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ABSTRACT

IZA DP No. 16889 MARCH 2024

Emissions from Military Training: 
Evidence from Australia*

Environmental research related to military activities and warfare is sparse and fragmented 

by discipline. Although achieving military objectives will likely continue to trump any 

concerns related to the environment during active conflict, military training during 

peacetime has environmental consequences. This research aims to quantify how much 

pollution is emitted during regular military exercises which has implications for climate 

change. Focusing on major military training exercises conducted in Australia, we assess 

the impact of four international exercises held within a dedicated military training area on 

pollution levels. Leveraging high-frequency data, we employ a machine learning algorithm 

in conjunction with program evaluation techniques to estimate the effects of military 

training activities. Our main approach involves generating counterfactual predictions and 

utilizing a “prediction-error” framework to estimate treatment effects by comparing a 

treatment area to a control area. Our findings reveal that these exercises led to a notable 

increase in air pollution levels, potentially reaching up to 25% relative to mean levels during 

peak training hours.
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1 Introduction
Climate change and global warming are becoming increasingly important global issues.

According to climate scientists, time is running out for concrete action that can be undertaken
by countries around the world to reduce their carbon emissions and footprints. The 2015
Paris Agreement aims to limit global warming to below 2 degrees Celsius. Land reserved for
military use accounts for approximately 6% of Earth’s terrestrial surface and global defense
spending is approximately 2.5% of total world GDP (Zentelis and Lindenmayer, 2015). While
much recent attention in climate change forums has been placed on how we make things,
how food is grown and how power is generated, all industries around the world need to play
a part in reducing emissions, including the military.

Little is known how much pollution is generated during regular military exercises that
are conducted by many developed and developing countries. Despite the outsized role of
militaries, we know surprisingly little about their emissions.1 Furthermore, the reports of
the Intergovernmental Panel on Climate Change (IPCC), the UN’s scientific advisory body
on the issue, have barely mentioned the military sector. National security restrictions have
considerably limited access to data for military emissions, with very few nations reporting
such statistics, and many not compiling them at all. Under the 2015 Paris Agreement, rules
for reporting of military and conflict-related emissions need to be developed. Unfortunately,
the Russian invasion of Ukraine in February 2022, the Israel-Hamas war that started in
October 2023, and continuing political developments makes it likely that the issue of military
and conflict-related emissions will become worse rather than get better in the short term.

Conflict and war have been ever present aspects of human civilization. Through the
expansion and contraction of various empires over time, history has shown the importance
of having a strong military for defence and to act as a deterrence against possible invaders.
Numerous studies have also shown that the presence of security guarantees and international
peacekeeping troops correlate with longer peace duration (Rohner, 2024). For example,
Hultman et al. (2014) find that greater United Nations military troop strength significantly
reduced battlefield deaths during civil wars in Africa from 1992 to 2011.

Today, regular military training exercises are conducted on a daily basis around the world
(Svenningsen et al., 2019). As military activities are largely exempt from environmental
protection legislation in the interest of national security, environmental degradation as a
consequence of military activities largely remains a neglected subject. Due to challenges
associated with conducting research in areas with military activities (e.g., restricted access,

1https://theconversation.com/how-the-worlds-militaries-hide-their-huge-carbon-emissi
ons-171466.
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hazardous conditions), information pertaining to military impacts on the environment is
relatively scarce and is often studied years after military activities have ceased and with no
knowledge of baseline conditions (Lawrence et al., 2015).

Gould (2007) refers to militarization as “the single most ecologically destructive human
endeavor” as wars and conflicts not only traumatize people physically and psychologically but
also contaminate the environment by using chemicals, herbicides, and radiation. One reason
why military production and deployment zones have been allowed to become enormous
environmental and public health disasters is the secrecy with which such operations are
conducted.

Military training exercises and live-firing training during peacetime not only lead to local
ecological disruption, landscape alteration, vegetation destruction, soil and water contami-
nation, but also result in considerable emissions of pollutants that have adverse consequences
for the climate. Zentelis et al. (2017) conducted a desktop review of Australian and German
military training areas management documentation to determine whether they contained
management principles that recognized both military training and environmental values.
They found that there were no specific management principles for these values.

Air pollutants and greenhouse gases often come from the same sources. Although we do
not have measures of CO2 and methane in our analysis, given that these sources of pollutants
are also key contributors to climate warming, tackling air pollution from these sources will
also mitigate climate change.2 It was shown by Fishman et al. (1979) that the increase in
tropospheric ozone from air pollution is an important contributor to global warming.

Furthermore, air pollution was previously thought to be just an urban or a local problem.
But it is now understood that air pollution is transported across continents and ocean basins
due to fast long-range transport, resulting in trans-oceanic and trans-continental plumes of
atmospheric brown clouds. These atmospheric brown clouds in turn can give rise to regional
cooling and warming effects (Ramanathan and Feng, 2009).

By quantifying and highlighting the amount of pollution generated by military training
exercises on the environment, our research contributes to the discussion regarding the role
that all sectors in an economy need to play in order to help mitigate global warming.

In this study, we analyze the effects of major military exercises in Australia on emissions.
Our study is novel in being the first to focus on direct local emissions that are generated as
a result of intensive military exercises. With the precise locations and dates of the military

2According to the World Bank, air pollution and climate change are two sides of the same coin, but
they are typically addressed separately. They should be tackled jointly, with a focus on protecting peoples’
health – particularly in low- and middle-income countries – to strengthen human capital and reduce poverty.
See: https://www.worldbank.org/en/news/feature/2022/09/01/what-you-need-to-know-about-
climate-change-and-air-pollution.
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exercises known, using satellite data on pollutant emissions, our approach involves using
econometric approaches on high-frequency data to estimate toxic emissions generated by a
sudden period of intense military training activities. In particular, we adopt a machine learn-
ing (ML) algorithm and pair it with program evaluation tools to estimate treatment effects
of military training activities. Our work follows the approach outlined in Prest et al. (2023)
who show that nonexperimental treatment effects based on ML algorithms can replicate the
true treatment effects from a randomized experiment. Based on analyzing high-frequency
data on air pollution, we find that major military training exercises in 2015 and 2017 in
Australia resulted in elevated levels of air pollution.

The rest of the paper is outlined as follows. Section 2 reviews the literature on military
emissions and describes the four major military training exercises in Australia we focus on in
our empirical analysis. Section 3 describes the data used for the analysis. The econometric
approach we use to analyze our high-frequency data is explained in Section 4. Section 5
discusses the results and Section 6 concludes.

2 Background
The military is an important sector which is usually overlooked in discussions regarding

climate policy, even though military operations are a major polluter to the environment. For
example, the US Department of Defence is one of the world’s worst polluters and its footprint
dwarfs that of any corporation.3 While Michaelowa and Koch (2001) raised the issue of
military emissions more than two decades ago, policymakers have largely turned a blind eye
to this question. Greenhouse gas (GHG) emissions of the military in peacetime and wars
are highly relevant, especially as the world becomes ever more conflict-prone (Michaelowa
et al., 2022).

The lion’s share of direct emissions from the military is due to the consumption of liquid
fuel and the operation of combat aircraft. Residential emissions from military bases and
emissions of naval operations are also significant (Michaelowa et al., 2022; Belcher et al.,
2020). Absent any change in military fuel use policy, the fuel consumption of the military
forces will necessarily continue to generate high levels of greenhouse gases. Strikingly, despite
the military having added the national security implications of climate change to its long
list of national security concerns, the Pentagon does not acknowledge that its own fuel use
is a major contributor to climate change (Crawford, 2019).

Several estimates of GHG emissions have been made for the military sectors of developed

3See the 2014 Newsweek article by Alexander Nazaryan: https://www.newsweek.com/2014/07/25/us-
department-defence-one-worlds-biggest-polluters-259456.html.
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countries. Parkinson (2020) focuses on calculating GHG emissions from the UK military-
industrial sector, including the armed forces, arms industry and related employment. They
find that the UK-based GHG emissions of the sector in the financial year 2017–18 using
a production-based approach was greater than the carbon dioxide emissions of about 60
nations. Their figures do not include the GHG emissions related to impacts of weapons
use on the battlefield. They state that such emissions could potentially be large, but are
highly uncertain. Sparrevik and Utstøl (2020) apply an organizational perspective to assess
life cycle GHG emissions for the Norwegian defense sector. They find that the estimated
emissions suggest that the Norwegian defense sector is responsible for is 1.1% of the annual
GHGs emitted in the Norwegian economy in 2017.

Previous research has utilized aggregate country level data to document a link between
military spending and carbon dioxide emissions (Bildirici, 2017a,b,c; Bradford and Stoner,
2017) as well as military spending and economic growth (Bildirici, 2016, 2017a). The data on
aggregate territorial carbon dioxide emissions are obtained from sources such as the Global
Carbon Atlas and the World Bank’s statistics on CO2 emissions.4

There has also been research focusing on military metal pollution (Gębka et al., 2016;
Lach et al., 2018; Skalny et al., 2021). Military activity is associated with environmental
contamination involving heavy metals including chromium, copper, zinc, lead, and cadmium.
Specifically, significant accumulation of metals has been observed in areas of battle fields,
small-arm shooting ranges, artillery, mortar and rocket ranges, and grenade courts. Emission
of metals into the environment from military activity occurs from gunshot residues containing
high levels of metal-containing particles, as well as from use of artillery, grenades, and rockets
(Barker et al., 2021).

There is very limited research documenting the impacts of military training exercises. An
exception is Bobonis et al. (2020) who examine the effects of the end of bombing exercises
in Puerto Rico. They find that the sudden end of bombing practices is associated with a
56–79% decrease in the incidence of congenital anomalies of nearby populations.

To our knowledge, there has been no work done that attempts to measure directly the
impacts of military training on emissions.

2.1 Measuring Military Training Emissions
Air and particulate emissions are a growing concern in military activities. Although

the environmental impacts of military training in ranges and training areas on soil, biomass,
surface and groundwater contamination are generally well characterized at the military bases,

4See: http://www.globalcarbonatlas.org/en/CO2-emissions and https://data.worldbank.org
/indicator/EN.ATM.CO2E.PC.
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the air characterization from live firing of various weapons is not well understood and studied.
In fact, there are only a few studies in the literature on gas and particle emissions from live
firing of weapons (Diaz et al., 2012). Using an outdoor set-up to collect gases and particles
from live firing with a 105-mm Howitzer gun, Diaz et al. (2012) find that the main combustion
gases obtained after live firing are carbon monoxide, methane and ammonia.

With the development of remote sensing technology, satellite measurement is becoming
one of the most effective approaches for high spatio-temporal resolution monitoring of air
pollutants. Together with specific geographic knowledge of where military training is taking
place, it is possible to measure the direct emissions from operations of military forces from
the use of weapons and ammunition in training.

In this paper, we measure the impacts of major military training exercises undertaken
by the Australian Defence Force (ADF) in 2015 and 2017 in a military training area located
in Darwin, Australia.

2.2 Exercise Predator Walk 2015 (EPW2015)
The exercise is a three-week long training evolution held at the Mount Bundey Training

Area, Northern Territory, Australia from 20 May to 10 June 2015. Working alongside the
Australian Army were members of the US Marines to support the ground and aviation
combat elements. It brought together 1,800 armed force members from the Australian Army,
the US Marine Corps and a small number of soldiers from Malaysia.5

The US Marine Corps has been involved in the training as part of its Marine Rotation
Force Darwin, announced by former prime minister Julia Gillard and US president Barrack
Obama in 2011. One purpose of the bilateral training exercise is for the US Marines to
become familiar with and improve their knowledge of the Australians technical and tactical
procedures and standard operating procedures, which ultimately strengthens interoperabil-
ity.

2.3 Talisman Sabre 2015 (TS2015)
Talisman Sabre is an Australian-United States biennial military exercise designed to

improve readiness and enhance interoperability across the spectrum of conflict operations.
At the time it took place, TS2015 broke new ground for scale, complexity and the diversity of
participating forces. The exercise involved more than 30,000 personnel, 21 ships, 200 aircraft
and three submarines. The major US elements, unsurprisingly accounting for the lion’s share

5See: https://www.abc.net.au/news/2015-06-04/australian-army-and-us-marines-live-fire-
training-in-nt-bush/6520328.
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of combat power, were the Seventh Fleet’s George Washington carrier strike group and the
31𝑠𝑡 Marine Expeditionary Unit, both of which are based in Japan.

For the first time, the exercise also included personnel and equipment from Japan and
New Zealand. The embedding of Japanese and New Zealand contingents with the US Marines
and ADF respectively was the most noteworthy innovation to TS2015, lending the core
bilateral format a loose quadrilateral aspect.

Hosted in both the Northern Territory and Queensland in Australia, TS2015 activities
in the Northern Territory took place between 4 July and 19 July. The exercise was the sixth
in the series and had a greater footprint in Northern Australia than in previous years. Our
analysis focuses on activities at the Mount Bundey Training Area in the Northern Territory.6

2.4 Exercise Southern Jackaroo 2017 (ESJ2017)
Exercise Southern Jackaroo is the Australian Defence Force’s annual trilateral exercise

with elements from United States Pacific Command (US PACOM) and the Japanese Ground
Self Defence Force (JGSDF) held from 18 May to 2 June 2017.

The 2017 exercise was also hosted at the Mount Bundey Training Area by the Australian
1st Brigade. It also included elements from the 5th Battalion of the Royal Australian Reg-
iment, the Japanese Ground Self Defense Forces, and the U.S. Marine Rotational Force -
Darwin. Set in the Australian outback, the ad hoc battle group coalesced to engage a fic-
titious enemy invasion of northern Australia. As part of Exercise Southern Jackaroo, each
multinational partner participated in live-fire training exercises at the platoon and company
levels.

2.5 Talisman Sabre 2017 (TS2017)
The 2017 edition of Talisman Sabre involving military personnel from Australia and

the United States took place between late June and late July. Field training exercises
incorporating live firing exercises were held at Mount Bundey from 21 June to 7 July 2017.

The exercise was designed primarily to maximize collective training benefits within a
Combined Task Force setting, and to expose participants to a wide spectrum of military
capabilities and training experiences, including live fire opportunities. An important aim
of TS2017 was to improve training and interoperability between the Australian and US
Armed Forces at the operational and tactical level. The land and air activities undertaken

6See: https://thediplomat.com/2015/07/australia-and-us-conclude-major-military-
exercise-in-pacific-region/.
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at Mount Bundey Training Area included parachute drops, special operations, live firing,
close air support, and combat support.

In all 33,000 service personnel, 33 ships and 200 aircraft from Australia, the US, New
Zealand, Japan and Canada participated in TS2017.

One key difference between TS2017 and TS2015 is that the land component of the training
held in the Northern Territory (NT) was primarily held at the Mount Bundey Training Area
rather than Bradshaw Field Training Area. However, there was overall a reduced presence
of troops in the NT compared to TS2015.7

3 Data
The Mount Bundey Training Area is a large inland military training area located ap-

proximately 120km southeast of Darwin, Australia and spread over 117,300 hectares. The
Mount Bundey Training Area used by the Australian government’s Department of Defence
is designed to support training, including mechanized battle group sized field firing and ma-
noeuvre training and aerial bombing. It has field firing areas, high explosive impact areas,
training sectors and infrastructure to support management and operational use.

Prior to the property being acquired by the Commonwealth of Australia in 1988, it was
used for commercial grazing. The area was first used as a military training area in 1992.
Infrastructure at the site is limited, and includes a road network, maintenance areas, a range
control facility, a 200 person campsite and a number of support facilities, including purpose
built ranges.

We focus on three pollutants in our empirical analysis: carbon monoxide (CO), par-
ticulate matter (PM2.5), and sulfur dioxide (SO2). The air pollutant and meteorological
condition data we use for our analysis comes from the Modern-Era Retrospective analysis
for Research and Applications, Version 2 (MERRA-2).8 The data are available at the hourly
level and have a spatial resolution of 50 km x 62.5 km.

To determine the control area, we choose an area with the same latitude as the Mount
Bundey Training Area as this area is more likely to share the same meteorological conditions.

7See the Talisman Sabre 2017 Public Environment Report.
8The surface CO concentration data are from the collection M2T1NXCHM. The precipitation and wind

components (surface eastward wind and surface northward wind) data are from the collection M2T1NXFLX.
Other meteorological data (surface pressure, specific humidity, surface air temperature) come from the col-
lection M2I1NXLFO. As PM2.5 data is not readily available, we follow Buchard et al. (2016) and construct
PM2.5 as follows: PM2.5=[DUST2.5]+[SS2.5]+[BC]+1.4×[OC]+1.375×[SO4] where DUST2.5 is dust surface
mass concentration, SS2.5 is sea salt surface mass concentration, BC is black carbon surface mass concen-
tration, OC is organic carbon surface mass concentration, and SO4 is SO4 surface mass concentration. All
of these data come from the collection M2T1NXAER.
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In particular, latitude is regarded as the most important climatic control variable due to the
effect it has on the amount of solar radiation reaching the earth’s surface and the fact that
different latitudes receive different amounts of solar radiation.9 The chosen area is about
250 km away from the training area, so it is very unlikely to be affected by the training. In
addition, this area shares the same elevation as the Mount Bundey. The centroids of the
MERRA-2 cells identified for the Mount Bundey Training Area and the control area are
highlighted in yellow in Figure 1.

Table 1 provides summary statistics for the training area and control area, including
CO, PM2.5 and SO2 levels and various meteorological conditions.10 As can be seen from
the table, all meteorological conditions appear to be quite similar for both areas, suggesting
that the two areas are similar. On the other hand, for the outcomes of interest, average CO,
PM2.5, and SO2 levels over the sample period in the training area are higher compared to
the control area.

4 Empirical Strategy
High frequency data allows greater flexibility in modeling the relationships between out-

comes and treatment variables of interest. There is evidence that high-frequency data sets
can provide causal estimates that are more reliable than those derived from lower-frequency
data. Using data on hourly electricity consumption, Ghanem and Smith (2021) show that
aggregating from the hourly to the monthly level can increase coefficient estimates by up to
60%.

In economics, the use of high-frequency data is most readily observable in the energy
efficiency literature. The adoption of smart-meter technology increased the availability of
hourly data in recent years and these new data sets have allowed the literature to provide a
deeper understanding of the benefits of energy efficiency upgrades (Boomhower and Davis,
2020; Burlig et al., 2020; Novan and Smith, 2018).

High-frequency analysis is relevant in our context as our pollution data for the Mount

9It is also much more difficult to find a suitable control area to the north or south. The north of Mount
Bundey Training Area is close to the ocean where pollution levels are often lower because pollutants are
more likely to be carried away by ocean winds. As seen in Figure 1, there are also other military training
sites to the south of Mount Bundey Training Area, which will have their own sources of pollution.

10Our statistics for wind speed and wind direction are calculated from the available data on northward
wind (v wind component) and eastward wind (u wind component). In particular, wind speed is defined
as the square root of the sum of v-squared and u-squared. Wind direction can be calculated using the
trigonometric function: angle = arctan(v/u) as long as u is not equal to zero. Specifically, wind direction is
calculated as 180 + (180/pi)*arctan(v/u), measured relative to North (360 degrees). For more details, see:
https://disc.gsfc.nasa.gov/information/data-in-action?title=Derive%20Wind%20Speed%20and%2
0Direction%20With%20MERRA-2%20Wind%20Components.
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Bundey Training Area are available at the hourly level. Our main variables of interest are
hourly levels of CO, PM2.5, and SO2. One complication is that although the pollution data
are available at the hourly level, the training dates of the military exercises are provided in
terms of a range of dates. Furthermore, the exact times of the training that occurs during
each of the days during the military exercise are not publicly known.

Following insights from Ghanem and Smith (2021), we decided to conduct the analysis
at the hourly level as an attempt to exploit the benefits that the hourly data sets provide
in terms of accounting for response heterogeneity and other features of the high-frequency
outcome that low-frequency estimates are not able to capture.11 More specifically, over the
six-month period 1 April 2015 to 30 September 2015, we set a training dummy variable
equal to 1 if the observation is between 12:00 a.m. to 11:59 p.m. (i.e., the whole day) during
periods when training exercises took place, and zero otherwise.12 The two military exercises
we analyze which utilized the Mount Bundey Training Area in 2015 are EPW2015 (from 20
May to 10 June) and TS2015 (from 4 July to 19 July).13 In a similar fashion, when analyzing
the two military exercises which utilized the Mount Bundey Training Area in 2017 (ESJ2017
and TS2017), the training dummy variable is set to 1 if the observation is between 12:00
a.m. to 11:59 p.m. during the training period for ESJ2017 (18 May to 2 June) and TS2017
(21 June to 7 July), and takes a value of 0 otherwise.

An additional issue when it comes to the analysis is the complex and non-linear rela-
tionship between air pollution and meteorological conditions. A common practice in envi-
ronmental economics literature is to include high-order polynomials of the weather variables
to capture this relationship. However, as documented in the literature outside economics,
this relationship could be far more complicated. To address this issue, a number of studies
have suggested the use of ML approaches (e.g., random forest) to properly control for the
weather effects (Grange et al., 2018; Grange and Carslaw, 2019). In data-rich settings, ML
approaches can allow for more flexible functions that can capture complex interactions and
nonlinearities in covariates. In this way, researchers do not need to make any assumptions
about the relationship between air pollution and meteorological conditions.

11Another option is to aggregate the hourly pollution data and conduct the analysis of the effects of
military training on pollution at a daily level or weekly level. However, such an approach will not maximize
any gains from the high frequency data and can also result in biased estimated coefficients (Ghanem and
Smith, 2021).

12The raw data is recorded in the UTC timezone. For our analysis, we convert the time stamp to
GMT+9:30, which is the timezone in NT.

13It is possible that the Mount Bundey Training Area is utilized during other periods in the year for
ADF training which is not publicly announced, which will induce measurement error into our analysis as our
independent variable will not fully or accurately capture military training activities.
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4.1 Program Evaluation with ML
In this paper, a ML algorithm is paired with program evaluation tools to estimate treat-

ment effects. Such an approach is particularly valuable in settings where outcomes are
cyclical or seasonal and detailed, high-frequency data are available. Using high-frequency
hourly data in their analysis of energy efficiency, Burlig et al. (2020) find that their estimated
panel fixed effects model is sensitive to outliers and to specification. Moreover, choosing the
best set of control variables is challenging with so many possible candidate covariates.

Prest et al. (2023) show that nonexperimental treatment effects based on ML algorithms
can replicate the true treatment effects from a randomized experiment in the context of elec-
tricity demand. Accordingly, we generate treatment effect estimates using three approaches
following Prest et al. (2023). First, we apply standard two-way fixed effects (TWFE) regres-
sions to the observed outcome of interest that highlight differences in observed outcomes for
the treatment and control group.

Second, we use a random forest model to generate counterfactual predictions and use
a “prediction-error”framework to estimate treatment effects comparing a treatment area
to a control area. Here, we train our ML model using pretreatment hourly data, weather,
various calendar fixed effects, and interactions among these variables from the control area
(see Figure 1). Next, we make out-of-sample predictions for pollution levels during the
treatment period in both the treatment and control areas. We then compare these coun-
terfactuals to observed pollution levels in a fixed-effects regression framework. Put another
way, the predicted outcomes serve as counterfactuals. The intuition behind this approach is
if, conditional on fixed effects, the treated area exhibits higher pollution levels beyond what
would otherwise be predicted by a ML model —that is, a positive prediction error —and
that this positive prediction error is more pronounced during the treated time periods, then
this provides evidence for a positive treatment effect.

Third, we use only data on the treated area for our analysis. It was shown by Prest et al.
(2023) that it is possible to use ML approaches to recover experimental benchmark impacts
even without the use of a comparison group. In other words, in our context, estimation will
be based solely on using data on the treated area, with predicted pollution levels serving as
the counterfactual for the treatment area. An important caveat in following this approach
of Prest et al. (2023) in our context is that for the pre-treatment period in the treated area,
Mount Bundey will still have been used as a military training site by the Australian Defence
Forces. This implies that the counterfactual that is created using pre-treatment data from
the treated area is not ideal. Nevertheless, we apply this approach to see if any interesting
results emerge.
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4.2 Prediction Error Framework
We compare the predicted counterfactuals in the treated and control areas generated

using data from the control area as our main approach. In the first stage, we build the
random forest (RF) model using hourly-level data from eight areas surrounding the control
area (i.e., the centroid of eight neighboring areas, denoted in orange color in Figure 1).
The training data comprises of data that is from two years prior to each training event.
Specifically, for estimating the effects of military training in 2015, we use pretreatment data
over the period 2012 - 2014. For analyzing the impacts of military training in 2017, we use
pretreatment data over the period 2014 - 2016.

This “fake” control area is chosen as it is expected to be similar to the actual control
area in terms of pollution levels and meteorological conditions in the absence of military
training. This also helps to ensure that the counterfactual predictions are not improperly
derived using treatment period data. The algorithm splits the sample data into a training
set of 70 percent of the data and a test set of 30 percent of the data to test the model’s
performance.

The predictors used to train the RF model include the 12-hour lag of the concentration
for each pollutant of interest, and all meteorological variables (current and 24-h lag of wind
speed, wind direction, temperature, humidity, pressure, and precipitation). We also control
for seasonality using temporal variables (month, day of the week, and hour of the day and
weekend interactions) in our RF model. In the analysis without a comparison group, we use
the hourly-level data of the treated area over the period 2012 - 2014 (or 2014 - 2016) to build
the RF model.

For estimating the effects of training in 2015, once the RF model is built using data
from the “fake” control area from 2012 - 2014, the original temporal variables and weather
data of the treatment area and actual control area are used to predict the pollutant concen-
tration levels in these areas for 2015. We then generate a “prediction error” for each hour
reflecting the difference between observed pollution levels in 2015 and the counterfactual.
Prediction errors for the 2017 military training events are obtained in a similar fashion using
pretreatment data from 2014 - 2016.

RF models generally require little parameter tuning from users, but there are three
important parameters that one must decide on: the number of trees, the number of predictors
tried at each split, and the tree depth. Prest et al. (2023) find that using the default “off-
the-shelf” model options in ML software packages appear to work fine.

In our algorithm, we choose 500 trees as the model error remains stable around this
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number.14 In terms of the number of variables to be tested at each split, the default value
is one-third of the number of predictors in the model for RF regression. In our case, we use
a value of 5 in the main specification. The package randomForest in R does not allow users
to specify the depth of the tree directly. However, researchers could indirectly reduce tree
depth using one of the three options: using more data, reducing the minimum size of the
terminal nodes, and reducing the number of variables tried at each split. We use the default
minimum size of the terminal nodes of 5.

In the second stage, we use the prediction error (observed values minus RF predicted
values) as the dependent variable.̃PredError𝑖ℎ𝑑 = 𝛽0 + 𝛽1Trainingℎ𝑑 + 𝛽2Treated𝑖 + 𝛽3Trainingℎ𝑑 × Treated𝑖 + 𝜃𝑡 + 𝜖𝑖ℎ𝑑 (1)

where ̃PredError𝑖ℎ𝑑 is the prediction error from the first stage in area i at hour h of day d.
The term Treated𝑖 is an indicator taking a value of one if area i is in the training site and
zero otherwise. Trainingℎ𝑑 takes a value of one during the hours 12:00 a.m. to 11:59 p.m. of
the day if the day falls within the training period and zero otherwise (we later vary the hours
of the day where military training is most likely to have taken place). In the model, 𝛽3 is
the coefficient of interest. The term 𝜃𝑡 represents time fixed effects, including hour-of-sample
fixed effects. We bootstrap the standard errors using 500 repetitions in the second stage in
order to reflect the standard error from the first stage.

5 Results

5.1 Main Results
Figure 2 depicts the hourly variation in CO (top panel), PM2.5 (middle panel) and SO2

(bottom panel) in the treated and control areas during the military training days in 2015.
This graph helps to reveal the within-day fluctuations in CO, PM2.5 and SO2 levels and also
helps to indicate the hours in the day military training most likely occurred in the treatment
area (the exact timing of the military exercises during each day is not publicly available).
There is an indication that pollutant levels are higher after in the evening after 6 p.m. and
continue past midnight till early next morning. Similarly, the hourly variation in pollutants
for the treated and control areas for 2017 is shown in Figure 3.

The results of analyzing the effects of the two training exercises on CO in 2015 based on

14The number of trees in the model should stabilize the model error. Higher number of trees beyond this
value will have marginal benefit as there is no significant decrease in the model error and it consumes more
computing time.
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Equation (1) are provided in the top panel of Table 2.15 In column (1), the treatment effect
is estimated by comparing the difference in observed pollutant levels between the treated and
control areas. Alternatively, column (2) uses the prediction-error framework to estimate the
treatment effect. In both cases, the estimated treatment effects are statistically significant
and similar in magnitude. According to column (2), military training has led to an increase
in CO of 10.658 parts-per-billion volume (ppbv) relative to a mean of 99.3 ppbv, which
translates to an increase of approximately 10 percent.

In the middle and bottom panels of Table 2, the corresponding results of the effects
of military training in 2015 for PM2.5 and SO2 are presented, respectively. The results in
column (2) suggest that there are no significant effects on PM2.5. This is not implausible
as PM2.5 is not a main pollutant emitted from military weapons and live firing and might
only be present when certain weapons (e.g., tanks) are used. The result for SO2 is, however,
surprising as the point estimate is negative and statistically significant. This implies that
military training reduced the levels of SO2. When we investigate this result further, checking
to see if we obtain parallel trends for SO2 before the training occurs, we find that the reason
this strange result arises is likely because we are not able to obtain parallel trends, unlike
the case for CO and PM2.5 (see Figures A7 and A8 in the appendix).16

5.2 Results Using Treated Observations
The estimated treatment effects using only treatment group observations are provided

in columns (3) and (4) of Table 2. Specifically, column (3) compares pollutant levels during
the training periods in the treated area with pollutant levels during non-training periods
in the treated area. As discussed in Prest et al. (2023), such an estimate that is solely
based on differences between treatment periods and nontreatment periods for the treated
tends to perform poorly and in their study does not recover the experimental benchmark
results. In our case, the estimated effect is smaller than what is observed when using the
control group. In column (4), the RF approach is used only on the treated area to create
the counterfactual. This approach worked out well in Prest et al. (2023). Recall that we
had previously mentioned that in our context, the counterfactual that is created using pre-
treatment data from the treated area is not necessarily well-constructed as military training
almost surely occurred in the same location in previous years. Here, we find an estimated
treatment effect of 14.29 ppbv for CO which is slightly larger than what was estimated using

15The top panel of Figures A1 to A6 in the appendix depicts the actual and predicted values for the
treated and control areas, while the bottom panel presents the treatment-control differences using observed
data and predicted data.

16Despite trying many different specifications and tuning parameters for the ML model, this issue stub-
bornly persisted.
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a control group in columns (1) and (2).17

The corresponding results of the effects of military training in 2015 for PM2.5 are pre-
sented in the middle panel of Table 2. Although the positive significant effects of military
training on PM2.5 levels are small in absolute magnitude and are between 1 to 1.5 𝜇g/m3
(columns (1) and (4)), in a low pollution environment like the northern part of Australia,
they are similar in magnitude to the effects on CO when expressed in percentage terms. For
example, the effect in column (1) is 1.579/12.99 = 12.1 percent.

Finally, in the bottom panel of Table 2, estimates for SO2 are presented. The estimated
effect is now positive, but this instability of results between columns (2) and (3) is likely due
to our inability to obtain parallel trends for SO2.

Table 3 provides the estimated treatment effects of military training in 2017. While there
are again positive and significant effects using the approach involving ML and the use of a
control group, the magnitude of the effects relative to mean levels are slightly smaller as
compared to 2015 (9.8 percent for CO and 6.9 percent for PM2.5).
5.3 Results Using Different Training Hours

While the official training periods for the military training exercises are announced in
public media, it is not known when exactly during the day training activities are held.
Earlier, based on Figures 2 and 3, we had already indicated that there are times during the
day that the intensive military activities most likely took place. Therefore, in this section,
we re-estimate our models by defining Trainingℎ𝑑 to take a value of one during the hour 6:00
p.m. to 6:00 a.m. if the day falls within the training period and zero otherwise.

The results are shown in Table 4 and Table 5. As expected, the magnitudes of the
treatment effects increase considerably, for example, with the estimate for CO emissions
larger than 25 percent relative to their mean values in 2015.

5.4 Results Using Different Training Days
It is worth noting that the details on any preparatory activities before the official training

dates are not reported. For example, spikes in CO and PM2.5 can be seen in Appendix
Figures A1 and A2. This is likely due to Mount Bundey being used for some unreported
military training prior to the actual publicly announced training exercise. Any training
activities that occur outside the official training window that lead to higher pollution levels

17Note that we do not include hour-of-sample fixed effects here in the absence of a control group due to
its perfect collinearity with the treatment variables.
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will lead to an underestimate of the treatment effect in our model setup due to measurement
error in the treatment variable.

Unobserved factors are also likely to be at play affecting SO2 levels in non-training
periods, as reflected in Figures A7 and A8 in the appendix.

6 Conclusions
The military is a major source of air pollution, primarily due to its extensive use of fossil

fuels to operate military vehicles and military jets. However, this point is often overlooked in
discussions on air pollution. In addition, the emissions generated from live firing of various
military weapons is not well understood and studied. In this paper, we analyse the effects
of major joint military exercises held in an inland military training area in a remote part
of Australia on levels of air pollution. Involving thousands of soldiers, these exercises are
simulations of war activities and provide natural experiments where there are sudden bursts
of intense military activities at local sites.

We utilize high-frequency fixed effects models to estimate how intense military training
activities affect levels of CO, PM2.5, and SO2. Our causal estimates are based on making
comparisons with a control area that was not subject to the military training activities
located several hundred kilometers to the east and on the same latitude.

For the two training exercises examined in 2015, we find a positive and significant effect of
military training on levels of CO and PM2.5. For the two major training exercises examined
in 2017, our results are also positive but more muted. We were not able to obtain reliable
estimates on the effects on SO2 levels using our estimation strategy.

In conclusion, our research sheds light on an important but often overlooked aspect of en-
vironmental impact: the emissions generated by military training activities. By quantifying
the pollution released during these exercises, we contribute valuable insights to the broader
conversation on combating climate change. While our study addresses emissions from train-
ing exercises, the military’s environmental footprint extends beyond this and includes sub-
stantial emissions from various operational activities such as fuel consumption by vehicles,
tanks, jets, and warships. Moving forward, comprehensive assessments of military-related
emissions are essential for developing effective strategies to mitigate environmental degra-
dation and advance global sustainability goals. Accordingly, acknowledging and addressing
all sources of pollution, including those stemming from military operations, is essential.
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Figure 1: Training Sites in Northern Territory
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Figure 2: 2015 Training Day Average Pollution Level by Hour of Day
Notes. This plot shows average pollution level at each hour for the training
area and control area on the training days (i.e., 20 May - 10 June 2015 and 4
- 19 July 2015).
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Figure 3: 2017 Training Day Average Pollution Level by Hour of Day
Notes. This plot shows average pollution level at each hour for the training
area and control area on the training days (i.e., 18 May - 2 June 2017 and 21
June - 7 July 2017).
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Table 1: Summary Statistics

Treatment Area Control Area
VARIABLES N mean sd N mean sd

Predator Walk 2015 and Talisman Sabre 2015
CO (ppbv) 4,392 99.30 42.48 4,392 74.64 20.04
PM2.5 (𝜇g/m3) 4,392 12.99 6.676 4,392 11.64 5.404
SO2 (𝜇g/m3) 4,392 0.553 1.207 4,392 0.224 0.225
Humidity 4,392 0.00946 0.00390 4,392 0.0120 0.00314
Temperature (K) 4,392 299.6 4.659 4,392 297.5 3.891
Wind direction (degree) 4,392 238.2 136.0 4,392 299.5 90.59
Wind speed (m/s) 4,392 5.622 2.300 4,392 7.046 1.830
Precipitation (mm/day) 4,392 0.911 10.50 4,392 0.424 2.120
Pressure (Pa) 4,392 100,721 247.3 4,392 100,407 234.2

Southern Jackaroo 2017 and Talisman Sabre 2017
CO (ppbv) 4,392 88.67 28.35 4,392 68.05 12.48
PM2.5 (𝜇g/m3) 4,392 11.58 6.191 4,392 11.17 5.444
SO2 (𝜇g/m3) 4,392 0.367 0.526 4,392 0.154 0.123
Humidity 4,392 0.0107 0.00380 4,392 0.0135 0.00308
Temperature (K) 4,392 300.3 4.412 4,392 297.8 3.537
Wind direction (degree) 4,392 235.8 141.8 4,392 304.8 80.89
Wind speed (m/s) 4,392 5.831 2.237 4,392 6.894 1.733
Precipitation (mm/day) 4,392 0.926 8.526 4,392 1.544 8.150
Pressure (Pa) 4,392 100,599 230.3 4,392 100,298 208.3

Notes. Observations are at the hourly level and restricted to the period 1 April to 30 September.
Wind speed and wind direction are calculated using the northward wind and eastward wind com-
ponent.
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Table 2: Random Forest Prediction Error TWFE Regressions for Military Training in 2015

With Control Group Treatment Only
Actual Pred Error Actual Pred Error
(1) (2) (3) (4)

Panel A: CO
Training𝑑 x Treated𝑖 10.212*** 10.658*** 7.760*** 7.184***

(2.898) (3.337) (2.153) (2.210)
Observations 8,784 8,784 4,392 4,392
R-squared 0.666 0.538 0.185 0.066
Hour-of-Sample FE YES YES NO NO
Hour-of-Day FE NO NO YES YES
Day-of-Week FE NO NO YES YES

Panel B: PM2.5
Training𝑑 x Treated𝑖 1.579*** 0.334 0.492 1.083***

(0.394) (0.434) (0.332) (0.318)
Observations 8,784 8,784 4,392 4,392
R-squared 0.727 0.593 0.184 0.032
Hour-of-Sample FE YES YES NO NO
Hour-of-Day FE NO NO YES YES
Day-of-Week FE NO NO YES YES

Panel C: SO2
Training𝑑 x Treated𝑖 0.032 -0.162*** 0.133*** 0.019

(0.035) (0.037) (0.027) (0.022)
Observations 8,784 8,784 4,392 4,392
R-squared 0.640 0.507 0.321 0.017
Hour-of-Sample FE YES YES NO NO
Hour-of-Day FE NO NO YES YES
Day-of-Week FE NO NO YES YES

Notes. The variable “Training𝑑” takes value of one if the observation falls within training
period. Columns (1) and (2) are estimated using the control group. Columns (3) and (4)
are estimated using the treatment group only. For regressions using the treatment group,
the reported estimates are the coefficient of variable “Training𝑑” only, not interaction of
“Training𝑑” and “Treated𝑖.” In the “Actual” columns, the dependent variables is the
pollution concentration at the hourly level (CO or PM2.5 or SO2). All regressions under
these columns include the current and 24-h lag of weather variables (i.e., temperature,
humidity, pressure, precipitation, wind direction, and wind speed). In the “Pred Error”
columns, the dependent variables is the residual obtained from the first stage based on
the difference between the actual data and the prediction made by the RF model. In
column (2), the RF model is built from the data of eight neighboring area surrounding
the control area over the period of 2012 - 2014. In column (4), the RF model is built
from the data of the training site over the period of 2012 - 2014. Standard errors, in
parentheses, are bootstrapped 500 times. ***, **, and * Significance level at 1%, 5% and
10%.
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Table 3: Random Forest Prediction Error TWFE Regressions for Military Training in 2017

With Control Group Treatment Only
Actual Pred Error Actual Pred Error
(1) (2) (3) (4)

Panel A: CO
Training𝑑 x Treated𝑖 3.918** 8.680*** 3.081** -0.073

(1.571) (1.568) (1.234) (1.101)
Observations 8,784 8,784 4,392 4,392
R-squared 0.742 0.586 0.302 0.030
Hour-of-Sample FE YES YES NO NO
Hour-of-Day FE NO NO YES YES
Day-of-Week FE NO NO YES YES

Panel B: PM2.5
Training𝑑 x Treated𝑖 0.555* 0.796*** -0.606** 0.093

(0.292) (0.279) (0.268) (0.235)
Observations 8,784 8,784 4,392 4,392
R-squared 0.792 0.651 0.215 0.024
Hour-of-Sample FE YES YES NO NO
Hour-of-Day FE NO NO YES YES
Day-of-Week FE NO NO YES YES

Panel C: SO2
Training𝑑 x Treated𝑖 0.092** 0.069* 0.056** 0.096***

(0.039) (0.038) (0.023) (0.022)
Observations 8,784 8,784 4,392 4,392
R-squared 0.650 0.518 0.249 0.028
Hour-of-Sample FE YES YES NO NO
Hour-of-Day FE NO NO YES YES
Day-of-Week FE NO NO YES YES

Notes. The variable “Training𝑑” takes value of one if the observation falls within
training period. Columns (1) and (2) are estimated using the control group. Columns
(3) and (4) are estimated using the treatment group only. For regressions using the
treatment group, the reported estimates are the coefficient of variable “Training𝑑”
only, not interaction of “Training𝑑” and “Treated𝑖.” In the “Actual” columns, the
dependent variables is the pollution concentration at the hourly level (CO or PM2.5or
SO2). All regressions under these columns include the current and 24-h lag of weather
variables (i.e., temperature, humidity, pressure, precipitation, wind direction, and
wind speed). In the “Pred Error” columns, the dependent variables is the residual
obtained from the first stage based on the difference between the actual data and the
prediction made by the RF model. In column (2), the RF model is built from the
data of eight neighboring area surrounding the control area over the period of 2014 -
2016. In column (4), the RF model is built from the data of the training site over the
period of 2014 - 2016. Standard errors, in parentheses, are bootstrapped 500 times.
***, **, and * Significance level at 1%, 5% and 10%.
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Table 4: Random Forest Prediction Error TWFE Regressions for Military Training in 2015:
Restricting Definition of Training to 6 PM to 6 AM the Following Day

With Control Group Treatment Only
Actual Pred Error Actual Pred Error
(1) (2) (3) (4)

Panel A: CO
Training𝑑 x Treated𝑖 25.283*** 29.391*** 19.148*** 20.901***

(4.918) (5.345) (3.680) (3.817)
Observations 8,784 8,784 4,392 4,392
R-squared 0.674 0.553 0.196 0.085
Hour-of-Sample FE YES YES NO NO
Hour-of-Day FE NO NO YES YES
Day-of-Week FE NO NO YES YES

Panel B: PM2.5
Training𝑑 x Treated𝑖 2.991*** 0.952 1.924*** 2.929***

(0.660) (0.677) (0.510) (0.522)
Observations 8,784 8,784 4,392 4,392
R-squared 0.729 0.594 0.190 0.048
Hour-of-Sample FE YES YES NO NO
Hour-of-Day FE NO NO YES YES
Day-of-Week FE NO NO YES YES

Panel C: SO2
Training𝑑 x Treated𝑖 0.161*** -0.046 0.286*** 0.106***

(0.051) (0.046) (0.047) (0.033)
Observations 8,784 8,784 4,392 4,392
R-squared 0.641 0.506 0.324 0.018
Hour-of-Sample FE YES YES NO NO
Hour-of-Day FE NO NO YES YES
Day-of-Week FE NO NO YES YES

Notes. The variable “Training𝑑” takes value of one if the observation falls within training
period and within the range of midnight to 6 a.m. or 6 p.m. ’till midnight. Columns
(1) and (2) are estimated using the control group. Columns (3) and (4) are estimated
using the treatment group only. For regressions using the treatment group, the reported
estimates are the coefficient of variable “Training𝑑” only, not interaction of “Training𝑑”
and “Treated𝑖.” In the “Actual” columns, the dependent variables is the pollution concen-
tration at the hourly level (CO or PM2.5 or SO2). All regressions under these columns
include the current and 24-h lag of weather variables (i.e., temperature, humidity, pres-
sure, precipitation, wind direction, and wind speed). In the “Pred Error” columns, the
dependent variables is the residual obtained from the first stage based on the difference
between the actual data and the prediction made by the RF model. In column (2), the RF
model is built from the data of eight neighboring area surrounding the control area over
the period of 2012 - 2014. In column (4), the RF model is built from the data of the train-
ing site over the period of 2012 - 2014. Standard errors, in parentheses, are bootstrapped
500 times. ***, **, and * Significance level at 1%, 5% and 10%.
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Table 5: Random Forest Prediction Error TWFE Regressions for Military Training in 2017:
Restricting Definition of Training to 6 PM to 6 AM the Following Day

With Control Group Treatment Only
Actual Pred Error Actual Pred Error
(1) (2) (3) (4)

Panel A: CO
Training𝑑 x Treated𝑖 3.471* 10.642*** 3.234** -1.354

(1.896) (1.801) (1.507) (1.248)
Observations 8,784 8,784 4,392 4,392
R-squared 0.742 0.586 0.301 0.031
Hour-of-Sample FE YES YES NO NO
Hour-of-Day FE NO NO YES YES
Day-of-Week FE NO NO YES YES

Panel B: PM2.5
Training𝑑 x Treated𝑖 0.455 0.788** -0.586* -0.025

(0.357) (0.307) (0.349) (0.302)
Observations 8,784 8,784 4,392 4,392
R-squared 0.792 0.651 0.215 0.024
Hour-of-Sample FE YES YES NO NO
Hour-of-Day FE NO NO YES YES
Day-of-Week FE NO NO YES YES

Panel C: SO2
Training𝑑 x Treated𝑖 0.121** 0.106** 0.028 0.080***

(0.053) (0.052) (0.032) (0.030)
Observations 8,784 8,784 4,392 4,392
R-squared 0.650 0.519 0.247 0.024
Hour-of-Sample FE YES YES NO NO
Hour-of-Day FE NO NO YES YES
Day-of-Week FE NO NO YES YES

Notes. The variable “Training𝑑” takes value of one if the observation falls within training
period and within the range of midnight to 6 a.m. or 6 p.m. ’till midnight. Columns (1)
and (2) are estimated using the control group. Columns (3) and (4) are estimated using the
treatment group only. For regressions using the treatment group, the reported estimates are
the coefficient of variable “Training𝑑” only, not interaction of “Training𝑑” and “Treated𝑖.” In
the “Actual” columns, the dependent variables is the pollution concentration at the hourly
level (CO or PM2.5 or SO2). All regressions under these columns include the current and 24-h
lag of weather variables (i.e., temperature, humidity, pressure, precipitation, wind direction,
and wind speed). In the “Pred Error” columns, the dependent variables is the residual obtained
from the first stage based on the difference between the actual data and the prediction made
by the RF model. In column (2), the RF model is built from the data of eight neighboring
area surrounding the control area over the period of 2014 - 2016. In column (4), the RF model
is built from the data of the training site over the period of 2014 - 2016. Standard errors,
in parentheses, are bootstrapped 500 times. ***, **, and * Significance level at 1%, 5% and
10%.
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Figure A1: Actual and Predicted Levels of CO in 2015
Notes. These plots show the actual and RF-predicted concentration levels of
CO over the period of 1 April to 30 September 2015. The first two dashed
lines represent the Predator Walk Exercise (20 May to 10 June). The last two
dashed lines denote the Talisman Sabre 2015 (4 July to 19 July). The ticks on
the x-axis indicate 12 AM of the respective date.
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Figure A2: Actual and Predicted Levels of PM2.5 in 2015
Notes. These plots show the actual and RF-predicted concentration levels of
PM2.5 over the period of 1 April to 30 September 2015. The first two dashed
lines represent the Predator Walk Exercise (20 May to 10 June). The last two
dashed lines denote the Talisman Sabre 2015 (4 July to 19 July). The ticks on
the x-axis indicate 12 AM of the respective date.
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Figure A3: Actual and Predicted Levels of SO2 in 2015
Notes. These plots show the actual and RF-predicted concentration levels of
SO2 over the period of 1 April to 30 September 2015. The first two dashed
lines represent the Predator Walk Exercise (20 May to 10 June). The last two
dashed lines denote the Talisman Sabre 2015 (4 July to 19 July). The ticks on
the x-axis indicate 12 AM of the respective date.
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Figure A4: Actual and Predicted Levels of CO in 2017
Notes. These plots show the actual and RF-predicted concentration levels of
CO over the period of 1 April to 30 September 2017. The first two dashed lines
represent the Southern Jackaroo Exercise (18 May to 2 June). The last two
dashed lines denote the Talisman Sabre 2017 (21 June - 7 July). The ticks on
the x-axis indicate 12 AM of the respective date.

31



�

��

��

��

��

���
30

��
��/
HY
HO
��µ
J�
P

� �

��$SU����� ��-XQ����� ��$XJ����� ��2FW�����
+RXU�RI�6DPSOH

$FWXDO�7

3UHGLFWHG�7

�

��

��

��

��

���

30
��
��/
HY
HO
��µ
J�
P

� �

��$SU����� ��-XQ����� ��$XJ����� ��2FW�����
+RXU�RI�6DPSOH

$FWXDO�&

3UHGLFWHG�&

�

��

��

��

��

���

30
��
��/
HY
HO
��µ
J�
P

� �

��$SU����� ��-XQ����� ��$XJ����� ��2FW�����
+RXU�RI�6DPSOH

$FWXDO�7

$FWXDO�&

�

��

��

��

��

���

30
��
��/
HY
HO
��µ
J�
P

� �

��$SU����� ��-XQ����� ��$XJ����� ��2FW�����
+RXU�RI�6DPSOH

3UHGLFWHG�7

3UHGLFWHG�&

Figure A5: Actual and Predicted Levels of PM2.5 in 2017
Notes. These plots show the actual and RF-predicted concentration levels of
PM2.5 over the period of 1 April to 30 September 2017. The first two dashed
lines represent the Southern Jackaroo Exercise (18 May to 2 June). The last
two dashed lines denote the Talisman Sabre 2017 (21 June - 7 July). The ticks
on the x-axis indicate 12 AM of the respective date.
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Figure A6: Actual and Predicted Levels of SO2 in 2017
Notes. These plots show the actual and RF-predicted concentration levels of
SO2 over the period of 1 April to 30 September 2017. The first two dashed
lines represent the Southern Jackaroo Exercise (18 May to 2 June). The last
two dashed lines denote the Talisman Sabre 2017 (21 June - 7 July). The ticks
on the x-axis indicate 12 AM of the respective date.
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Figure A7: Prediction Error During Jan - Apr 2015
Notes. This plot shows the prediction error (difference between actual value
and RF-predicted value) over the period 1 Jan - 30 Apr 2015. The ticks on the
x-axis indicate 12 AM of the respective date.
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Figure A8: Prediction Error During Jan - Apr 2017
Notes. This plot shows the prediction error (difference between actual value
and RF-predicted value) over the period 1 Jan - 30 Apr 2017. The ticks on the
x-axis indicate 12 AM of the respective date.
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