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Most definitions of algorithmic bias and fairness encode decisionmaker interests, such 

as profits, rather than the interests of disadvantaged groups (e.g., racial minorities): Bias 

is defined as a deviation from profit maximization. Future research should instead focus 

on the causal effect of automated decisions on the distribution of welfare, both across 

and within groups. The literature emphasizes some apparent contradictions between 

different notions of fairness, and between fairness and profits. These contradictions 

vanish, however, when profits are maximized. Existing work involves conceptual slippages 

between statistical notions of bias and misclassification errors, economic notions of profit, 

and normative notions of bias and fairness. Notions of bias nonetheless carry some interest 

within the welfare paradigm that I advocate for, if we understand bias and discrimination 

as mechanisms and potential points of intervention.
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1 Introduction

Consider the following hypothetical scenario. The human resources department in some com-

pany has to decide which employees to promote. The company aims to promote the employees

who will contribute most to profits, after promotion. They decide to employ an algorithm to

predict future contribution to profits. They will make automated promotion decisions based

on these predictions. After introducing the algorithm, several Black employees (let’s call them

Lakisha and Jamal) are not promoted, while their White colleagues (let’s call them Emily and

Greg) are. Concerns are raised about this system. An audit of the algorithm finds that, using

historical data, it predicted that Lakisha was more likely to have children, and that Jamal was

more likely to have care responsibilities for elder relatives, relative to their colleagues. This

might reduce their availability for working outside regular hours. An economist called in to

testify concludes that the system is not discriminatory (i.e., not biased), since the algorithm is

maximizing profits, as intended.

Now consider another hypothetical scenario. Some university has to decide which students

to admit to their undergraduate program. They do so using an automated system that is

based on high school grades, standardized tests, and demographic information. These variables

help to predict future academic performance, as measured by the students’ grade point average

(GPA) in university exams. Because minority students are historically underrepresented among

undergraduates, the admissions algorithm partially corrects for this underrepresentation. The

algorithm applies a di↵erent cuto↵ in terms of predicted GPA for di↵erent demographic groups.

After a complaint by a White applicant (let’s call him John) who was not admitted, an auditor

of the algorithm concludes that the algorithm was biased or discriminating, since it did not

treat all applicants equally, given their predicted GPA.

How should we think about the conclusions of the economist and the auditor in these two

scenarios? Do their assessments line up with our normative intuitions? Or is there something

wrong with the notions of fairness employed? How should a policymaker who wants to address

racial inequality respond to these two scenarios? And what would the large and growing lit-

erature on fairness and bias in algorithmic decision making say about this? In this article, I

provide an opinionated review of this literature. This review expands on arguments previously

made in Kasy and Abebe (2021) and Kasy (2023). This review is motivated by debates around

racial discrimination and racial inequality. Most of my discussion is more general, however, and

applies equally to discrimination and inequality across other demographic dimensions, such as

gender, ethnicity, or religion.

Two paradigms for evaluating decision functions I contrast two di↵erent normative

paradigms, the fairness paradigm and the welfare paradigm. The fairness paradigm, closely

related to the notion of taste based discrimination in economics, undergirds much of the literature

on algorithmic fairness. This paradigm is based on a notion of bias, which is defined as a

deviation from some legitimate objective or decisionmaker motive, such as profits in the case
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of hiring or promotion decisions. Put di↵erently, fairness in this sense encodes the interests of

capital owners (profits), rather than the interests of disadvantaged groups (e.g., racial minorities)

a↵ected by their decisions. Viewed in these terms, it appears as a remarkable, and remarkably

successful, ideological sleight of hand to substitute one for the other. Correspondingly, this

paradigm rationalizes unequal treatment based on some underlying merit of the treated, where

the treated might be job candidates or university applicants, and where merit corresponds to

their contribution to the legitimate objective. In our first scenario, unequal promotions are

rationalized by di↵erences in expected care responsibilities. In our second scenario, unequal

admissions are rationalized by di↵erences in expected GPA.

I contrast the fairness paradigm to the welfare paradigm. The welfare paradigm undergirds

much of the literature on program evaluation and welfare economics. This paradigm asks about

the consequences of unequal treatment for the welfare of those who are treated. These welfare

consequences are then traded o↵ in some aggregate notion of social welfare. Aggregate social

welfare typically puts a higher weight on improving the welfare of those who are worse o↵. In

our first scenario, promotions have consequences for the income and status of the promoted

employees. In our second scenario, admissions have consequences for the educational trajectory

and future labor market prospects of the admitted students. If the members of a demographic

group are worse o↵, on average, then improving their welfare should be a priority, according to

this paradigm.1

Following up on the arguments of Kasy and Abebe (2021), I will make the case that we

should think about algorithmic decisionmaking more in terms of the welfare paradigm. This

paradigm often leads to di↵erent conclusions relative to the dominant fairness paradigm, as the

opening vignettes illustrate.

Two reasons to study (algorithmic) bias and discrimination At this point, the reader

might be inclined to disagree with my characterization of the notions of bias and fairness, since

we might care about bias even if we subscribe to the welfare paradigm.

There are at least two reasons why we might be concerned about bias in decision making,

whether human or algorithmic. The first reason is normative. In line with the fairness paradigm

described above, one might argue that inequalities due to bias or discrimination are less legit-

imate than inequalities due to other factors, and should therefore be eliminated – while other

inequalities are allowed to persist. This is the normative interpretation of the notion of taste-

based discrimination as introduced by Becker (1957). I will draw on Pessach and Shmueli (2020)

in reviewing definitions of algorithmic fairness from the computer science literature, which are

in this tradition.2

1A related but distinct line of reasoning is pursued in Small and Pager (2020). Drawing on the literature in
sociology, these authors criticize the narrowness of economists’ notions of discrimination. They list additional
forms of discrimination that should be considered, including institutional discrimination, structural discrimi-
nation, and institutional racism. Their expanded notion of discrimination arguably approximates a notion of
inequality of welfare, as considered here.

2Other references providing a general overview and discussion of algorithmic fairness include Abebe et al.
(2020); Benjamin (2019); Broussard (2018); Gebru (2019); Noble (2018); O0Neil (2016). For additional discussions
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The second reason to be concerned about bias and discrimination is positive and concerns

the mechanisms which generate inequality of welfare. One might care about inequality of welfare

across individuals, in line with the welfare paradigm described above, and might therefore aim

to understand the mechanisms which generate it. One of these mechanisms might be bias or

discrimination, in the narrow sense of a deviation from profit maximization. If, in particular, we

are normatively committed to reducing inequality, then understanding the mechanisms which

generate inequality is important to inform the choice of policy tools to achieve our goal. Much

of the discussion about algorithmic discrimination is, explicitly or implicitly, based on the nor-

mative reason (i.e., the fairness paradigm). I will return to the positive reason to study bias

(within the welfare pardigm) in the conclusion.

Apparent contradictions, and conceptual slippages Another possible objection to my

argument, that fairness encodes decisionmaker objectives (profits) rather than the interests of

disadvantaged groups, could be based on the results of Kleinberg et al. (2016); Chouldechova

(2017) and others: Di↵erent notions of fairness are mutually inconsistent, in general, and they

impose constraints on profit maximization. There seem, therefore, to be real tradeo↵s between

profits and fairness. How can that be, if all these definitions of fairness are just measuring

deviations from profit maximization, as I have claimed?

In Section 5, I provide a formal discussion of these questions. I show that leading fairness

definitions are approximately satisfied whenever profit maximization is approximately satisfied.

The tensions between them vanish in the limit. Relatedly, I also discuss the conceptual slippages

that often occur between statistical notions of bias and predictive loss, economic notions of profit

motives, and normative notions of fairness and discrimination.

Outline The rest of this article is organized as follows. In Section 2, I introduce a simple

formal model of hiring decisions, which will serve as a running example throughout the article.

In Section 3, I contrast two paradigms for normatively evaluating decision functions, fairness

and welfare. In Section 4, I review a number of definitions of fairness which have been proposed

in the literature. In Section 5, I discuss the formal relationship between profits, di↵erent notions

of fairness, and statistical notions of bias and predictive errors. In Section 6, I conclude and

briefly discus how bias and discrimination can be mechanisms generating inequality of welfare,

and how they can consitute potential points of intervention.

Notation Any probabilities or expectations in this paper are across the distribution of job

applicants. I use capital letters to denote random variables, that is, properties of job applicants.

Let for example A denote gender, with A = 1 for women. Then P (A = 1) is the share of women

among job applicants. P (B|A) denotes the conditional probability distribution of B given A.

of di↵erent notions of fairness as well as their feasibility, incompatibility, and politics, we refer to Chouldechova
(2017); Friedler et al. (2016); Hardt et al. (2016a); Suresh and Guttag (2019); Kleinberg et al. (2016); Mitchell
et al. (2018); Narayanan (2018); Verma and Rubin (2018).
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Let for example B denote age. Then P (B|A = 1) denotes the age distribution among female

job applicants. Similarly, E[B|A] denotes the conditional expectation of B given A. In our

example, E[B|A = 1] then denotes the average age among women job applicants. I assume that

all random variables have discrete support, to avoid technicalities. Lastly, 1 is the indicator

function which equals 1 if its argument is true, and 0 otherwise. For example, 1(B > 40) equals

1 for everyone who is older than 40 years.

2 Setup

Consider an employer who selects whom to hire among a set of candidates for a job opening.

We denote the decision to hire a candidate by D, where D may take the values 0 (don’t hire) or

1 (hire). Hiring a candidate entails a wage cost w, where w does not vary across job candidates.

The employer wants to hire candidates according to their marginal contribution to profits, also

called merit, or productivity. We denote this contribution to profits by M . If the employer could

directly observe M , they would want to hire all the candidates whose M exceeds the wage w.

Typically, however, the employer cannot observe M directly. Instead, they observe some

other features X of the candidate, which might be helpful for prediciting M .3 We denote one of

the components of X by A. The variable A may take the values 0 or 1, and describes whether

the candidate belongs to some group of interest; for instance whether the candidate belongs to

some racial minority, is a woman, etc.

The employer determines the probability d of hiring a given candidate based on the features

X, that is,

d(X) = P (D = 1|X).

When the literature on algorithmic decisionmaking talks about notions such as fairness, bias,

or discrimation, then these are typically properties of the function d.

Profit maximizing hiring decisions Suppose now that the employer makes hiring decisions

that maximize expected profit, where expected profit is given by E[D · (M � w)]. Denote the

expected productivity of a candidate given their features X by

m(X) = E[M |X].

With this notation, and using that D is by construction independent of M given X because X

includes all the information available to the employer, expected profit for the hiring function d

is given by

E[d(X) · (m(X)� w)].

The employer does not observeM . They do, however, observe the featuresX. Suppose that they

also know the population relationship m of productivity M to the observed features X. Under

3In line with the literature, I use the terms “features,” “covariates,” and “predictors” interchangeably.
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this assumption, the profit maximizing decision function d⇤(·) hires everyone whose expected

productivity exceeds the wage w, that is,

d⇤(X) = 1(m(X) > w).

Relatedly, suppose that there is a pair of values x, x0 for the feature vector X such that

m(x) > m(x0), d(x) < 1, and d(x0) > 0.

Then profits could be increased by hiring more candidates with features x and fewer candidates

with features x0, holding constant the total number of candidates who are hired. This observation

is at the heart of tests for algorithmic bias, in the sense of deviations from profit maximization.

We will return to this observation in Section 3.1 below.

Alternative interpretations Throughout this paper, I emphasize the example of hiring.

There are many other contexts where similar considerations apply, however, including the fol-

lowing:

1. Consumer credit

A bank decides which consumer credit applications to approve (D = 1). They might

wish to do so based on the probability of repayment M . Since repayment is not observed

ex-ante, they might try to predict it based on observable features X.

2. Bail setting

A judge decides whether to grant bail to a defendant (D = 1). They might wish to do so

based on the probability of recidivism, i.e., further police encounters M of the defendant.

Since recidivism is not observed ex-ante, they might try to predict it based on observable

features X.

3. Student admissions

A university decides which students to admit (D = 1). They might wish to do so based

on future student performance as measured by their grade point average M . Since fu-

ture student performance is not observed ex-ante, they might try to predict it based on

observable features X.

4. Medical care

A medical provider decides which patients should receive preventative care (D = 1). The

provider might wish to do so based on the probability of future chronic health conditions

M . Since future chronic health conditions are not observed ex-ante, the provider might

try to predict them based on observable features X.
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3 Two paradigms

Having discussed profit maximizing decisions of the employer, I next contrast two distinct

paradigms for the normative assessment of such decisions, building on Kasy and Abebe (2021).

The first paradigm, encapsulated in notions such as fairness, bias, and discrimination, asks

whether unequal treatment across groups can be justified. Justification here typically requires

that unequal treatment contributes to profit maximization. Only deviations from profit maxi-

mization are considered unjustified.

The second paradigm, encapsulated in causal inference, program evaluation, and social wel-

fare assessments, asks about the consequences of a particular decision procedure for the welfare

of those impacted, and in particular for the inequality of welfare, both across and within groups.4

3.1 Profits and fairness: Rationalizing unequal treatment

Consider a hiring function d. How can we test whether this hiring function maximizes profits?

As discussed above, if we can find a pair of values x, x0 for the feature vector X such that

m(x) > m(x0), d(x) < 1, and d(x0) > 0, then we can conclude that d is not profit maximizing.

Increasing d(x) and decreasing d(x0) would increase profits.

Write now X = (A,Z), where Z includes all features except for group membership A.

Suppose that x = (a, z) and x0 = (a0, z) for a0 6= a. If m(a, z) > m(a0, z), d(a, z) < 1, and

d(a0, z) > 0, then group a is treated worse than group a0 in a way that hurts profits.

If we make the further strong assumption that there are no additional components Z ob-

served by the employer, besides group membership, then this condition becomes m(a) > m(a0),

d(a) < 1, and d(a0) > 0. This observation provides a rationalization for the “hit rate test” for

discrimination of Knowles et al. (2001),5 and leads to the condition

E[M |D = 1, A = 1]� E[M |D = 1, A = 0] = 0

as a test of discrimination. We will meet this condition again in Section 4 below, under the

names predictive parity or balance for positive class.

Let us recapitulate the logic of this argument. We started from the decisionmaker’s objective

– profits, in our running example. We then derived a necessary condition for maximization of

profits. This condition required that we could not improve profits by hiring more from one

group and less from another group, conditional on other features Z observed by the employer.

4These two paradigms bear some imperfect resemblance to the concepts of direct and indirect discrimination
in EU and UK law, and the concepts of disparate treatment and disparate impact in US law; cf. Adams-
Prassl et al. (2023). Direct discrimination and disparate treatment are present, roughly speaking, when group
membership a↵ected treatment in an undue way, while indirect discrimination and disparate impact are present
when a system impacts groups di↵erentially. The latter is permitted, however, if there is a “business necessity.”
In this review I focus on normative questions and sidestep the issues of legal strategy discussed in Adams-Prassl
et al. (2023).

5Knowles et al. (2001) derive this condition in the context a more complicated equilibrium model, where M
is endogenous to d.
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If this condition is violated, then profits can be improved, and the decision function is called

unfair. This logic is at the heart of the definition of taste-based discrimination that was originally

introduced by Becker (1957), who equated competitive market outcomes to fairness by definition,

no matter how unequal these outcomes are between or within groups.

This same logic is reflected in other notions of fairness, as reviewed in Section 4 below.

Fairness in this sense is a formalization of the decisionmaker’s interests, and not a formalization

of the interests of disadvantaged groups. Those two might sometimes be aligned, but they are

not in general, as the two vignettes at the start of this paper illustrate. Instead, in general these

notions of fairness boil down to rationalizations of unequal treatment. They justify unequal

treatment D on the basis of unequal merit M , where merit corresponds to the contribution to

the decisionmaker’s objective.

It should be noted that these notions of fairness are also consistent with statistical discrim-

ination (Phelps, 1972; Aigner and Cain, 1977): If A is predictive of M , conditional on Z, then

it is profit maximizing to take A into account when making hiring decisions, and thus also fair.

Much recent work in information economics, learning theory, and mechanism design, as reviewed

by Onuchic (2022), builds on the notion of statistical discrimination in constructing potential

explanations of (racial) inequality. With the exception of biased beliefs, inequality based on

such informational mechanisms would not be considered “unfair,” in the sense considered here.

3.2 Causal e↵ects and welfare: The consequences of unequal treat-

ment

Let us now contrast the fairness paradigm with an alternative paradigm, which asks “What is

the impact of a treatment assignment algorithm on the distribution of welfare of those who are

subject to this algorithm?” Denote individual welfare by Y . Welfare Y is, in general, distinct

from the treatment D. Below, we briefly discuss di↵erent possible notions of welfare.

Causal e↵ects Following standard notation in causal inference (Imbens and Rubin, 2015),

consider the potential outcomes Y 0, Y 1. Here Y d, for d 2 {0, 1}, denotes the welfare that an

individual would experience if they were treated with D = d. Their realized welfare can then

be written as

Y = D · Y 1 + (1�D) · Y 0.

This equation presumes that outcomes are not a↵ected by the treatment of other individuals;

an assumption that I will maintain for simplicity.

Assume thatD is independent of potential outcomes givenX. This holds by construction ifX

includes all the information available to the employer or algorithm when assigning D. Under this

assumption of conditional independence, we can identify the distribution of potential outcomes6

6Identification given X fails if P (D = d|X) = 0, which happens for deterministic assignment algorithms,
where the “common support” condition is not satisfied.
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from

P (Y d|X) = P (Y |D = d,X).

Counterfactual distributions of welfare If the employer hires an individual characterized

by features X with probability d(X), then the conditional distribution of realized welfare Y is

a mixture of the two potential outcome distributions P (Y 1|X) and P (Y 0|X),

P (Y = y|X) = P (Y 1 = y|X) · d(X) + P (Y 0 = y|X) · (1� d(X)).

The overall distribution of welfare is then given by

P (Y = y) =
X

x

P (Y = y|X = x) · P (X = x)

=
X

x

h
P (Y |D = 1, X = x) · d(x) + P (Y |D = 0, X = x) · (1� d(x))

i
· P (X = x).

This expression is at the heart of the distributional decompositions that have been studied in

labor economics; see for instance the review in Firpo et al. (2011).

Social welfare We have thus derived (i) the counterfactual distribution of welfare, which

depends on the assignment algorithm d(·), and (ii) a way to identify this distribution, leveraging

the conditional independence that automatically holds for algorithmic decisionmaking.

In order to make normative statements about the relative desirability of di↵erent algorithms,

we need to aggregate the distribution of individual welfare into some notion of social welfare,

trading o↵ the welfare of di↵erent individuals. Such aggregation is at the heart of social choice

theory and theories of distributive justice in political philosophy, cf. Roemer (1998). The

following provides a brief summary; for a more detailed discussion along the same lines see Kasy

(2016) and Kasy (2023).

We evaluate social welfare based on the welfare of a set of individuals i = 1, . . . , n. This raises

the question Who is to be included in this set of individuals - whose lives matter? Everybody of

a certain citizenship, or everybody living in a certain territory? All living human beings? What

about future generations? What about animals?

Given the set of individuals, we next need to decide how to measure their welfare. The goal is

to assign a number Yi to each individual i, where Yi measures how well they are doing. A minimal

notion would only consider the formal legal rights enjoyed by individuals. A broader notion

might also take into account various resources that allow individuals to achieve their objectives,

such as education, income, and health. A comprehensive notion of opportunities might aim to

take into account all factors that influence individuals’ options in life, and evaluate the options

e↵ectively available to them. And we might finally consider the outcomes actually achieved

by individuals, evaluated either by some common criteria, or by their individual preferences.

Utilitarianism, the most common perspective in welfare economics, evaluates individual welfare
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by the outcomes actually achieved, as evaluated by individual preferences.

Given the set of individuals i, and given evaluations Yi of their welfare, we finally ask how

well society as a whole is doing. Formally, we consider a social welfare function,

F (Y1, . . . , Yn).

The function F determines how much we care about di↵erent individuals, i.e., how much weight

we assign to the welfare of i relative to the welfare of j. F encodes how much we care about

an additional dollar for a poor person versus a rich person, for a sick person versus a healthy

person. It might also incorporate the normative assumption that variables such as race, gender,

or parental status should not determine individual welfare.

One fairly general class of welfare functions rescales Y by some function v, and then averages

v(Y ) across individuals, so that

F (Y1, . . . , Yn) = E [v(Y )] ,

where the expectation is again an average across Y1, . . . , Yn. If v is concave, then this aggregation

encapsulates inequality aversion, by giving a higher weight to marginal increases of Yi for those

with a lower baseline value of Yi. Counterfactual social welfare E [v(Y )] for such an aggregation

is then given by

X

x

h
E [v(Y )|D = 1, X = x] · d(x) + E [v(Y )|D = 1, X = x] · (1� d(x))

i
· P (X = x).

It is also easily possible to form hybrid notions of welfare, which interpolate between the

approach just described and standard notions of fairness. While the former only considers the

welfare of those being treated, fairness only considers the welfare (profits) of the decision-maker.

In general, one might consider a weighted average of the two, which assigns some normative

weight to decision-maker profits.7

Practical implementation How would one conduct an evaluation of the distributional or

welfare impact of some algorithm in practice? Assume that social welfare is of the form

E [v(Y,X)]. Assume further that an analyst has at their disposition data where treatment

D was algorithmically assigned on the basis of X, so that conditional exogeneity is ensured.

Under these conditions, and assuming su�cient support, one might estimate the conditional

expectation E [v(Y,X)|D,X] using a suitable flexible parametric or nonparametric regression

method. For any counterfactual algorithm which assigns treatment with conditional probabil-

ity d̃(X), on can then estimate counterfactual welfare using the sample analog of the above

7I thank an anonymous reviewer for this suggestion.
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expression of social welfare,

X

Xi

h
bE [v(Y,X)|D = 1, X = Xi] · d̃(Xi) + bE [v(Y,X)|D = 1, X = Xi] · (1� d̃(Xi))

i
,

where bE denotes the flexible regression estimates of the corresponding conditional expectations.

For further detail on this and related estimation approaches, see Firpo et al. (2011, 2009).

4 A zoo of fairness definitions

Many di↵erent definitions of fairness have been proposed in the literature. The following provides

a quick overview; readers interested in a more complete list are referred to Pessach and Shmueli

(2020). The majority of these definitions formalize the following intuition, which corresponds to

the paradigm described in Section 3.1 (see also Bohren et al. 2022): Consider a decisionmaker,

such as an employer, who makes a hiring decision D. The employer would like to hire candidates

with a high contribution M to their profits, and not hire candidates with low M . This is

considered legitimate. Di↵erences in hiring probabilities across groups A are therefore justified

if they can be rationalized by di↵erences in productivity M . Di↵erences in hiring probabilities

that are not rationalizable by di↵erences in M , however, are not justified. This intuition can

be formalized in a number of ways, as the following list of criteria shows. In reviewing these

criteria from the algorithmic fairness literature, I also relate them to analogous measures of

discrimination from the economics literature.

Balance for the positive and negative class. These two criteria require that the distribu-

tion of M given D = 1, or given D = 0, does not vary across groups A. Balance for the positive

class, also known as predictive parity (Chouldechova, 2017), requires that

E[M |D = 1, A = 1]� E[M |D = 1, A = 0] = 0.

Balance for the negative class similarly requires that

E[M |D = 0, A = 1]� E[M |D = 0, A = 0] = 0.

Balance for the positive class is a version of the hit rate test for taste-based discrimination of

Knowles et al. (2001).8

Equality of true and false positive rates True positive rates and false positive rates

correspond to the notions of power and size in statistical testing, cf. Casella and Berger (2001).

8They compare the probability of finding illegal drugs M among cars searched by police (M = 1) on a highway,
across racial groups A. A higher probability of finding drugs in the cars of White drivers relative to Black drivers
is taken as evidence of discrimination against Black drivers.
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Equality of true and false positive rates is analogous to balance for the positive and negative

class, while switching the roles of D and M .

Assume that M is binary, M 2 {0, 1}. Equality of true positive rates, which has also been

called equality of opportunity (Hardt et al., 2016b), requires that

E[D|M = 1, A = 1]� E[D|M = 1, A = 0] = 0.

Equality of false positive rates similarly requires that

E[D|M = 0, A = 1]� E[D|M = 0, A = 0] = 0.

If both conditions are imposed, then this corresponds to the criterion of equalized odds.

Conditional statistical parity Equality of true and false positive rates requires that the

probability of treatment does not vary across groups, conditional on M . A closely related

criterion replaces M itself by a set of proxy variables X 0 for M . This is known as conditional

statistical parity,

E[D|A = 1, X 0 = x0]� E[D|A = 0, X 0 = x0] = 0.

The feature vector X 0, which might include only a subset of the variables available to the em-

ployer, here takes the role of measuring legitimate sources of inequality. Conditional statistical

parity corresponds to the Oaxaca-Blinder decompositions, which economists have been estimat-

ing for many decades, cf. Oaxaca (1973). Considerable controversy has surrounded the question

of which controls to include in X 0, that is, which variables are legitimate sources of inequality.

Conditional statistical parity is also closely related to the thin veil of ignorance of Dworkin

(1981a,b), and to the notion of equality of opportunity defended in Roemer (2009).

Causal notions of fairness All definitions that we considered thus far are purely statistical,

and do not refer to any causal counterfactuals. The causal analog of conditional statistical parity

would consider the causal e↵ect of A on D, holding constant X 0, and would require this causal

e↵ect to be zero (Kusner et al., 2017). Experimental manipulation of group membership, such

as race or gender, is typically not possible, so it is not clear whether this idea is well-defined

(Hu and Kohler-Hausmann, 2020). To put it succinctly, one might argue that “race” does not

cause anything, but racism does.

What can be done is to consider the causal e↵ect of manipulating perceived group member-

ship A on D, holding constant other observable attributes X 0. This is the idea that motivates

the large literature on audit studies, starting with Bertrand and Mullainathan (2004). In these

studies, job applications are submitted, where names (or other ancillary information) that indi-

cate group membership are experimentally manipulated. Arguably, this yields the causal analog

of statistical parity. Consider the potential outcome (structural function) notation D(a, x0) for

the counterfactual hiring decision for a job application of group a and with features x0 other
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than group membership. Using this notation, we can define the corresponding fairness criterion

as

E[D(1, X 0)|X 0 = x0]� E[D(0, X 0)|X 0 = x0] = 0.

Individual fairness. Yet another variation on the notions of equality of true and false positive

rates and of statistical parity is the notion of individual fairness (Dwork et al., 2012), which

dispenses with the idea of groups. While the former notions require that similar individuals

should be treated similarly, independent of group membership, individual fairness requires that

similar individuals should be treated similarly, whether or not they are members of di↵erent

groups. We can think of this as a requirement of horizontal equity. As such, individual fairness

does not impose any restrictions on the distribution of D across dissimilar individuals.

Formally, suppose that d(Xi, Xj) is a measure of distance (dissimilarity) between individuals

i and j. Then individual fairness requires that

E[D|X = xi]� E[D|X = xj ] ⇡ 0 for d(Xi, Xj) ⇡ 0.

Disparate impact and Demographic parity. We conclude with two measures of fairness

that are not based on the intuition of rationalizing unequal treatment in terms of profit max-

imization. These notions of fairness are instead based on the idea that the distribution of D

should be the same across groups A, without any additional conditioning variables such as M

or X 0 (Calders et al., 2009).

The first of these notions is disparate impact, which requires that

E[D|A = 1]

E[D|A = 0]
= 1.

The second of these notions is demographic parity, which imposes

E[D|A = 1]� E[D|A = 0] = 0.

These two requirements are of course the same, even if the corresponding measures of bias are

not. The notion of disparate impact (or adverse impact) plays an important role in the (US)

legal context (Vinik, 2023), where a value of the ratio defining disparate impact that is below

80% is often taken as an indicator of discrimination.

5 Profits, fairness, and statistical bias

In the preceding sections I have argued that most standard definitions of fairness encode deci-

sionmaker objectives, such as profits. These definitions require that inequalities in treatment

status D are justified by inequalities in M , where M is individual contribution to profits. This

is exactly what profit maximization requires.
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How does this argument square with the emphasis in the literature that (i) di↵erent defi-

nitions of fairness are, in general, mutually inconsistent, and that (ii) imposing fairness comes

at a cost for profit maximization? This section will provide some clarification. I will first dis-

cuss a simplified version of the argument in Kleinberg et al. (2016), who proved that mutual

fairness definitions are, in general, inconsistent. This is stated as Proposition 1 below. I will

then prove a simple result that demonstrates that (i) maximization of profits and minimization

of classification loss are (almost) equivalent, and (ii) if profits or classification loss are close to

optimal, then various definitions of fairness are almost satisfied. This is stated as Proposition 2

below. Expected classification loss is the probability that D is not equal to M . This is a natural

performance criterion if we think of d(X) as a predictor for M . The upshot of Proposition 2 is

that profit maximization implies fairness, confirming the main argument of the present review.

The apparent contradictions between di↵erent definitions of fairness vanish in the limit of profit

maximizing decisions. What continues to exist in this limit is the tension between profits and

fairness on the one hand, and social welfare on the other hand, as we show by relating the notion

of demographic parity to both profit maximization and to equality of welfare.

I will then discuss various reasons why profits might not be close to optimal, and why

correspondingly definitions of fairness might not be satisfied, including mismeasured outcomes,

selection bias, partial observability, and finite sample uncertainty. I will lastly discuss the various

conceptual slippages that can occur between statistical notions of bias and misclassification

errors, economic notions of profit, and normative notions of bias and fairness.

Notation for the case of binary M To facilitate our discussion, I will focus on the case

where M is binary, M 2 {0, 1}, throughout this section. I denote pmd = P (M = m,D = d)

and pamd = P (M = m,D = d|A = a). We can thus represent the joint distribution of M and D

given A = a as follows:

Table 1: Distribution of M and D given A = a

D
0 1

M
0 pa00 pa01
1 pa10 pa11

5.1 Apparent contradictions

In an influential article, Kleinberg et al. (2016) have shown that several definitions of fairness

are mutually incompatible, except in special cases. Similar results were obtained independently

by Chouldechova (2017). The following is a simplified version of the main result of Kleinberg

et al. (2016).
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Proposition 1. Suppose that both P (M |D,A) and P (D|M,A) do not depend on A. Suppose

further that pmd 6= 0 for at least 3 of the 4 possible values of (m, d). Then pamd = pmd for all

a,m, d.

In words, we can state Proposition 1 as follows:

• Suppose that D is not a deterministic function of M . This is the meaning of pmd 6= 0 for

at least 3 values. This holds whenever the employer cannot perfectly infer productivity

M from observables X.

• Suppose further that the base rate E[M |A] varies with A, that is, the probability that

M = 1 is not the same for all groups A. This condition implies that we cannot have

pamd = pmd for all a,m, d. This will, in general, be the case in the presence of pre-existing

inequality across groups.

• Then we cannot simultaneously satisfy (i) balance for the positive and negative class

(independence of P (M |D,A) of A), and (ii) equality of true positive and false positive

rates (independence of P (D|M,A) of A).

The proof of Proposition 1 is given in Appendix A. It is based on the following argument:

Balance for the positive and negative class pins down the ratio of the entries of Table 1 within

columns. Equality of false positive and false negative rates pins down the ratio of the entries of

Table 1 within rows. Having thus pinned down the ratio of all entries of Table 1, the fact that

probabilities sum to 1 pins down the values of pamd for all m, d, which implies pamd = pmd for all

a,m, d.

Interpretation One way to interpret this result is that there is a fundamental normative

tension between di↵erent conceptions of fairness, such as balance for the positive and negative

class, and equality of false positive and false negative rates. Such a tension requires us to make

judgement calls about their relative importance. An even stronger interpretation would be that

“fairness is impossible,” and we might as well give up. Such an interpretation echos earlier

– and, in my opinion, equally misguided – interpretations of Arrow’s impossibility theorem

(Arrow, 1951), which some have interpreted as implying that “democracy is impossible.”

Instead, Proposition 1 shows that balance for the positive and negative class, and equality

of false positive and negative rates, are imperfect approximations of profit maximization. We

next prove the following counterpart to this claim: The closer we are to an assignment of D

that maximizes profits, which means that the assignment aligns D with M , the closer we are to

satisfying all of these definitions of fairness.

In a nutshell, equality of false positive and of false negative rates, as well as balance for

the positive and negative class, require us to equate error rates across demographic groups.

Maximization of profits, and minimization of misclassification loss, require us to minimize these

error rates. If error rates are close to the theoretical minimum of 0 for all groups, they are also

close to being equal.
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Equivalence For the binary case, if the decisionmaker could observe M , they would choose

D = M as the profit maximizing allocation. We can ask how much lower profits are relative to

this hypothetical optimum. This di↵erence is called regret:

R = E[(M �D) · (M � w)] = p10 · (1� w) + p01 · w.

It is closely related to the misclassification probability,

P (M 6= D) = p10 + p01.

The following proposition implies that, if the regret R is small, then we are close to achieving

fairness in the sense of balance for the positive and negative class, as well as equality of false

positive and false negative rates.

Proposition 2. We can bound the criteria for balance for the positive and negative class, and

for equality of true and false positive rates, in terms of profit regret as follows:

|E[D|M = m,A = 1]� E[D|M = m,A = 0]|

 R
min(w, 1� w)

·
✓

1

P (A = 1,M = m)
+

1

P (A = 0,M = m)

◆
,

and

|E[M |D = d,A = 1]� E[M |D = d,A = 0]|

 R
min(w, 1� w)

·
✓

1

P (A = 1, D = d)
+

1

P (A = 0, D = d)

◆
.

The proof of Proposition 2 is again given in Appendix A.

Profit maximization, demographic parity, and the inequality of welfare Our review

of fairness definitions in Section 4 concluded with the definitions of disparate impact and demo-

graphic parity, which require that E[D|A = 1] = E[D|A = 0]. In contrast to the other definitions

that we reviewed, this requirement is an unconditional equality of treatment probabilities across

groups, rather than conditional equality given M , or given some proxies X 0 for M .

Unconditional and conditional equality are logically independent. To see this, consider the

following two scenarios.

1. Balance without demographic parity

First, assume that we are in the profit maximizing limit, where D = M , but there is

inequality between the groups A = 0, 1 in terms of M , E[M |A = 1] < E[M |A = 0].

This might be the consequence of any number of prior historical inequalities. In this

scenario, clearly E[D|M,A] = M , independently of A, and balance for the positive and
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negative class, as well as equality of false positive and false negative rates, are satisfied.

Demographic parity, however, is violated.

2. Demographic parity without balance

Second, assume now again that E[M |A = 1] < E[M |A = 0]. Assume that D = 1 whenever

M = 1. Assume that additionally D = 1 for a subset of individuals in the A = 1,M = 0

group, where P (D = 1,M = 0|A = 1) = E[M |A = 0]�E[M |A = 1]. Such a scenario might

for instance arise due to a�rmative action, compensating historical injustices that led to

inequalities in M . In this scenario, demographic parity holds, E[D|A = 1] = E[D|A = 0],

but conditional independence is violated, i.e., E[D|M = 0, A = 1] > E[D|M = 0, A = 0],

leading to inequality of false positives. The possibility that independence holds even if

conditional independence is violated is sometimes called Simpson’s paradox.

Demographic parity is in some sense intermediate between fairness notions that condition

on M , on the one hand, and true equality of welfare. Demographic parity is not the same

as equality of welfare because of (i) inequality within the demographic groups, and (ii) the

di↵erence between treatment and welfare; cf. the discussion in Kasy and Abebe (2021). To

see the latter, suppose for example that welfare Y is determined by the potential outcomes

Y d = d�A. Demographic parity, setting E[D|A = 1] = E[D|A = 0], would imply inequality of

welfare across groups, E[Y |A = 1] < E[Y |A = 0], in this example. Reversely, equality of welfare

E[Y |A = 1] = E[Y |A = 0], would imply E[D|A = 1] > E[D|A = 0], thus violating demographic

parity. Put di↵erently, treatment assignment that compensates historical inequalities which

impact welfare is not compatible with demographic parity or, typically, with fairness notions

that require equality of treatment conditional on M .

5.2 Possible sources of suboptimal profits and of bias

Proposition 2 shows that, if profits are close to their maximum, then fairness criteria are close

to being satisfied. There are, however, a number of reasons why profits might not be close to

their maximum, why fairness criteria might therefore be violated, and why there are apparent

contradictions between di↵erent notions of fairness. The following provides an overview of such

reasons.

Mismeasured outcomes One reason is mismeasurement of M . Often, the exact outcome of

interest, from the perspective of the decisionmaker, is hard or impossible to observe. Worker

productivity, as in our motivating example, is a case in point. When proxies are used instead

of M itself, this can lead to systematic distortions.

A number of examples have been documented in the literature. Healthcare providers might

use algorithms to target healthcare resources to those with the greatest health risks. Obermeyer

et al. (2019) document bias in one such algorithm, which assigns lower risk scores D to Black

patients, relative to White patients of the same health M . Bias occurs because the algorithm
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uses health costs as a proxy for health needs, where health costs are also driven by income

and insurance status. Another example is the use of recorded police encounters as a proxy for

criminality or recidivism. Any bias of the police will be reproduced by algorithms that are based

on predicted police encounters, cf. Knox et al. (2020).

Selection bias Another reason why profit maximization might not be achieved is selection

bias. Often, M is only observed when D = 1. As discussed in Section 3, treatment D is

exogenous conditional on the features X used for treatment assignment. If we have access to all

these features, and if M is observed whenever D = 1, then we can identify

m(X) = E[M |X] = E[M |X,D = 1],

at least for values of X such that d(X) > 0. The profit maximizing decision rule is then given

by d(X) = 1(m(X) > w).

Consider now the following situation, instead. Suppose that the designer of the algorithm

is using historical data, where decisions were made by humans, or by algorithms using a larger

set of predictive featues eX. Then, in general, conditional exogeneity of D does not hold, and

therefore E[M |X] 6= E[M |X,D = 1]. Such selection bias, if it is not taken into account, might

lead to violations both of profit maximization and of fairness criteria, cf. Arnold et al. (2022),

who also propose a quasi-experimental approach for overcoming selection bias.

Partial observability Selection bias can occur when there is incomplete observability by the

algorithm designer of the features which entered historical treatment assignment. A related

issue arises when there is incomplete observability by an auditor or researcher of the features

used by the algorithm under consideration.

To illustrate, consider the hit rate test for taste-based discrimination in Knowles et al. (2001).

Suppose that car searches on the highway are indeed determined by d⇤(X) = 1(E[M |X] > w),

where M indicates whether there are illegal drugs in the car. As discussed above, this implies

that, whenever d⇤(x) < 1 and d⇤(x0) > 0, then m(x) < m(x0). Suppose that x = (a, z), that

E[M |D = 1, A = 1]�E[M |D = 1, A = 0] > 0, E[D|A = 1] < 1, and E[D|A = 0] > 0. Does this

imply a violation of profit maximization? Not necessarily, as the following example illustrates.

Suppose that w = .5, Z 2 {0, 1}, E[Z|A] = E[M |A] = .5 (so that both M and Z are

independent of A), but E[M |Z = 1, A = 1] = 1, while E[M |Z = 1, A = 0] = 3/4. Then d(X) =

1(E[M |X] > w) = Z is profit maximizing, but E[M |D = 1, A = 1]�E[M |D = 1, A = 0] = 1/4.

The hit rate test thus indicates taste-based discrimination, that is, balance for the positive class

does not hold, even though D is chosen optimally by the decisionmaker.

Finite samples Yet another reason for deviations from profit maximization is the fact that

typically m needs to be estimated based on finite samples. This is where machine learning, or

more traditional regression methods, come into play.
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In particular, a prediction bm(x) of M given X = x is typically estimated based on a sample

of historical data (Xi,Mi). The expected squared prediction error E
⇥
(M � bm(x))2|X = x

⇤
can

be decomposed as

Var (M |X = x) + Var (bm(x)) + (E[bm(x)]� E[M |X = x])2.

Generally, both the second term (the variance of the prediction) and the third term (the squared

bias of the prediction) will be non-zero. At the heart of most supervised learning methods

are algorithms that trade o↵ these two components of prediction errors, to minimize overall

mispredictions. Both estimator variance and bias will be non-zero for finite training samples.

5.3 Statistical accuracy, profits, and fairness

We have encountered definitions from three di↵erent domains: Statistical (prediction and test-

ing), economic (profit maximization), and normative (fairness and discrimination). These do-

mains are related but distinct, and it is easy to slip from one to the other. On might for instance

slip from statistical notions of unbiasedness (correct predictions on average, conditional on pre-

dictive features) to normative notions of unbiasedness (no unjustified inequality in treatment

between groups). To conclude this section, let us briefly remind ourselves of the definitions of

these notions, and how they relate.

Statistical accuracy The goal in supervised machine learning (prediction, regression, clas-

sification) is to find a function d of X which minimizes the expected loss E[l(d(X),M)] for

predicting M . Typical loss functions are the misclassification loss l(d(X),M) = 1(d(X) 6= M),

and the squared error loss l(d(X),M) = (d(X) �M)2. For binary M and d(X) these two are

equivalent, and given by

E
⇥
(d(X)�M)2

⇤
= P (M 6= D) = p10 + p01.

More generally, without imposing binary predictions, we can decompose the mean squared pre-

diction error E
⇥
(d(X)�M)2

⇤
as

E
⇥
E
⇥
(d(X)�M)2|X

⇤⇤
= E

⇥
Var (M |X) + (d(X)� E[M |X])2

⇤
.

The variance Var (M |X) does not depend on d. The di↵erence d(X)�E[M |X] can be thought

of as a bias of the prediction, conditional on d and X.9 Optimal predictions thus minimize bias,

in this sense.

Closely related to these notions of prediction errors are (frequentist) notions of testing.

9If we take into account the randomness of d itself, which comes from the fact that it was trained on random
data, then E

⇥
(d(X)� E[M |X])2

⇤
can in turn be decomposed into variance and bias.
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Consider the null hypothesis that M = 0, for a particular individual, and interpret D as the

outcome of a statistical test. Then E[D|M = 0] = p01

p00+p01
is the false positive rate.

Analogously, E[D|M = 0, A = a] = pa
01

pa
00+pa

01
is the false positive rate in group a, that

is, the probability of wrong rejections of the null. This corresponds to the size of statistial

tests. Furthermore, E[D|M = 1, A = a] = pa
11

pa
10+pa

11
is the true positive rate for group a, which

corresponds to the power of statistical tests. Importantly, these notions of false positives and

false negatives are defined conditional on M , rather than averaging over M .

Profit maximization We have already discussed at length the profit objective, E[D·(M�w)].

Maximizing profit is equivalent to minimizing profit regret R = E[(M �D) · (M � w)], which

for binary M and D equals R = p10 · (1� w) + p01 · w. Profit regret is almost the same as the

misclassification loss P (M 6= D) = p10 + p01, up to the weighting by w and 1� w.

Minimizing misclassification loss p10 + p01 is equivalent to minimizing both false positive

rates p01

p00+p01
and false negative rates p10

p10+p11
, and equivalent to minimizing profit regret p10 ·

(1 � w) + p01 · w, as shown by Proposition 2 above. This, of course, hinges on predicting the

actual contribution M of individuals to profits, for the population of interest. Mismeasured M

or selection bias lead to reduced profits, even if in the data prediction error rates are small.

Fairness Equality of false positive and of false negative rates requires to equate the error rates

pam,1�m/P (M = m|A = a) across groups A, for m = 0, 1. Similarly, balance for the positive and

negative class requires to equate the error rates pa1�d,d/P (D = d|A = a) across groups A, for

d = 0, 1.

By contrast, profit maximization requires to minimize the error rates pa1�d,d. The theoretical

optimum for any of these rates is 0. If profits are close to optimal, then error rates are close to

0 within in each group, and therefore also close to being equal across groups. This is reflected

in the result of Proposition 2 above.

6 Conclusion

In this review, I have argued that leading definitions of (algorithmic) fairness encode the objec-

tive of profit maximization, rather than the welfare of disadvantaged groups. I have contrasted

such definitions of fairness with an alternative paradigm that emphasizes the causal impact

of algorithmic decisionmaking systems on the distribution of welfare, both across and within

groups.

Within this latter normative paradigm, we might still very much care about questions of

discrimination. Understanding the mechanisms that lead to inequality of welfare, including

racial inequality, is a pre-condition for being able to intervene on them, and to reduce the

inequality of welfare.

One possible mechanism might indeed be algorithmic bias, in the sense of systematically

distorted predictions that disadvantage certain groups. To what extent this mechanism is an
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important contributor to the inequality of welfare is an empirical question. Two points are

worth recalling here. First, a profit maximizing firm which is able to predict well will be close

to satisfying most standard notions of algorithmic fairness, as shown by Proposition 2. To the

extent that profit maximization and the ability to predict well are empirically plausible, we

might expect that algorithmic bias is not a central contributor to racial inequality.

Second, however, even if it turns out that algorithms are not systematically biased, that does

not mean that these algorithms do not create or amplify racial inequality, and decrease social

welfare. Predictive bias and the impact on inequality are two very di↵erent objects. In Kasy and

Abebe (2021), this is discussed in the context of a�rmative action or redistribution (which are

generally good for equality of welfare but bad for “fairness”), and improved predictive capacity

(which is generally good for fairness, but increases the inequality of treatment).

There are many mechanisms through which algorithms might create or amplify racial in-

equality. To list but some examples, this includes any form of “statistical discrimination,” the

many variations of learning-based inequality, multiple equilibria, self-enforcing norms, etc. that

the recent economic theory literature has discussed (Onuchic, 2022). This also includes notions

of merit M that might systematically disadvantage some groups, as a consequence of historic

disadvantage (Small and Pager, 2020), due to systematically distorted proxies (Knox et al.,

2020; Obermeyer et al., 2019), or because they are adjusted in an ad hoc manner (Uhlmann

and Cohen, 2005). This further includes recommender systems on social networks which use

existing network connections to make recommendations, thereby systematically privileging more

centrally located individuals, and increasing racial segregation of networks (Stoica et al., 2018,

2020). This finally includes algorithmic pricing mechanisms. Geographic mobility might for

example be lower for women and disadvantaged minorities (Manning and Petrongolo, 2017).

Algorithmic pricing mechanisms might learn implied di↵erences in price elasticities or wage

elasticities, and charge these groups higher prices, or o↵er lower wages.

There remains much theoretical and empirical work to be done to understand these manifold

mechanisms through which algorithms reproduce and amplify existing inequalities in society. In

order to get there, we need to stop asking whether unequal treatments are justifiable by profit

maximization, and start asking what the impact of automated decisions is on the distribution

of welfare.
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A Proofs

Proof of Proposition 1. Suppose that pmd 6= 0 for (m, d) 6= (1, 1) (the other cases follow anal-

ogously). Independence of P (M |D,A) and P (D|M,A) of A then implies the following four

eqalities:

pa10
pa00

=
p10
p00

,
pa11
pa01

=
p11
p01

,

pa01
pa00

=
p01
p00

,
pa11
pa10

=
p11
p10

.

The top two equalities correspond to balance for the positive and negative class (and to the

columns of Table 1); the bottom two correspond to equality of false positive and false negative

rates (and to the rows of Table 1).

Note that probabilities sum to 1, so that pa00 + pa10 + pa11 + pa01 = 1. We can substitute the

equalities into this sum to get

pa00 ·
✓
1 +

p10
p00

+
p11
p00

+
p01
p00

◆
= 1,

and thus, after multiplying this equation by p00, pa00 = p00. A similar argument applies to pa10,

pa00, and pa01.

Proof of Proposition 2. We first note that

R = p10 · (1� w) + p01 · w,

and thus

(p10 + p01) ·min(w, 1� w)  R  (p10 + p01) ·max(w, 1� w)

In words, regret is small if and only if the misclassification probability P (M 6= D) = p10 + p01

is small. Second, by the law of total probability,

P (M 6= D) =
X

m,a

P (M 6= D|A = a,M = m) · P (A = a,M = m),

and thus

P (M 6= D|A = a,M = m)  P (M 6= D)

P (A = a,M = m)
.

Third,

|E[D|M = m,A = 1]� E[D|M = m,A = 0]|

= |P (M 6= D|M = m,A = 1)� P (M 6= D|M = m,A = 0)|

P (M 6= D|M = m,A = 1) + P (M 6= D|M = m,A = 0).
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Putting these three observations together, we get

|E[D|M = m,A = 1]� E[D|M = m,A = 0]|

 R
min(w, 1� w)

·
✓

1

P (A = 1,M = m)
+

1

P (A = 0,M = m)

◆
.

The first claim follows. The second claim is proven analogously.
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