findings.

Our results contrast with three studies measuring complex decision-making using the Strate-

gic Management Simulator, documenting a negative effect of CO2 concentrations on cognitive

decision making (11; 12; 16). However, one such study, which included ”astronaut-like” subjects,

found that the negative effect was either mitigated or even reversed at higher CO2 concentrations

(16). A fourth study could not confirm any effect of CO2 on complex decision-making using the

Strategic Management Simulator test (17).

Among this previous work, the study by Allen and co-authors (11) comes closest to our

setup, focusing on office workers who are exposed to elevated CO2 concentrations for 8 hours,

while measuring the concentration of volatile organic compounds to ensure a low level of these

air pollutants. However, the study was conducted in a common office room and no physiological
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parameters were measured; factors that could explain the decline in complex decision-making

abilities. In addition, the study used the Strategic Management Simulator for cognitive ability.

Thus, our analysis extends the findings showing that for common cognitive domains, CO2 has

no effect (11).

Our findings that CO2 concentration has no significantly negative effect on human cognition

is in agreement with a series of other previous studies, which also did not find a negative effect of

elevated CO2 concentrations on cognitive performance (13; 14). These two studies used similar,

although non-validated climate chambers and exposed their population for only a short period

of time (255 and 150 minutes, respectively). Also, volatile organic compound concentration was

not measured during the testing to validate whether the concentrations of air pollutants were

been successfully reduced.

Unique to this study, we widened the cognition analysis, including multiple price lists from

the economic literature to examine the potential effect of CO2 on economic decision-making in

terms of risk-taking and time discounting for monetary payouts. We found no effect on risk and

time preferences. Previous literature could suggest a potentially negative effect because lower

cognitive abilities lead to more random decision-making when answering multiple price lists

(35). However, our results are consistent in the sense that we neither find an effect on cognitive

performance measured with the CANTAB test, nor for economic decision-making.

Regarding the physiological response to CO2 exposure, we did not find any stress response in

terms of a higher heart rate or higher blood pressure. Previous studies that measured a variety

of physiological parameters found a significantly higher heart rate at 2,700 ppm and 3,000 ppm

CO2, but no difference in heart rate at 5,000 ppm CO2 compared to a concentration of 500 ppm

CO2 (9; 10; 14). However, while various parameters were measured to record the physiological

response to elevated CO2 concentrations, no multiple hypotheses testing was conducted in these

studies to adjust the p-values.

Additionally, this study is the first that specifically examines the physiological stress response

during the time the cognition test was administered, to derive a possible performance-induced

effect of CO2. Past studies suggest that the cognitive load, from time pressure or complexity of

the task, might play a mediating role in the effect of CO2, and more generally, indoor air quality

on cognition (7; 8; 37). However, we did not find any significant change in heart rate, respiration

rate, or blood CO2 levels during the time of testing, indicating that even during times of higher

cognitive load, CO2 does not seem to trigger any physiological response.

Moreover, we could not confirm the hypothesis that an elevated indoor CO2 concentration
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of 3,000 ppm leads to a respiratory acidosis. Neither the respiration rate nor the blood CO2

partial pressure were significantly affected, except for a marginally higher respiration rate of

one breath per minute during the CANTAB test. Only one prior study found higher blood CO2

concentrations after four hours of exposure to up to 5,000 ppm CO2 (22). However, the CO2

concentration in that study was achieved through a reduced indoor ventilation rate, leading to a

2.2-fold increase in volatile organic compounds concentrations in the room. The authors attribute

the elevation in blood CO2 to the increased CO2 levels in the room, but did not elaborate on

whether such a relationship could be mediated by the other air pollutants in the room which

might have an impairing effect on the lungs (23; 38).

The previous literature assumes that air pollutants could cause changes in the breathing

pattern, which in turn leads to a build-up of CO2 in the blood due to an insufficient removal

through exhalation (23; 39). Moreover, Snow and co-authors (10) argue that the higher heart

rate for an exposure level of 2,700 ppm could be indicative of an increase in circulation to

maintain CO2 levels in the blood. However, they documented no effect on respiration rate and

emphasized that no blood-gas analysis was conducted to examine this hypothesis. Because we

isolated the effect of CO2 in our study setup, we can rule out that respiratory acidosis is related

to CO2 concentrations of 3,000 ppm and no change in respiration rate was needed to mediate

this. However, we did not measure tidal volume which could be affected independently of the

respiration rate. Importantly, our study does not aim to examine the claim stated in previous

literature that air pollutants beyond CO2 affect the breathing pattern of individuals (23; 39).

Finally, two studies found an increase in end-tidal CO2 in exhaled air but were not able to

examine the physiological reasoning for this observation (9; 14). Increased exhalation of CO2 can

be a sign of increased cellular CO2 production or CO2 build-up in the blood due to increased

metabolic rate. To maintain a stable pH-level, the body increases the respiration rate to remove

excess CO2 from the lungs (40). However, we could not find any significant effect on oxygen

consumption as a measure of metabolic rate and also no significantly higher physical activity

level in the High-CO2 condition, which could cause a higher energy expenditure and thus higher

metabolic rate. Thus, while we did not measure end-tidal CO2 directly, our analysis cannot

confirm that elevated CO2 levels affect human metabolic rate. Therefore the higher end-tidal

CO2 concentration found in earlier studies might not be caused by an increased cellular CO2

production from a higher metabolic rate.

Limitations and Future Recommendations: We used a validated respiration chamber

and measured volatile organic compounds continuously to ensure that our method of isolating
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the effect of CO2 was successful. However, we simulated only two conditions: High- and Low-CO2.

In reality, CO2 levels might be much higher. CO2 levels in primary schools easily exceed 3,000

ppm if no sufficient ventilation is provided and effects of exposure to CO2 might be non-linear

(41; 42).

In addition, the study population was of average age (25 to 46 years old) and had no health-

related complaints. Thus, our study does not answer how CO2 concentrations might affect in-

dividuals with respiratory restrictions, like chronic obstructive pulmonary disease and asthma,

metabolic syndrome, or mental disorders such as depression and anxiety disorder. Also, future

studies could investigate the effect of CO2 on the health and cognition of children and elderly

people.

5 Conclusion

The increased focus on the energy efficiency of buildings as a route to reduce greenhouse gas

emissions may lead to a situation where a trade-off needs to be made between high ventilation

rates (leading to enhanced indoor air quality) and lowering energy consumption. An alternative

way of creating a healthy indoor environment is the implementation of air filtering systems that

clean organic compounds and fine dust from the air (43; 44). However, these air filters generally

cannot remove CO2, given limited external air intake. Therefore, it is important to understand

whether CO2, which is often used as a proxy for indoor air quality, is an air pollutant itself or

whether elevated levels of CO2 can be accepted, such that air filtering systems could substitute

an increased ventilation rate to maintain an appropriate indoor air quality for occupants – be

it employees or residents.

This study exploits a validated ventilation chamber in a cross-over experimental design to

assess the impact of elevated CO2 levels on cognitive performance and physiological response.

The analysis reveals that a CO2 concentration of 3,000 ppm compared to 900 ppm does not trig-

ger any significant cognitive decline or physiological response. As such, for healthy individuals,

no negative effect of a CO2 concentration of 3,000 ppm compared to 900 ppm on cognition and

economic decision-making can be expected. These findings contrast with some existing studies,

which claim that elevated CO2 levels have short-term implications for health and cognition, and

suggest that somewhat lower ventilation do not necessarily harm human performance – at least

in the short term (11). Of course, there might be other considerations for elevated ventilation

rates, such as the prevention of disease, or the reduction of volatile organic compounds. How-
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ever, such pollution could also be addressed in alternative, potentially cheaper and more efficient

ways.
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7 Appendix

Table S1: Multiple price lists for risk preferences

Option A Option B

Multiple price list Choice Coin shows heads Coin shows tails Coin shows heads Coin shows tails Implied CRRA

1.1

1 6.00 e 10.00 e 1.00 e 12.00 e 1.79
2 6.00 e 10.00 e 1.00 e 14.00 e 1.17
3 6.00 e 10.00 e 1.00 e 16.00 e 0.87
4 6.00 e 10.00 e 1.00 e 18.00 e 0.69
5 6.00 e 10.00 e 1.00 e 20.00 e 0.56
6 6.00 e 10.00 e 1.00 e 22.00 e 0.47
7 6.00 e 10.00 e 1.00 e 24.00 e 0.40
8 6.00 e 10.00 e 1.00 e 28.00 e 0.29
9 6.00 e 10.00 e 1.00 e 34.00 e 0.19
10 6.00 e 10.00 e 1.00 e 44.00 e 0.09

1.2

11 0.40 e 8.00 e 5.00 e 9.00 e NA
12 0.40 e 10.00 e 5.00 e 9.00 e 2.243
13 0.40 e 11.00 e 5.00 e 9.00 e 1.61
14 0.40 e 12.00 e 5.00 e 9.00 e 1.292
15 0.40 e 13.00 e 5.00 e 9.00 e 1.09
16 0.40 e 14.00 e 5.00 e 9.00 e 0.948
17 0.40 e 15.00 e 5.00 e 9.00 e 0.841
18 0.40 e 19.00 e 5.00 e 9.00 e 0.584
19 0.40 e 27.00 e 5.00 e 9.00 e 0.358
20 0.40 e 43.00 e 5.00 e 9.00 e 0.184

2.1

21 30.00 e 30.00 e 30.00 e 1.00 e NA
22 25.00 e 25.00 e 30.00 e 1.00 e 3.8
23 20.00 e 20.00 e 30.00 e 1.00 e 1.7
24 17.00 e 17.00 e 30.00 e 1.00 e 1.1
25 16.00 e 16.00 e 30.00 e 1.00 e 1.06
26 15.00 e 15.00 e 30.00 e 1.00 e 0.94
27 12.00 e 12.00 e 30.00 e 1.00 e 0.63
28 10.00 e 10.00 e 30.00 e 1.00 e 0.45
29 5.00 e 5.00 e 30.00 e 1.00 e -0.06
30 1.00 e 1.00 e 30.00 e 1.00 e NA

2.2

31 14.00 e 17.00 e 17.00 e 1.00 e NA
32 14.00 e 17.00 e 20.00 e 1.00 e 2.8
33 14.00 e 17.00 e 25.00 e 1.00 e 1.4
34 14.00 e 17.00 e 28.00 e 1.00 e 1.1
35 14.00 e 17.00 e 29.00 e 1.00 e 1.06
36 14.00 e 17.00 e 30.00 e 2.00 e 0.93
37 14.00 e 17.00 e 30.00 e 3.00 e 0.87
38 14.00 e 17.00 e 32.00 e 8.00 e 0.21
39 14.00 e 17.00 e 32.00 e 10.00 e -1.04
40 14.00 e 17.00 e 32.00 e 14.00 e NA

Note: The table shows a total of four multiple price lists, MPL1.1, MPL1.2, MPL2.1 and MPL2.2, each containing a total of ten choices between two options labeled
neutrally as A and B to elicit risk preferences. Participants repeatedly chose between choices with differing levels of risk. Utility over monetary gains is modeled
assuming constant relative risk aversion (CRRA), as expressed in Equation 3, described in Section 2.5.
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Table S2: Multiple price lists for time preferences

Multiple price list Choice Option A: Today Option B: In one month Yearly discount factor

3.1

1 18.20 e 18.00 e 1.14
2 18.00 e 18.00 e 1.00
3 17.80 e 18.00 e 0.87
4 17.30 e 18.00 e 0.62
5 16.80 e 18.00 e 0.44
6 16.00 e 18.00 e 0.24
7 14.00 e 18.00 e 0.05
8 12.00 e 18.00 e 0.01
9 10.00 e 18.00 e 0.00
10 8.00 e 18.00 e 0.00

3.2

11 12.00 e 11.80 e 1.22
12 12.00 e 12.00 e 1.00
13 12.00 e 12.20 e 0.82
14 12.00 e 12.50 e 0.61
15 12.00 e 13.00 e 0.38
16 12.00 e 14.00 e 0.16
17 12.00 e 15.00 e 0.07
18 12.00 e 16.00 e 0.03
19 12.00 e 18.00 e 0.01
20 12.00 e 22.00 e 0.00

Note: The table shows a total of two multiple price lists, MPL3.1 and MPL3.2, each containing a total of ten choices between two
options labeled neutrally as A and B to elicit time preferences. Participants repeatedly chose between varying monetary payoffs
at different points in time. Inter-temporal choices as measure of time preferences are modelled using a simple expected discounted
utility model, as expressed in Equation 4, described in Section 2.5.
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Table S3: Relative effect and prospective sample size

Coefficient SD (Outcome) Relative effect Sample size

Panel A: CANTAB cognition tests
Reaction Time Task 3.588 49.696 0.072 111
Motor Screening Task 0.493 86.484 0.006 1311
Delayed Matching to Sample 3.550 8.712 0.407 22
Paired Associate Learning 0.500 2.974 0.168 49
Multitasking Test -11.038 73.866 -0.149 55
One-Touch Stocking of Cambridge 0.450 1.598 0.282 30
Stop Signaling Task 6.239 25.333 0.246 34
Spatial Working Memory -0.400 4.883 -0.082 98

Panel B: Economic decision-making
Risk aversion 0.010 0.298 0.033 242
Discounting 0.009 0.120 0.068 118
Fechner error 0.053 0.394 0.134 61
Tremble error -0.092 0.115 -0.793 13

Panel C: Physiological parameters
Blood CO2 -0.628 3.016 -0.208 40
Heart rate 0.637 9.971 0.064 125
Respiration rate -0.007 0.046 -0.154 53
Systolic blood pressure 1.071 12.122 0.088 92
Diastolic blood pressure 1.482 8.334 0.178 48
Physical activity 12.379 46.851 0.264 32
Oxygen consumption 6.087 67.367 0.090 90

Note: Column 1 shows the estimated coefficient δ based on equation 1. Column 2 contains the standard deviation (SD) of
the underlying distribution of the outcome variable in the full sample. Column 3 shows the relative effect as calculated by
dividing the estimated effect δ by the standard deviation. Last, column 4 presents the required sample size resulting from
a power analysis. For economic decision-making in Panel B, the standard deviation was calculated as the standard error of
the estimated coefficient on the treatment dummy, multiplied by the square root of the number of participants. The power
analysis is conducted based on a linear multiple fixed effect regression model, two-tailed, with an alpha error rate of 0.05, a
power of 0.8 and 1 predictor.
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