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In linear regression models, measurement error in a covariate causes Ordinary Least Squares 

(OLS) to be biased and inconsistent. Instrumental Variables (IV) is a common solution. While 

IV is also biased, it is consistent. Here, we undertake an asymptotic comparison of OLS and 

IV in the case where a covariate is mismeasured for [Nδ] of N observations with δ ∊ [0, 1]. 

We show that OLS is consistent for δ < 1 and is asymptotically normal and more efficient 

than IV for δ < 0.5. Simulations and an application to the impact of body mass index on 

family income demonstrate the practical usefulness of this result.
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To do nothing is sometimes a good remedy.

– Hippocrates

Don’t underestimate the value of Doing Nothing, of just going along, listening to all

the things you can’t hear, and not bothering.

– Winnie the Pooh (A.A. Milne)

1. Introduction

Conventional wisdom in empirical research seems to be that the appropriate statistical or econo-

metric estimator is dictated by the most problematic observations. For example, if any covariate in a

regression model is correlated with the error term for any subset of the sample, then Ordinary Least

Squares (OLS) should be abandoned in favor of, say, Instrumental Variables (IV). Or, in a linear

panel regression model, if there exists relevant unobserved, time invariant heterogeneity for at least

some units, then the Fixed E↵ects (FE) estimator should be used in lieu of Random E↵ects (RE) or

Pooled OLS (POLS). Or, if the variance of the regression error for any subset of the data di↵ers from

that for the remainder of the sample, then Generalized Least Squares (GLS) or heteroskedasticity-

robust standard errors should be used. In the first two cases, the conventional wisdom is to abandon

OLS and RE/POLS as the presence of problematic observations causes these estimators to be biased.

In third case, the problematic observations cause the OLS standard errors to be biased and, hence,

abandoned.

This conventional wisdom needs to be rethought as bias is not the only relevant criteria. As data

become more plentiful, consistency is perhaps more relevant than (finite sample) bias. Moreover,

often the estimator being abandoned is more e�cient than the alternative. This point is cleverly

illustrated in Pesaran and Zhou (2018) in the context of linear panel data models. The authors

show under what conditions POLS is consistent and has a smaller mean squared error (MSE) than

FE when only some units have unobserved, time invariant heterogeneity. Specifically, the authors

allow for unobserved, time invariant heterogeneity in bN �c of N units, where b·c is the floor function
representing the largest integer less than the argument, for di↵erent values of � in the unit interval. Of

course, such insights have a long history. Fisher (1961) shows that simultaneous equation estimators

need not be abandoned if the restrictions embedded in the model hold approximately. The key,

according to Fisher (1961, p. 148) is “deciding whether the particular approximations are ‘good

enough”’.

Here, we perform a similar analysis as in Pesaran and Zhou (2018) in the context of a linear

regression model with a covariate su↵ering from measurement error for some observations. Analogous

to Pesaran and Zhou (2018), we consider cases where the covariate su↵ers from measurement error

in bN �c of N units for � 2 [0, 1]. We derive the theoretical conditions under which OLS remains

consistent and has a smaller MSE than IV in this situation. We show the empirical relevance of this

analysis through simulations and an application assessing the impact of body mass index (BMI) on

income. Thus, as Fisher (1961) emphasizes, we are able to derive theoretically and show empirically

how a researcher might decide if assuming no measurement error in a covariate is a “good enough”

approximation.

The results are striking. Specifically, simulations illustrate the smaller asymptotic MSE of the

OLS estimator as N gets large and bN0.5c observations su↵er from measurement error even if the



2

instrument is very strong (first-stage F -statistic ⇡ 100). Importantly, this result continues to hold

even if the remaining N � bN0.5c observations contain modest measurement error. The simulations

also show that as the first-stage F -statistic declines (even to ⇡ 20, which exceeds the usual rule-of-

thumb), the relative performance of IV deteriorates rapidly. In this case, OLS has a smaller MSE

even in samples as small as 500. Finally, despite substantial measurement error in self-reported BMI

and the existing literature focused on correcting for this measurement error (often by IV), we find

that the estimated e↵ects on monthly family income are virtually identical to those obtained using

measured BMI and confirm a negative obesity penalty for young women in the United States. In

contrast, the IV estimates are predominantly statistically insignificant and much less precise despite

the use of a strong instrument based on genetics. While the theoretical results provided here may

be “obvious” to some, showing that they have practical relevance in small samples, in cases when a

strong instrument is available, and in a practical application where IV is the dominant choice should

cause empirical researchers to take note.

The remainder of the paper is organized as follows. Section 2 lays out the standard errors-in-

variables framework. Section 3 derives the asymptotic properties of OLS and IV when bN �c of N

observations su↵er from measurement error in a covariate for � 2 [0, 1]. Sections 4 and 5 present the

results of our simulations and illustrate the usefulness of our analysis in practice. Section 6 concludes.

2. Linear errors-in-variables regression

Consider the linear regression model with errors-in-variables as

yi = ↵+ �x⇤i + ✏i, (2.1)

xi = x⇤i + ⌘i, (2.2)

x⇤i =  + ⇡zi + !i, (2.3)

where x⇤i is the exogenous variable that is unobserved due to measurement error and zi is a valid

instrument for xi.
1 To keep things simple, we focus on the case where both x⇤ and z are scalar.2

We make use of the following assumptions.

Assumption 1. (x⇤i , yi, zi) are independently and identically distributed for i = 1, . . . , N , Cov[x⇤i , ✏i] =

0, Cov[x⇤i , zi] 6= 0, and Cov[zi, ✏i] = 0.

Assumption 2. The measurement errors ⌘i are independently distributed across i and satisfy

1

N

NX

i=1

E[|⌘i|s] = O(N ��1) (2.4)

for s = 1, 2 and some 0  �  1.

To understand Assumption 2, consider the following example. If there exists an ordering of the

individual units such that

⌘i =

8
<

:
ui i = 1, 2, . . . , bN �c

0 i = bN �c+ 1, . . . , N,

1(2.3) is based on (38) in Schennach (2016) or (8) in Schennach (2020). If we change the definition of !i, this is
equivalent to modeling xi as a function of zi.

2It is inconsequential to view y, x⇤, x, and z as net of other correctly measured determinants of y according to the
Frisch-Waugh-Lovell theorem as long as Assumptions 1 and 2 hold. Moreover, allowing x⇤ and z to be vectors does
not add any new insights to the analysis.



3

where {ui : i = 1, 2, . . . , N} is a sequence of random variables with zero mean and finite variances

such that
1

M

MX

i=1

E[|ui|s] = O(1)

for s = 1, 2 as M ! 1, then Assumption 2 is satisfied as

1

N

NX

i=1

E[|⌘i|s] = N ��1

0

@N��
bN�cX

i=1

E[|ui|s]

1

A = O(N ��1).

In this case, bN �c/N is the share of observations su↵ering from measurement error; for the remainder,

xi = x⇤i . In general, � as in (2.4) can be understood as the strength of the measurement error.

3. Least squares and instrumental variables estimators

Our goal is to compare the OLS and IV estimators of � in the model given by (2.1)-(2.3) under

(2.4). The OLS and IV estimators of �, �̂LS and �̂IV , respectively, can be written as

�̂LS = M̂�1
xx M̂xy,

�̂IV = M̂�1
zx M̂zy,

where

M̂xx =
1

N

NX

i=1

(xi � x̄)2, M̂xy =
1

N

NX

i=1

(xi � x̄)(yi � ȳ),

M̂zx =
1

N

NX

i=1

(xi � x̄)(zi � z̄), M̂zy =
1

N

NX

i=1

(zi � z̄)(yi � ȳ),

and

x̄ =
1

N

NX

i=1

xi, ȳ =
1

N

NX

i=1

yi, z̄ =
1

N

NX

i=1

zi.

3.1. Least squares estimator. For the OLS estimator �̂LS , we have

�̂LS � � =

(
1

N

NX

i=1

(x⇤i � x̄⇤ + ⌘i � ⌘̄)2
)�1(

1

N

NX

i=1

(x⇤i � x̄⇤ + ⌘i � ⌘̄)(yi � ȳ)

)
� �

=

8
>>>>><

>>>>>:

1

N

NX

i=1

(x⇤i � x̄⇤)2

| {z }
M̂x⇤x⇤

+
2

N

NX

i=1

(x⇤i � x̄⇤)(⌘i � ⌘̄)

| {z }
2M̂⌘x⇤

+
1

N

NX

i=1

(⌘i � ⌘̄)2

| {z }
M̂⌘⌘

9
>>>>>=

>>>>>;

�1

⇥

8
>>>>><

>>>>>:

�M̂x⇤x⇤ +
1

N

NX

i=1

(x⇤i � x̄⇤)(✏i � ✏̄)

| {z }
M̂x⇤✏

+
1

N

NX

i=1

(⌘i � ⌘̄)(x⇤i � x̄⇤)

| {z }
M̂⌘x⇤

� +
1

N

NX

i=1

(⌘i � ⌘̄)(✏i � ✏̄)

| {z }
M̂⌘✏

9
>>>>>=

>>>>>;

� �

= (M̂x⇤x⇤ + 2M̂⌘x⇤ + M̂⌘⌘)
�1(M̂x⇤✏ + (� � 2)M̂⌘x⇤ + M̂⌘✏ � M̂⌘⌘) (3.1)

To study the properties of �̂LS , we add the following assumption.
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Assumption 3. V ar[x⇤i ] > 0, E[✏2i |x⇤] = �2✏ , max1iN{supaE[|x⇤i ||⌘i = a] _ supaE[|✏i||⌘i = a]} <

1.

Assumption 3 imposes some regularity conditions. It requires the regressor x⇤ to be non-constant

and have a finite second order moment, the regression error ✏i to be homoskedastic, and the con-

ditional expectations of x⇤i and ✏i given ⌘i to be bounded. Thus, ⌘i is not required to be classical

measurement error. Under random sampling—as required in Assumption 1—the boundedness of the

conditional expectations of x⇤i and ✏i given ⌘i would degenerate to the existence of the unconditional

first order moment of x⇤ and ✏i if the measurement error is assumed to be classical, which would

automatically follow from the rest of Assumption 3.

To derive the asymptotic distribution of �̂LS , note that Assumption 2 implies

M̂⌘⌘ = Op(N
��1). (3.2)

Since M̂⌘x⇤ = 1
N

PN
i=1(⌘i � ⌘̄)x⇤i , we have

E[|M̂⌘x⇤ |]  2 max
1iN

sup
a

E[|x⇤i ||⌘i = a]

(
1

N

NX

i=1

E[|⌘i|]
)

= O(N ��1), (3.3)

where the first step follows from the triangular inequality and the second step follows from Assump-

tion 2 and the boundedness of E[|x⇤i ||⌘i] under Assumption 3. By similar arguments, if we assume

the boundedness of E[|✏i||⌘i], we have

M̂⌘✏ = Op(N
��1). (3.4)

Using (3.2), (3.3), and M̂x⇤x⇤
p! V ar[x⇤] > 0, M̂x⇤⌘ and M̂⌘⌘ are asymptotically negligible compared

to V ar[x⇤] if � < 1 and

M̂xx
p! V ar[x⇤]. (3.5)

Moreover, since M̂x⇤✏
p! 0 as N ! 1 under Assumption 1, (3.2), (3.3), (3.4), and (3.5) together

imply that �̂LS is a consistent estimator of � if � < 1. Lastly, we have
p
N(�̂LS � �) = {Mx⇤x⇤ + op(1)}�1{

p
NM̂x⇤✏ +Op(N

��1/2)}, (3.6)

according to (3.1), (3.2), (3.3), (3.4), and (3.5) which leads to the following result.

Theorem 1. Under Assumptions 1, 2 and 3, if 0  � < 1, �̂LS is a consistent estimator of �. If

� < 1/2, we have

p
N(�̂LS � �)

d! N

✓
0,

�2✏
V ar[x⇤]

◆
.

Theorem 1 shows that the limiting distribution of the OLS estimator �̂LS is contingent upon the

strength of measurement error �. If the measurement errors are not too strong, specifically when

� < 1, �̂LS can still be consistent in the presence of a contaminated regressor. If the measurement

errors are weak enough, specifically when � < 0.5, the asymptotic distribution of �̂LS is identical

to that of the error-free case. Moreover, note that the asymptotic variance of �̂LS depends on the

unobserved x⇤. For the standard error of �̂LS , we can use the common OLS standard error based on x.

In particular, (3.5) shows that V ar[x⇤] can be consistently estimated by 1
N

PN
i=1(xi� x̄)2 if � < 1. By

similar arguments, we can show that �2✏ can be consistently estimated by 1
N

PN
i=1(yi�ȳ��̂LS(xi�x̄))2

if the measurement errors are not too strong.



5

3.2. Instrumental variables estimator. For the IV estimator �̂IV , we have

�̂IV � � =

(
1

N

NX

i=1

(zi � z̄)(x⇤i � x̄⇤ + ⌘i � ⌘̄)

)�1(
1

N

NX

i=1

(zi � z̄)(yi � ȳ)

)
� �

=

8
>>>>><

>>>>>:

1

N

NX

i=1

(zi � z̄)(x⇤i � x̄⇤)

| {z }
M̂zx⇤

+
1

N

NX

i=1

(zi � z̄)(⌘i � ⌘̄)

| {z }
M̂⌘z

9
>>>>>=

>>>>>;

�18>>>>><

>>>>>:

�M̂zx⇤ +
1

N

NX

i=1

(zi � z̄)(✏i � ✏̄)

| {z }
M̂z✏

9
>>>>>=

>>>>>;

� �

= {M̂zx⇤ + M̂⌘z}�1{M̂z✏ � �M̂⌘z}. (3.7)

To study properties of �̂IV , we add the following assumption.

Assumption 4. V ar[x⇤i ] > 0, E[z2i ] < 1, and E[✏2i |zi] = �2✏ .

If ⌘i ⇠ IID(0,�2⌘) and Cov[zi, ⌘i] = 0, then we have the standard results for the asymptotic

properties of �̂IV under certain regularity assumptions as this is a special case of � = 1. If ⌘i is

not identically distributed, by similar arguments as for (3.3), Assumption 2 and the boundedness of

E[|zi||⌘i] imply

M̂⌘z = Op(N
��1). (3.8)

Then (3.7) and (3.8) imply
p
N{�̂IV � �} = {Mzx⇤ + op(1)}�1{

p
NMz✏ +Op(N

��1/2)},

which gives the following result.

Theorem 2. Under Assumptions 1, 2 and 4, if ⌘i is identically distributed, Cov[zi, ⌘i] = 0, and

E[⌘2i |zi] = �2⌘, we have3

p
N(�̂IV � �)

d! N

 
0,

�2✏ + �2�2⌘
V ar[x⇤]⇢2z,x⇤

!
,

where ⇢z,x⇤ denotes the correlation coe�cient between z and x⇤. If the distributions of ⌘i are not

identical, but satisfy (2.4) with 0  � < 1 and max1iN supaE[|zi||⌘i = a] < 1, �̂IV remains a

consistent estimator of �. If � < 1/2, we have

p
N(�̂IV � �)

d! N

 
0,

�2✏
V ar[x⇤]⇢2z,x⇤

!
.

Theorem 2 shows that the properties of the IV estimator �̂IV are also contingent upon the strength

of measurement error �. If all observations su↵er from measurement error such that � = 1, where

the errors are drawn from identical distributions, then uncorrelatedness between the instrument zi
and the measurement error ⌘i is necessary for the consistency of �̂IV . If the measurement errors are

not too strong, specifically when � < 1, and the conditional expectation of zi given ⌘i is bounded,

�̂IV can still be consistent even if there is a non-zero correlation between the instrument zi and

the measurement error ⌘i. If the measurement errors are weak enough, specifically when � < 1/2,

3Note, the variance can also be expressed as
�2
✏+�2�2

⌘

V ar[x]⇢2z,x
under Cov[zi, ⌘i] = 0. Here, since we do not require

Cov[z, ⌘] = 0 when � < 1, we retain the most general case as presented above.



6

the asymptotic distribution of �̂IV is identical to that of the error-free case. Moreover, note that

the asymptotic variance of �̂IV depends on the unobserved x⇤. For the standard error of �̂IV , we

can use the common IV standard error based on x. The validity of such standard error is clear

when ⌘i is identically distributed because the asymptotic variance can be expressed as
�2
✏+�2�2

⌘

V ar[x]⇢2z,x
under Cov[zi, ⌘i] = 0. When the measurement errors are not too strong, by similar arguments as in

(3.5), even if Cov[zi, ⌘i] 6= 0, we can show that Cov[z, x⇤] and �2✏ can be consistently estimated by
1
N

PN
i=1(zi � z̄)(xi � x̄) and 1

N

PN
i=1(yi � ȳ � �̂IV (xi � x̄))2, respectively.

3.3. Asymptotic comparison. Under Theorems 1 and 2, both estimators are consistent when the

measurement error is not too strong, specifically when � < 1. In addition, �̂LS is asymptotically more

e�cient than �̂IV when the measurement error is weak enough, specifically when � < 1/2. Thus, the

asymptotic MSE of the OLS estimator is smaller in this case.

3.4. Specification Testing. With large N , it is advisable to use OLS when � < 1/2. To test this

condition, we proceed as in Pesaran and Zhou (2018) and specify a Hausman type test of

Ho : � = 1/2� "

for " 2 (0, 1/2] against

Ha : � � 1/2.

As OLS is asymptotically e�cient under Ho given Assumption 3, the standard Hausman test statistic

HN =

⇣
�̂LS � �̂IV

⌘2

dV ar
⇣
�̂IV

⌘
� dV ar

⇣
�̂LS

⌘ ⇠ �2
1, (3.9)

can be used. In addition, the Hausman test can be used to devise a Pre-test estimator given by

�̂Pre = �̂LS +
⇣
�̂IV � �̂LS

⌘
I

⇥
HN > �2

1,1�⌧

⇤
, (3.10)

where I(·) is an indicator function taking on the value one if the argument is true, zero otherwise,

and ⌧ is te significance level.

4. Simulations

All experimental designs considered are nested in the following data-generating process.

y = �x⇤i + ✏i, i = 1, ..., N

xi = x⇤i + ⌘i

x⇤i = ⇡zi + !i

⌘i s
(

N(0,�21) if i = 1, ..., bN �c
N(0,�22) if i = bN �c+ 1, ..., N

✏i s N(0, 1)

!i s N(0, 2)

zi s N(0, 1)

For each design, we conduct 1,000 simulations and assess the median absolute bias and the root MSE

(RMSE) for the OLS, IV, and Pre-test estimates of �, where the true value of � is set to one.
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We consider values of � = {0.25, 0.45, 0.475, 0.50, 0.525, 0.55, 0.75}. We vary the sample sizes,

N = {500, 1000, 5000, 10000, 50000, 100000}. We vary �21 such that the reliability ratio (RR) of x

in the subsample of i = 1, ..., bN �c is {0.25, 0.50, 0.75} and �22 such that the reliability ratio of x

in the subsample of i = bN �c + 1, ..., N is {1, 0.99, 0.975, 0.95}. Thus, we consider cases where the

restriction of zero measurement error in the subsample of i = bN �c + 1, ..., N is relaxed. Finally,

we vary ⇡ such that the first-stage F -statistic ⇡ {10, 20, 100}.4 Thus, we analyze 36 experimental

designs, for each combination of � and N .

Figures 1 – 3 plot the di↵erence in RMSE between IV and OLS.5 Positive values indicate a higher

RMSE for IV. Within each figure, Panels (A) – (F) correspond to di↵erent sample sizes. The figures

di↵er in terms of the expected strength of the instrument. In Figure 1, F ⇡ 10, which is considered

to be the rule-of-thumb (Stock et al., 2002). In Figures 2 – 3, F ⇡ 20 and 100, respectively, which

are considered to be su�cient in Stock et al. (2002). However, Lee et al. (2022) consider F > 100

as necessary for valid inference. Figures A.1 – A.3 in Appendix A display the corresponding graphs

for the di↵erence in median absolute bias. Figures A.4 – A.15 in Appendix A display RMSE and

median absolute bias comparing OLS and IV to the Pre-test estimator.

In Figure 1 where F ⇡ 10, OLS has a lower RMSE for all values of �, reliability ratios, and sample

sizes considered. Moreover, the RMSE of IV is highly volatile, consistent with the poor performance

of IV with (moderately) weak instruments. OLS also has a lower median absolute bias in all cases and

for all sample sizes when �  0.45, in all cases and for all N � 1, 000 when �  0.5, and in all cases

and for all N � 5, 000 when �  0.75 (Figure A.1). Thus, OLS outperforms IV even when the sample

size is small and the instrument meets the conventional rule-of-thumb to not be considered weak

unless the measurement error is both very strong (high �) and very severe (low reliability ratios).

In Figures 2 and A.2, OLS has a lower RMSE than IV when �  0.5 for all sample sizes and all

reliability ratios despite the instrument being relatively strong by conventional standards (F ⇡ 20).

OLS also has a smaller median absolute bias when �  0.5 for all reliability ratios if N � 10, 000;

or, N � 500 if �  0.25. Moreover, OLS has a lower RMSE (median absolute bias) for all reliability

ratios if N � 1, 000 (N � 50, 000) even if � = 0.55.

The experiments to this point show that theoretical result favoring OLS is practical as well,

applying to situations likely to be common in applied research. Specifically, OLS outperforms IV

in terms of RMSE even when all observations su↵er from at least some measurement error, the

instrument is strong according to the conventional rule-of-thumb, and the sample size is as small as

N = 500 if �  0.50. Thus, at least in these simulations, the assumption of no measurement error in

the remainder of the sample is not a necessary condition for OLS to have a lower RMSE in practice;

nor is a very large sample size. The practical performance of OLS relative to IV di↵ers from the

theoretical results in Section 3 due to the fact that convergence for �̂IV is slower and a larger sample

is needed for the normal approximation to be accurate when the first-stage parameter ⇡ is small

relative to its sampling variability (e.g., Andrews et al., 2019).

4Formally, we set ⇡ =
⇥
(F � 1)(�2

! + �2
')/

P
i z

2
i

⇤1/2
, where F is the desired F -statistic, �2

' = ��2
1 + (1� �)�2

2 , and

� = bN�c/N . Note, Millimet (2015) shows that the (absolute) finite sample bias of IV is not monotonically decreasing
in the reliability ratio. But, the finite sample performance of IV does improve monotonically with instrument strength.
The asymptotic distribution of IV may di↵er from Theorem 2 under weak IV asymptotics (Staiger and Stock, 1997).

5Note, the figures censor the di↵erence in RMSE values at ten. When this occurs, the vertical axis is labelled
“> 10”.
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In Figures 3 and A.3, F ⇡ 100, close to the suggested benchmark in Lee et al. (2022). Here,

the relative performance of OLS depends on �, N , and the reliability ratios. When � < 0.50, OLS

has a lower RMSE than IV when N = 100, 000 in all cases except when RR = {0.95, 0.25}; a

lower median absolute bias except when RR = 0.95 in the subsample of observations i = bN �c +
1, ..., N . Not unsurprisingly, the relative performance of IV improves as N declines. However, OLS

still has a lower RMSE than IV when N = 10, 000 as long as RR � 0.975 in the subsample of

observations i = bN �c+ 1, ..., N ; a lower median absolute bias in seven (of 12) cases with less severe

measurement error. Even with N = 1, 000 OLS has a lower RMSE in all but five (of 12) cases (RR =

{1, 0.25}, {0.99, 0.25}, {0.975, 0.25}, {0.95, 0.25}, and {0.95, 0.50}); a lower median absolute bias in

four (of 12) cases with less severe measurement error. Thus, even with a very strong instrument,

OLS should not be automatically abandoned in many practical situations.

For the Pre-test estimator, we find little advantage relative to OLS. When F ⇡ 10 or 20, OLS

has a smaller RMSE and median absolute bias than the Pre-test estimator in all cases with �  0.55

(Figures A.4 – A.5 and A.7 – A.8). When F ⇡ 100, OLS has a smaller RMSE and median absolute

bias in nearly all cases with �  0.5 and N � 5, 000 (Figures A.6 and A.9). However, there is some

advantage of the Pre-test estimator relative to IV. The Pre-test estimator has a lower RMSE and

median absolute bias with � < 0.5 for all reliability ratios when F . 20 and N � 1, 000 (Figures

A.10 – A.11 and A.13 – A.14). When F ⇡ 100, the relative performances are less sensitive to � and

more sensitive to the severity of the measurement error (Figures A.12 and A.15). As a result, there is

some benefit to considering the Pre-test estimator over IV (although obtaining appropriate standard

errors is more di�cult). But, in these cases, OLS is preferable to the Pre-test estimator in moderate

or large samples.

Lastly, Tables 1 – 3 display empirical rejection rates at the p < 0.05 significance level for the

Hausman test comparing OLS and IV for select values of �. A few results stand out. First, when

� < 0.5 and RR = 1 in the subsample of observations i = bN �c+1, ..., N , then OLS and IV are both

consistent and we would expect the null of equality to be rejected in 5% of cases as N ! 1 if the test

is appropriately sized. In these cases, when the instrument is strong (F ⇡ 100), the rejection rates

are roughly 4%. When � = 0.5 in these cases, the rejection rates are very close to 5%. However, the

test becomes under-sized with rejection rates roughly 2% and 1% as the instrument weakens (F ⇡ 20

and 10, respectively).

Second, for the cases where OLS and IV are both consistent, but N is small, the test over-rejects

when the instrument is strong (F -statistic is approximately 100) and under-rejects in most other

instances. The over-rejection when the instrument is strong primarily occurs when the measurement

error is severe (RR = 0.25 in the subsample of observations i = 1, ..., bN �c). This is not surprising

as the finite sample bias of OLS in this situation is large and the small N leads to results that di↵er

from what one expects asymptotically.

Third, as we deviate from the conditions required by the asymptotic theory and allow for some

measurement error in the entire sample, but � < 0.5 continues, OLS is no longer consistent and

the rejection rate represents the power of the test. In these cases, the rejection rates increase two

to threefold regardless of the F -statistic relative to the cases where RR = 1 in the subsample of

observations i = bN �c+1, ..., N , but this corresponds to relatively low power. However, as discussed

previously, OLS does have a lower RMSE in the vast majority of these cases.
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Finally, when � � 0.5, the rejection rates also correspond to the power of the test. When the

instrument is strong (F ⇡ 100) and RR = 1 in the subsample of observations i = bN �c + 1, ..., N ,

power declines with N and is only relatively high when the measurement error is severe (RR = 0.25

in the subsample of observations i = 1, ..., bN �c). When � = 0.75, the rejection rate is 99.6% in this

case when N = 500 and 67.8% when N = 100, 000. As the instrument weakens, power diminishes

but the general pattern remains. When � = 0.75 and RR < 1 in the subsample of observations

i = bN �c+ 1, ..., N , then power increases in all cases. For instance, the rejection rate is 83.7% when

N = 100, 000, RR = (0.95, 0.25), and the instrument is strong (F ⇡ 100). This falls to 15.7% and

4.7% when the F -statistic is roughly 20 and 10, respectively.

Overall, these results suggests that the Hausman test can be a useful specification test in the

context considered here. It has roughly correct size in the presence of a large sample and strong

instrument. The test also has good power when the instrument is strong and the measurement error

is strong and severe. In other cases, the power is low. However, the empirical RMSE of OLS is lower

than IV in the majority of these situations.

5. Application

To provide an example where the above theoretical and simulation results may be relevant, we

re-visit the literature on the labor market e↵ects of obesity. Since Register and Williams (1990)

researchers have examined the empirical relationship between measures of body composition such as

weight, height, body mass index (BMI), obesity, and body fat and economic outcomes such as hourly

wages, employment, and household income. Additional studies have examined the e↵ects of body

composition on health outcomes and health care utilization. While these studies are often undertaken

using data from the United States, current research includes data from other countries as well.

Interest in this topic, particularly in the United States, stems from the dramatic rise in obesity

over the past few decades. Using data from the National Health and Nutrition Examination Survey

(NHANES) over the 2017-2020 pre-Covid period, 41.9% of adults age 20 and over are classified as

obese (defined as BMI, equal to weight in kilograms divided by height in meters squared, exceeding

30km/m2) and 9.2% as severely obese (defined as BMI exceeding 40km/m2), up from 22.9% and 2.9%

in 1988-1994, respectively (Stierman et al., 2021; National Center for Health Statistics, 2019). In

light of this, understanding the economic consequences of obesity is critical.

However, identifying the causal e↵ect of body composition on labor market outcomes is not trivial

for several reasons. First, and most important for our purposes here, information on body compo-

sition is self-reported in most data sources. As a result, measurement error is well known to exist

(Cawley, 2004; Stommel and Schoenborn, 2002; O’Neill and Sweetman, 2013; Cawley et al., 2015;

Flegal et al., 2019). Second, body composition may be endogenous for reasons other than measure-

ment error. Two possibilities are reverse causation and omitted heterogeneity. Reverse causation

may arise if individuals with poor labor market outcomes cannot a↵ord a healthy diet. Omitted

heterogeneity may arise, for example, due to unobserved individual discount rates. The concern is

that myopic individuals invest less in their health as well as other forms of human capital, leading

to a spurious correlation. If there is a causal e↵ect of body composition on labor market outcomes,

it is hypothesized to be due to the negative e↵ects of obesity on productivity, employer or customer

discrimination, or employers recovering some of the higher cost of providing health insurance (e.g.,

Cawley, 2004).
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Existing studies attempt to overcome these challenges primarily using several tactics. First, use

self-reported data on height and weight to predict ‘true’ body composition using auxiliary data

containing both self-reported and measured values (Plankey et al., 1997; Cawley, 2004; Wada and

Tekin, 2010; O’Neill and Sweetman, 2013). Second, use lagged (over many years) measures of body

composition (Cawley, 2004; Wada and Tekin, 2010). Third, use panel data over time and/or across

siblings to include individual and/or family fixed e↵ects (Baum II and Ford, 2004; Cawley, 2004;

Han et al., 2009; Wada and Tekin, 2010). Fourth, use instrumental variables exploiting the large

genetic component of obesity (Cawley, 2004; Cawley and Lillard, 2005; Brunello and D’Hombres,

2007; Greve, 2008; Norton and Han, 2008; Atella et al., 2008; Kline and Tobias, 2008; Lindeboom

et al., 2010; Wada and Tekin, 2010; O’Neill and Sweetman, 2013).

At the risk of oversimplifying, these prior studies establish the following results. First, self-reported

body composition contains measurement error. Data containing both self-reported and measured

body composition confirm the existence of errors. Second, using lagged measures of body composition

does not qualitatively alter the association between body composition and labor market outcomes.

This is consistent with the reverse causation concern being unwarranted.6 Third, fixed e↵ects models

generally lead to smaller associations between body composition and labor market outcomes. This is

consistent with the presence of omitted heterogeneity. It is also consistent with greater attenuation

bias from classical measurement error in fixed e↵ects models (Griliches, 1979). Fourth, IV estimates

are mixed and volatile. In these studies, the first-stage F -statistics range from approximately 5 to 45

and standard errors are typically 5 to 10 times larger than for the corresponding OLS estimates. As

a result, many of these studies fail to find statistical evidence of endogeneity. Finally, there seems to

be robust evidence of a wage penalty for obese women, particularly for white women in the United

States. Evidence for other groups is less conclusive.

Interpreting these findings in light of our theoretical and simulation results suggests that measure-

ment error should perhaps be the primary econometric concern given the availability of a large set

of demographic and economic controls in most data sources. However, IV may not be the preferred

solution. One might have more confidence in the OLS estimates if measurement error is strong only

for a subsample of bN �c observations, where � . 0.50. Prior studies suggest that self-reported BMI

fits into the framework discussed in Section 3. For example, using data from NHANES 2001–2006,

Stommel and Schoenborn (2002, p. 4) concludes, “Generally, deviations of BMI values based on self-

reported height and weight from BMI values based on measured height and weight are moderate: an

estimated 56% have self-reported BMI values within a one-unit interval of their measured BMI, and

81.5% have self-reported BMI values within two units of their measured BMI.” O’Neill and Sweet-

man (2013) Cawley et al. (2015) use data from NHANES 1988–1994 and 2003–2010, respectively,

and show similar results.

To undertake our own analysis, we use data from the NHANES 2017–2018 survey. NHANES is

conducted under the auspices of the National Center for Health Statistics (NCHS) which is housed

in the Centers for Disease Control and Prevention (CDC). While NHANES began in the 1960s,

the survey has been administered continuously since 1999. Data on demographic, socioeconomic,

dietary, and health-related topics are collected from a nationally representative sample of roughly

5,000 individuals each year. NHANES also contains a medical examination and laboratory tests.

Information on weight and height are self-reported in the survey, but also collected as part of the

6It is also consistent with a high degree of persistence in both body composition and labor market outcomes.
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medical examination. Thus, NHANES is one of the few data sets with both self-reported andmeasured

body composition.

Panels A and C in Figure 4 show the distribution of the measurement errors and its relation to

measured BMI for the full sample of individuals aged 16 and older with information on both self-

reported and measured BMI (N = 5, 498). The distribution is reasonably clustered around zero,

with the center of the distribution shifted to the left indicative of small under-reporting of BMI on

average. If we split the sample into the bN0.5c observations with the smallest errors in absolute value

and the remainder, reliability ratio is 0.95 in the former and 0.37 in the latter. Panels B and D in

Figure 4 restrict the data to our estimation sample. This includes individuals aged 25 to 80 with

complete information on both self-reported and measured BMI and covariates (discussed below). We

exclude women who are pregnant as in Cawley (2004) and Cawley et al. (2015). The final sample size

is 3,008. Again splitting the sample into the bN0.5c observations with the smallest errors in absolute

value and the remainder, the reliability ratio is 0.95 in the former and 0.51 in the latter.

This illustrates the main point we wish to make with this example. The distribution of errors for

BMI in the United States aligns with cases in the simulations where OLS is found to be superior to

IV. With � ⇡ 0.5, RR = {0.95, 0.51}, N = 3, 000, and first-stage F -statistics for common instruments

in the literature around 20, OLS has a smaller median absolute bias and RMSE than IV. There are

surely many applications where measurement error is suspected and likely to match this distribution.

For example, Au↵hammer (2018) discusses measurement error in weather conditions, where the errors

are likely small (and classical) near monitoring stations but become large at greater distances. Zivin

and Neidell (2013) discusses a similar problem when individual exposure to pollution is obtained

using the nearest monitoring station.

The prior literature finds that measurement error in BMI is nonclassical in that it is negatively

correlated with measured BMI. Indeed, in the full sample, the (weighted) measurement errors and

measured BMI negatively correlated (correlation = -0.35). In the estimation sample, the (weighted)

measurement errors and measured BMI remain negatively correlated (correlation = -0.32). The

distributions are similar in Figure 5 when we split the estimation sample by gender and age. Impor-

tantly, the theoretical derivations in Section 3 show that the asymptotic results do not depend on

Cov[x⇤, ⌘] = 0.

Interestingly, while the asymptotic results do not depend on Cov[x⇤, ⌘] = 0, the finite sample

properties of OLS do. However, the negative correlation between measured BMI and the measurement

error reduces the finite sample bias of OLS, providing an additional reason to favor OLS over IV in

this application. After partialling out the other covariates listed above,

E[�̂LS ] = �

 
1� M̂x̃⇤⌘̃ + M̂⌘̃⌘̃

M̂x̃x̃

!
, (5.1)

where x̃⇤ is measured BMI net of other covariates, ⌘̃ is the di↵erence between self-reported BMI net

of other covariates and measured BMI net of other covariates, and M̂ is defined in Section 3. In

the estimation sample, M̂x̃⇤⌘̃ = �4.17, M̂⌘̃⌘̃ = 3.36, and M̂x̃x̃ = 41.68, implying that the term in

parentheses equals 1.02. It would decline to 0.92 if M̂x̃⇤⌘̃ = 0 ceteris paribus, leading to a larger bias

in absolute value. Thus, the nonclassical nature of the measurement error strengthens our conclusion

that OLS is preferable.7

7Wile it is not relevant for the analysis here, it is noteworthy that any dependence between the measurement error
and the other covariates included in the model is small. An OLS regression of the error on a vector of covariates
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To examine regression results with this data, we assess the e↵ect of BMI on log monthly family

income as in O’Neill and Sweetman (2013). As the responses are coded in intervals, we use the

mid-point of each interval and 1.5 times the lower boundary of the upper interval and treat income

as continuous. For comparison, we also draw income values from a uniform distribution within each

interval.8 We estimate the e↵ects of self-reported and measured BMI, along with the covariates listed

in footnote 7, on monthly family income using OLS. We also estimate the e↵ect of self-reported BMI

using IV. As an instrument, we follow Greve (2008) and use a measure of family diabetes history.

Specifically, we generate a binary variable equal to one if the sample individual indicates that they

are at an elevated risk of diabetes due to family history, zero otherwise. As noted in Stommel and

Schoenborn (2002) and elsewhere, the risk of diabetes rises with BMI.

Table 4 presents the results for the pooled estimation sample. Table 5 gives the results for sub-

samples based on gender and age.9 In the pooled sample, the first-stage F -statistic is 76.8. In the

subsamples delineated by gender and age, the first-stage F -statistics range from 1.2 to 58.1. In both

tables, the OLS estimates using self-reported and measured BMI are virtually identical, indicating

a statistically significant wage penalty for women aged 25 to 54. In contrast, the IV results are

never statistically significant except for males aged 25 to 54, where the coe�cient is positive. The IV

standard errors are between roughly 3 and 18 times larger than the OLS standard errors. Moreover,

Hausman tests comparing the OLS and IV estimates fail to reject the null hypothesis of � < 1/2

in all cases, with the p-values approximately one in all cases. These findings are consistent with

previous papers deriving instruments for BMI based on genetics. However, our analysis gives us

more confidence in the OLS estimates even if we did not have a benchmark using measured BMI in

which to compare them.

6. Conclusion

Issues of mis-specification in econometric models are not black and white. There are degrees of

mis-specification. However, the current practice in empirical research is to chooses the econometric

estimator appropriate for the most problematic of observations. That ‘appropriate’ estimator, at

least in the contexts considered here and in Pesaran and Zhou (2018), requires more of the data such

that the cure may be worse than disease. This is precisely the case when only a portion of the sample

su↵ers from substantial classical measurement error. IV, the typical solution when any measurement

error is suspected, performs much worse than OLS as measured by mean squared error and median

absolute bias as the sample size grows. But, this also holds for sample sizes now commonplace

in empirical research, cases when instruments are (very) strong by conventional standards, and in

situations where all observations su↵er from at least some measurement error. Examining data where

both self-reported and measured BMI are available, this bears out in practice. While OLS estimates

using self-reported BMI are virtually identical to those using measured BMI, IV estimates using

including a quadratic in age, indicators for di↵erent education categories, indicators for di↵erent marital statuses,
gender, indicators for race, indicators for di↵erent family sizes, indicators for di↵erent numbers of children less than
six years old in the household, and indicators for di↵erent numbers of children between six and 17 years old in the
household, R2 is only 0.03. A similar result is found in Stommel and Schoenborn (2002) where the R2 is only 0.045.
The authors control for household income in addition to the covariates included here, as well as pregnancy status since
they do not exclude pregnant women.

8In this case, we use the lower boundary and two times the lower boundary as the upper interval.
9We only show the results using monthly income created using the mid-points of the intervals given the similarity

of the results.
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self-reported BMI and a strong instrument based on genetics are imprecise and often very di↵erent.

As such, researchers would do well to approach potential mis-specification in a more nuanced way.
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(A) N = 500 (B) N = 1, 000

(C) N = 5, 000 (D) N = 10, 000

(E) N = 50, 000 (F) N = 100, 000

Figure 1. Simulation Results: Root Mean Squared Error (F -statistic ⇡ 10).

Notes: RR = reliability ratio. First value applies to observations i = bN �c+ 1, ..., N ; second
value applies to observations i = 1, ..., bN �c. See text for more details.
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(A) N = 500 (B) N = 1, 000

(C) N = 5, 000 (D) N = 10, 000

(E) N = 50, 000 (F) N = 100, 000

Figure 2. Simulation Results: Root Mean Squared Error (F -statistic ⇡ 20).

Notes: See Figure 1 for details.
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(A) N = 500 (B) N = 1, 000

(C) N = 5, 000 (D) N = 10, 000

(E) N = 50, 000 (F) N = 100, 000

Figure 3. Simulation Results: Root Mean Squared Error (F -statistic ⇡ 100).

Notes: See Figure 1 for details.
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(A) Full Sample (B) Estimation Sample

(C) Full Sample (D) Estimation Sample

Figure 4. Measurement Error Distribution for Self-Reported BMI: NHANES 2017-2018.

Notes: In Panels (A) and (C) N = 5, 498. In Panels (B) and (D) N = 3, 008.
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(A) Female, Ages 25-55 (B) Female, Ages 55-80

(C) Male, Ages 25-55 (D) Male, Ages 55-80

Figure 5. Measurement Error Distribution for Self-Reported BMI by Gender & Age:
NHANES 2017-2018

Notes: See text for details.
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Table 4. E↵ect of BMI on Log Monthly Family Income

Income Mid-Point Uniform Income
OLS IV OLS IV

(1) (2) (3) (4) (5) (6)

BMI -0.002 -0.002 0.001 -0.002 -0.002 -0.000
(0.002) (0.002) (0.013) (0.002) (0.002) (0.014)

Observations 3008 3008 3008 3008 3008 3008
F-stat 76.831 76.831
Hausman p = 1.000 p = 1.000

Measure of Measured Self- Self- Measured Self- Self-
BMI Reported Reported Reported Reported

The dependent variable in Columns 1-3 is log family income using the mid-points of incomes intervals. The
dependent variable in Columns 4-6 is log family income using a random draw from a uniform distribution
within the appropriate income interval. Sample weights used. Standard errors in parentheses. * p <.10, **
p< .05, *** p<.01.
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Appendix A. Additional Simulation Results

A.1. Median Absolute Error: OLS & IV.

(A) N = 500 (B) N = 1, 000

(C) N = 5, 000 (D) N = 10, 000

(E) N = 50, 000 (F) N = 100, 000

Figure A.1. Simulation Results: Median Absolute Error (F -statistic ⇡ 10).
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(A) N = 500 (B) N = 1, 000

(C) N = 5, 000 (D) N = 10, 000

(E) N = 50, 000 (F) N = 100, 000

Figure A.2. Simulation Results: Median Absolute Error (F -statistic ⇡ 20).
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(A) N = 500 (B) N = 1, 000

(C) N = 5, 000 (D) N = 10, 000

(E) N = 50, 000 (F) N = 100, 000

Figure A.3. Simulation Results: Median Absolute Error (F -statistic ⇡ 100).
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A.2. Root Mean Squared Error: OLS & Pre-test Estimator.

(A) N = 500 (B) N = 1, 000

(C) N = 5, 000 (D) N = 10, 000

(E) N = 50, 000 (F) N = 100, 000

Figure A.4. Simulation Results: Root Mean Squared Error (F -statistic ⇡ 10).

Notes: RR = reliability ratio. First value applies to observations i = bN �c+ 1, ..., N ; second
value applies to observations i = 1, ..., bN �c. See text for more details.



5

(A) N = 500 (B) N = 1, 000

(C) N = 5, 000 (D) N = 10, 000

(E) N = 50, 000 (F) N = 100, 000

Figure A.5. Simulation Results: Root Mean Squared Error (F -statistic ⇡ 20).

Notes: See Figure A.4 for details.
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(A) N = 500 (B) N = 1, 000

(C) N = 5, 000 (D) N = 10, 000

(E) N = 50, 000 (F) N = 100, 000

Figure A.6. Simulation Results: Root Mean Squared Error (F -statistic ⇡ 100).

Notes: See Figure A.4 for details.
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A.3. Median Absolute Error: OLS & Pre-test Estimator.

(A) N = 500 (B) N = 1, 000

(C) N = 5, 000 (D) N = 10, 000

(E) N = 50, 000 (F) N = 100, 000

Figure A.7. Simulation Results: Median Absolute Bias (F -statistic ⇡ 10).

Notes: RR = reliability ratio. First value applies to observations i = bN �c+ 1, ..., N ; second
value applies to observations i = 1, ..., bN �c. See text for more details.
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(A) N = 500 (B) N = 1, 000

(C) N = 5, 000 (D) N = 10, 000

(E) N = 50, 000 (F) N = 100, 000

Figure A.8. Simulation Results: Median Absolute Bias (F -statistic ⇡ 20).

Notes: See Figure A.7 for details.
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(A) N = 500 (B) N = 1, 000

(C) N = 5, 000 (D) N = 10, 000

(E) N = 50, 000 (F) N = 100, 000

Figure A.9. Simulation Results: Median Absolute Bias (F -statistic ⇡ 100).

Notes: See Figure A.7 for details.
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A.4. Root Mean Squared Error: IV & Pre-test Estimator.

(A) N = 500 (B) N = 1, 000

(C) N = 5, 000 (D) N = 10, 000

(E) N = 50, 000 (F) N = 100, 000

Figure A.10. Simulation Results: Root Mean Squared Error (F -statistic ⇡ 10).

Notes: RR = reliability ratio. First value applies to observations i = bN �c+ 1, ..., N ; second
value applies to observations i = 1, ..., bN �c. See text for more details.
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(A) N = 500 (B) N = 1, 000

(C) N = 5, 000 (D) N = 10, 000

(E) N = 50, 000 (F) N = 100, 000

Figure A.11. Simulation Results: Root Mean Squared Error (F -statistic ⇡ 20).

Notes: See Figure A.10 for details.
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(A) N = 500 (B) N = 1, 000

(C) N = 5, 000 (D) N = 10, 000

(E) N = 50, 000 (F) N = 100, 000

Figure A.12. Simulation Results: Root Mean Squared Error (F -statistic ⇡ 100).

Notes: See Figure A.10 for details.
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A.5. Median Absolute Error: IV & Pre-test Estimator.

(A) N = 500 (B) N = 1, 000

(C) N = 5, 000 (D) N = 10, 000

(E) N = 50, 000 (F) N = 100, 000

Figure A.13. Simulation Results: Median Absolute Bias (F -statistic ⇡ 10).

Notes: RR = reliability ratio. First value applies to observations i = bN �c+ 1, ..., N ; second
value applies to observations i = 1, ..., bN �c. See text for more details.
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(A) N = 500 (B) N = 1, 000

(C) N = 5, 000 (D) N = 10, 000

(E) N = 50, 000 (F) N = 100, 000

Figure A.14. Simulation Results: Median Absolute Bias (F -statistic ⇡ 20).

Notes: See Figure A.13 for details.
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(A) N = 500 (B) N = 1, 000

(C) N = 5, 000 (D) N = 10, 000

(E) N = 50, 000 (F) N = 100, 000

Figure A.15. Simulation Results: Median Absolute Bias (F -statistic ⇡ 100).

Notes: See Figure A.13 for details.
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