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ABSTRACT
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Artificial Intelligence and the Discovery 
of New Ideas: Is an Economic Growth 
Explosion Imminent?
Theory predicts that global economic growth will stagnate and even come to an end due 

to slower and eventually negative growth in population. It has been claimed, however, that 

Artificial Intelligence (AI) may counter this and even cause an economic growth explosion. 

In this paper, we critically analyse this claim. We clarify how AI affects the ideas production 

function (IPF) and propose three models relating innovation, AI and population: AI as a 

research-augmenting technology; AI as researcher scale enhancing technology; and AI as a 

facilitator of innovation. We show, performing model simulations calibrated on USA data, 

that AI on its own may not be sufficient to accelerate the growth rate of ideas production 

indefinitely. Overall, our simulations suggests that an economic growth explosion would 

only be possible under very specific and perhaps unlikely combinations of parameter values. 

Hence we conclude that it is not imminent.
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1 Introduction

How long will the global economy still be able to grow? Theory predicts that global economic

growth will stagnate and even come to an end due to slower and eventually negative growth

in population, the “empty planet” e↵ect (Bricker and Ibbitson, 2020; Jones, 2022a,b). It

has been claimed, however, that Artificial Intelligence (AI) may counter this and even cause

explosive economic growth, that is, growth in Gross World Production (GWP) of 30% per

annum or more (Erdil and Besiroglu, 2023; Davidson, 2021; Trammell and Korinek, 2020).

Even though, at present, the measured impact of AI on economic and aggregate productiv-

ity growth is modest (Parteka and Kordalska, 2023; Naudé, 2021), the expectation is that

it is only a matter of time before AI has di↵used wide enough and improved su�ciently

to match or exceed the level of human intelligence (Mokyr, 2018; Brynjolfsson et al., 2017;

Erdil and Besiroglu, 2023). At this time “rapid growth in information technology and ar-

tificial intelligence will cross some boundary, after which economic growth will rise rapidly

as an ever-increasing pace of improvements cascade through the economy” (Nordhaus, 2021,

p.299). The development of Large Language Models (LLMs) has fuelled these expectations

(Naudé et al., 2024).

AI may accelerate economic growth by automating the production of goods and ideas. In

this paper, our interest is in the latter. This is because, fundamentally, economic growth is

driven by ideas, not objects (Romer, 2019). Moreover, from the point of view of explosive

growth from AI, this seems the only possibility if one rules out the appearance of an Artificial

General Intelligence (AGI), which still only exists in the realms of science fiction. Aghion

et al. (2019), for instance, has shown how, with automation in the production of goods,

even with “nearly complete automation” (p.274) Baumol’s cost disease can lead to balanced

growth with a constant capital share less than 100%. Gries and Naudé (2020) has shown

that with binding demand constraints, for instance, due to high inequality resulting from AI
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automation in the production function for goods, economic growth would stagnate.

Therefore, whether or not explosive economic growth is imminent will hinge on how AI a↵ects

the ideas production function (IPF). As such, the contribution of this paper is twofold. First,

we critically discuss the treatment of the IPF in the literature and highlight the centrality

of population in economic growth. We show that AI is generally incorporated as a tool that

enables higher e�ciency in the production of knowledge but with no law of motion associated

with it. Second, we address this lacuna and introduce three models that relate innovation, AI

and population: AI as a research-augmenting technology, AI as researcher scale enhancing

technology, and AI as a facilitator of innovation through a standing-on-shoulders e↵ect.

We find that AI on its own may not be su�cient to accelerate the growth rate of ideas

production indefinitely. Our simulations for the transitional dynamics when saddle-path

stability occurs also show that the possibility of explosive growth due to AI may occur only

in the very short-run in the case that AI idea-generation overshoots its long-run growth.

Overall, our simulations indicate that an economic growth explosion would occur only under

very particular and unlikely combinations of parameters, concluding that it is not imminent.

The paper is structured as follows. Section 2 discusses the relevant literature on the relation-

ship between economic growth and population. Then, section 3 outlines and introduces the

modelling of AI in innovation-driven growth. Sections 3.1, 3.2 and 3.3 contain the core con-

tributions of the paper. First, we present a simple model of AI as a researcher-augmenting

technology. This model can generate explosive growth or explosive de-growth only if the

population increases or decreases respectively. This model illustrates the necessity to ex-

plicitly model AI innovations in the IPF to evaluate claims about its impact on economic

growth.

In section 3.2, we describe a model of AI as a researcher scale enhancing technology. This

shows that economic growth can explode, collapse, or be constant (negative or positive) in
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the long run, depending on how hard or easy new ideas are to find. We also find that AI on

its own may not be su�cient to accelerate the growth rate of ideas production indefinitely.

In section 3.3, we model AI as a facilitator of the discovery of new innovations. We charac-

terize a long-run equilibrium that can be semi-endogenous (with either fishing-out of ideas

or positive spillovers existing) or fully endogenous (with or without scale e↵ects). Section 4

concludes.

2 Related Literature

In this section, we discuss the literature on ideas as the ultimate determinant of economic

growth; we outline the relationship between population growth and innovation on the one

hand and economic growth on the other. From this, we show that declining population

growth would lead to a decline in economic growth and that this decline could be faster if

accompanied by a decline in the productivity of innovation - the rate at which new ideas are

discovered. We provide an overview of empirical studies that have provided evidence that

both population growth declines and research productivity declines are limiting economic

growth in advanced countries. Then, we review the recent literature that has argued that

the slowdown in economic growth may be reversed by AI progress, even to the extent of

causing explosive growth.

2.1 The Ideas Production Function

The “secret sauce” of economic growth is ideas and not objects (Romer, 1993). As recognised

by McCloskey (2017), “Our riches did not come from piling brick upon brick, or bachelor’s

degree on bachelor’s degree, or bank balance on bank balance, but from piling idea on idea.”

An idea is “a design, a blueprint, or a set of instructions for starting with existing objects
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and transforming or using them in some way that generates either more output or more

utility” (Jones, 2019, p.865). The power of ideas is based on their being non-rival in use,

which means that they are infinitely usable, and their combinatorial nature1 which implies

that the world will never run out of ideas (Jones, 2019, 2022a,b; Koppl et al., 2019; Mokyr,

2007; Romer, 2019, 1990, 1993; Weitzman, 1998).

Where do “ideas” come from? An extensive literature dealing with so-called R&D models

of endogenous growth, has attempted to explain this using the ideas production function

(IPF) concept. The IPF specifies innovations, measured say by patents and trademarks, as

outputs from several inputs (e.g., R&D activities and expenditures) into the process that

generates new ideas (Ramani et al., 2008).

If we denote ideas by A, then the commonly used Cobb-Douglas specification of economic

output is Yt = AtKt
↵Lt

�, where GDP is denoted by Yt, capital by K and labour by L and

where where ↵ and � are the shares of capital and labour in final output (GDP). Following

Jones (2022b, p.127) a basic ideas production function (IPF) can be written as follows:

�At = (sLt)
�A�

t (1)

where At is the stock of ideas (knowledge); �At is the growth in new ideas; Lt is the

population and sLt with 0 < s < 1 the share of the population devoted to discover new ideas.

Ideas are generated by people (Lt) who provide R&D work. The larger the population the

more R&D work can be done. Moreover, in a larger population, there may be more “geniuses”

born who discovers path-breaking new ideas.

Hence, according to Kuznets (1960, p.328) “The greatest factor in growth of output per

1Koppl et al. (2019, p.1) presents a combinatorial model of technological change which suggests that
“the Industrial Revolution was a combinatorial explosion in an unchanging process of technological change
that began with the origin of our species.” With combinatorial growth, an industrial revolution is inevitable.
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capita is, of course, the increasing stock of tested, useful knowledge. The producers of this

stock are the scientists, inventors, engineers, managers, and explorers of various description

[...] Population growth [...] would, therefore, produce an absolutely larger number of ge-

niuses, talented men, and generally gifted contributors to new knowledge.” And as more

recently echoed by Jones (2022b, p.126) “new ideas are discovered through the hard work

and serendipity of people. Just as more autoworkers will produce more cars, more researchers

and innovators will produce more new ideas.”

In (1), the parameter � measures how much past ideas matter for new ideas. Formally,

it reflects the extent and nature of intertemporal knowledge spillovers (Abdih and Joutz,

2005). If � > 0 then the spillovers are positive, meaning past knowledge or ideas increases

the research productivity of future R&D workers. This has been called the “standing-on-

shoulders” e↵ect2 (Abdih and Joutz (2005); Neves and Sequeira (2018)). With � < 0 the

converse holds. Agrawal et al. (2023) presents a model wherein AI magnifies the standing-

on-shoulders e↵ect, acting as a “super” scientist, by predicting which innovations in a given

pipeline of innovations are more likely to be successful.

If � < 1 ideas are becoming “fished-out” and “harder to find.” In such a case, policies to

increase the number of researchers would be ine↵ective to raise economic growth - it would be

akin to having more fishermen to fish in a pond where there are no fish. While Romer (1990)

assumed � = 1, which allowed economic growth with a constant number of researchers, Jones

(1995) argued that this was inconsistent with the actual experience of the USA over the 20th

century, which saw a rise in the number of people in R&D but with growth remaining fairly

constant around 2%. He explained3 this by arguing that � < 1.

The parameter � measures the returns to R&D from the pool of researchers available. If

2For an interesting account of this e↵ect, see Kragh (2024)’s discussion of how “Einstein built on the
past to make his breakthroughs.”

3As Trammell and Korinek (2020) remarks, growth models can be classified as endogenous when the
assumption is that � = 1, and as semi-endogenous when it is assumed that � < 1.
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� > 1 researchers compliment each other (Trammell and Korinek, 2020). But if if � < 1 is

signifies diminishing returns, or what has been called the “stepping-on-toes” e↵ect (Sequeira

and Neves, 2020; Abdih and Joutz, 2005). It could for instance reflect duplication e↵ects

in R&D. With � < 1 the research productivity of research decline; hence increases in the

number of researchers will not lead to a proportional increase in new ideas.

Note that if � = 1 and � = 0 then new ideas grow proportional to the size of the population,

Lt.

2.2 Population and Economic Growth

The gist of equation (1) is that a positive relation exists between the growth of new ideas

and the growth rate of the population. � is a measure of the productivity of innovation, in

other words, the productivity of finding new ideas. The expectation is that � > 0, because

unlike typically objects in the production function, ideas are non-rival in use. As such, (1)

implies increasing returns to ideas: the more people, the more ideas there are, and the faster

the stock of ideas will grow (Davidson, 2021). For Galor and Weil (2000, p.807) this means

that “changes in the size of population can be taken as a direct measure of technological

improvement.”

If the total population remains constant, the economy will continue to grow at a constant rate

because the stock of new ideas generated by that population grows at constant rate (Kremer,

1993; Jones, 2022a). However, if the population growth should decline, or even worse, turn

negative, then economic growth will decline as well. This does not need to happen over

the short-to-medium term. Jones (2022b) points out that over the past 75 years population

growth explained only 0.3% of the average annual 2% growth that was achieved - the rest

being due to improvements in education, more e↵ective resource allocation and rising global

research intensity.
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These contingent factors however, are once-o↵ improvements and cannot be sustained in-

definitely. At some point as their contributions fades out, population growth becomes the

binding constraint on growth. Jones (2022b, p.140) calculates that “once these sources have

run their course, all that will remain is the 0.3 percentage point contribution from population

growth. In other words, a natural implication of this framework is that long-run growth will

be �n. With our estimate of � = 1/3 and n = 1%, the implication is that long-run growth

in living standards will be 0.3% per year rather than 2% per year - an enormous slowdown!”

Jones (2022a) furthermore show that when population growth turns negative, that the stock

of knowledge converges to some finite value, where “ living standards stagnate for a popu-

lation that vanishes” (Jones, 2022b, p.143). He calculates that with a 1% annual decline in

population, that world GDP growth would drop to zero somewhere between 85 to 250 years

(Jones, 2022a, p.9).

Thus, because economic growth depends on the population growth rate - and given the

fertility rates are not infinite but limited, it implies that economic growth is “capped” by

the population growth rate (Erdil and Besiroglu, 2023, p.23). Conversely, a larger population

would, by providing more labour to do R&D, generate higher rates of long-run growth. Eden

and Kuruc (2023, p.17) derives a growth model based on the above that illustrates that “a

future that stabilizes at a larger global population will be richer per capita than a world that

stabilizes at a smaller population.”

But is a larger population necessarily associated with faster long-run economic growth?

According to Jones (1995) empirical evidence from the USA and other OECD countries over

the 20th century was inconsistent with this expectation. While population, and the number

of labourers devoted to R&D grew in absolute size over this period, there was no acceleration

in economic growth. What explained this inconsistency is declines in research productivity

over this period, which moreover, was partly caused by rising population. Hence, to un-
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derstand the relationship between population and economic growth, and eventually grasp

how AI may (or not) lead to explosive economic growth, is is necessary to understand the

relationship between population and research productivity better. In the next sub-section

we explain how the literature has developed a more nuanced approach to the IPF than the

basic model in (2).

2.3 Research Productivity and Economic Growth

The IPF specifies not only a link between population and economic growth, but implies that

research productivity and the availability of useful ideas a↵ects economic growth, through

respectively � and �.

Economic growth would slow down, at any given level of population, if the productivity

of existing researchers would decline, i.e. if � would become smaller. Empirical evidence

in favour of declining research productivity (innovation e↵ectiveness) is provided by Ang

and Madsen (2015). Using an underlying Schumpeterian growth model, and drawing on

Young (1998) who noted the negative relationship between R&D e↵ectiveness and “product

proliferation e↵ects” as an economy increases in size, they (re) formulate the ideas production

as follows (p.82):

�At = s(
X

QB
)�A� (2)

Where 0 < s  1; �  1.

In (2) X denotes research (R&D) e↵ort, Q is population size, which is in this literature a

proxy for product variety, which reflects innovation - more innovation means greater product

variety (Madsen, 2008). � is the duplication (“stepping-on-toes”) parameter which = 0 if
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innovations are duplications, and = 1 if not; � is, as already explained, the returns to scale

in the stock knowledge and B is a parameter of product proliferation. The ratio X
Q reflects

the research intensity going into the search for new ideas new (Madsen, 2008, p.3).

The essence of (2) is that is shows that with constant R&D e↵ort and research productivity,

a continued increase in population (as e.g. measured by product variety) would lead to a

decline in the rate of new ideas generated. This is as Cowen (2010) explains, because all

the “low-hanging fruit” of knowledge has been “eaten.” This e↵ect is known as “fishing-out”

(Klüppel and Knott, 2023). Ang and Madsen (2015) took a logarithmic specification of (2)

and estimate it, using a dataset covering 26 countries between 1870 and 2010. Their estimates

for the crucial parameters of the ideas production function are � = 0, 98 and B = �0, 013.

These estimates are consistent with Schumpeterian endogenous growth models: � close to 1

suggests constant returns to scale to existing knowledge and B < 0 evidence that negative

e↵ects from population size are significant. Hence they conclude that “population-induced

expansions in R&D were neutralized by a proportional increase in product variety” (Ang

and Madsen, 2015, p.105).

Bloom et al. (2020, p.46) furthermore tested whether a “fishing-out” of ideas had taken place

in the USA, estimating � = �2.1 which is empirical evidence for fishing out and for ideas

getting harder to find. They concluded that this finding means that “just to sustain constant

growth in GDP per person, the U.S. must double the amount of research e↵ort searching for

new ideas every 18 years to o↵set the di�culty of finding new ideas.”

More recently Klüppel and Knott (2023) argued that Bloom et al. (2020) did not directly

test whether ideas have been fished out; they rectify this by constructing a direct measure of

research productivity - which entail that they test whether in expression (2) above, � � 1,

which would indicate positive intertemporal spillovers from ideas, meaning that “there is no

fishing-out, and growth from R&D continues in perpetuity.”
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They estimate � to be around 1.02 to 1.24, concluding from this that “We found no evidence

of fishing-out. Instead, we found increasing returns to the knowledge stock. This finding

resonates with real-world evidence of several important, yet fairly recent, general-purpose

innovations like the internet, GPS, and smartphones. We would not expect such important

innovations to be so recent if ideas are being fished out” (p.1).

However, they find (p.5) that � = �0.1 which means a “stepping-on-toes e↵ect” characterises

the R&D process by researchers. They conclude that “while we fail to find evidence of fishing

out, there is substantial evidence that aggregate research productivity has declined. What,

other than fishing out, might explain that?”

They speculate that the decline in aggregate research productivity in the USA, which seems

not to be because ideas are getting harder to find, are rather due to contingent factors, such

as imbalances between research versus development, with more and more research being done

and outsourced to universities and which results in “excess research;” and “deterioration”

of R&D practices on the firm level.4 The implication of their finding is that increases in

the population is not yet associated with fishing out and hence with � > 1 further ideas

production would increase economic growth. Moreover, if the pathologies in how R&D is

organised can be improved, and the “stepping-on-toes” e↵ect ameliorated, then the growth-

enhancing e↵ects of R&D on growth will be even more significant.

The upshot of the above is that the relationship between population and economic growth

is not a simple positive linear relationship. A more nuanced relationship can be described as

follows. As the population increases, so does knowledge and ideas. At first, this creates posi-

tive scale e↵ects, given that innovation through R&D is subject to fixed costs, and therefore,

the returns to R&D improves with a larger market. Over time, however, it becomes more

di�cult to create and use new valuable knowledge. It becomes more di�cult to innovate,

4The suspicion that R&D practices are deteriorating, leading to reduced research productivity, is consis-
tent with the findings of Arora et al. (2011) and Liu and Ma (2021, p.1), who found that “R&D misallocation
accounts for about 0.68 percentage points of missing annual growth since the 2000s”.
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not only may ideas getting fished-out, but researchers may be stepping on each others toes

metaphorically, and complexity brakes may slow down innovation (Naudé, 2022). In this

latter regard Sequeira et al. (2018, p.103) put it as follows:

“The di�culty of introducing new products and replacing old ones is proportional

to the market size [...] the larger the market size, the larger the costs necessary to

discover, develop and market the associated technology, e.g. costs pertaining to

the construction of prototypes and samples, new assembly lines and training of

workers, and generic coordination, organizational, marketing and transportation

costs.”

In sum, in this section so far we have shown that 1) population growth drives economic growth

through innovation (new ideas) and the productivity with which a population of given size

finds new ideas; 2) economic growth can stagnate if either population growth stagnate and/or

the productivity of R&D declines; 3) population growth does not have simple, monotonic

relationship with economic growth, after some level of population, product proliferation

e↵ects and “stepping-on-toes e↵ects” will result in declining R&D productivity.

The question is, is the future of economic growth bleak, or can AI overturn (or perhaps

reinforce) the importance of (1) and (2)?

2.4 How can AI help to Sustain and Even Accelerate Economic

Growth?

In light of the somewhat bleak prognosis in the previous sub-sections, the question is: can

AI lead to sustained or even explosive economic growth?

Several contributions have argued that it is possible, including Aghion et al. (2019), David-
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son (2021), Erdil and Besiroglu (2023), Jones (2022b), and Trammell and Korinek (2020).

According to Hanson (2024):

“[The] innovation rate is limited by population, and due to falling fertility, popu-

lation is going to peak soon, plausibly in about thirty years or so, and then decline

[. . . ] if we can make cheap-enough human-level AI before this fall gets too deep,

the world economy can continue to grow exponentially, and thus innovate well,

with machines replacing the disappearing humans.”

Automation may already have helped to sustain economic growth in the face of population

ageing, which had been widely expected to put a damper on economic growth. Acemoglu

and Restrepo (2017) presents evidence that since the 1990s there has not been a negative

relationship between population ageing and economic growth in advanced economies. They

ascribe this to the fact that the extent of automation has been faster in countries with older

populations.

Jones (2022b) explains how AI may make up for the decline in the generation of new ideas as

a result of population growth declines and sustain or even accelerate growth. This could be

through 1) the automation of the discovery of new ideas, and 2) through an AGI automating

all human labour in production - making labour accumulable (which is highly speculative,

as an AGI is still confined to science fiction, and the fears of AI doomsters).

2.4.1 Automating the Discovery of New Ideas

According to Jones (2022b) AI can automate5 the discovery of new ideas. He gives examples

of technologies that have in the past helped expand new ideas: “Microscopes, computers,

5Automation refers to “the process of introducing technologies to automatically execute a task previously
performed by a human or impossible to perform by a human” (van der Zande et al., 2020, p.33). Gries and
Naudé (2022) provides an economic model of AI as a complementing factor in the production functions for
goods and services.
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DNA sequencing machines, and the Internet itself are examples of automation that enhance

the production of ideas” (Jones, 2022b, p.146). Indeed, the ideas expanding potential of AI

has been hyped by attention-grabbing headlines, such as that “A Google AI has discovered

2.2m materials unknown to science”.6 Another example is in (bio) chemistry, where Deep-

Mind’s AlphaFold AI system has been used to predict the 3D structure of proteins (Jumper

et al., 2021). It has been called “the most important achievement in AI - ever” (Tunya-

suvunakool et al., 2021; McMahon, 2022). In energy, AI models have begun to “identify

potential molecules and materials for flow batteries, organic light-emitting diodes, organic

photovoltaic cells and carbon dioxide conversion catalysts” (De Luna et al., 2017, p.24).

And in astrophysics and cosmology, an AI system has used the information from a single

galaxy to infer the structure of the universe (Villaescusa-Navarro et al., 2022). Nordhaus

(2021, p.305) refers to this channel of AI-driven economic growth as the “superintelligent

technology mechanism.” For a broad review of the use of artificial intelligence in scientific

discovery, see Wang et al. (2023).

While these examples are impressive and suggests that AI holds great promise in invention,

it has been limited so far in that fundamental contributions to theory by an AI has remained

elusive. As He and Burtsev (2024, p.241) point out, if one applies the Birch test (“a math-

ematical analogue of the Turing Test”), “no AI has yet made such a discovery.” Thus, at

least with AI capabilities at the time of writing, the greatest potential in innovation may lie

in AI augmenting human researchers and inventors.

AI automation and augmentation of the innovation process is indeed widely seen as being

a potentially valuable tool to help firms innovate. According to Haefner et al. (2021, p.2)

“supporting the innovation process with AI could generate real value for firms by reducing

both the riskiness and the costliness of innovation processes.” They make the case that AI

can augment human decision-making in innovation in four areas, namely “(1) developing

6See The Economist, 29 November 2023
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ideas by overcoming information processing constraints; (2) generating ideas by overcoming

information processing constraints; (3) developing ideas by overcoming local search routines;

and (4) generating ideas by overcoming local search routines” (Haefner et al., 2021, p.3).

Antons and Breidbach (2018) and Verganti et al. (2020) discusses how AI and big data can

help firms perform more e↵ective service innovation and design innovation. According to

Verganti et al. (2020, p.212) “AI enables an organization to overcome many past limitations

of human-intensive design processes, by improving the scalability of the process, broadening

its scope across traditional boundaries, and enhancing its ability to learn and adapt on the

fly.” Bilgram and Laarmann (2023) use a Large Language Model (ChatGPT) to illustrate

how AI can assist firms in the early stages of innovation, in exploration, ideation and digital

prototyping. They conclude that “generative AI may be a game changer in early prototyping

as the delegation of tasks to an artificial agent can result in faster iterations and reduced

costs” (Bilgram and Laarmann, 2023, p.24).

Bouschery et al. (2023) ran an experiment wherein they compare the performance of teams in

using brainstorming to generate new ideas, finding that hybrid groups consisting of humans

augmented by generative AI (GPT-3), “outperformed nominal and interactive groups in

terms of both the total number of ideas generated and the number of creative ideas” (p. 4).

Generally, generative AI has the capacity to expand the problem and solution spaces where

researchers operate (Bouschery et al., 2023; Piller et al., 2023) which means that LLMs have

the ability to improve the amount of research questions that are posed regarding a specific

subject and also provide additional plausible answers that were not initially contemplated

by a research team that aims at optimizing a particular product feature.

To see the potential e↵ect of the automation of the discovery of new ideas on economic

growth, consider the ideas production function in 1 slightly modified to write the “standing

on shoulders” parameter � as � = 1 � (� � ↵), where � is a measure of the extent to

which research productivity is declining (ideas getting harder to find) and ↵ the extent of
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automation, which refers to the share of capital in (1) as automation is the “development

and adoption of new technologies that enable capital to be substituted for labor” (Acemoglu

and Restrepo, 2019, p.3):

�At = (sLt)
�A1�(��↵)

t (3)

Now, with a population growth rate denoted by n (as Lt = L0ent), the growth rate in new

ideas production (gA) is simply (Jones, 2022b, p.146):

gA =
n

� � ↵
(4)

Expression 4 implies that as ↵ increase, for any given population growth rate, the growth rate

in ideas (and hence economic growth) will increase. Explosive growth is possible, as when ↵

approaches � expression 4 will approach a mathematical singularity. Jones (2022b) points

out that if � = 0, 66 then “only” 66% of research tasks need to be automated for growth to

explode. The automation of research tasks by AI counters the declining productivity (�) of

research because “compared to humans, AI systems can act faster, absorb more knowledge,

and communicate at a far higher bandwidth” (Bengio et al., 2023, p.2).

Aghion et al. (2019) proposes a model with AI a↵ecting the ideas production function (IPF).

They use a CES-IPF following the task-approach, by splitting the ideas discovery process

into various tasks (Xit), of which some may be automated by AI (note that they omit �, the

potential “stepping-on-toes e↵ect”):

�At = A�
t (

Z ⇢

0

Xit)
1
⇢ (5)
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With ⇢ < 0. They show that, assuming a CES production function, that if � < 1 then

automation leaves “the long-run growth rate of the economy unchanged” and if � � 1

automation will increase the rate of long-run growth (Aghion et al., 2019, p.251).

Aghion et al. (2019, p.255) discusses two types of growth explosions due to automation :

a “Type I” growth explosion, which is when economic growth rates explode (i.e. growth

exceeds 30%) but remains finite; and “Type II” growth explosion, which is when the growth

rates becomes infinite. These results are subject to the implicit assumption that there is no

stepping on toes e↵ect.

2.4.2 Artificial General Intelligence and Accumulable Labor

In addition to the above where AI automate the discovery of new ideas, Jones (2022b) also

considers the possibility of a future Artificial General Intelligence (AGI) as a technology

that may sustain and even accelerate economic growth. In such a case, because it is an

AGI, it can substitute (automate) for all human labour in the production function, leaving

only capital. This channel of AI-driven growth is broadly consistent the “capital deepening

mechanism” discussed by Nordhaus (2021). In this case the production function would boil

down to Yt = AtKt with

�At = (Kt)A
�
t (6)

Which implies explosive growth as long as At is unlimited, which may well be the case given

that new ideas consists of combinations of existing ideas. This explosive growth is Type II

explosive growth, as it goes to infinity in finite time (Aghion et al., 2019).

What makes economy growth explode in the case of an AGI is that AGI makes labour, which

is currently non-accumulable, accumulable - like capital (Aghion et al., 2019). As Erdil and

Besiroglu (2023, p.17) put it “Labor is unique in that it’s an input that’s both a key driver
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of economic production and growth and cannot be increased by reinvestment of economic

output the same way physical, compute, energy etc. production can be. In other words, labor

is non-accumulable, while other factors of production that are of comparable importance to

labor are accumulable. If we also assume that the cost of producing or maintaining this stock

of accumulable labor inputs is not prohibitively expensive, almost all conventional growth

models will predict explosive growth in this situation.” This is not much di↵erent as looking

as human capital, an accumulable factor, as input in the IPF. In this case Boikos et al. (2023)

showed that an accumulable factor in the IPF could sustain positive economic growth (and

possibly innovation also), also in a declining population situation.

At the core of the expectation that AGI will unleash a flood of growth-enhancing new ideas

is the belief that AGI represents not just a tool for making existing business models more

e�cient and competitive, but an innovation in the method of innovation (IMI). It is seen as a

General Purpose Technology (GPT) that will alter the “playbook” of innovation (Cockburn

et al., 2019). Perhaps “the first ultraintelligent machine is the last invention that man need

ever make, provided that the machine is docile enough to tell us how to keep it under control”

(Good, 1965, p.33).

It need to be stressed that the possibility of explosive economic growth through AI that

turns labour accumulable, can only be entertained under the assumption of an AGI, and

not under the rather “narrow” AI that currently exist. Thus, it belongs to the realm of

science fiction. Opinions and beliefs as to the eventual likelihood and time of arrival of an

AGI widely di↵ers. For instance, Jones (2022b, p.147) considers the likelihood of an AGI

to be “quite far-fetched,” and Nordhaus (2021, p.300) conclude that a growth “Singularity”

from an AGI is “not near.” Others seems more optimistic, such as Erdil and Besiroglu (2023,

p.18) who believes that “AGI deployment this century seems plausible based on estimates

of how much resources would be needed for the creation of an AGI system and how much

we can expect e↵ective investment into AI to get scaled up by the end of this century.”
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2.4.3 Limitations and Constraints on AI in the Ideas Production Function

The aforegoing paragraphs discussed various ways in which AI could help to improve the e�-

ciency and e↵ectiveness of innovation, and hence raise the outputs from the ideas production

function. It has however, also to be recognised that AI may not only have positive impacts,

but possible could also burden or limit the discovery of new ideas. AI may accentuate a

“stepping-on-toes” in research. In this subsection we mention several mechanisms, without

attempting to be exhaustive.

One mechanism is through what Ribeiro et al. (2023) terms increasing “mundane knowledge

work” which are “practices of checking, sharing and standardising data; and preparing,

repairing and supervising laboratory robots.” By raising the mundane knowledge work in

R&D, they found from a study of bioscience researchers that the introduction of AI takes

up more of their time and do not simplify their R&D work processes.

Another way in which AI may limit the production of new ideas is through the winner-take

all e↵ects it creates, and the inequalities that it may generate, as a result of the network

e↵ects and demand economies of scale characterising the technology. In this regard Torre

et al. (2020, p.123) finds that the di↵usion and implementation of AI on a firm level for

innovation “varies greatly across organizations” and that this generates a “performance gap

between AI pioneers that appear to be pulling further away from organizations that are still

lagging behind.” And van Roy et al. (2020, p.33) concludes from studying a global set of

155,000 AI patents that there is a “very high concentration of AI intellectual property rights

to a few countries and organizations at a time when the technology is still in its emerging

phase.” Igna and Venturini (2023) also finds from analysing data on 20,192 firms that applied

for 219,835 patents in digital technologies, that firms who are leading in innovating in AI

tend to be those who have prior experience in ICT and that there seem to be strong learning

e↵ects, which would suggest winner-take-all e↵ects and best-vs-the rest dynamics in the use
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of cutting edge AI.

Yet a further way in which AI may limit the production of new ideas is through resulting in

unreliable, wrong and unverifiable research outputs (Krämer, 2023). Ball (2023) discusses in

this regard the danger that naive use of AI in research is threatening a reproducible crisis,

and refers to the problem of data leakage, where data used to train the AI is also present in

data used to test the AI, as being very frequent.

Finally, AI may produce new ideas that are dangerous, poses informational hazards, and

that may pose an existential risk (for example in facilitating the spread of the formulas for

making deadly new pathogens). Jones (2023) explores the risk-return trade-o↵s between an

AI that may promise high growth (e.g. 10%) but poses an existential risk (e.g. of 2%). He

concludes that although the form of the utility function and assumed rates of risk aversion

and the value of a life a↵ect the results, it can be shown that ”AI is too risky to make

even 10% growth worthwhile” and that “even singularities that deliver infinite consumption

immediately are not as valuable as one might have thought” in the presence of existential

risk.

3 Modelling AI in Innovation-Driven Growth

In the IPF literature reviewed in the previous sections, AI is generally incorporated as a

tool that enables higher e�ciency in the production of knowledge but with no law of motion

associated with it. In this section we contribute and explore how AI can augment the IPF and

raise R&D productivity by addressing this lacuna. We propose and discuss three alternative

models for the IPF incorporating AI in the research process as well as its implications in

terms of steady-state growth rates of technology and transitional dynamics. With these

models in mind, we are able to understand, for example, which configuration allows AI to
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generate steady and positive knowledge creation, or how reasonable is to expect explosive

economic growth from AI.

3.1 AI as researcher scale enhancing technology

Let us consider the traditional law of motion for new ideas à la Jones (1995):

ȦL

AL
= R�A�↵

L (7)

Lambda (�) regulates the returns to scale of researchers in the production of general knowl-

edge (AL). Since this parameter is strictly positive, we could have either decreasing (� < 1),

constant (� = 1), or increasing (� > 1) returns to scale to researchers. The parameter ↵

regulates how hard it is to find new ideas given the stock of knowledge that exists in the

economy.

AI may enhance the returns to scale of researchers by allowing them to do some sort of

parallel simulation of ideas, and increase the rate at which “dead ends” are excluded from

the pipeline. This is broadly similar to the prediction function which Agrawal et al. (2023)

models for AI in innovation. If we assume that AI are algorithms that are applied to a

particular database to be functional, we can establish a relationship between � and the

order of magnitude of AI output:

� =  ln(AIT ) (8)

Where  governs the strength of AI algorithms in facilitating the researchers’ productivity

in finding new ideas. Hence (7) can be reformulated as:

ȦL

AL
= e� lnRA�↵

L (9)
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and consequently,
ȦL

AL
= e ln(AAI) lnRA�↵

L (10)

Defining ȦL
AL

= gAL:

gAL = e ln(AAI) lnRA(L)
�↵ (11)

The rate of knowledge creation over time becomes clear by taking logarithms

ln gAL =  ln(AAIT ) lnR� ↵ lnAAL (12)

and its derivative with respect to time:

ġAL

gAL

=  [ln(AIT )
Ṙ

R
+ lnRġAIT ]� ↵gAL (13)

If all the parameters in (13) are positive, then with positive population growth the growth

in the knowledge stock approaches infinity in the limit. Keeping in mind that the terms

ln(AAIT ) and lnR are also growing, and assuming a normal exponential behavior for each of

those processes, results in:

ġAL

gAL

=  [(AIT )0 + gAIT t]gr + [R0 + grt]gAIT � ↵gAL (14)

On the other hand, if we assume a steady decline in population, where gr < 0, and a positive

and constant growth rate for AIT , we obtain the complete opposite result, where the growth

rate of innovation is collapsing - towards a negative infinity in the limit.

In the intermediate case (gr = 0), in which population is static, we can determine some

steady and finite value for gAL as a function of gAIT .
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In the case where we have a static population, the expression becomes:

ġAL

gAL

=  R0gAL � ↵gAIT (15)

In this case the model has a steady-state solution given by :

gAL =
↵gAIT

 R0
(16)

This expression indicates that a steady state for knowledge creation is possible whenever

there is a static population and the growth rate of traditional knowledge is a specific multiple

of the exogenous growth rate of AI knowledge production.

In sum the model presented in this sub-section, in which productivity of researchers are

a↵ected by AI by the elimination of “dead ends” in the innovation process, shows that AI

can at most determine how far the economy is from a growth explosion or stagnation. These

outcomes are only dependent on the growth rate of population (tied to the growth rate of

researchers gr) and a steady state is only possible when population is static and the growth

rate of traditional knowledge comes out to be a multiple of the exogenous growth rate of

AI knowledge. In that case, for each level of the growth rate of AI knowledge, we have a

steady-state growth rate for traditional knowledge.

By implying that growth outcomes hinges on the dynamics of AI knowledge, these results

suggest the the need to model AI innovations explicitly in the IPF.

3.2 AI as a Research-Augmenting Technology

We now introduce the possibility of having a system of IPFs in which one IPF governs the

evolution of AI (AIT ) and the other governs traditional knowledge creation which typically
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augments labour in the production of goods and services (AL).

The assumption is that both types of ideas are essential for economic growth. The laws of

motion describing how ideas are created in each of the IPFs (or research sectors) can be

stated as:

ȦL

AL
= (AITR1)

�A��
L (17)

ȦIT

AIT
= (ALR2)

�A�✓
IT (18)

In equations (17) and (18), the parameters � and � are related to the returns to scale of

researchers in the production ideas and capture “stepping-on-toes” e↵ects. At the same time,

the parameters � and ✓ are related to whether ideas are getting easier or harder to find, with

higher values related to more di�culty in finding new ideas, and R1 and R2 reflecting the

number of researchers in each industry.

Taking the logarithm of expressions (17) and (18):

ln

 
ȦL

AL

!
= �(lnAIT + lnR1)� � lnAL (19)

ln

 
ȦIT

AIT

!
= �(lnAL + lnR2)� ✓ lnAIT (20)

And di↵erentiating them with respect to time, we have:

ġAL

gAL

= �

 
gAIT +

Ṙ1

R1

!
� �gAL (21)
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ġAIT

gAIT

= �✓gAIT + �

 
gAL +

Ṙ2

R2

!
(22)

Now, with the system expressed in terms of the growth rate of ideas, we can solve the model

for the equilibrium flow of ideas produced in each industry. We do that by setting the former

expressions to zero and generating the associated null-spaces (isoclines):

gAL =
�

�

 
gAIT +

Ṙ1

R1

!
(23)

gAIT =
�

✓

 
gAL +

Ṙ2

R2

!
(24)

The isoclines for both gAIT and gAL form a linear system of equations. If they are linearly

independent, we are able to find only one equilibrium vector, the stead-state of the system:

g⇤AL
=

✓
1� �

�

�

✓

◆�1 �

�

"
�

✓

 
Ṙ2

R2

!
+

 
Ṙ1

R1

!#
(25)

g⇤AIT
=
�

✓

"
�

�

�

✓

✓
1� �

�

�

✓

◆�1

+ 1

# 
Ṙ2

R2

!
+
�

✓

�

�

✓
1� �

�

�

✓

◆�1
 
Ṙ1

R1

!
(26)

Now that we have an equilibrium solution, we can analyze the dynamics of the system. We

do that by analyzing the associated homogeneous system of di↵erential equations:

2

64
ġAL
gAL

ġAIT
gAIT

3

75 =

2

64
��g⇤AL

�g⇤AIT

�g⇤AL
�✓g⇤AIT

3

75

2

64
ln gAL � ln g⇤A

ln gAIT � ln g⇤AIT

3

75
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To understand the dynamics of this system, we first calculate the structure of the character-

istic equation that follows from the Jacobian matrix of the log-linearized system:

�������

2

64
��g⇤AL

� �e �g⇤AIT

�g⇤AL
�✓g⇤AIT

� �e

3

75

�������
= 0

�e =
�(�g⇤AL

+ ✓g⇤AIT
)±

q
(�g⇤AL

+ ✓g⇤AIT
)2 � 4(�✓g⇤AL

g⇤AIT
� ��g⇤AL

g⇤AIT
)

2

The system converges to a steady-state independently from initial conditions (a sink) when-

ever these the following conditions hold simultaneously:

1. (�g⇤AL
+ ✓g⇤AIT

)2 � 4(�✓g⇤AL
g⇤AIT

� ��g⇤AL
g⇤AIT

) > 0

2. (�g⇤AL
+ ✓g⇤AIT

) >
q

(�g⇤AL
+ ✓g⇤AIT

)2 � 4(�✓g⇤AL
g⇤AIT

� ��g⇤AL
g⇤AIT

)

These two conditions guarantee that the system has two negative eigenvalues.

The system converges to a steady-state only under the condition that it starts on a stable

arm (saddle-path stability) whenever the following conditions hold:

1. (�g⇤AL
+ ✓g⇤AIT

)2 � 4(�✓g⇤AL
g⇤AIT

� ��g⇤AL
g⇤AIT

) > 0

2. (�g⇤AL
+ ✓g⇤AIT

) <
q

(�g⇤AL
+ ✓g⇤AIT

)2 � 4(�✓g⇤AL
g⇤AIT

� ��g⇤AL
g⇤AIT

)

These two conditions make sure that we have one positive and one negative eigenvalue. For

this reason, the system only converges to the steady-state equilibrium if the initial condition,

i.e. a pair of growth rates for knowledge, is an element of the eigenspace related to the

negative eigenvalue. Whenever the initial condition is out of the eigenspace, i.e. outside

the stable arm, the system diverges as the positive eigenvalue dominates when time goes to

infinity.
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In all other cases, we have a source, which means that the system always diverges inde-

pendently from where it starts in the phase space. Another test that can be more readily

conducted to determine whether the system is saddle-path stable or not is to analyze the

sign of the determinant. If the determinant of the Jacobian matrix that characterizes the

system is positive, the system could be a sink or a source; if the determinant is negative, it

is always saddle-path stable.

In our context, this condition can be stated mathematically in the following way:

1. Sink or source

�

�
>
�

✓
=) �✓ > �� (27)

If this is the case, the characteristic equation has to be solved in order to determine the sign

of the eigenvalues. But, if this condition is met, the system will be a sink whenever both

� < 0 and ✓ < 0.

2. Saddle-path stability

�

�
<
�

✓
=) �✓ < �� (28)

Under these conditions we can now simulate the transitional dynamics and steady-state

equilibrium values for the growth rate of ideas production in each ideas creating sector for

what we consider interesting scenarios. In sub-section 3.2.1 below we calibrate based on

USA data.
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3.2.1 Calibration and quantitative results

The model developed so far is semi-endogenous in nature and, as we can see from equations

(25) and (26), the growth rates of knowledge in both sectors hinge on the growth rates of

researchers, which in the long-run has to converge to the population growth rate.

Scenario 1. We simulate an economy where traditional ideas are harder to find than new

algorithms (parameters � and ✓), taking the parameters values from Bloom et al. (2020) for

the US economy. For traditional ideas, we use the estimates for the economy as a whole

and for new algorithms the estimations regarding the semiconductor industry. The returns

to scale of researchers are assumed to be equal across knowledge producing industries and

below one and the population growth is positive (in line with the current trend).

Given the values:

� = 3.1, ✓ = 0.4, � = 0.8, � = 0.8,
Ṙ1

R1
= 0.01,

Ṙ2

R2
= 0.01

Checking the condition for the determinant of the Jacobian matrix:

�✓ > �� ) 3.1⇥ 0.4 > 0.8⇥ 0.8

It is possible to observe from the vector field that this parameterization generates a sink,

which means that no matter where we start in the phase space, the system always converges

to the steady-state equilibrium. In this case, the rate of knowledge creation in the traditional

sector is 1.6% p.a. and the rate of growth of new algorithms is 5.2% p.a.

In this scenario, we can see that the knowledge equilibrium growth rate in the AI industry

is higher than in the traditional sector. This is due to the fact that the stock of knowledge

does not impose as much of a drag in the creation of new ideas in the AI sector as it does in
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Figure 1: Scenario 1

Source: Authors’ compilation

the traditional sector.

Scenario 2. In this second scenario, we simulate an economy where traditional ideas are still

harder to find than new algorithms, the returns to scale of researchers in both knowledge

creating sectors are below one but population growth is negative:

Given the values:

� = 3.1, ✓ = 0.4, � = 0.8, � = 0.8,
Ṙ1

R1
= �0.01,

Ṙ2

R2
= �0.01

In this case, the vector field is exactly the same as before but the steady-state equilibrium

for the rate of knowledge creation in the traditional sector is -1.6% p.a. and the rate of

growth of new algorithms is -5.2% p.a., i.e. exactly the opposite of scenario 1.

From the illustrative results above we can conclude that population dynamics, even in the

presence of AI as a research-augmenting technology, continues to play a central role in

determining the sign and intensity of the growth rate of knowledge creation.
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Figure 2: Scenario 2

Source: Authors’ compilation

Scenario 3. In third scenario, we simulate an economy where traditional ideas are harder to

find and algorithm production benefits from the state of total algorithm knowledge, the re-

turns to scale of researchers in both knowledge creating sectors are below one but population

growth is negative:

Given the values:

� = 3.1, ✓ = �0.4, � = 0.8, � = 0.8,
Ṙ1

R1
= �0.01,

Ṙ2

R2
= �0.01

In this case, what the simulation and the analysis of the Jacobian matrix show is that we

have saddle-path stability with one negative and one positive eigenvalue.The convergence

of the system towards a steady-state value relies on it starting at the eigenspace associated

with the negative eigenvalue, i.e. a very particular situation that would only happen by

chance in the absence of a control variable. If the initial conditions of the system are out

of this stable-arm, then as time goes by, the system diverges from the long-run equilibrium,

meaning an explosive behavior even in the presence of negative population growth.
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Figure 3: Saddle-path stability

Source: Authors’ compilation

Scenario 4. In this fourth scenario, we simulate an economy where both traditional ideas and

algorithm production benefit from the stock of knowledge, i.e. there are positive spillover

e↵ects, so the parameters � and ✓ are negative. We start with the case where the returns

to scale of researchers in both knowledge creating sectors are still below one and population

growth is positive:

Given the values:

� = �1, ✓ = �2, � = 0.8, � = 0.8,
Ṙ1

R1
= 0.01,

Ṙ2

R2
= 0.01

The fact that the spillover e↵ect measured by the pair (-�,-✓) is now positive creates an

explosive dynamics for the growth rate of ideas creation in both sectors. The steady-state

is the same as in Scenario 1, but the because the system is now a source, it never converges

to equilibrium.
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Figure 4: Scenario 4

Source: Authors’ compilation

Scenario 5. In this fifth scenario, we simulate an economy where both traditional ideas and

algorithm production benefit from the stock of knowledge, but now we assume a negative

population growth rate

Given the values:

� = �1, ✓ = �2, � = 0.8, � = 0.8,
Ṙ1

R1
= �0.01,

Ṙ2

R2
= �0.01

Figure 5: Scenario 4

Source: Authors’ compilation

Even though the growth rate of population is negative, the explosive dynamics is the same
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as in Scenario 4.

The results obtained thus far shows that, for reasonable values for the parameters, population

dynamics is a fundamental element that determine the sign and partially the intensity of the

steady-state value for the growth rates of ideas production. In fact, the parameters � and

✓, which are related to the “standing-on-shoulders e↵ect” are key to determine the type of

dynamics the system will display.

Given that population dynamics is a central determinant of whether aggregate knowledge

increases or decreases whenever the model converges to a steady-state over time, it is impor-

tant to highlight how demography may develop in a context of automation. Almeida and

Sequeira (2023) show that the optimal fertility rate can either increase or decrease depend-

ing on how much the relative price of labor intensive versus capital intensive tasks increase

following an automation shock. If the increase in relative prices is substantial, a version

of Baumol’s cost disease argument, the households are discouraged to have additional chil-

dren which may lead to a declining population in the future. Costanzo (2022) develops a

model that links automation and fertility and concludes that further automation postpones

decisions of having children.

If we join the prospects of fertility dynamics (i.e. population growth) in a context where ideas

are getting harder to find, the result is a steady-state equilibrium where the growth rate of

ideas is negative. The only parameters that, in the presence of negative population growth,

could avert a decline in the production of ideas are the elasticities of knowledge production

with respect to the stock of ideas. We have seen from the model, that both parameters �

and ✓ govern the dynamics of the system, meaning that AI would only counterbalance a

population decrease by making ideas easier to find, which is the case of scenarios 3 and 4,

where at least one of the elasticities of knowledge production with respect to the stock of

ideas is positive.
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Next we use the estimates provided by Bloom et al. (2020) to calibrate for the elasticity of

knowledge production with respect to the stock of ideas and the projection for population

growth rates made by the U.S. Census until the end of this century. We use the steady-state

equations 25 and 26 to calculate the equilibrium growth rates of both traditional knowledge

and AI algorithms.

Figure 6: Long-run knowledge growth rates for the U.S. economy in the steady-state

Source: Authors’ compilation. Parameters: �=3.1; ✓=0.4;�=�=0.8.

The growth trajectories of AI and traditional knowledge in Figure 6 show progressive de-

celeration as the projected population growth rate for the U.S. declines from 0.5% to -1.0%

over the course of the century. From the point of view of AI knowledge, the growth rate

would be expected to decline from close to 3.0% p.a. to -0.5%, while in the case of traditional

knowledge, the growth rate would be expected to fall from 0.8% to something close to -0.1%

over the course of the same period.

The estimations above (Figure 6) use the long-run equilibrium conditions of the model to

provide values for the growth rates of knowledge in each period. But being those long-run

estimates, we are not taking into consideration the transition path to those equilibrium

values. Below, using the same values for the parameters, we calculate the growth rates

of knowledge creation using the transition equations (17) and (18) instead of the long-run

equilibrium conditions. We use as an initial condition for the ratio of the stock of knowledge
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in the traditional sector to the AI sector of 32.1/0.81, which values are from Igna and

Venturini (2023).

Figure 7: Transition knowledge growth rates for the U.S. economy

Source: Authors’ compilation. Parameters: �=3.1; ✓=0.4;�=�=0.8.

What we observe is that, after a period of rapid expansion from their respective initial

condition (much stronger for AI when compared to traditional technology sector), both

knowledge growth rates decelerate. By the end of the period, knowledge growth rate for the

traditional sector is expected to reach 2.6% and for the AI sector 9.0%.

We also conduct these simulations using a di↵erent set of parameters to describe the “stepping-

on-toes” and “standing-on-shoulders” e↵ects from Neves and Sequeira (2018) and Igna and

Venturini (2023) instead of those in Bloom et al. (2020). Again we use equations (25) and

(26) to calculate the steady-state growth rates of knowledge production in each sector as the

population growth rates estimates from the U.S. Census changes.

With the new set of parameters, we observe that the general pattern is maintained for the

long-run equilibrium, with knowledge growth rates decreasing in both sectors as population

growth declines. In the AI sector, growth rates fall from 0.8% in the beginning of the time

horizon to -0.2%, while in the traditional industry, knowledge growth rate decreases from
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Figure 8: Long-run knowledge growth rates for the U.S. economy in the steady-state

Source: Authors’ compilation. Parameters: �=0.2; ✓=0.14;�=�=0.1.

0.7% to -0.1% at the end of the century.

As before, we can use the transition equations (17) and (18) with the new set of parameters

to calculate the growth rates of knowledge for each sector while outside the steady-state.

Figure 9 shows the time-path for the two states, AIT and traditional knowledge AL, as well

as growth rates.

Figure 9: Transition knowledge growth rates for the U.S. economy

Source: Authors’ compilation. Parameters: �=0.2; ✓=0.14;=�=0.1.
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The upshot from the above simulations with di↵erent parameters and dynamic equations is

that AI alone may not be su�cient to accelerate the growth rate of ideas production indef-

initely. In all reasonable variations of the model, we observe that the growth rate of ideas

follows closely the population dynamics in the long-run, even though there is an overshoot

in the short-run. Both Figures 7 and 9 depicts explosive growth in AI technology, which

then rapidly declines. When there are fishing-out e↵ects in the traditional ideas production

function and positive spillovers in the AI ideas production function (as in Figure 7) the

overshooting is substantial, but of short duration - around 10 years. When there are positive

spillovers in both ideas production functions (as in Figure 9) the overshooting is smaller, but

of longer duration. The simulations indicate that the standing-on-the-shoulders e↵ect in the

traditional IPF has a crucial role in the transitional dynamics.

3.3 AI used to improve the use of previous knowledge

In this sub-section we propose an ideas production function in which general technologies

benefit more from past research, the higher the relative artificial intelligence stock available.

This relies on the idea that AI technologies help to combine, summarize and organize previous

existing knowledge that can be used and combined to generate new ideas. For instance

Agrawal et al. (2018) and Agrawal et al. (2023) argues that AI improves the possibilities of

combinations of previous technologies that enhance the productivity of innovations. They

argue that AI dramatically improves prediction accuracy about which combinations have the

highest potential.

We adapt their idea and propose the following IPF:

ȦL

AL
= �(R1)

�A
ln(c+

AIT
AL

)�1

L (29)
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ȦIT

AIT
= !(R2)

�A�✓
IT (30)

where � and ! are productivity parameters and variables. Note that the exponent ln(c +

AIT
AL

)� 1 in equation (29) means that the standing-on-shoulders e↵ect depends positively on

the ratio between the AI stock and the general technology stock. Intuitively this means that

AI facilitates the use of previous technology knowledge in finding new ideas of the general

type. Theoretically the implication is that as AI technologies accumulate we will encounter

first the fishing-out of ideas; pass through a semi-endogenous stage characterised by positive

spillovers; and eventually end up in a fully endogenous setting in the general technology IPF

with possible scale e↵ects.7

It cannot be concluded a priori which regime will dominate in the steady-state as this

depend on the particular value of the (AIT
AL

) and of the arbitrary constant c. However, as

in the steady-state, both growth rates should equalize, the stationary variable is the above

mentioned ratio (AIT
AL

).

In what follows we will characterize the steady-state and its features. As we did previously

we will also perform simulations using USA data.

In order to draw the phase diagram we define F (( AL
AIT

), AIT , AL) as (29)-(30). Without loss

of generality we set c = 0 and take the derivative F (.) in order to u = AIT
AL

) using the chain

rule. This can be shown to result in:

@F/@(
AIT

AL
)) = @F/@u.(1/AL) + @F/@u.(�AIT/A

2
L)

2 (31)

7While the first two models are semi-endogenous in its nature (à lá Jones (1995)), this one can present
constant or increasing returns to scale in researchers or population (à lá Romer (1990)) in the particular
situation in which ln(c + AIT

AL
) >= 1. The partial or total elimination of scale e↵ects can be introduced in

the model using product proliferation (see a discussion e.g. in Sequeira et al. (2018)). The possibility that
AI facilitates more the vertical innovation or horizontal innovations – even considering some possibility of
harmful innovations (see e.g. Jones (2023)) is left for future research.

37



Since the two stocks of technologies must be strictly positive the sign of (@F/@(AIT
AL

))) =

(@F/@u) is < 0 implying that the isocline is negative, as depicted in Figure (10). In this case

Figure 10: Phase Diagram

Source: Authors’ compilation

there will not be explosive growth due to AI. In the case of a steady state with increasing

returns (Romer-type) and scale e↵ects, population growth do cause explosive growth, but

this is not driven by AI.

The steady-state expression of the ratio of technologies, in the case the model end in a

semi-endogenous steady state, is as follows:

gA =
�n

1� (AIT0 � AL0)
, (32)

which is straightforward to see that is strictly positive since AIT0 < AL0 .

3.3.1 Calibration and quantitative results

In order to understand how the system behaves over time and compare this to the results

obtained in sub-section 3.2 above, we assume the following values for the parameters, ob-

tained from Igna and Venturini (2023) and Sequeira and Neves (2020): �=�=0.1; ✓=0.14.

38



For simplicity � and !=1 and n=0.01.

Figure 11: Vector Field in the AI-ALspace

Source: Authors’ compilation Parameters: ✓=0.14;�=�=0.1.

The system produces the above vector field in the AL/AIT space, which shows that starting

from any point in the state space, the stock of knowledge in the traditional and AI sectors

grow unevenly until they converge to one the eigenspaces and continues growing at the same

rate. Along that explosive eigenspace, the behaviour of the ratio AL/AIT is stable and we

have both AL and AIT (AI) growing at a constant and equal rate in equilibrium (see Figure

12), as we also may expect from Figure 10.

Figure 12: Dynamic behavior of the ratio AI/AL

Source: Authors’ compilation. Parameters: ✓=0.14;�=�=0.1.
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If we, as we did in sub-section 3.2, apply the ratio AL/AIT=32.1/0.81 obtained from Igna and

Venturini (2023), we are able to generate steady-state values for the growth rate knowledge in

the traditional sector of the economy with equation 32. Because in a steady-state equilibrium,

the ratio AL/AIT is set to be constant, we can take the growth rate of ideas production in

the traditional IPF as being equal to the growth rate of ideas in the AI IPF. We perform

this simulation incorporating the estimates of U.S. Census for population growth throughout

this century (see Figure 13).

Figure 13: Long-run knowledge growth rates for the U.S. economy in the steady-state

Source: Authors’ compilation. Parameters: ✓=0.14; �=�=0.1.

According to Figure 13 we the unique steady-state new ideas growth rate starts close to

15% and decrease to a negative growth rate of nearly -3%. These changes are all due to the

projected evolution of population, as equation (32) anticipates.

Using now the system of di↵erential equations (29) and (30), instead of the steady-state con-

dition (32), we can calculate the growth rates of ideas production in both IPFs as population

changes according to the U.S. Census. The results are shown in Figure 14.

This transitional dynamics behaviour of both technologies also shows the overshooting be-

haviour which is now more similar between the two types of IPFs. It implies that the

possibility of explosive growth due to AI may occur only in the very short-run in the case
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Figure 14: Transition knowledge growth rates for the U.S. economy

Source: Authors’ compilation. Parameters: ✓=0.14;�=�=0.1.

that AI idea-generation overshoots its long-run growth.

4 Concluding Remarks

Theory predicts that global economic growth will stagnate and even come to an end due to

slower and eventually negative growth in population. It has been claimed, however, that AI

may counter this and even cause an economic growth explosion. In this paper, we critically

analyse this claim.

We did so by focusing on how AI a↵ects the ideas production function (IPF). First, we

critically discussed the literature on economic growth, population dynamics, and AI. In this

literature, the “secret sauce” of economic growth is ideas, and hence the ideas production

function (IPF) is accorded central importance in economic growth theory. Standard IPFs

specify the production of new ideas as a function of population growth, and parameters

measuring the e�ciency of the R&D process for discovering new ideas. This includes the

extent of intertemporal spillovers (standing-on-shoulders) and congestion (standing-on-toes)

e↵ects in performing and organizing R&D.
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From an overview of the literature, we concluded that 1) population growth drives economic

growth through innovation (new ideas) and the productivity with which a population of

given size finds new ideas; 2) economic growth can stagnate if either population growth

stagnate and/or the productivity of R&D declines; 3) population growth does not have

simple, monotonic relationship with economic growth, after some level of population, product

proliferation e↵ects and “stepping-on-toes e↵ects” will result in declining R&D productivity.

To reverse this, and even generate explosive economic growth, it has been claimed that

AI can make up for the decline in human population by automating tasks in the IPF and

improving the extent of intertemporal spillovers in the search for new ideas. We reviewed the

literature exploring how AI can be included in the IPF, as well as the empirical literature on

the actual magnitudes of the parameters in the IPF that reflects the extent of intertemporal

spillovers and standing-on-toes e↵ects. Several ways in which AI can complement human

researchers in the discovery of new ideas were discussed, and it was pointed out that AI may

not only have positive impacts on new idea discovery, but possible could also burden or limit

the discovery of new ideas. AI may actually worsen any potential “stepping-on-toes” e↵ects

in research.

We moreover showed that AI is generally incorporated as a tool that enables higher e�ciency

in the production of knowledge but with no law of motion associated with it.

Hence in the remained of the paper we contributed to the literature by exploring how AI can

augment the IPF and raise R&D productivity by addressing this lacuna. We proposed and

discussed three alternative models for the IPF incorporating AI in the research process as

well as its implications in terms of steady-state growth rates of technology and transitional

dynamics. With these models in mind, we are able to understand, for example, which con-

figuration allows AI to generate steady and positive knowledge creation, or how reasonable

is to expect explosive economic growth from AI.
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The three models of the IPF we proposed were calibrated by data from the USA and used

to generate several simulations. The three models described AI as (1) a research-augmenting

technology; (2) a researcher scale enhancing technology; and (3) as a facilitator of innovation.

Our simulations results showed that AI on its own may not be su�cient to accelerate the

growth rate of ideas production indefinitely and that an economic growth explosion would

only be possible under very specific and perhaps unlikely combinations of parameter values.

These modelling choices are not the only possible and several combinations between AI

and other technologies more traditional may be tested in the future. Our simulations for

the transitional dynamics when saddle-path stability occurs also show that the possibility

of explosive growth due to AI may occur only in the very short-run in the case that AI

idea-generation overshoots its long-run growth.

Based on these IPFs and the simulation results conduction using them, we can conclude that

an AI-induced growth explosion is not imminent.

Finally, our paper opens prospects for future research. First, the possibility that AI can

enter in di↵erent ways in quality improvement innovations than in product proliferation can

lead to new results concerning the possibility that AI contributes to the renewal of the so-

called scale e↵ect or to dilute it. The consideration of some possible harmful new products

can also be studied in a setting that considers simultaneously vertical and horizontal inno-

vations. Second, adding the demand side of the economy (households) and more traditional

accumulable factors, such as physical capital, may enrich the analysis and give more precise

quantitative outcomes in a full growth model. Third, to better quantify the possible e↵ects

of AI via the IPF, and to select the best model that describe the innovation process in the

AI age, empirical estimations of the AI-enriched IPFs we proposed here would be useful.
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Naudé, W. (2021). Artificial Intelligence: Neither Utopian nor Apocalyptic Impacts Soon.

Economics of Innovation and New Technology, 30(1):1–24.
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Ramani, S., El-Aroui, M., and Carrére, M. (2008). On Estimating a Knowledge Produc-

tion Function at the Firm and Sector Level Using Patent Statistics. Research Policy,

37(9):1568–1578.

Ribeiro, B., Meckin, R., Balmer, A., and Shapira, P. (2023). The Digitalisation Paradox of

Everyday Scientific Labour: How Mundane Knowledge Work is Amplified and Diversified

in the Biosciences. Research Policy, 52(1):104607.

Romer, P. (1990). Endogenous Technical Change. World Development, (5):S71–S102.

Romer, P. (1993). Idea Gaps and Object Gaps in Economic Development. Journal of

Monetary Economics, 32(3):543–573.

Romer, P. (2019). The Deep Structure of Economic Growth. Blog: https://paulromer.net, 5

February.

Sequeira, T., Gil, P., and Alfonso, O. (2018). Endogenous Growth and Entropy. Journal of

Economic Behavior and Organization, 15:100–120.

Sequeira, T. and Neves, P. (2020). Stepping on Toes in the Production of Knowledge: A

Meta Regression Analysis. Applied Economics, 52(3):260–274.

Torre, F., Teigland, R., and Engstam, L. (2020). AI Leadership and the Future of Corporate

Governance : Changing Demands for Board Competence. In A. Larsson and R. Teigland.

The Digital Transformation of Labor: Automation, the Gig Economy and Welfare. London:

Routledge Studies in Labour Economics.

48



Trammell, P. and Korinek, A. (2020). Economic Growth under Transformative AI: A Guide

to the Vast Range of Possibilities for Output Growth, Wages, and the Labor Share. GPI

Working Paper no. 8-2020, Global Priorities Institute.

Tunyasuvunakool, K., Adler, J., Wu, Z., and et al (2021). HighlyAaccurate Protein Structure

Prediction for the Human Proteome. Nature, 595:590–596.

van der Zande, J., , K. T., Siri, S., and R.Teigland (2020). The Substitution of Labor From

Technological Feasibility to other Factors Influencing the Potential of Job Automation.

In A. Larsson and R. Teigland. The Digital Transformation of Labor: Automation, the

Gig Economy and Welfare. London: Routledge Studies in Labour Economics.

van Roy, V., Vertesy, D., and G.Damioli (2020). AI and Robotics Innovation. In K. F.

Zimmermann (ed.). Handbook of Labor, Human Resources and Population Economics.

Springer.

Verganti, R., Vendraminelli, L., and Iansiti, M. (2020). Innovation and Design in the Age of

Artificial Intelligence. Journal of Product Innovation Management, 37(3):212–227.

Villaescusa-Navarro, F., Ding, J., Genel, S., Tonnesen, S., La Torre, V., Spergel, D.,

R.Teyssier, Li, Y., Heneka, C., Lemos, P., Anglés-Alcázar, D., Nagai, D., and Vogels-
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